1
|
Ji Y, Chen L, Wang Y, Zhang J, Yu Y, Wang M, Wang X, Liu W, Yan B, Xiao L, Song X, Lv C, Chen L. Realistic Nanoplastics Induced Pulmonary Damage via the Crosstalk of Ferritinophagy and Mitochondrial Dysfunction. ACS NANO 2024; 18:16790-16807. [PMID: 38869479 DOI: 10.1021/acsnano.4c02335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The smaller size fraction of plastics may be more substantially existing and detrimental than larger-sized particles. However, reports on nanoplastics (NPs), especially their airborne occurrences and potential health hazards to the respiratory system, are scarce. Previous studies limit the understanding of their real respiratory effects, since sphere-type polystyrene (PS) nanoparticles differ from NPs occurring in nature with respect to their physicochemical properties. Here, we employ a mechanical breakdown method, producing NPs directly from bulk plastic, preserving NP properties in nature. We report that among four relatively high abundance NP materials PS, polyethylene terephthalate (PET), polyvinyl chloride (PVC), and polyethylene (PE) with a size of 100 nm, PVC induced slightly more severe lung toxicity profiles compared to the other plastics. The lung cytotoxicity of NPs is higher than that of commercial PS NPs and comparable to natural particles silicon dioxide (SiO2) and anatase titanium dioxide (TiO2). Mechanistically, BH3-interacting domain death agonist (Bid) transactivation-mediated mitochondrial dysfunction and nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy or ferroptosis are likely common mechanisms of NPs regardless of their chemical composition. This study provides relatively comprehensive data for evaluating the risk of atmospheric NPs to lung health.
Collapse
Affiliation(s)
- Yunxia Ji
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Libang Chen
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Yunqing Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jinjin Zhang
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Yue Yu
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Meirong Wang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Xiaoyan Wang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Weili Liu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Liang Xiao
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Lingxin Chen
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
2
|
Mitroo D, Das DN, Hamilton PD, Kumfer BM, Ravi N. Combustion conditions influence toxicity of flame-generated soot to ocular (ARPE-19) cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123307. [PMID: 38190877 DOI: 10.1016/j.envpol.2024.123307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024]
Abstract
Soot is a prevalent aerosol found both indoors and outdoors that has several sources, such as natural (e.g., wildfires), civilian (e.g., cooking), or military (e.g., burn pit operation). Additionally, within the sources, factors that influence the physicochemical properties of the soot include combustion temperature, oxygen availability, and fuel type. Being able to reproduce soot in the laboratory and systematically assess its toxicity is important in the pursuit of elucidating pathologies associated with its exposure. Of the organs of interest, we targeted the eye given the scant attention received. Yet, air pollution constituents such as soot have been linked to diseases such as age-related macular degeneration and proliferative vitreoretinopathy. We developed a bench-scale system to synthesize different types of soot, that is, soot with a systematically varied physical attributes or chemical composition. We used common analytical techniques to probe such properties, and used statistical analyses to correlate them with toxicity in vitro using ARPE-19 cells. Within the range of flame conditions studied, we find that soot toxicity increases with increasing oxygen concentration in fuel-rich premixed flames, and weakly increases with decreasing flame temperature. Additionally, soot particles produced in premixed flames are generally smaller in size, exhibit a lesser fractal structure, and are considerably more toxic to ARPE-19 cells than soot particles produced in non-premixed flames.
Collapse
Affiliation(s)
- Dhruv Mitroo
- Veterans Research and Education Foundation, St. Louis, MO, 63103, USA; Veterans Affairs Medical Center, St. Louis, MO, 63103, USA
| | - Durgesh N Das
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis MO 63110, USA
| | - Paul D Hamilton
- Veterans Research and Education Foundation, St. Louis, MO, 63103, USA; Veterans Affairs Medical Center, St. Louis, MO, 63103, USA
| | - Benjamin M Kumfer
- Center for Aerosol Science and Engineering, Department of Energy, Environmental, and Chemical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Nathan Ravi
- Veterans Research and Education Foundation, St. Louis, MO, 63103, USA; Veterans Affairs Medical Center, St. Louis, MO, 63103, USA; Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis MO 63110, USA; Center for Aerosol Science and Engineering, Department of Energy, Environmental, and Chemical Engineering, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
3
|
Eweje F, Walsh ML, Ahmad K, Ibrahim V, Alrefai A, Chen J, Chaikof EL. Protein-based nanoparticles for therapeutic nucleic acid delivery. Biomaterials 2024; 305:122464. [PMID: 38181574 PMCID: PMC10872380 DOI: 10.1016/j.biomaterials.2023.122464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/25/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024]
Abstract
To realize the full potential of emerging nucleic acid therapies, there is a need for effective delivery agents to transport cargo to cells of interest. Protein materials exhibit several unique properties, including biodegradability, biocompatibility, ease of functionalization via recombinant and chemical modifications, among other features, which establish a promising basis for therapeutic nucleic acid delivery systems. In this review, we highlight progress made in the use of non-viral protein-based nanoparticles for nucleic acid delivery in vitro and in vivo, while elaborating on key physicochemical properties that have enabled the use of these materials for nanoparticle formulation and drug delivery. To conclude, we comment on the prospects and unresolved challenges associated with the translation of protein-based nucleic acid delivery systems for therapeutic applications.
Collapse
Affiliation(s)
- Feyisayo Eweje
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Harvard and MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Harvard/MIT MD-PhD Program, Boston, MA, USA, 02115; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Michelle L Walsh
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Harvard and MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Harvard/MIT MD-PhD Program, Boston, MA, USA, 02115
| | - Kiran Ahmad
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Vanessa Ibrahim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Assma Alrefai
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jiaxuan Chen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
4
|
Shelonchik O, Lemcoff N, Shimoni R, Biswas A, Yehezkel E, Yesodi D, Hod I, Weizmann Y. Light-induced MOF synthesis enabling composite photothermal materials. Nat Commun 2024; 15:1154. [PMID: 38326307 PMCID: PMC10850081 DOI: 10.1038/s41467-024-45333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024] Open
Abstract
Metal-organic frameworks (MOFs) are a class of porous materials known for their large surface areas. Thus, over the past few decades the development of MOFs and their applications has been a major topic of interest throughout the scientific community. However, many current conventional syntheses of MOFs are lengthy solvothermal processes carried out at elevated temperatures. Herein, we developed a rapid light-induced synthesis of MOFs by harnessing the plasmonic photothermal abilities of bipyramidal gold nanoparticles (AuBPs). The generality of the photo-induced method was demonstrated by synthesizing four different MOFs utilizing three different wavelengths (520 nm, 660 nm and 850 nm). Furthermore, by regulating light exposure, AuBPs could be embedded in the MOF or maintained in the supernatant. Notably, the AuBPs-embedded MOF (AuBP@UIO-66) retained its plasmonic properties along with the extraordinary surface area typical to MOFs. The photothermal AuBP@UIO-66 demonstrated a significant light-induced heating response that was utilized for ultrafast desorption and MOF activation.
Collapse
Affiliation(s)
- Ofir Shelonchik
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Nir Lemcoff
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Ran Shimoni
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Aritra Biswas
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Elad Yehezkel
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Doron Yesodi
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Idan Hod
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Ilse Katz Institute for Nanotechnology Science, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Yossi Weizmann
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
- Ilse Katz Institute for Nanotechnology Science, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
- Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
5
|
Luo K, Yang L, Yan C, Zhao Y, Li Q, Liu X, Xie L, Sun Q, Li X. A Dual-Targeting Liposome Enhances Triple-Negative Breast Cancer Chemoimmunotherapy through Inducing Immunogenic Cell Death and Inhibiting STAT3 Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302834. [PMID: 37264710 DOI: 10.1002/smll.202302834] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/16/2023] [Indexed: 06/03/2023]
Abstract
Immunotherapy gains increasing focus in treating triple-negative breast cancer (TNBC), while its efficacy is greatly restricted owing to low tumor immunogenicity and immunosuppressive tumor microenvironment (ITM). Herein, a LyP-1 and chondroitin sulfate (CS) dual-modified liposome co-loaded with paclitaxel (PTX) and cryptotanshinone (CTS), namely CS/LyP-1-PC Lip, is engineered for TNBC chemoimmunotherapy via induction of immunogenic cell death (ICD) and inhibition of signal transducer and activator of transcript-3 (STAT3) activation. CS/LyP-1-PC Lip enhances cellular uptake through p32 and CD44 dual receptor-mediated endocytosis. Within the tumor, the CS layer is continuously detached by hyaluronidase to release drugs. Subsequently, CTS sensitizes the cytotoxicity of PTX to 4T1 tumor cells. PTX induces ICD of tumor cells and facilitates infiltration of cytotoxic T lymphocyte to provoke immune response. Meanwhile, the concomitant delivery of CTS inhibits STAT3 activation to decrease infiltration of regulatory T cell, M2-type tumor-associated macrophage, and myeloid-derived suppressor cell, thus reversing ITM. Markedly, the dual-targeting liposome shows superior anti-tumor efficacy in subcutaneous TNBC mice and significant lung metastasis suppression in tumor metastasis model. Overall, this work offers a feasible combination regimen and a promising nanoplatform for the development of TNBC chemoimmunotherapy.
Collapse
Affiliation(s)
- Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuxin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Long Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiang Sun
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
6
|
Brero F, Arosio P, Albino M, Cicolari D, Porru M, Basini M, Mariani M, Innocenti C, Sangregorio C, Orsini F, Lascialfari A. 1H-NMR Relaxation of Ferrite Core-Shell Nanoparticles: Evaluation of the Coating Effect. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:804. [PMID: 36903682 PMCID: PMC10005490 DOI: 10.3390/nano13050804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
We investigated the effect of different organic coatings on the 1H-NMR relaxation properties of ultra-small iron-oxide-based magnetic nanoparticles. The first set of nanoparticles, with a magnetic core diameter ds1 = 4.4 ± 0.7 nm, was coated with polyacrylic acid (PAA) and dimercaptosuccinic acid (DMSA), while the second set, ds2 = 8.9 ± 0.9 nm, was coated with aminopropylphosphonic acid (APPA) and DMSA. At fixed core diameters but different coatings, magnetization measurements revealed a similar behavior as a function of temperature and field. On the other hand, the 1H-NMR longitudinal r1 nuclear relaxivity in the frequency range ν = 10 kHz ÷ 300 MHz displayed, for the smallest particles (diameter ds1), an intensity and a frequency behavior dependent on the kind of coating, thus indicating different electronic spin dynamics. Conversely, no differences were found in the r1 relaxivity of the biggest particles (ds2) when the coating was changed. It is concluded that, when the surface to volume ratio, i.e., the surface to bulk spins ratio, increases (smallest nanoparticles), the spin dynamics change significantly, possibly due to the contribution of surface spin dynamics/topology.
Collapse
Affiliation(s)
- Francesca Brero
- Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, 27100 Pavia, Italy
| | - Paolo Arosio
- Dipartimento di Fisica, Università degli Studi di Milano, and INFN, 20133 Milano, Italy
| | - Martin Albino
- Dipartimento di Chimica, Università degli Studi di Firenze and INSTM, 50019 Sesto Fiorentino, Italy
- ICCOM-CNR, 50019 Sesto Fiorentino, Italy
| | - Davide Cicolari
- Dipartimento di Fisica, Università degli Studi di Milano, and INFN, 20133 Milano, Italy
- ASST GOM Niguarda, Struttura Complessa Fisica Sanitaria, 20162 Milano, Italy
| | - Margherita Porru
- Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, 27100 Pavia, Italy
- Dipartimento di Fisica, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Martina Basini
- Physics Department, Stockholm University, 114201 Stockholm, Sweden
| | - Manuel Mariani
- Dipartimento di Fisica, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Claudia Innocenti
- Dipartimento di Chimica, Università degli Studi di Firenze and INSTM, 50019 Sesto Fiorentino, Italy
- ICCOM-CNR, 50019 Sesto Fiorentino, Italy
| | - Claudio Sangregorio
- Dipartimento di Chimica, Università degli Studi di Firenze and INSTM, 50019 Sesto Fiorentino, Italy
- ICCOM-CNR, 50019 Sesto Fiorentino, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, 50019 Sesto Fiorentino, Italy
| | - Francesco Orsini
- Dipartimento di Fisica, Università degli Studi di Milano, and INFN, 20133 Milano, Italy
| | - Alessandro Lascialfari
- Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, 27100 Pavia, Italy
- Dipartimento di Fisica, Università degli Studi di Pavia, 27100 Pavia, Italy
| |
Collapse
|
7
|
Redox-Sensitive Multifunctional Hyaluronic acid-based Nanomicelles with Fine-controlled Anticancer Drug Release. Int J Pharm 2022; 629:122402. [DOI: 10.1016/j.ijpharm.2022.122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
|
8
|
Wang XY, Lin C, Chang WJ, Huang YH, Mi FL. Thiolated hyaluronic acid and catalase-enhanced CD44-targeting and oxygen self-supplying nanoplatforms with photothermal/photodynamic effects against hypoxic breast cancer cells. Int J Biol Macromol 2022; 221:121-134. [PMID: 36049568 DOI: 10.1016/j.ijbiomac.2022.08.164] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/02/2022] [Accepted: 08/24/2022] [Indexed: 12/16/2022]
Abstract
Photothermal and photodynamic therapies (PTT/PDT) have been widely accepted as noninvasive therapeutic methods for cancer treatment. However, tumor hypoxia and insufficient delivery of photoactive compounds to cancer cells can reduce the efficacy of phototherapy. Herein, we first synthesized thiolated hyaluronic acid (THA) and then conjugated it with catalase (CAT) onto chlorin e6 (Ce6)-adsorbed small gold nanorods (Ce6@sAuNRs) with near-infrared (NIR)/visible light activated photothermal/photodynamic effects. The conjugation of THA and CAT on Ce6@sAuNRs resulted in a red-shift of the longitudinal LSPR absorption band of sAuNRs up to 1000 nm and maintained the excellent enzymatic activity of catalase. Modification of Ce6@sAuNRs with THA resulted in efficient internalization of the nanocomposite into MCF-7/ADR multidrug-resistant (MDR) breast cancer cells (CD44+), thereby significantly enhancing the intracellular accumulation of the photosensitizer Ce6. CAT endows Ce6@sAuNRs with self-supporting oxygen production, which enables them to efficiently generate singlet oxygen (1O2) under 660 nm laser irradiation and enhances the photodynamic effect against hypoxic breast cancer cells. The results highlight the prospect of this novel multi-functional nanoplatform integrating active biological macromolecules (THA and CAT) into photosensitizer/photothermal gold nanocomposites in overcoming the limitations of hypoxic MDR breast cancer cell treatment.
Collapse
Affiliation(s)
- Xin-Yu Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
| | - Chi Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
| | - Wong-Jin Chang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
| | - Yen-Hua Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan; International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Fwu-Long Mi
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City 11031, Taiwan.
| |
Collapse
|
9
|
Ferreres G, Pérez-Rafael S, Torrent-Burgués J, Tzanov T. Hyaluronic Acid Derivative Molecular Weight-Dependent Synthesis and Antimicrobial Effect of Hybrid Silver Nanoparticles. Int J Mol Sci 2021; 22:ijms222413428. [PMID: 34948227 PMCID: PMC8707691 DOI: 10.3390/ijms222413428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Silver nanoparticles (Ag NPs) appeared as promising antimicrobial candidates to face the development of antibiotic resistance. Although reported as toxic towards mammalian cells, their combination with biomolecules have shown reduced toxicity, while maintaining the antimicrobial function. Herein, hyaluronic acid (HA) with low (40 kDa), medium (200 and 600 kDa) and high (2 MDa) molecular weight (Mw) was modified with adipic acid dihydrazide (ADH) and used as reducing and capping agents to synthesise antimicrobial hybrid Ag NPs. The Mw of the polymer played a crucial role in the morphology, size and antibacterial activity of the Ag NPs. The 600 and 200 kDa HA-ADH-Ag NPs were able to reduce the Escherichia coli and Staphylococcus aureus concentration by more than 3 logs, while the 40 kDa NPs reached ~2 logs reduction. The 2 MDa HA-ADH failed to form homogenous NPs with strong bactericidal activity. A mechanistic study of the interaction with a model bacterial membrane using Langmuir isotherms confirmed the greater interaction between bacteria and higher Mw polymers and the effect of the NP’s morphology. The nanocomposites low toxicity to human skin cells was demonstrated in vitro, showing more than 90% cell viability after incubation with the NPs.
Collapse
|
10
|
Terracciano R, Carcamo-Bahena Y, Butler EB, Demarchi D, Grattoni A, Filgueira CS. Hyaluronate-Thiol Passivation Enhances Gold Nanoparticle Peritumoral Distribution When Administered Intratumorally in Lung Cancer. Biomedicines 2021; 9:1561. [PMID: 34829790 PMCID: PMC8615404 DOI: 10.3390/biomedicines9111561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022] Open
Abstract
Biofouling is the unwanted adsorption of cells, proteins, or intracellular and extracellular biomolecules that can spontaneously occur on the surface of metal nanocomplexes. It represents a major issue in bioinorganic chemistry because it leads to the creation of a protein corona, which can destabilize a colloidal solution and result in undesired macrophage-driven clearance, consequently causing failed delivery of a targeted drug cargo. Hyaluronic acid (HA) is a bioactive, natural mucopolysaccharide with excellent antifouling properties, arising from its hydrophilic and polyanionic characteristics in physiological environments which prevent opsonization. In this study, hyaluronate-thiol (HA-SH) (MW 10 kDa) was used to surface-passivate gold nanoparticles (GNPs) synthesized using a citrate reduction method. HA functionalized GNP complexes (HA-GNPs) were characterized using absorption spectroscopy, scanning electron microscopy, zeta potential, and dynamic light scattering. GNP cellular uptake and potential dose-dependent cytotoxic effects due to treatment were evaluated in vitro in HeLa cells using inductively coupled plasma-optical emission spectrometry (ICP-OES) and trypan blue and MTT assays. Further, we quantified the in vivo biodistribution of intratumorally injected HA functionalized GNPs in Lewis Lung carcinoma (LLC) solid tumors grown on the flank of C57BL/6 mice and compared localization and retention with nascent particles. Our results reveal that HA-GNPs show overall greater peritumoral distribution (** p < 0.005, 3 days post-intratumoral injection) than citrate-GNPs with reduced biodistribution in off-target organs. This property represents an advantageous step forward in localized delivery of metal nano-complexes to the infiltrative region of a tumor, which may improve the application of nanomedicine in the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Rossana Terracciano
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (R.T.); (Y.C.-B.); (A.G.)
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy;
| | - Yareli Carcamo-Bahena
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (R.T.); (Y.C.-B.); (A.G.)
| | - E. Brian Butler
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Danilo Demarchi
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy;
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (R.T.); (Y.C.-B.); (A.G.)
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA;
- Department of Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Carly S. Filgueira
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (R.T.); (Y.C.-B.); (A.G.)
- Department of Cardiovascular Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
11
|
Laradji A, Karakocak BB, Kolesnikov AV, Kefalov VJ, Ravi N. Hyaluronic Acid-Based Gold Nanoparticles for the Topical Delivery of Therapeutics to the Retina and the Retinal Pigment Epithelium. Polymers (Basel) 2021; 13:3324. [PMID: 34641139 PMCID: PMC8512139 DOI: 10.3390/polym13193324] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
The ocular immune privilege is a phenomenon brought about by anatomical and physiological barriers to shield the eye from immune and inflammation responses. While this phenomenon is beneficial for eyes protection, it is, at the same time, a hindrance for drug delivery to the posterior segment of the eye to treat retinal diseases. Some ocular barriers can be bypassed by intravitreal injections, but these are associated with several side effects and patient noncompliance, especially when frequent injections are required. As an alternative, applying drugs as an eye drop is preferred due to the safety and ease. This study investigated the possible use of topically-applied hyaluronic acid-coated gold nanoparticles as drug delivery vehicles to the back of the eye. The coated gold nanoparticles were topically applied to mouse eyes, and results were compared to topically applied uncoated gold nanoparticles and phosphate-buffered saline (PBS) solution. Retina sections from these mice were then analyzed using fluorescence microscopy, inductively coupled plasma mass spectrometry (ICP-MS), and transmission electron microscopy (TEM). All characterization techniques used in this study suggest that hyaluronic acid-coated gold nanoparticles have higher distribution in the posterior segment of the eye than uncoated gold nanoparticles. Electroretinogram (ERG) analysis revealed that the visual function of mice receiving the coated gold nanoparticles was not affected, and these nanoparticles can, therefore, be applied safely. Together, our results suggest that hyaluronic acid-coated gold nanoparticles constitute potential drug delivery vehicles to the retina when applied noninvasively as an eye drop.
Collapse
Affiliation(s)
- Amine Laradji
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.L.); (B.B.K.)
- Department of Veterans Affairs, St. Louis Medical Center, St. Louis, MO 63106, USA
| | - Bedia B. Karakocak
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.L.); (B.B.K.)
- Department of Veterans Affairs, St. Louis Medical Center, St. Louis, MO 63106, USA
| | - Alexander V. Kolesnikov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA; (A.V.K.); (V.J.K.)
| | - Vladimir J. Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA 92697, USA; (A.V.K.); (V.J.K.)
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Nathan Ravi
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.L.); (B.B.K.)
- Department of Veterans Affairs, St. Louis Medical Center, St. Louis, MO 63106, USA
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
12
|
Salehi Khesht AM, Karpisheh V, Sahami Gilan P, Melnikova LA, Olegovna Zekiy A, Mohammadi M, Hojjat-Farsangi M, Majidi Zolbanin N, Mahmoodpoor A, Hassannia H, Aghebati-Maleki L, Jafari R, Jadidi-Niaragh F. Blockade of CD73 using siRNA loaded chitosan lactate nanoparticles functionalized with TAT-hyaluronate enhances doxorubicin mediated cytotoxicity in cancer cells both in vitro and in vivo. Int J Biol Macromol 2021; 186:849-863. [PMID: 34245737 DOI: 10.1016/j.ijbiomac.2021.07.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/10/2021] [Accepted: 07/04/2021] [Indexed: 02/07/2023]
Abstract
Chemotherapy drugs are still one of the first treatment options used in many cancers; however, problems such as cytotoxic side effects on normal cells after systemic administration and resistance to treatment have reduced the use of chemotherapeutics day by day. Targeted delivery of these drugs to the tumor site and sensitization of cancer cells to death induced by chemotherapy drugs are ways that can overcome the limitations of the use of these drugs. In this study, we designed and generated a novel nanocarrier composed of chitosan lactate nanoparticles (NPs) functionalized by HIV-1 derived TAT peptide (Transactivating transcriptional activator) and hyaluronate (HA) to deliver CD73 siRNA and doxorubicin to 4T1 and CT26 cancer cells, both in vivo and in vitro, as a novel combinatorial treatment strategy. The CD73 molecule plays a key role in many cancer cell behaviors such as proliferation, angiogenesis, metastasis, imunosuppression, and resistance to chemotherapy. Therefore, we decided to reduce the side effects of DOX by simultaneously transmitting CD73 siRNA and DOX by CL-TAT-HA NPs, increase the susceptibility of cancer cells to DOX-induced cell death, and stimulate anti-tumor immune responses, for the first time. These results indicated that simultaneous transfer of CD73 siRNA and DOX to cancer cells (4 T1 and CT26) increased cell death and inhibited the prolifration and spread of cancer cells. Also, the preferential aggregation of NPs in the tumor microenvironment reduced tumor growh, promoted the survival of tumor-bearing mice, and induced anti-tumor immune responses. These findings indicate that CL-TAT-HA NPs are a good candidate for targeted siRNA/drug delivery to cancer cells and the simultaneous transfer of CD73 siRNA and DOX to cancer cells using this nanocarrier can be used to treat cancer.
Collapse
Affiliation(s)
- Armin Mahmoud Salehi Khesht
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Materials Engineering, Islamic Azad University, Najafabad Branch, Najafabad, Iran
| | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Sahami Gilan
- Medical Biology Research Center, Health Technologies Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Lyubov A Melnikova
- Finance University under the Government of the Russian Federation, Moscow, Russian Federation
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mahdis Mohammadi
- Department of Biology, Faculty of Sciences, Golestan University, Gorgan, Iran
| | | | - Naime Majidi Zolbanin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran; Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology, School of Medicine, Imam Reza Medical Research & Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Hassannia
- Immunogenetic Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Reza Jafari
- Solid Tumor Research Center, Cellular and Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Sousa de Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev 2021; 50:5397-5434. [PMID: 33666625 PMCID: PMC8111542 DOI: 10.1039/d0cs01127d] [Citation(s) in RCA: 371] [Impact Index Per Article: 123.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 12/19/2022]
Abstract
Nanoparticles (NPs) have attracted considerable attention in various fields, such as cosmetics, the food industry, material design, and nanomedicine. In particular, the fast-moving field of nanomedicine takes advantage of features of NPs for the detection and treatment of different types of cancer, fibrosis, inflammation, arthritis as well as neurodegenerative and gastrointestinal diseases. To this end, a detailed understanding of the NP uptake mechanisms by cells and intracellular localization is essential for safe and efficient therapeutic applications. In the first part of this review, we describe the several endocytic pathways involved in the internalization of NPs and we discuss the impact of the physicochemical properties of NPs on this process. In addition, the potential challenges of using various inhibitors, endocytic markers and genetic approaches to study endocytosis are addressed along with the principal (semi) quantification methods of NP uptake. The second part focuses on synthetic and bio-inspired substances, which can stimulate or decrease the cellular uptake of NPs. This approach could be interesting in nanomedicine where a high accumulation of drugs in the target cells is desirable and clearance by immune cells is to be avoided. This review contributes to an improved understanding of NP endocytic pathways and reveals potential substances, which can be used in nanomedicine to improve NP delivery.
Collapse
Affiliation(s)
- Mauro Sousa de Almeida
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Eva Susnik
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Barbara Drasler
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
- Department of Chemistry, University of FribourgChemin du Musée 91700 FribourgSwitzerland
| | | |
Collapse
|
14
|
Huerta Ángeles G, Nešporová K. Hyaluronan and its derivatives for ophthalmology: Recent advances and future perspectives. Carbohydr Polym 2021; 259:117697. [DOI: 10.1016/j.carbpol.2021.117697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/26/2022]
|
15
|
Jindal M, Nagpal M, Singh M, Aggarwal G, Dhingra GA. Gold Nanoparticles- Boon in Cancer Theranostics. Curr Pharm Des 2021; 26:5134-5151. [PMID: 32611300 DOI: 10.2174/1381612826666200701151403] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/23/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Cancer is the world's second-largest cause of death, with an estimated 9.6 million fatalities in 2018. Malignant tumour (cancer) is caused by a mixture of genetic modifications due to the environmental variables that tend to activate or inactivate different genes, ultimately resulting in neoplastic transformations. Cancer is a multi-stage process that results from the conversion of the ordinary cells to tumour cells and progresses from a pre-cancer lesion to abnormal growth. METHODS Chemotherapy inhibits the ability of the cells to divide rapidly in an abnormal manner, but this treatment simultaneously affects the entire cellular network in the human body leading to cytotoxic effects. In this review article, the same issue has been addressed by discussing various aspects of the newer class of drugs in cancer therapeutics, i.e., Gold Nanoparticles (AuNPs) from metal nanoparticle (NP) class. RESULTS Metal NPs are advantageous over conventional chemotherapy as the adverse drug reactions are lesser. Additionally, ease of drug delivery, targeting and gene silencing are salient features of this treatment. Functionalized ligand-targeting metal NPs provide better energy deposition control in tumour. AuNPs are promising agents in the field of cancer treatment and are comprehensively studied as contrast agents, carriers of medicinal products, radiosensitizers and photothermal agents. For the targeted delivery of chemotherapeutic agents, AuNPs are used and also tend to enhance tumour imaging in vivo for a variety of cancer types and diseased organs. CONCLUSION The first part of the review focuses on various nano-carriers that are used for cancer therapy and deals with the progression of metal NPs in cancer therapy. The second part emphasizes the use of nanotechnology by considering the latest studies for diagnostic and therapeutic properties of AuNPs. AuNPs present the latest studies in the field of nanotechnology, which leads to the development of early-stage clinical trials. The next part of the review discusses the major features of five principal types of AuNPs: gold nanorods, gold nanoshells, gold nanospheres, gold nanocages, and gold nanostars that have their application in photothermal therapy (PTT).
Collapse
Affiliation(s)
- Mehak Jindal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Geeta Aggarwal
- Delhi Pharmaceutical Sciences and Research University, New Delhi-110017, India
| | | |
Collapse
|
16
|
Laradji AM, Kolesnikov AV, Karakoçak BB, Kefalov VJ, Ravi N. Redox-Responsive Hyaluronic Acid-Based Nanogels for the Topical Delivery of the Visual Chromophore to Retinal Photoreceptors. ACS OMEGA 2021; 6:6172-6184. [PMID: 33718708 PMCID: PMC7948240 DOI: 10.1021/acsomega.0c05535] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/04/2021] [Indexed: 05/08/2023]
Abstract
Delivering therapeutics to the posterior segment of the eye is challenging due to various anatomical and physical barriers. While significant improvements have been realized by introducing direct injections to diseased sites, these approaches come with potential side effects that can range from simple inflammation to severe retinal damage. The topical instillation of drugs remains a safer and preferred alternative for patients' compliance. Here, we report the synthesis of penetratin-complexed, redox-responsive hyaluronic acid-based nanogels for the triggered release and delivery of therapeutics to the posterior part of the eye via topical application. The synthesized nanogels were shown to release their load only when exposed to a reducing environment, similar to the cytoplasm. As a model drug, visual chromophore analog, 9-cis-retinal, was loaded into nanogels and efficiently delivered to the mouse retina's photoreceptors when applied topically. Electroretinogram measurements showed a partial recovery of photoreceptor function in all treated eyes versus untreated controls. To the best of our knowledge, this report constitutes the first attempt to use a topically applied triggered-release drug delivery system to target the pigmented layer of the retina, in addition to the first attempt to deliver the visual chromophore topically.
Collapse
Affiliation(s)
- Amine M. Laradji
- Department
of Ophthalmology and Visual Sciences, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Veterans Affairs, St. Louis Medical Center, St. Louis, Missouri 63106, United States
| | - Alexander V. Kolesnikov
- Department
of Ophthalmology and Visual Sciences, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| | - Bedia B. Karakoçak
- Department
of Ophthalmology and Visual Sciences, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Veterans Affairs, St. Louis Medical Center, St. Louis, Missouri 63106, United States
| | - Vladimir J. Kefalov
- Department
of Ophthalmology and Visual Sciences, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| | - Nathan Ravi
- Department
of Ophthalmology and Visual Sciences, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Veterans Affairs, St. Louis Medical Center, St. Louis, Missouri 63106, United States
- Department
of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| |
Collapse
|
17
|
Karakoçak B, Laradji A, Primeau T, Berezin MY, Li S, Ravi N. Hyaluronan-Conjugated Carbon Quantum Dots for Bioimaging Use. ACS APPLIED MATERIALS & INTERFACES 2021; 13:277-286. [PMID: 33355448 PMCID: PMC8243741 DOI: 10.1021/acsami.0c20088] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/10/2020] [Indexed: 05/28/2023]
Abstract
This work demonstrates the application of hyaluronan-conjugated nitrogen-doped carbon quantum dots (HA-nCQDs) for bioimaging of tumor cells and illustrates their potential use as carriers in targeted drug delivery. Quantum dots are challenging to deliver with specificity, which hinders their application. To facilitate targeted internalization by cancer cells, hyaluronic acid, a natural ligand of CD44 receptors, was covalently grafted on nCQDs. The HA-nCQD conjugate was synthesized by carbodiimide coupling of the amine moieties on nCQDs and the carboxylic acids on HA chains. Conjugated HA-nCQD retained sufficient fluorescence, although with 30% lower quantum efficiency than the original nCQDs. Confocal microscopy showed enhanced internalization of HA-nCQDs, facilitated by CD44 receptors. To demonstrate the specificity of HA-nCQDs toward human tumor cells, patient-derived breast cancer tissue with high-CD44 expression was implanted in adult mice. The tumors were allowed to grow up to 200-250 mm3 prior to the injection of HA-nCQDs. With either local or systemic injection, we achieved a high level of tumor specificity judged by a strong signal-to-noise ratio between the tumor and the surrounding tissue in vivo. Overall, the results show that HA-nCQDs can be used for imaging of CD44-specific tumors in preclinical models of human cancer and potentially used as carriers for targeted drug delivery into CD44-rich cells.
Collapse
Affiliation(s)
- Bedia
Begüm Karakoçak
- Department
of Ophthalmology and Visual Sciences, Washington
University in St. Louis, St. Louis, Missouri 63110, United States
- Veterans
Affairs Medical Center, St. Louis, Missouri 63106, United States
| | - Amine Laradji
- Department
of Ophthalmology and Visual Sciences, Washington
University in St. Louis, St. Louis, Missouri 63110, United States
- Veterans
Affairs Medical Center, St. Louis, Missouri 63106, United States
| | - Tina Primeau
- Department
of Medicine, Washington University School
of Medicine, St. Louis, Missouri 63110, United
States
| | - Mikhail Y. Berezin
- Department
of Radiology, Washington University School
of Medicine, St. Louis, Missouri 63110, United
States
| | - Shunqiang Li
- Department
of Medicine, Washington University School
of Medicine, St. Louis, Missouri 63110, United
States
| | - Nathan Ravi
- Department
of Ophthalmology and Visual Sciences, Washington
University in St. Louis, St. Louis, Missouri 63110, United States
- Veterans
Affairs Medical Center, St. Louis, Missouri 63106, United States
| |
Collapse
|
18
|
Chiang MT, Wang HL, Han TY, Hsieh YK, Wang J, Tsai DH. Assembly and Detachment of Hyaluronic Acid on a Protein-Conjugated Gold Nanoparticle. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14782-14792. [PMID: 33236916 DOI: 10.1021/acs.langmuir.0c02738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The assembly-disassembly of hyaluronic acid (HA) with a bovine serum albumin-conjugated gold nanoparticle (BSA-AuNP) was demonstrated using a gas-phase electrophoresis approach, electrospray-differential mobility analysis (ES-DMA). Physical sizes, number and mass concentrations, and degrees of aggregation of HA, BSA, and AuNP were successfully quantified using ES-DMA hyphenated with inductively coupled plasma mass spectrometry. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy was employed complementarily for an orthogonal characterization of the assembly of HA with BSA-AuNP and the subsequent HA detachment. The results show that the surface packing density of HA on BSA-AuNP was proportional to the concentration of HA (CHA) when CHA ≤ 5 × 10-3 μmol/L, and the equilibrium binding constant of HA on BSA-AuNP was identified as ≈ 4 × 105 L/mol at pH 3. The pH-sensitive and enzyme-induced detachments of HA from BSA-AuNP were both successfully characterized using ES-DMA and ATR-FTIR. In the absence of enzymatic catalysis, the rate constant of HA detachment (k) was shown to increase by at least 3.7 times on adjusting the environmental acidity from pH 3 to pH 7. A significant enzyme-induced HA detachment was identified at pH 7, showing a remarkable increase of k by at least two times in the presence of an enzyme. This work provides a proof of concept for assembly of HA-based hybrid colloidal nanomaterials through the tuning of surface chemistry in the aqueous phase with the ability of in situ quantitative characterization, which has shown promise for the development of a variety of HA-derivative biomedical applications (e.g., drug delivery).
Collapse
Affiliation(s)
- Meng-Ting Chiang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan, ROC
| | - Hung-Li Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan, ROC
| | - Tzung-You Han
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan, ROC
| | - Yi-Kong Hsieh
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan, ROC
| | - Jane Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan, ROC
| | - De-Hao Tsai
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan, ROC
| |
Collapse
|
19
|
Inhibition of HIF-1α/EP4 axis by hyaluronate-trimethyl chitosan-SPION nanoparticles markedly suppresses the growth and development of cancer cells. Int J Biol Macromol 2020; 167:1006-1019. [PMID: 33227333 DOI: 10.1016/j.ijbiomac.2020.11.056] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/02/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022]
Abstract
Increased expression of Hypoxia-inducible factor-1α (HIF-1α) in the tumor microenvironment, mainly due to tumor growth, plays a major role in the growth of cancer. Tumor cells induce the expression of cyclooxygenase 2 (COX2) and its product, prostaglandin E2 (PGE2), through overexpression of HIF-1α. It has been shown that ligation of PGE2 with its receptor, EP4, robustly promotes cancer progression. HIF-1α/COX2/PGE2/EP4 signaling pathways appear to play an important role in tumor growth. Therefore, we decided to block the expansion of cancer cells by blocking the initiator (HIF-1α) and end (EP4) of this pathway. In this study, we used hyaluronate (HA), and trimethyl chitosan (TMC) recoated superparamagnetic iron oxide nanoparticles (SPIONs) loaded with HIF-1α-silencing siRNA and the EP4 antagonist (E7046) to treat cancer cells and assessed the effect of combination therapy on cancer progression. The results showed that optimum physicochemical characteristics of NPs (size 126.9 nm, zeta potential 27 mV, PDI < 0.2) and linkage of HA with CD44 molecules overexpressed on cancer cells could deliver siRNAs to cancer cells and significantly suppress the HIF-1α in them. Combination therapy of cancer cells by using HIF-1α siRNA-loaded SPION-TMC-HA NPs and E7046 also prevent proliferation, migration, invasion, angiogenesis, and colony formation of the cancer cells, remarkably.
Collapse
|
20
|
Apaolaza PS, Busch M, Asin-Prieto E, Peynshaert K, Rathod R, Remaut K, Dünker N, Göpferich A. Hyaluronic acid coating of gold nanoparticles for intraocular drug delivery: Evaluation of the surface properties and effect on their distribution. Exp Eye Res 2020; 198:108151. [PMID: 32721426 DOI: 10.1016/j.exer.2020.108151] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/03/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022]
Abstract
Due to the unique anatomical structure of the eye, ocular drug delivery is a promising delivery route for the treatment of several ocular diseases, such as the ocular neovascularization that contributes to diabetic retinopathy. This disease is triggered by inflammation, retinal ischemia, and/or deposits of advanced-glycation end-products (AGEs), as well as increased levels of vascular endothelial growth factor (VEGF), interleukins, or reactive oxygen species (ROS). Gold has unique antioxidant and antiangiogenic properties and can inhibit angiogenic molecules. Furthermore, gold nanoparticles (GNPs) are not only biocompatible, they are easy to synthesize, they absorb and scatter visible light, and they can be made with precise control over size and shape. GNPs are an excellent candidate for ocular drug delivery because they can be conjugated to an extraordinarily diverse array of different biomolecules, and surface functionalization can improve the mobility of GNPs across the physiological barriers of the eye, such as the vitreous humour or the inner limiting membrane. For this purpose, we employed low molecular weight hyaluronan (HA) to increase the mobility of the nanoparticles as well as target them to HA receptors that are expressed in different cells of the eye. In this study, the combination of gold and HA enhanced the stability of the whole carrier and promoted their distribution across ocular tissues and barriers to reach the retina. Moreover, analysis in vitro, ex vivo, and in ovo revealed the protective and antiangiogenic effect of GNPs as inhibitors of AGEs-mediated- retinal pigment epithelial cell death and neovascularization. We demonstrated that conjugation with HA enhances GNP stability and distribution due to a specific CD44 receptor interaction. The capacity of HA-GNPs to distribute through the vitreous humour and their avidity for the deeper retinal layers ex vivo, suggest that HA-GNPs are a promising delivery system for the treatment of ocular neovascularization and related disorders.
Collapse
Affiliation(s)
- P S Apaolaza
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, D, 93053, Regensburg, Germany
| | - M Busch
- Medical Faculty, Institute for Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Hufelandstraße. 55, D-45122, Essen, Germany
| | - E Asin-Prieto
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea s/n, 31008, Pamplona, Spain
| | - K Peynshaert
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - R Rathod
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, D, 93053, Regensburg, Germany
| | - K Remaut
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - N Dünker
- Medical Faculty, Institute for Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Hufelandstraße. 55, D-45122, Essen, Germany
| | - A Göpferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, D, 93053, Regensburg, Germany.
| |
Collapse
|
21
|
Amorim S, Reis CA, Reis RL, Pires RA. Extracellular Matrix Mimics Using Hyaluronan-Based Biomaterials. Trends Biotechnol 2020; 39:90-104. [PMID: 32654775 DOI: 10.1016/j.tibtech.2020.06.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022]
Abstract
Hyaluronan (HA) is a critical element of the extracellular matrix (ECM). The regulated synthesis and degradation of HA modulates the ECM chemical and physical properties that, in turn, influence cellular behavior. HA triggers signaling pathways associated with the adhesion, proliferation, migration, and differentiation of cells, mediated by its interaction with specific cellular receptors or by tuning the mechanical properties of the ECM. This review summarizes the recent advances on strategies used to mimic the HA present in the ECM to study healthy or pathological cellular behavior. This includes the development of HA-based 2D and 3D in vitro tissue models for the seeding and encapsulation of cells, respectively, and HA particles as carriers for the targeted delivery of therapeutic agents.
Collapse
Affiliation(s)
- Sara Amorim
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto, IPATIMUP, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal; Department of Pathology and Oncology, Faculty of Medicine, Porto University, Porto, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ricardo A Pires
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
22
|
Construction and application of targeted drug delivery system based on hyaluronic acid and heparin functionalised carbon dots. Colloids Surf B Biointerfaces 2020; 188:110768. [DOI: 10.1016/j.colsurfb.2019.110768] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/02/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022]
|
23
|
Laradji A, Shui YB, Karakocak BB, Evans L, Hamilton P, Ravi N. Bioinspired Thermosensitive Hydrogel as a Vitreous Substitute: Synthesis, Properties, and Progress of Animal Studies. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1337. [PMID: 32183465 PMCID: PMC7143394 DOI: 10.3390/ma13061337] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/26/2020] [Accepted: 03/13/2020] [Indexed: 11/16/2022]
Abstract
In many vitreal diseases, the surgeon removes the natural vitreous and replaces it with silicone oils, gases, or balanced salt solutions to fill the eyeball and hold the retina in position. However, these materials are often associated with complications and have properties that differ from natural vitreous. Herein, we report an extension of our previous work on the synthesis of a biomimetic hydrogel that is composed of thiolated gellan as an analogue of type II collagen and poly(methacrylamide-co-methacrylate-co-bis(methacryloyl)cystamine), a polyelectrolyte, as an analogue of hyaluronic acid. This thermosensitive hydrogel can be injected into the eye as a viscous solution at 45 °C. It then forms a physical gel in situ when it reaches body temperature, and later forms disulfide covalent crosslinks. In this article, we evaluated two different formulations of the biomimetic hydrogels for their physical, mechanical, and optical properties, and we determined their biocompatibility with several cell lines. Finally, we report on the progress of the four-month preclinical evaluation of our bio-inspired vitreous substitute in comparison to silicone oil or a balanced salt solution. We assessed the eyes with a slit-lamp examination, intraocular pressure measurements, electroretinography, and optical coherence tomography. Preliminary results are very encouraging for the continuing evaluation of our bio-inspired hydrogel in clinical trials.
Collapse
Affiliation(s)
- Amine Laradji
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.L.); (Y.-B.S.); (B.B.K.); (L.E.); (P.H.)
- Department of Veterans Affairs, St. Louis Medical Center, St. Louis, MO 63106, USA
| | - Ying-Bo Shui
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.L.); (Y.-B.S.); (B.B.K.); (L.E.); (P.H.)
| | - Bedia Begum Karakocak
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.L.); (Y.-B.S.); (B.B.K.); (L.E.); (P.H.)
- Department of Veterans Affairs, St. Louis Medical Center, St. Louis, MO 63106, USA
| | - Lynn Evans
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.L.); (Y.-B.S.); (B.B.K.); (L.E.); (P.H.)
| | - Paul Hamilton
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.L.); (Y.-B.S.); (B.B.K.); (L.E.); (P.H.)
| | - Nathan Ravi
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.L.); (Y.-B.S.); (B.B.K.); (L.E.); (P.H.)
- Department of Veterans Affairs, St. Louis Medical Center, St. Louis, MO 63106, USA
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
24
|
Amani H, Mostafavi E, Alebouyeh MR, Arzaghi H, Akbarzadeh A, Pazoki-Toroudi H, Webster TJ. Would Colloidal Gold Nanocarriers Present An Effective Diagnosis Or Treatment For Ischemic Stroke? Int J Nanomedicine 2019; 14:8013-8031. [PMID: 31632015 PMCID: PMC6789974 DOI: 10.2147/ijn.s210035] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION This study was conducted to evaluate OX26-PEG-coated gold nanoparticles (GNPs) (OX26@GNPs) as a novel targeted nanoparticulate system on cell survival after ischemic stroke. MATERIALS AND METHODS Dynamic light scattering (DLS), zeta sizer, and transmission electron microscopy (TEM) were performed to characterize the OX26@GNPs. The effect of OX26@GNPs on infarct volume, neuronal loss, and necroptosis was evaluated 24 h after reperfusion using 2, 3,5-Triphenyltetrazolium chloride (TTC) staining, Nissl staining and Western blot assay, respectively. RESULTS Conjugation of OX26-PEG to the surface of the 25 nm colloidal gold particles increased their size to 32±2 nm, while a zeta potential change of -40.4 to 3.40 mV remarkably increased the stability of the nanoparticles. Most importantly, OX26@GNPs significantly increased the infarcted brain tissue, while bare GNPs and PEGylated GNPs had no effect on the infarct volume. However, our results indicated an extension of necroptotic cell death, followed by cell membrane damage. CONCLUSION Collectively, our results showed that the presently formulated OX26@GNPs are not suitable nanocarriers nor contrast agents under oxidative stress for the diagnosis and treatment of ischemic stroke. Moreover, our findings suggest that the cytotoxicity of GNPs in the brain is significantly associated with their surface charge.
Collapse
Affiliation(s)
- Hamed Amani
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Mahmoud Reza Alebouyeh
- Anesthesia Department, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Arzaghi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
25
|
Yang Y, Wang S, Wang C, Tian C, Shen Y, Zhu M. Engineered Targeted Hyaluronic Acid–Glutathione‐Stabilized Gold Nanoclusters/Graphene Oxide–5‐Fluorouracil as a Smart Theranostic Platform for Stimulus‐Controlled Fluorescence Imaging‐Assisted Synergetic Chemo/Phototherapy. Chem Asian J 2019; 14:1418-1423. [DOI: 10.1002/asia.201900153] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/03/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Ying Yang
- Institute of Physical Science and Information TechnologyAnhui University Hefei 230601 P.R. China
| | - Shuxin Wang
- College of Chemistry and Chemical EngineeringCollaborative innovation center of modern bio-manufactureAnhui University Hefei 230601 P.R. China
| | - Chen Wang
- College of Chemistry and Chemical EngineeringCollaborative innovation center of modern bio-manufactureAnhui University Hefei 230601 P.R. China
| | - Chen Tian
- College of Chemistry and Chemical EngineeringCollaborative innovation center of modern bio-manufactureAnhui University Hefei 230601 P.R. China
| | - Yuhua Shen
- College of Chemistry and Chemical EngineeringCollaborative innovation center of modern bio-manufactureAnhui University Hefei 230601 P.R. China
| | - Manzhou Zhu
- College of Chemistry and Chemical EngineeringCollaborative innovation center of modern bio-manufactureAnhui University Hefei 230601 P.R. China
| |
Collapse
|
26
|
Investigating the Effects of Stove Emissions on Ocular and Cancer Cells. Sci Rep 2019; 9:1870. [PMID: 30755694 PMCID: PMC6372759 DOI: 10.1038/s41598-019-38803-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022] Open
Abstract
More than a third of the world’s population relies on solid fuels for cooking and heating, with major health consequences. Although solid fuel combustion emissions are known to increase the prevalence of illnesses such as chronic obstructive pulmonary disease and lung cancer, however, their effect on the eyes is underexplored. This study assesses the acute toxicity of solid fuel combustion emissions on healthy ocular cells and a cancer cell line. Three healthy ocular cell lines (corneal, lens, and retinal epithelial cells) and a cancer cell line (Chinese hamster ovary cells) were exposed to liquid and gas phase emissions from applewood and coal combustion. Following the exposure, real-time cell attachment behavior was monitored for at least 120 hours with electrical cell impedance spectroscopy. The viability of the cells, amount of apoptotic cells, and generation of reactive oxygen species (ROS) were quantified with MTT, ApoTox-Glo, and ROS-Glo H2O2 assays, respectively. The results showed that coal emissions compromised the viability of ocular cells more than applewood emissions. Interestingly, the cancer cells, although their viability was not compromised, generated 1.7 to 2.7 times more ROS than healthy cells. This acute exposure study provides compelling proof that biomass combustion emissions compromise the viability of ocular cells and increase ROS generation. The increased ROS generation was fatal for ocular cells, but it promoted the growth of cancer cells.
Collapse
|
27
|
Hsu SH, Yu A, Yeh CA, Sun WS, Lin SZ, Fu RH, Hsieh HH, Wu PY, Hung HS. Biocompatible Nanogold Carrier Coated with Hyaluronic Acid for Efficient Delivery of Plasmid or siRNA to Mesenchymal Stem Cells. ACS APPLIED BIO MATERIALS 2019; 2:1017-1030. [PMID: 35021392 DOI: 10.1021/acsabm.8b00540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan, R.O.C
| | - Alex Yu
- Department of Acute and Critical Care, Chang-Hua Hospital, Ministry of Health and Welfare, Changhua 51341, Taiwan, R.O.C
- School of Medicine, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Chun-An Yeh
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Wei-Shen Sun
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Shinn-Zong Lin
- Center for Neuropsychiatry, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Ru-Huei Fu
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
- Translational Medicine Research, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Hsien-Hsu Hsieh
- Blood Bank, Taichung Veterans General Hospital, Taichung 40705, Taiwan, R.O.C
| | - Po-Yuan Wu
- Department of Dermatology, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
- Translational Medicine Research, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| |
Collapse
|
28
|
Zhang Y, Lin L, Liu L, Liu F, Maruyama A, Tian H, Chen X. Ionic-crosslinked polysaccharide/PEI/DNA nanoparticles for stabilized gene delivery. Carbohydr Polym 2018; 201:246-256. [DOI: 10.1016/j.carbpol.2018.08.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 01/01/2023]
|
29
|
Santhanam S, Shui YB, Struckhoff J, Karakocak BB, Hamilton PD, Harocopos GJ, Ravi N. Bioinspired Fibrillary Hydrogel with Controlled Swelling Behavior: Applicability as an Artificial Vitreous. ACS APPLIED BIO MATERIALS 2018; 2:70-80. [DOI: 10.1021/acsabm.8b00376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sruthi Santhanam
- Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Ying-Bo Shui
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Jessica Struckhoff
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Bedia Begum Karakocak
- Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Paul D. Hamilton
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - George J. Harocopos
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Nathan Ravi
- Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63110, United States
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of
Veterans Affairs, St. Louis Medical Center, St. Louis, Missouri 63106, United States
| |
Collapse
|