1
|
Ahmad S, Beig SUR, Wani MY, Hassan T, Dar MR, Bajya M, Shah SA, Ahmed S. NiFe 2O 4/g- C 3N 4 modified chitosan Schiff base composite for efficient removal of Cu(II) and Hg(II) ions from the aquatic environment and its antibacterial properties. Int J Biol Macromol 2025; 284:137920. [PMID: 39577528 DOI: 10.1016/j.ijbiomac.2024.137920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/01/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Modification of chitosan has been achieved by the reaction of chitosan with 4- nitro-benzaldehyde via the sol-gel method, resulting in a Schiff base. A novel magnetic Graphitic Carbon Nitride/chitosan-Schiff base/NiFe2O3 (SBIV@NiFe/g-C3N4) adsorbent was synthesized by hydrothermal route for the adsorption of Cu(II) and Hg(II) ions from the aquatic environment. The synthesized SBIV@NiFe/g-C3N4 was characterized using infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), and Brunauer-Emmett-Teller (BET), with a surface area of approximately 13.657 m2/g. It was anticipated by the results that magnetic SBIV@NiFe/g-C3N4 would be effectively synthesized. On Cu(II) and Hg(II) adsorption, the impacts of significant variables, including pH solution, contact duration, metal ion concentration, adsorbent dosage, and co-existing ions, were examined. Under ideal circumstances, the optimum adsorption capacities of Cu(II) and Hg(II) ions were 889.76 mg/g and 703.21 mg/g, respectively. Furthermore, the SBIV@NiFe/g-C3N4 material exhibited the beneficial property of simple separation, permitting the continuation of high removal effectiveness for heavy metals like Cu (II) and Hg(II) despite experiencing many reuse cycles. In summary, there are a lot of opportunities for the effective elimination of Cu (II) and Hg (II) from different water sources shortly with the use of SBIV@NiFe/g-C3N4, a new adsorbent. The as-synthesized SBIV@NiFe/g-C3N4 displayed better antibacterial activity against highly lethal bacteria like S. aureus and P. vulgaris.
Collapse
Affiliation(s)
- Sajad Ahmad
- Department of Chemistry National Institute of Technology, Srinagar, Jammu and Kashmir 190006, India
| | - Sajad Ur Rehman Beig
- Department of Textile Technology, National Institute of Technology, Jalandhar, Punjab 144008, India.
| | - Musaib Y Wani
- Department of Chemistry National Institute of Technology, Srinagar, Jammu and Kashmir 190006, India
| | - Tanzeela Hassan
- Department of Chemistry National Institute of Technology, Srinagar, Jammu and Kashmir 190006, India
| | - Murtaza Rehman Dar
- Department of Chemistry National Institute of Technology, Srinagar, Jammu and Kashmir 190006, India
| | - Mukesh Bajya
- Department of Textile Technology, National Institute of Technology, Jalandhar, Punjab 144008, India
| | - Shakeel A Shah
- Department of Chemistry National Institute of Technology, Srinagar, Jammu and Kashmir 190006, India
| | - Shakeel Ahmed
- Postgraduate Department of Chemistry, Government Postgraduate College Rajouri, Jammu and Kashmir 185133, India; Higher Education Department, Government of Jammu and Kashmir, Jammu 180001, India; University Centre for Research and Development, Chandigarh University, Mohali, Punjab 140413, India
| |
Collapse
|
2
|
Pan J, Liu W, Wu W, Zhao R, Li X, Zhou J. Synthesis and characterization of chitosan Schiff base grafted with formaldehyde and aminoethanol: As an effective adsorbent for removal of Pb(II), Hg(II), and Cu(II) ions from aqueous media. Int J Biol Macromol 2024; 281:135601. [PMID: 39276889 DOI: 10.1016/j.ijbiomac.2024.135601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/25/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Grafted chitosan materials show the characteristics of high stability, easy separation and recovery, and good heavy metal adsorption capacity, and have received much attention in the adsorption process. Therefore, in this work, novel grafted chitosan-based adsorbent CS-EHBSB@F-AE was prepared by a one-pot reaction of chitosan (CS), 3-ethoxy-4-hydroxybenzaldehyde (EHB), formaldehyde (F) and aminoethanol (F). The microstructure and morphology of the as-prepared composite CS-EHBSB@F-AE were characterized by FT-IR, TGA, DSC, FE-SEM, and BET analyses. The adsorption performance of the as-prepared CS-EHBSB@F-AE composite on Pb(II), Hg(II), and Cu(II) ions from aqueous was investigated using batch experiment and the effects of the initial pH of the solution, contact time, and initial metal ions concentration and temperature on the adsorption efficiency were investigated and discussed. At the best conditions, CS-EHBSB@F-AE exhibited remarkable adsorption capacity of 246.7 mg/g, 203.9 mg/g, and 234.4 mg/g in absorbing Pb(II), Hg(II), and Cu(II), respectively. The adsorption equilibrium and the kinetic studies confirmed that the ions adsorption process fits well with the Langmuir isotherm and pseudo-second-order (PSO) models. Additionally, the adsorption efficiency of Pb(II), Hg(II), and Cu(II) metal ions by the composite CS-EHBSB@F-AE was reduced by increasing the temperature from 298 K to 318 K. In addition, after the sixth ads/des cycles, the as-prepared adsorbent still exhibited high removal efficiency with a decrease in adsorption efficiency of Pb(II) (5.53 %), Hg(II) (15.43 %) and Cu(II) (8.27 %). Finally, we proposed that the ions adsorption by CS-EHBSB@F-AE has happened using the coordination of active groups containing nitrogen and oxygen atoms on the surface of the adsorbent with the Pb(II), Hg(II), and Cu(II) metal ions.
Collapse
Affiliation(s)
- Jiadi Pan
- College of Food Science & Technology, Agricultural University of Hebei, Baoding, Hebei 071001, China
| | - Weihua Liu
- College of Food Science & Technology, Agricultural University of Hebei, Baoding, Hebei 071001, China
| | - Wenhong Wu
- College of Food Science & Technology, Agricultural University of Hebei, Baoding, Hebei 071001, China
| | - Renbang Zhao
- College of Food Science & Technology, Agricultural University of Hebei, Baoding, Hebei 071001, China.
| | - Xiaoyi Li
- College of Food Science & Technology, Agricultural University of Hebei, Baoding, Hebei 071001, China
| | - Jingjing Zhou
- College of Food Science & Technology, Agricultural University of Hebei, Baoding, Hebei 071001, China
| |
Collapse
|
3
|
Du M, Wang Y, Cao Y, Tang W, Li Z. Defect-Engineered MOF-801/Sodium Alginate Aerogel Beads for Boosting Adsorption of Pb(II). ACS APPLIED MATERIALS & INTERFACES 2024; 16:57614-57625. [PMID: 39378369 DOI: 10.1021/acsami.4c08928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Metal-organic frameworks (MOFs) are attractive adsorbents for heavy metal capture due to their superior stability, easy modification, and adjustable pore size. However, their inherent microporous structure poses challenges in achieving a higher adsorption capacity. Defect engineering is considered a simple method to create hierarchical MOFs with larger pores. Here, we employed l-aspartic acid as a mixed linker to bind Zr4+ clusters in competition with fumaric acid of MOF-801 to create defects, and the pore size was increased from 4.66 to 15.65 nm. Mercaptosuccinic acid was subsequently used as a postexchange ligand to graft the resultant MOF-801 by acid-ammonia condensation to further expand the pore size to 22.73 nm. Notably, the -NH2, -COOH, and -SH groups contributed by these two ligands increased the adsorption sites for Pb(II). The obtained defective MOF-801 with larger pores was thereafter loaded onto sodium alginate to form aerogel beads as adsorbents, and an adsorption capacity of 375.48 mg/g for Pb(II) was achieved, which is ∼51 times that of pristine MOF-801. The aerogel beads also exhibited outstanding reusability with a removal efficiency of ∼90.23% after 5 cycles of use. The adsorption mechanism of Pb(II) included ion-exchange interaction, as well as chelation interactions of Pb-O, Pb-NH2, and Pb-S. The versatile combination of defect engineering and composite beads provides novel inspirations for MOF modification for boosting heavy metal adsorption.
Collapse
Affiliation(s)
- Mengshuo Du
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yingying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Youyu Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Wenzhi Tang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Zhonghong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
4
|
Moridi H, Talebi M, Jafarnezhad B, Mousavi SE, Abbasizadeh S. The role of chitosan grafted copolymer/zeolite Schiff base nanofiber in adsorption of copper and zinc cations from aqueous media. Int J Biol Macromol 2024; 278:135003. [PMID: 39181357 DOI: 10.1016/j.ijbiomac.2024.135003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/28/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
The objective of this research was to develop and assess chitosan-grafted copolymer/HZSM5 zeolite Schiff base nanofibers for Cu2+ and Zn2+ adsorption from aqueous media. Nanofibers were prepared via electrospinning and characterized using XRD, FTIR, 1H NMR, FESEM, TGA, BET, and XPS. The study evaluated the effect of unmodified HZSM5 and Schiff base functionalization on adsorption capacities. Incorporating 10.0 wt% zeolite Schiff base as the optimum content into the chitosan-grafted copolymer significantly enhanced adsorption, achieving increases of 98.2 % for Zn2+ and 42.2 % for Cu2+. Specifically, Zn2+ adsorption increased from 27.6 to 54.7 mg/g, and Cu2+ from 67.1 to 95.4 mg/g. Factors such as temperature, pH, adsorption time, and initial cation concentration were analyzed. Kinetic studies revealed a double-exponential model, and isotherm analysis indicated a good fit with the Redlich-Peterson model, showing maximum monolayer capacities of 310.1 mg/g for Cu2+ and 97.8 mg/g for Zn2+ (pH 6.0, 240 min, 45 °C). The adsorption thermodynamics indicated a spontaneous and endothermic adsorption. Reusability tests showed minimal capacity loss (4.91 % for Cu2+ and 5.59 % for Zn2+) after five cycles. The nanofiber displayed greater selectivity for Cu2+ over Zn2+ in multi-ion systems and real electroplating wastewater, highlighting its potential for targeted heavy metal removal.
Collapse
Affiliation(s)
- Hadis Moridi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Marzieh Talebi
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Bahareh Jafarnezhad
- Faculty of Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Saeed Abbasizadeh
- Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Fang Y, Hu J, Fu Y, Geng T. Fabrication of a novel polyvinylpyrrolidone/chitosan-Schiff base/Fe 2O 3 nanocomposite for efficient adsorption of Pb(II) and Hg(II) ions from aqueous solution. Int J Biol Macromol 2024; 270:132161. [PMID: 38723810 DOI: 10.1016/j.ijbiomac.2024.132161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
A novel magnetic polyvinylpyrrolidone/chitosan-Schiff base/Fe2O3 (PVP/CS-SB/Fe2O3) adsorbent was prepared by one-pot facile co-precipitation route for adsorption of Pb(II) and Hg(II) ions from aqueous solution. Fourier transform infrared-spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM), vibrating sample magnetometer (VSM) and Brunauer-Emmett-Teller (BET) were used to characterize the synthesized PVP/CS-SB/Fe2O3. The results predicted that the successfully synthesis of magnetic CSSB-PVP@Fe2O3. The effects of important factors such as pH solution, contact time, concentration of metal ions, adsorbent dose and co-existing ions on Pb(II) and Hg(II) adsorption were investigated. The maximum adsorption capacities of Pb(II) and Hg(II) ions at optimal conditions were 120 mg/g and 102.5 mg/g, respectively. The kinetic studies predicted that the adsorption followed the pseudo-second-order (PSO) model as chemisorption using the coordination of active sites of PVP/CS-SB/Fe2O3 with the metal ions and also n-π interactions. Reproducibility results predicted that the excellent regeneration ability after 6 adsorption cycles. According to the results of this work, the PVP/CS-SB/Fe2O3 nanocomposite is promising for Pb(II) and Hg(II) ions adsorption and can be potential as a simple, low-cost, high-efficient adsorbent for decontamination of other heavy metal ions from aqueous solution.
Collapse
Affiliation(s)
- Yu Fang
- Key Laboratory of New Opto-Electronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China; Anyange Center for Chemical and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China.
| | - Junqiang Hu
- Key Laboratory of New Opto-Electronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China; Anyange Center for Chemical and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China.
| | - Yifan Fu
- Key Laboratory of New Opto-Electronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China; Anyange Center for Chemical and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China
| | - Tingting Geng
- Key Laboratory of New Opto-Electronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China; Anyange Center for Chemical and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China
| |
Collapse
|
6
|
Zhang X, Wang S, Zhu X, Zhu D, Wang W, Wang B, Deng S, Yu G. Efficient removal of per/polyfluoroalkyl substances from water using recyclable chitosan-coated covalent organic frameworks: Experimental and theoretical methods. CHEMOSPHERE 2024; 356:141942. [PMID: 38588893 DOI: 10.1016/j.chemosphere.2024.141942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/08/2024] [Accepted: 04/06/2024] [Indexed: 04/10/2024]
Abstract
Covalent organic frameworks (COFs) demonstrate remarkable potential for adsorbing per/polyfluoroalkyl substances (PFAS). Nevertheless, the challenge of recycling powdered COFs hampers their practical application in water treatment. In this research, a quaternary amine COF with inherent positive surface charge was synthesised to adsorb perfluorooctanoic acid (PFOA) via electrostatic interactions. The COF was then combined with chitosan (CS) through a simple dissolution-evaporation process, resulting in a composite gel material termed COF@CS. The findings indicated that the adsorption capacity of COF@CS significantly surpassed that of the original COF and CS. According to the Langmuir model, COF@CS achieved a maximum PFOA capacity of 2.8 mmol g-1 at pH 5. Furthermore, the adsorption rate increased significantly to 6.2 mmol g-1 h-1, compared to 5.9 mmol g-1 h-1 for COF and 3.4 mmol g-1 h-1 for CS. Notably, COF@CS exhibited excellent removal efficacy for ten other types of PFAS. Moreover, COF@CS could be successfully regenerated using a mixture of 70% ethanol and 1 wt% NaCl, and it exhibited stable reusability for up to five cycles. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) characterisation, and theoretical calculations revealed that the quaternary amine functional group in COF served as the primary adsorption site in the composite gel material, while the protonated amino group on CS enhanced PFOA adsorption through electrostatic interaction. This study highlights the significant practical potential of COF@CS in the removal of PFAS from aqueous solution and environmental remediation.
Collapse
Affiliation(s)
- Xue Zhang
- School of Environment, Tsinghua University, Beijing, 100084, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai Province, 810016, China
| | - Shiyi Wang
- School of Environment, Tsinghua University, Beijing, 100084, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai Province, 810016, China
| | - Xingyi Zhu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai Province, 810016, China
| | - Donghai Zhu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai Province, 810016, China
| | - Wei Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai Province, 810016, China
| | - Bin Wang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Shubo Deng
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Gang Yu
- School of Environment, Tsinghua University, Beijing, 100084, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, Guangdong Province, 519085, China.
| |
Collapse
|
7
|
Pawariya V, De S, Dutta J. Chitosan-based Schiff bases: Promising materials for biomedical and industrial applications. Carbohydr Polym 2024; 323:121395. [PMID: 37940288 DOI: 10.1016/j.carbpol.2023.121395] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 11/10/2023]
Abstract
There is plenty of scope for modifying chitosan, an only polycationic natural polysaccharide, owing to its reactive functional groups, namely hydroxyl and amino groups. Although innumerable numbers of chitosan derivatives have been synthesized by modifying these groups and reported elsewhere, in this review article, an attempt has been exclusively made to demonstrate the syntheses of various chitosan-based Schiff bases (CSBs) simply by allowing the reactions of reactive amino groups of chitosan with different aldehydes/ketones of interest. Due to their very peculiar and unique characteristics, such as biodegradability, biocompatibility, metal-binding capability, etc., they are found to be very useful for diversified applications. Thus, we have also attempted to showcase their very specific biomedical fields, including tissue engineering, drug delivery, and wound healing, to name a few. In addition, we have also discussed the utilization of CSBs for industrial applications such as wastewater treatment, catalysis, corrosion inhibition, sensors, etc.
Collapse
Affiliation(s)
- Varun Pawariya
- Department of Chemistry, Amity School of Applied Sciences, Amity University Haryana, Gurgaon 122413, Haryana, India
| | - Soumik De
- Department of Chemistry, National Institute of Technology, Silchar, Silchar, Assam 788010, India
| | - Joydeep Dutta
- Department of Chemistry, Amity School of Applied Sciences, Amity University Haryana, Gurgaon 122413, Haryana, India.
| |
Collapse
|
8
|
Xiao L, Shan H, Wu Y. Chitosan cross-linked and grafted with epichlorohydrin and 2,4-dichlorobenzaldehyde as an efficient adsorbent for removal of Pb(II) ions from aqueous solution. Int J Biol Macromol 2023; 247:125503. [PMID: 37348580 DOI: 10.1016/j.ijbiomac.2023.125503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/01/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Epichlorohydrin-modified chitosan-Schiff base composite (CS/24Cl/ECH) prepared via the one-pot reaction as characterized by Fourier transform Infra-Red spectroscopy (FT-IR), X-ray powder diffraction (XRD), Differential scanning calorimetry (DSC) and Scanning electron microscope (SEM). Its removal ability of Pb(II) ions from aqueous solution was investigated. The adsorption of Pb(II) ions carried out at different initial pH, dose of CS/24-Cl/ECH, contact time and co-existing ions. The maximum adsorption capacity of Pb(II) ions was 170 mg/g. Finally, based on the absorption results, the adsorption of Pb(II) ions was fitted by single-layer Langmuir isotherm model and the pseudo-second-order (PSO) kinetics model. The absorption mechanism of Pb(II) ions was controlled by chemical coordination Pb(II) ions with the active sites on the surface of CS/24Cl/ECH composite. Also, CS/24Cl/ECH showed excellent recyclable efficiency up to 5 cycle and potential sorbent for other heavy metal ions.
Collapse
Affiliation(s)
- Li Xiao
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, PR China.
| | - Hanbin Shan
- Division of Chemical Pharmaceuticals, Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, PR China
| | - Yi Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, PR China
| |
Collapse
|
9
|
Yang F, Yang X, Su K, He Y, Lin Q. Synthesis and characterization of pendant N,N-dimethylaminobenzaldehyde-functionalized chitosan Schiff base composite (CS@MABA) as a new sorbent for removal of Pb(II) ions from aqueous media. Int J Biol Macromol 2023:124642. [PMID: 37119917 DOI: 10.1016/j.ijbiomac.2023.124642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
In this work, new pendant N,N-dimethylaminobenzaldehyde-functionalized chitosan Schiff base composite (CS@MABA) was prepared from the simple and convenient condensation reaction between chitosan (CS) and N,N-dimethylaminobenzaldehyde (MABA) in ethanol-glacial acetic acid (1:1 v/v) and characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscope (SEM). The as-prepared composite CS@MABA was applied for the removal of Pb(II) ions, due to the presence of imine, hydroxyl and phenyl groups, and the effects of important parameters such as solution pH, contact time and sorbent dosage on the removal percentage and adsorption capacity were investigated and discussed. The optimum conditions were found to be at pH 5, adsorbent dosage of 0.1 g, Pb(II) concentration of 50 mg/L and contact time of 60 min. The maximum Pb(II) removal percentage was found to be 94.28 % with the high adsorption capacity of 165 mg/g. The adsorption capacity of CS@MABA is remain 87 % after 5 adsorption-desorption cycles. The adsorption kinetic and isotherm studies indicated that the Pb(II) removal by CS@MABA follows a pseudo-first order and Langmuir models, respectively. Compared to similar compounds, the synthesized CS@MABA composite has shown a relatively high yield for removing Pb(II) ions. According to these results, the CS@MABA suggested for the sorption of other heavy metals.
Collapse
Affiliation(s)
- Fang Yang
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou 571199, China; College of Physics and Technology, Guangxi Normal University, Guilin 541004, China
| | - Xingxing Yang
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou 571199, China; Department of Civil Engineering, Jiangxi Water Resources Institute, Nanchang 330013, China
| | - Kaimin Su
- College of Physics and Technology, Guangxi Normal University, Guilin 541004, China
| | - Yun He
- College of Physics and Technology, Guangxi Normal University, Guilin 541004, China.
| | - Qing Lin
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou 571199, China; College of Physics and Technology, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
10
|
Wang K, Zhang F, Xu K, Che Y, Qi M, Song C. Modified magnetic chitosan materials for heavy metal adsorption: a review. RSC Adv 2023; 13:6713-6736. [PMID: 36860541 PMCID: PMC9969337 DOI: 10.1039/d2ra07112f] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
Magnetic chitosan materials have the characteristics of both chitosan and magnetic particle nuclei, showing the characteristics of easy separation and recovery, strong adsorption capacity and high mechanical strength, and have received extensive attention in adsorption, especially in the treatment of heavy metal ions. In order to further improve its performance, many studies have modified magnetic chitosan materials. This review discusses the strategies for the preparation of magnetic chitosan using coprecipitation, crosslinking, and other methods in detail. Besides, this review mainly summarizes the application of modified magnetic chitosan materials in the removal of heavy metal ions in wastewater in recent years. Finally, this review also discusses the adsorption mechanism, and puts forward the prospect of the future development of magnetic chitosan in wastewater treatment.
Collapse
Affiliation(s)
- Ke Wang
- Marine College, Shandong University Weihai 264209 China
| | - Fanbing Zhang
- Marine College, Shandong University Weihai 264209 China
| | - Kexin Xu
- Marine College, Shandong University Weihai 264209 China
| | - Yuju Che
- Marine College, Shandong University Weihai 264209 China
| | - Mingying Qi
- Marine College, Shandong University Weihai 264209 China
| | - Cui Song
- Marine College, Shandong University Weihai 264209 China
- Shandong University-Weihai Research Institute of Industrial Technology Weihai 264209 China
| |
Collapse
|
11
|
Rahmanifar E, Shiri F, Shahraki S, Karimi P. Experimental design for removal of lead ions from water samples using an engineered novel chitosan functionalized Schiff-base adsorbent. CHEM ENG COMMUN 2023. [DOI: 10.1080/00986445.2023.2174862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
| | | | | | - Pouya Karimi
- Department of Chemistry, University of Zabol, Zabol, Iran
| |
Collapse
|
12
|
Wei W, Wu H, Chen Y, Zhong K, Feng L. Application of new chitosan 2,4-dihydroxyacetophenone Schiff base @SrFe 12O 19 nanocomposite for remove of Pb(II) ion from aqueous solution. Int J Biol Macromol 2023; 226:336-344. [PMID: 36502945 DOI: 10.1016/j.ijbiomac.2022.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/28/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
A new chitosan 2,4-dihydroxyacetophenone Schiff base @SrFe12O19 (Cs-SB@SrFe12O19) nanocomposite was successfully prepared by one-pot reaction and fully characterized for its functional groups, morphology, elemental analysis and thermal behavior by FT-IR, XRD, VSM, DSC, TGA, zeta potential, FE-SEM and EDS techniques. The VSM result showed that Cs-SB@SrFe12O19 has Ms of 11.81 emu/g and Hc of 5488 Oe, known as hard magnetic material. Finally, the as-prepared sample utilized as a new sorbent for the removal of Pb(II) ions from aqueous solution by using batch adsorption experiments. The adsorption of Pb(II) was carried out at different pH, contact time and initial dose of Cs-SB@SrFe12O19. The maximum adsorption capacity was found to be 132 mg/g (99 %) at pH 5 and the contact time of 120 min. Finally, the kinetic studies reveals that the adsorption process of Cs-SB@SrFe12O19 followed by the pseudo second order kinetics model. Also, the sample showed excellent recyclable efficiency up to 5 cycles.
Collapse
Affiliation(s)
- Wei Wei
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei 230061, China; Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Hefei 230061, China
| | - Houfan Wu
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei 230061, China; Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Hefei 230061, China
| | - Yuning Chen
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Kunyu Zhong
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Li Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
13
|
Eltaweil AS, Hashem OA, Abdel-Hamid H, Abd El-Monaem EM, Ayoup MS. Synthesis of a new magnetic Sulfacetamide-Ethylacetoacetate hydrazone-chitosan Schiff-base for Cr(VI) removal. Int J Biol Macromol 2022; 222:1465-1475. [PMID: 36113599 DOI: 10.1016/j.ijbiomac.2022.09.081] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 01/13/2023]
Abstract
In this study, a novel magnetic organic-inorganic composite was fabricated. Where, Chitosan, sulfacetamide and ethylacetoacetae were used to prepare a new Sulfacetamide-Ethylacetoacetate hydrazone-chitosan Schiff-base (SEH-CSB) with a variety of active sites that capable of forming coordinate covalent bonds with Cr(VI). This was followed by modification of the formed SHE-CSB with NiFe2O4 to obtain the magnetic Chitosan-Schiff-base (NiFe2O4@SEH-CSB). NiFe2O4@SEH-CSB was characterized using FTIR, zeta potential, SEM, VSM and XPS. Results clarified that SHE played a crucial role in the removal of Cr(VI). The removal of Cr(VI) on NiFe2O4@SEH-CSB was found to be more fitted to pseudo-2nd order kinetics model and Freundlich isotherm. Besides, the maximum adsorption capacity of NiFe2O4@SEH-CSB for Cr(VI) was found to be 373.61 mg/g. The plausible mechanism for the removal of Cr(VI) on NiFe2O4@SEH-CSB composite suggested coulombic interaction, outer-sphere complexation, ion-exchange, surface complexation and coordinate-covalent bond pathways. The magnetic property enabled easy recycling of NiFe2O4@SEH-CSB composite.
Collapse
Affiliation(s)
| | - Omar A Hashem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hamida Abdel-Hamid
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohammed Salah Ayoup
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
14
|
Jasim SA, Abdelbasset WK, Hachem K, Kadhim MM, Yasin G, Obaid MA, Hussein BA, Lafta HA, Mustafa YF, Mahmoud ZH. Novel
Gd
2
O
3
/
SrFe
12
O
19
@Schiff base chitosan (Gd/
SrFe
@
SBCs
) nanocomposite as a novel magnetic sorbent for the removal of Pb(
II
) and Cd(
II
) ions from aqueous solution. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University Al Kharj Saudi Arabia
- Department of Physical Therapy Kasr Al‐Aini Hospital, Cairo University Giza Egypt
| | - Kadda Hachem
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Faculty of Sciences University of Saida ‐ Dr Moulay Tahar Saïda Algeria
| | - Mustafa M. Kadhim
- Department of Dentistry Kut University College Kut Iraq
- College of Technical Engineering, The Islamic University Najaf Iraq
- Department of Pharmacy Osol Aldeen University College Baghdad Iraq
| | - Ghulam Yasin
- Department of Botany Bahauddin Zakariya University Multan Pakistan
| | - Maithm A. Obaid
- National University of Science and Technology, College of Pharmacy Thi Qar Iraq
| | | | - Holya A. Lafta
- Department of Physics Al‐Nisour University College Baghdad Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry College of Pharmacy, University of Mosul Mosul Iraq
| | | |
Collapse
|
15
|
Jasim SA, Hachem K, Abed Hussein S, Turki Jalil A, Hameed NM, Dehno Khalaji A. New chitosan modified with epichlohydrin and bidentate Schiff base applied to removal of Pb
2+
and Cd
2+
ions. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Kadda Hachem
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Faculty of Sciences University of Saida Saïda Algeria
| | | | | | - Noora M. Hameed
- Anesthesia Techniques, Al–Nisour University College Baghdad Iraq
| | | |
Collapse
|
16
|
Malik LA, Pandith AH, Qureashi A, Bashir A, Manzoor T. The emerging role of quantum computations in elucidating adsorption mechanism of heavy metal ions: a review. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02106-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Jasim SA, Hachem K, Abdelbasset WK, Yasin G, Suksatan W, Chem C. Efficient removal of Pb(II) using modified chitosan Schiff base@Fe/NiFe. Int J Biol Macromol 2022; 204:644-651. [PMID: 35093438 DOI: 10.1016/j.ijbiomac.2022.01.151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/22/2023]
Abstract
A novel modified chitosan Schiff base@Fe2O3-NiFe2O4 (CsSB@Fe/NiFe) was prepared and characterized using FT-IR, XRD, SEM, EDX, TGA, DSC and VSM. FT-IR and XRD results confirm that the nanoparticles of Fe/NiFe distributed throughout the surface of CS-OH and successfully prepared CsSB@Fe/NiFe. SEM image shows that the Fe/NiFe nanoparticles were assembled in the surface and inside of CS-OH. Coercivity (Hc) of CsSB@Fe/NiFe is ≈ 110 Oe, indicated that it was kind of soft-magnetic materials with saturation magnetization (Ms) of 6.45 emu/g. In addition, CsSB@Fe/NiFe was further explored as an new sorbent for the removal of Pb(II) ion from aqueous solution and the influence of various important parameters such as solution pH, contact time, dosage of adsorbent and initial Pb(II) concentration were studied and optimized. Optimum conditions for Pb(II) removal were found to be pH 5, adsorbent dosage 0.05 g, initial Pb(II) concentration of 75 ppm and contact time of 120 min. The maximum Pb(II) removal percentage was found to be 97%. Also, CsSB@Fe/NiFe shows about 88% Pb(II) removal after five adsorption-desorption cycles. The results suggested that the sorption of Pb(II) onto CsSB@Fe/NiFe was feasible and spontaneous.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Al-maarif University College, Medical Laboratory Techniques Department, Al-anbar-Ramadi, Iraq
| | - Kadda Hachem
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Faculty of Sciences, University of Saida - Dr Moulay Tahar, 20000, Saida, Algeria
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Ghulam Yasin
- Department of Botany, Bahauddin Zakariya University, Multan, Pakistan.
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Cui Chem
- School of Chemistry, Xian University, Xian, China.
| |
Collapse
|
18
|
Hachem K, Jasim SA, Al‐Gazally ME, Riadi Y, Yasin G, Turki Jalil A, Abdulkadhm MM, Saleh MM, Fenjan MN, Mustafa YF, Dehno Khalaji A. Adsorption of Pb(
II
) and Cd(
II
) by magnetic chitosan‐salicylaldehyde Schiff base: Synthesis, characterization, thermal study and antibacterial activity. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202100507] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kadda Hachem
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Faculty of Sciences University of Saida—Dr Moulay Tahar Saida Algeria
| | | | | | - Yassine Riadi
- Department of Pharmaceutical Chemistry College of Pharmacy, Prince Sattam bin Abdulaziz University Al‐Kharj Saudi Arabia
| | - Ghulam Yasin
- Department of Botany Bahauddin Zakariya University Multan Pakistan
| | - Abduladheem Turki Jalil
- Faculty of Biology and Ecology Yanka Kupala State University of Grodno Grodno Belarus
- College of Technical Engineering The Islamic University Najaf Iraq
| | | | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences University Of Anbar Anbar Iraq
| | - Mohammed N. Fenjan
- College of Health and Medical Technology Al‐Ayen University Thi‐Qar Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy University of Mosul Mosul Iraq
| | | |
Collapse
|
19
|
Wei Z, Ma X, Zhang Y, Guo Y, Wang W, Jiang ZY. High-efficiency adsorption of phenanthrene by Fe 3O 4-SiO 2-dimethoxydiphenylsilane nanocomposite: Experimental and theoretical study. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126948. [PMID: 34449349 DOI: 10.1016/j.jhazmat.2021.126948] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 05/19/2023]
Abstract
Phenanthrene (PHE), as one of representative polycyclic aromatic hydrocarbons (PAHs) can cause serious adverse effects on human health, developing effective adsorbents to alleviate PHE contamination is in urgent demand. A novel Fe3O4-SiO2-Dimethoxydiphenylsilane (Fe3O4-SiO2-2DMDPS) nanocomposite was fabricated from encapsulation and grafting process. Magnetic Fe3O4 nanoparticles were served as preliminary matrix material, SiO2 was used to link the magnetic oxide and provide hydroxyl groups for proceeding the silane coupling reaction subsequently, and the aromatic rings in DMDPS could provide active sites for PHE adsorption via π-π interaction. SEM-EDS, TEM, BET, VSM, XRD, FTIR, Raman, Zeta potential, and XPS techniques were used to characterize magnetic nanocomposite. The prepared Fe3O4-SiO2-2DMDPS exhibited an excellent adsorption performance towards PHE, it could maintain 75.97% adsorption capacity after four regeneration cycles. Homogeneous adsorption acted crucial role in the whole adsorption process and film diffusion was the rate-controlling procedure. Theoretical calculations put forward the most favorable bonding modes between Fe3O4-SiO2-2DMDPS and PHE molecules, confirmed the π-π interaction was valid and it usually existed in the form of parallel-displaced. This work might aid us to develop effective modification strategy for Fe3O4 nanoparticles and expand its application in the PAHs removing field.
Collapse
Affiliation(s)
- Zhengwen Wei
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Xuedong Ma
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Yaoyao Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Yingmin Guo
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Wei Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; School of Water and Environment, Chang'an University, Xi'an 710054, China.
| | - Zhen-Yi Jiang
- Institute of Modern Physics, Northwest University, Xi'an 710054, Shaanxi, China
| |
Collapse
|
20
|
Efficient removal of cationic and anionic dyes by surfactant modified Fe3O4 nanoparticles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Ding X, Teng X, She Z, Li Y, Liu Y, Zhuang Y, Wang C. Preparation of chitosan-coated polystyrene microspheres for the analysis of trace Pb( ii) ions in salt by GF-AAS assisted with solid-phase extraction. RSC Adv 2022; 12:32526-32533. [DOI: 10.1039/d2ra04968f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Chitosan-coated polystyrene solid-phase extraction fillers.
Collapse
Affiliation(s)
- Xingyu Ding
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xin Teng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Zhuxin She
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yi Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yuanyuan Liu
- School of Pharmaceutical and Chemical Engineering, ChengXian College, Southeast University, Nanjing 210088, P. R. China
| | - Ying Zhuang
- Nanjing Station of National Light Industry Food Quality Supervision and Inspection, Nanjing 211816, P. R. China
| | - Chaochao Wang
- Nanjing Station of National Light Industry Food Quality Supervision and Inspection, Nanjing 211816, P. R. China
| |
Collapse
|
22
|
Foroughnia A, Khalaji AD, Kolvari E, Koukabi N. Synthesis of new chitosan Schiff base and its Fe 2O 3 nanocomposite: Evaluation of methyl orange removal and antibacterial activity. Int J Biol Macromol 2021; 177:83-91. [PMID: 33581207 DOI: 10.1016/j.ijbiomac.2021.02.068] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 01/06/2023]
Abstract
New chitosan Schiff base (3EtO-4OH/Chit) and its 3EtO-4OH/Chit/Fe2O3 nanocomposite were synthesized and characterized by FTIR, 1H NMR, XRD, TGA, DSC and SEM. The result confirmed the preparation of 3EtO-4OH/Chit and its 3EtO-4OH/Chit/Fe2O3 nanocomposite. The efficiency of the prepared catalysts was studied for the methyl orange (MO) removal from aqueous solution. The effect of adsorbent dose and contact time on the removal of dye has been studied. Their antibacterial activities were considered against two Gram positive (S. aureus and B. cereus) and two Gram negative (E. coli and P. aeruginosa) bacteria and the results showed that the activity of the 3EtO-4OH/Chit/Fe2O3 is excellent and is more than chitosan and 3EtO-4OH/Chit. Thermogravimetry studies shows that the weight loss stages and the residual value at 600 °C are different for the two compounds. DSC curve of the title compounds 3EtO-4OH/Chit and 3EtO-4OH/Chit/Fe2O3 is different from each other. The reason for this difference could be due to the presence of iron oxide nanoparticles in 3EtO-4OH/Chit/Fe2O3.
Collapse
Affiliation(s)
| | - Aliakbar Dehno Khalaji
- Department of Chemistry, Faculty of Science, Golestan University, Gorgan, P.O. Box: 155, Iran.
| | | | - Nadiya Koukabi
- Department of Chemistry, Semnan University, Semnan, Iran
| |
Collapse
|
23
|
Khanniri E, Yousefi M, Mortazavian AM, Khorshidian N, Sohrabvandi S, Arab M, Koushki MR. Effective removal of lead (II) using chitosan and microbial adsorbents: Response surface methodology (RSM). Int J Biol Macromol 2021; 178:53-62. [PMID: 33581210 DOI: 10.1016/j.ijbiomac.2021.02.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
The ability of chitosan (1% w/v), Bifidobacterium longum (108 CFU mL-1) and Saccharomyces cerevisiae (108 CFU mL-1) separately or in combination (chitosan/B. longum, chitosan/S. cerevisiae, B. longum/S. cerevisiae) was assessed for lead (II) removal from aqueous solutions. The results showed chitosan/B. longum adsorbent had higher adsorption percentage in comparison with other adsorbents (p < 0.05). It was selected as the most efficient adsorbent and the effect of process variables including initial metal concentration (0.01-5 mg L-1), contact time (5-180 min), temperature (4-37 °C) and pH (3-6) on the its removal efficiency was evaluated with a Box-Behnken design. Twenty-seven test runs were performed and the optimal conditions for metal adsorption was observed at metal concentration of 2.5 mg L-1, contact time of 180 min, temperature of 37 °C and pH 4.5. The maximum lead (II) adsorption yield under optimal conditions was 97.6%. The foreign ions didn't diminish lead (II) adsorption by chitosan/B. longum and it had high selectivity toward the lead (II). Adsorption behavior was analyzed using the Freundlich and the Langmuir isotherms. The correlation coefficients (R2) demonstrated the Langmuir model had a better description on metal adsorption process. Overall, isotherms revealed chemisorption and physisorption were probably involved in metal adsorption on adsorbent.
Collapse
Affiliation(s)
- Elham Khanniri
- Department of Food Technology, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | | | - Nasim Khorshidian
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Sara Sohrabvandi
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Arab
- Department of Food Sciences and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Reza Koushki
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Dinuclear uranyl coordination compound: Structural investigations and selective fluorescence sensing properties. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Shahraki S, Delarami HS, Khosravi F, Nejat R. Improving the adsorption potential of chitosan for heavy metal ions using aromatic ring-rich derivatives. J Colloid Interface Sci 2020; 576:79-89. [DOI: 10.1016/j.jcis.2020.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 10/24/2022]
|
26
|
Zhao J, Wei J, Cai D, Cao H, Tan T. Polyaspartic Acid-Derived Micro-/Mesoporous Carbon for Ultrahigh H 2 and CH 4 Adsorption. ACS OMEGA 2020; 5:10687-10695. [PMID: 32455187 PMCID: PMC7240811 DOI: 10.1021/acsomega.9b04110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/10/2020] [Indexed: 05/15/2023]
Abstract
A poly(amino acid)-based approach for scalable synthesis of micro-/mesoporous carbon (PC) with high specific surface area and narrow distribution of micro- and mesopores is presented. Using cross-linked poly aspartic acid as a precursor, PC was obtained by in situ one-step carbonization without the activating agent. The resulting PC had an ultrahigh adsorption capacity for H2 (4.43 wt %) and CH4 (4.49 mmol g-1). This novel method could significantly decrease the wastewater hazards caused by washout of the considerable amount of the activating agent. The PC showed promising application in gas adsorption and storage.
Collapse
Affiliation(s)
- Jianbo Zhao
- College
of Life Science and Technology, Beijing
University of Chemical Technology, Beijing 100029, PR China
- Engineering
Laboratory of Chemical Resources Utilization in South Xinjiang of
Xinjiang Production and Construction Corps, College of Life Sciences, Tarim University, Alar, Xinjiang 843300, PR China
- State
Key Laboratory of Organic−Inorganic Composites, Beijing 100029, PR China
| | - Jun Wei
- College
of Life Science and Technology, Beijing
University of Chemical Technology, Beijing 100029, PR China
| | - Di Cai
- College
of Life Science and Technology, Beijing
University of Chemical Technology, Beijing 100029, PR China
| | - Hui Cao
- College
of Life Science and Technology, Beijing
University of Chemical Technology, Beijing 100029, PR China
| | - Tianwei Tan
- College
of Life Science and Technology, Beijing
University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
27
|
Alipour A, Zarinabadi S, Azimi A, Mirzaei M. Adsorptive removal of Pb(II) ions from aqueous solutions by thiourea-functionalized magnetic ZnO/nanocellulose composite: Optimization by response surface methodology (RSM). Int J Biol Macromol 2020; 151:124-135. [DOI: 10.1016/j.ijbiomac.2020.02.109] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/30/2020] [Accepted: 02/11/2020] [Indexed: 01/18/2023]
|
28
|
Abdel Maksoud M, Elgarahy AM, Farrell C, Al-Muhtaseb AH, Rooney DW, Osman AI. Insight on water remediation application using magnetic nanomaterials and biosorbents. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213096] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
29
|
Abstract
In this work, nanochitosan (NC) was prepared through ionic gelation using low molecular weight chitosan and maleic acid (MA). The synthesized NC was characterized by atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). During preparation, the particle size of the material depended on parameters such as concentration of chitosan and pH of the aqueous solution. After controlling the mentioned parameters, NC smaller than 100 nm was prepared. The chitosan and prepared NC were employed for the adsorption of Pb(II) from an aqueous solution in the form of a batch system. Among the sorption parameters, pH showed the strongest effect on the sorption process and removal of the maximum number of Pb(II) ions was obtained at pH value of 6. Pseudo-first-order and pseudo-second-order models were used to track the kinetics of the adsorption process. Langmuir and Freundlich’s isotherms were subjected to the absorption data to evaluate absorption capacity. NC proved to be an excellent adsorbent with a remarkable capacity to eliminate Pb(II) ions from aqueous solutions at multiple concentrations. The NC also showed better performance with a comparatively easier preparation process than in other reported work.
Collapse
|
30
|
Zhang B, Niu Y, Li L, Xu W, Chen H, Yuan B, Yang H. Combined experimental and DFT study on the adsorption of Co(II) and Zn(II) from fuel ethanol by Schiff base decorated magnetic Fe3O4 composites. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Polyvinylpyrrolidone functionalized magnetic graphene-based composites for highly efficient removal of lead from wastewater. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123927] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Shahraki S, Delarami HS, Khosravi F. Synthesis and characterization of an adsorptive Schiff base-chitosan nanocomposite for removal of Pb(II) ion from aqueous media. Int J Biol Macromol 2019; 139:577-586. [DOI: 10.1016/j.ijbiomac.2019.07.223] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/13/2019] [Accepted: 07/31/2019] [Indexed: 11/25/2022]
|
33
|
Shahraki S, Samareh Delarami H, Saeidifar M. Catalase inhibition by two Schiff base derivatives. Kinetics, thermodynamic and molecular docking studies. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Tong D, Fang K, Yang H, Wang J, Zhou C, Yu W. Efficient removal of copper ions using a hydrogel bead triggered by the cationic hectorite clay and anionic sodium alginate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:16482-16492. [PMID: 30982191 DOI: 10.1007/s11356-019-04895-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Sodium alginate (SA) is a linear biopolymer, which is the nontoxic, biodegradable, and rich in carboxyl and hydroxyl groups. In the paper, the SA-based hydrogel bead was prepared by the cationic hectorite clay and anionic sodium alginate with a simple ionic gelation method under freeze-drying, and the adsorption properties were evaluated by the removal of copper ions from aqueous solutions. The composites were characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption isotherm (BET), thermal analysis (TG), and Fourier transform infrared spectroscopy (FT-IR). The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data and the Langmuir, Freundlich, Dubinin-Radushkevich (D-R), and Temkin models were applied to describe the adsorption isotherms. The results showed that the adsorption process was found to follow the Freundlich isotherm model and the maximum sorption capacity was observed to be 160.28 mg/g under the initial concentration from 10 to 700 mg/L at 45 °C. Adsorption kinetics data fitted well with pseudo-second-order rate model. The porous structure of the composite was responsible for the adsorption of Cu2+ ions. But the adsorption ability could be improved by pH. Finally, the adsorption mechanism was suggested. Graphical abstract.
Collapse
Affiliation(s)
- Dongshen Tong
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Discipline of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| | - Kai Fang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Discipline of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Haiyan Yang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Discipline of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jie Wang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Discipline of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Chunhui Zhou
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Discipline of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Weihua Yu
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Discipline of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| |
Collapse
|
35
|
Long L, Tao P, Li T, Wu S, Kong X, Liao L, Xiao X, Nie C. Insight into Coordination of Uranyl Ions with N,N′‐bis(2‐five‐membered heterocyclidene)‐1,8‐anthradiamines. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Li‐yu Long
- School of Chemistry and Chemical EngineeringUniversity of South China Hengyang China 421001
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China 421001
| | - Peng Tao
- School of Chemistry and Chemical EngineeringUniversity of South China Hengyang China 421001
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China 421001
| | - Tian‐liang Li
- School of Chemistry and Chemical EngineeringUniversity of South China Hengyang China 421001
| | - Si Wu
- School of Chemistry and Chemical EngineeringUniversity of South China Hengyang China 421001
| | - Xiang‐he Kong
- School of Chemistry and Chemical EngineeringUniversity of South China Hengyang China 421001
| | - Li‐fu Liao
- School of Chemistry and Chemical EngineeringUniversity of South China Hengyang China 421001
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China 421001
| | - Xi‐lin Xiao
- School of Chemistry and Chemical EngineeringUniversity of South China Hengyang China 421001
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China 421001
| | - Chang‐ming Nie
- School of Chemistry and Chemical EngineeringUniversity of South China Hengyang China 421001
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China 421001
| |
Collapse
|
36
|
Mihaela Predescu A, Matei E, Râpă M, Pantilimon C, Coman G, Savin S, Elisabeta Popa E, Predescu C. Adsorption of Lead(II) from Aqueous Solution Using Chitosan and Polyvinyl Alcohol Blends. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1588286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Andra Mihaela Predescu
- Center for Research and Eco-Metallurgical Expertise, Polytechnic University of Bucharest, Bucharest, Romania
| | - Ecaterina Matei
- Center for Research and Eco-Metallurgical Expertise, Polytechnic University of Bucharest, Bucharest, Romania
| | - Maria Râpă
- Center for Research and Eco-Metallurgical Expertise, Polytechnic University of Bucharest, Bucharest, Romania
| | - Cristian Pantilimon
- Center for Research and Eco-Metallurgical Expertise, Polytechnic University of Bucharest, Bucharest, Romania
| | - George Coman
- Center for Research and Eco-Metallurgical Expertise, Polytechnic University of Bucharest, Bucharest, Romania
| | - Simona Savin
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Elena Elisabeta Popa
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine Bucharest, Bucharest, Romania
| | - Cristian Predescu
- Center for Research and Eco-Metallurgical Expertise, Polytechnic University of Bucharest, Bucharest, Romania
| |
Collapse
|
37
|
Li Z, Li L, Hu D, Gao C, Xiong J, Jiang H, Li W. Efficient removal of heavy metal ions and organic dyes with cucurbit [8] uril-functionalized chitosan. J Colloid Interface Sci 2019; 539:400-413. [DOI: 10.1016/j.jcis.2018.12.078] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
|
38
|
Jayaramudu T, Varaprasad K, Pyarasani RD, Reddy KK, Kumar KD, Akbari-Fakhrabadi A, Mangalaraja RV, Amalraj J. Chitosan capped copper oxide/copper nanoparticles encapsulated microbial resistant nanocomposite films. Int J Biol Macromol 2019; 128:499-508. [PMID: 30699337 DOI: 10.1016/j.ijbiomac.2019.01.145] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 12/20/2022]
Abstract
Chitosan (CH) capped inorganic nanomaterials have been considered as significant antibacterial materials in the clinical field. This work shows the synthesis of two new different antibacterial composite films as a result of the incorporation of CH capped copper oxide (CHCuO) and copper (CHCu) nanoparticles (NPs). Here, CHCuO and CHCu NPs were achieved by a facile chemical reduction of Cu2+ ions using sodium hydroxide and ascorbic acid. TEM analysis revealed the morphology as rod-type nanoflakes for CHCuO and a spherical shape for CHCu NPs with ~7 ± 2 nm size. Antimicrobial activity of the developed materials was studied by the inhibition zone method, against both gram-negative and gram-positive bacteria. The antimicrobial activity revealed that the CHCuO NPs and CHCuO-CH film showed a higher inhibition zone than the other nanomaterials. The results suggested that the synthesized materials can be used in wound dressing applications.
Collapse
Affiliation(s)
- Tippabattini Jayaramudu
- Laboratory of Materials Science, Instituto de Quimica de Recursos Naturales, Universidad de Talca, 747 Talca, Chile.
| | - Kokkarachedu Varaprasad
- Centre de Investigacion de Polimeros Avanzados, CIPA, avenida Collao 1202, Edificio de Laoratorios, Concepcion, Chile
| | - Radha D Pyarasani
- Vicerrectoria de Investigacion y Postgrado, Universidad Catolica del Maule, 3460000 Talca, Chile
| | - K Koteshwara Reddy
- Laboratory of Materials Science, Instituto de Quimica de Recursos Naturales, Universidad de Talca, 747 Talca, Chile
| | - Kanderi Dileep Kumar
- Dept. of Microbiology, Sri Krishnadevaraya University, Ananthapuramu 515003, Andhra Pradesh, India
| | - A Akbari-Fakhrabadi
- Advanced Materials Laboratory, Department of Mechanical Engineering, University of Chile, Beauchef, 851 Santiago, Chile
| | - R V Mangalaraja
- Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, Faculty of Engineering, University of Concepcion, Concepcion 407-0409, Chile
| | - John Amalraj
- Laboratory of Materials Science, Instituto de Quimica de Recursos Naturales, Universidad de Talca, 747 Talca, Chile.
| |
Collapse
|