1
|
De Wever P, Van Ostaeyen B, Kargl R, Kleinschek KS, Fardim P. Synthesis and characterization of dextran palmitate for extrusion 3D printing. Int J Biol Macromol 2025; 294:139399. [PMID: 39753181 DOI: 10.1016/j.ijbiomac.2024.139399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/15/2024] [Accepted: 12/29/2024] [Indexed: 01/11/2025]
Abstract
The fabrication of objects with complex shape and geometry has been greatly facilitated with the advancements in additive manufacturing. While synthetic polymers like ABS and PLA have found widespread use in extrusion 3D printing, other biobased thermoplastics that are both biodegradable and biocompatible could offer strategic advantages over traditional synthetic materials. In this work dextran of low (20 kDa) and medium (40 kDa) molecular weight (MW) was modified with palmitic acid to obtain meltable polymers for extrusion 3D printing/fused deposition modeling additive manufacturing. The dextran derivatives were characterized by FTIR, NMR and elemental analysis. The degree of substitution (DS) varied between 0.94 ± 0.31 and 1.36 ± 0.16. Our findings reveal a melting temperature near 40 °C, independent of the DS or MW. Extrudability varied depending on the DS. Cubes with dimensions of 15 × 15 × 10 mm3 were printed from the dextran palmitate. The swelling degree of the cubes in water remained limited, up to 0.17 ± 0.02 g/g. This work demonstrates the great potential of dextran palmitate as biobased and biodegradable polymers for 3D printing for future applications in human health.
Collapse
Affiliation(s)
- Pieter De Wever
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Britt Van Ostaeyen
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Rupert Kargl
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, A-8010 Graz, Austria.
| | - Karin Stana Kleinschek
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, A-8010 Graz, Austria
| | - Pedro Fardim
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), Celestijnenlaan 200F, 3001 Leuven, Belgium.
| |
Collapse
|
2
|
Weege K, Ulson de Souza AA, Bierhalz AC, Feuser P, Serafini Immich AP. Enhancing Surgical Care: Development of Biocompatible, Superabsorbent Alternatives to Cotton Gauze Using Chia Mucilage and Poly(vinylpyrrolidone). ACS OMEGA 2024; 9:45591-45599. [PMID: 39554416 PMCID: PMC11561635 DOI: 10.1021/acsomega.4c08073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024]
Abstract
Cotton gauze bandages have traditionally played a pivotal role in wound care and surgical procedures, absorbing fluids, including blood, and protecting against infection. However, their limited liquid absorption capacity raises concern about potential post-surgery complications if inadvertently retained. In response, resorbable and biocompatible polymers have emerged as a promising alternative to enhance surgical outcomes and mitigate inflammation. This study aims to develop a biocompatible, highly absorbent, and preferably resorbable substitute for cotton gauze, utilizing natural polysaccharides from chia seeds' mucilage alongside the synthetic polymer poly(vinylpyrrolidone) (PVP). Incorporating tranexamic acid, an antifibrinolytic agent, into the PVP solution enhances its efficacy in controlling blood flow. The polymer solution is then processed into nonwoven materials via solution blow spinning. UV-C radiation cross-linking is employed to bolster the nonwovens' performance and durability during liquid absorption and swelling. Results demonstrate that nonwoven samples comprising PVP and chia mucilage, cross-linked for 60 min with UV-C radiation, exhibit exceptional swelling capacity, absorbing approximately 3291% of their dry weight in saline solution. Microfiber analysis indicates alterations in fiber characteristics due to cross-linking duration. Cell viability tests affirm the biocompatibility of the produced materials. With their remarkable fluid absorption properties and potential for resorption, PVP/chia mucilage compositions supplemented with tranexamic acid offer a promising avenue for effectively managing surgical bleeding without adverse effects. Furthermore, these materials can safely remain within the surgical site, eventually undergoing natural resorption by the body owing to their resorbable nature.
Collapse
Affiliation(s)
- Kainan
Akio Weege
- Graduate
Program in Textile Engineering, Department of Textile Engineering, Federal University of Santa Catarina, Blumenau, SC 88040-900, Brazil
| | - Antônio Augusto Ulson de Souza
- Graduate
Program in Textile Engineering, Department of Textile Engineering, Federal University of Santa Catarina, Blumenau, SC 88040-900, Brazil
- Graduate
Program in Chemical Engineering, Department of Chemical Engineering
and Food Engineering, Federal University
of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Andrea Cristiane
Krause Bierhalz
- Graduate
Program in Textile Engineering, Department of Textile Engineering, Federal University of Santa Catarina, Blumenau, SC 88040-900, Brazil
| | - Paulo Feuser
- Graduate
Program in Chemical Engineering, Department of Chemical Engineering
and Food Engineering, Federal University
of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Ana Paula Serafini Immich
- Graduate
Program in Chemical Engineering, Department of Chemical Engineering
and Food Engineering, Federal University
of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| |
Collapse
|
3
|
Oliverio R, Liberelle B, Patenaude V, Moreau V, Thomas E, Virgilio N, Banquy X, De Crescenzo G. Cofunctionalization of Macroporous Dextran Hydrogels with Adhesive Peptides and Growth Factors Enables Vascular Spheroid Sprouting. ACS Biomater Sci Eng 2024; 10:5080-5093. [PMID: 39038278 DOI: 10.1021/acsbiomaterials.4c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Ensuring good definition of scaffolds used for 3D cell culture is a prominent challenge that hampers the development of tissue engineering platforms. Since dextran repels cell adhesion, using dextran-based materials biofunctionalized through a bottom-up approach allows for precise control over material definition. Here, we report the design of dextran hydrogels displaying a fully interconnected macropore network for the culture of vascular spheroids in vitro. We biofunctionalized the hydrogels with the RGD peptide sequence to promote cell adhesion. We used an affinity peptide pair, the E/K coiled coil, to load the gels with epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF). Dual functionalization with adhesive and proliferative cues allows vascular spheroids to colonize naturally cell-repellant dextran. In supplement-depleted medium, we report improved colonization of the macropores compared to that of unmodified dextran. Altogether, we propose a well-defined and highly versatile platform for tissue engineering and tissue vascularization applications.
Collapse
Affiliation(s)
- Romane Oliverio
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
- Faculty of Pharmacy, Axe Formulation et Analyse du Médicament (AFAM), Université de Montréal, Montréal H3T 1J4, Québec, Canada
| | - Benoît Liberelle
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Victor Patenaude
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Vaiana Moreau
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
- Department of Chemical Engineering, Centre de Recherche sur les Systèmes Polymères et Composites à Haute Performance (CREPEC), Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Elian Thomas
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Nick Virgilio
- Department of Chemical Engineering, Centre de Recherche sur les Systèmes Polymères et Composites à Haute Performance (CREPEC), Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Xavier Banquy
- Faculty of Pharmacy, Axe Formulation et Analyse du Médicament (AFAM), Université de Montréal, Montréal H3T 1J4, Québec, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| |
Collapse
|
4
|
Ali SS, Alsharbaty MHM, Al-Tohamy R, Naji GA, Elsamahy T, Mahmoud YAG, Kornaros M, Sun J. A review of the fungal polysaccharides as natural biopolymers: Current applications and future perspective. Int J Biol Macromol 2024; 273:132986. [PMID: 38866286 DOI: 10.1016/j.ijbiomac.2024.132986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
As a unique natural resource, fungi are a sustainable source of lipids, polysaccharides, vitamins, proteins, and other nutrients. As a result, they have beneficial medicinal and nutritional properties. Polysaccharides are among the most significant bioactive components found in fungi. Increasing research has revealed that fungal polysaccharides (FPS) contain a variety of bioactivities, including antitumor, antioxidant, immunomodulatory, anti-inflammatory, hepatoprotective, cardioprotective, and anti-aging properties. However, the exact knowledge about FPS and their applications related to their future possibilities must be thoroughly examined to enhance a better understanding of this sustainable biopolymer source. Therefore, FPS' biological applications and their role in the food and feed industry, agriculture, and cosmetics applications were all discussed in this work. In addition, this review highlighted the mode of action of FPS on human diseases by regulating gut microbiota and discussed the mechanism of FPS as antioxidants in the living cell. The structure-activity connections of FPS were also highlighted and explored. Moreover, future perspectives were listed to pave the way for future studies of FPS applications. Hence, this study can be a scientific foundation for future FPS research and industrial applications.
Collapse
Affiliation(s)
- Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Mohammed H M Alsharbaty
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq; Branch of Prosthodontics, College of Dentistry, University of Al-Ameed, Karbala, Iraq.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ghassan A Naji
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq; College of Dentistry, The Iraqia University, Baghdad, Iraq.
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yehia A-G Mahmoud
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Michael Kornaros
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, 26504 Patras, Greece.
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
5
|
Paoletti L, Baschieri F, Migliorini C, Di Meo C, Monasson O, Peroni E, Matricardi P. 3D printing of gellan-dextran methacrylate IPNs in glycerol and their bioadhesion by RGD derivatives. J Biomed Mater Res A 2024; 112:1107-1123. [PMID: 38433552 DOI: 10.1002/jbm.a.37698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
The ever-growing need for new tissue and organ replacement approaches paved the way for tissue engineering. Successful tissue regeneration requires an appropriate scaffold, which allows cell adhesion and provides mechanical support during tissue repair. In this light, an interpenetrating polymer network (IPN) system based on biocompatible polysaccharides, dextran (Dex) and gellan (Ge), was designed and proposed as a surface that facilitates cell adhesion in tissue engineering applications. The new matrix was developed in glycerol, an unconventional solvent, before the chemical functionalization of the polymer backbone, which provides the system with enhanced properties, such as increased stiffness and bioadhesiveness. Dex was modified introducing methacrylic groups, which are known to be sensitive to UV light. At the same time, Ge was functionalized with RGD moieties, known as promoters for cell adhesion. The printability of the systems was evaluated by exploiting the ability of glycerol to act as a co-initiator in the process, speeding up the kinetics of crosslinking. Following semi-IPNs formation, the solvent was removed by extensive solvent exchange with HEPES and CaCl2, leading to conversion into IPNs due to the ionic gelation of Ge chains. Mechanical properties were investigated and IPNs ability to promote osteoblasts adhesion was evaluated on thin-layer, 3D-printed disk films. Our results show a significant increase in adhesion on hydrogels decorated with RGD moieties, where osteoblasts adopted the spindle-shaped morphology typical of adherent mesenchymal cells. Our findings support the use of RGD-decorated Ge/Dex IPNs as new matrices able to support and facilitate cell adhesion in the perspective of bone tissue regeneration.
Collapse
Affiliation(s)
- Luca Paoletti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Francesco Baschieri
- Institute of Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudia Migliorini
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Chiara Di Meo
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Olivier Monasson
- CY Cergy Paris Université, CNRS, BioCIS, Cergy-Pontoise, France
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
| | - Elisa Peroni
- CY Cergy Paris Université, CNRS, BioCIS, Cergy-Pontoise, France
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
| | - Pietro Matricardi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Ciarlantini C, Francolini I, Silvestro I, Mariano A, d'Abusco AS, Piozzi A. Design of bioactive and biomimetic scaffolds based on chitosan-alginate polyelectrolyte complexes for tissue engineering. Carbohydr Polym 2024; 327:121684. [PMID: 38171693 DOI: 10.1016/j.carbpol.2023.121684] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
The replacement and regeneration of biological tissues by fabricating three-dimensional functionalized constructs that can improve material interaction with cells is an important challenge of tissue engineering. In this study, bioactive and biomimetic scaffolds based on chitosan-alginate polyelectrolyte complexes (PECs) were fabricated by freeze-drying method and then crosslinked with CaCl2. Various chitosan-alginate (CS-AL) molar ratios were used to obtain PECs with different structural and mechanical properties. The CS1-AL2.3 scaffold showed to possess the best mechanical properties (8 MPa) and good pore morphology with an average size of 100-150 μm. After the crosslinking process, a less porous structure but with higher elastic modulus (30 MPa) was obtained. To make matrix bioactive and biomimetic, the CS1-AL2.3 system was first functionalized with 3,4-dihydroxyhydrocinnamic acid (HCAF) and then with PySO3 or Heparin to introduce groups/molecules mimicking the extracellular matrix. While the antioxidant properties of the scaffolds containing HCAF improved by 3 orders of magnitude, compared to the non-functionalized matrix, the introduction of sulfonic groups into the bioactive scaffold made the structure more porous and hydrophilic with respect to the heparinized one also favoring the penetration and proliferation of fibroblasts into the scaffold. These results indicate the potential of these novel systems for tissue engineering.
Collapse
Affiliation(s)
- Clarissa Ciarlantini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Iolanda Francolini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Ilaria Silvestro
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessia Mariano
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Anna Scotto d'Abusco
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Antonella Piozzi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
7
|
Kumari P, Ahina KM, Kannan K, Sreekumar S, Lakra R, Sivagnanam UT, Kiran MS. In vivosoft tissue regenerative potential of flax seed mucilage self-assembled collagen aerogels. Biomed Mater 2024; 19:025023. [PMID: 38232378 DOI: 10.1088/1748-605x/ad1f79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
The present study demonstrates thein vivosoft tissue regenerative potential of flax seed mucilage (FSM) reinforced collagen aerogels in Wistar rats. The physiochemical, mechanical, and thermal properties were significantly improved upon the incorporation of flax mucilage into collagen when compared to the native collagen scaffold. In addition, the functional group of flax mucilage notably contributed to a better anti-oxidative potential than the control collagen. The flax mucilage-reinforced collagen at 4 mg ml-1concentration showed a 2-fold increase in porosity compared to native collagen. The tensile strength of native collagen, 2 mg ml-1, and 4 mg ml-1FSM reinforced collagen was 5.22 MPa, 9.76 MPa, and 11.16 MPa, respectively, which indicated that 2 mg ml-1and 4 mg ml-1FSM showed an 87% and 113% percentage increase respectively in tensile strength compared to the native collagen control. FSM-reinforced biomatrix showed 97% wound closure on day 15 post-wounding, indicating faster healing than controls, where complete healing occurred only on day 21. The mechanical properties of skin treated with FSM-reinforced collagen scaffold post-healing were considerably better than native collagen. The histological and immunohistochemistry analysis also showed complete restoration of wounded tissue like intact normal skin. The findings paved the way for the development of collagen-polysaccharide mucilage wound dressing materials and their further application in skin tissue engineering.
Collapse
Affiliation(s)
- Punam Kumari
- Biological Material Laboratory, Council of Scientific and Industrial Research- CentralLeather Research Institute, Chennai, Tamil Nadu 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kannoth Madappurakkal Ahina
- Biological Material Laboratory, Council of Scientific and Industrial Research- CentralLeather Research Institute, Chennai, Tamil Nadu 600020, India
| | - Kiruba Kannan
- Biological Material Laboratory, Council of Scientific and Industrial Research- CentralLeather Research Institute, Chennai, Tamil Nadu 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sreelekshmi Sreekumar
- Biological Material Laboratory, Council of Scientific and Industrial Research- CentralLeather Research Institute, Chennai, Tamil Nadu 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rachita Lakra
- Biological Material Laboratory, Council of Scientific and Industrial Research- CentralLeather Research Institute, Chennai, Tamil Nadu 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Uma Tiruchirapalli Sivagnanam
- Biological Material Laboratory, Council of Scientific and Industrial Research- CentralLeather Research Institute, Chennai, Tamil Nadu 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manikantan Syamala Kiran
- Biological Material Laboratory, Council of Scientific and Industrial Research- CentralLeather Research Institute, Chennai, Tamil Nadu 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Benalaya I, Alves G, Lopes J, Silva LR. A Review of Natural Polysaccharides: Sources, Characteristics, Properties, Food, and Pharmaceutical Applications. Int J Mol Sci 2024; 25:1322. [PMID: 38279323 PMCID: PMC10816883 DOI: 10.3390/ijms25021322] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024] Open
Abstract
Natural polysaccharides, which are described in this study, are some of the most extensively used biopolymers in food, pharmaceutical, and medical applications, because they are renewable and have a high level of biocompatibility and biodegradability. The fundamental understanding required to properly exploit polysaccharides potential in the biocomposite, nanoconjugate, and pharmaceutical industries depends on detailed research of these molecules. Polysaccharides are preferred over other polymers because of their biocompatibility, bioactivity, homogeneity, and bioadhesive properties. Natural polysaccharides have also been discovered to have excellent rheological and biomucoadhesive properties, which may be used to design and create a variety of useful and cost-effective drug delivery systems. Polysaccharide-based composites derived from natural sources have been widely exploited due to their multifunctional properties, particularly in drug delivery systems and biomedical applications. These materials have achieved global attention and are in great demand because to their biochemical properties, which mimic both human and animal cells. Although synthetic polymers account for a substantial amount of organic chemistry, natural polymers play a vital role in a range of industries, including biomedical, pharmaceutical, and construction. As a consequence, the current study will provide information on natural polymers, their biological uses, and food and pharmaceutical applications.
Collapse
Affiliation(s)
- Ikbel Benalaya
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilha, Portugal; (I.B.); (G.A.)
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilha, Portugal; (I.B.); (G.A.)
| | - João Lopes
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, University of Lisboa, 1649-003 Lisbon, Portugal
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilha, Portugal; (I.B.); (G.A.)
- CPIRN-UDI/IPG, Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CIEPQPF, Department of Chemical Engineering, Pólo II—Pinhal de Marrocos, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
9
|
El-Kady AM, Mahmoud EM, Sayed M, Kamel SM, Naga SM. In-vitro and in-vivo evaluation for the bio-natural Alginate/nano-Hydroxyapatite (Alg/n-HA) injectable hydrogel for critical size bone substitution. Int J Biol Macromol 2023; 253:126618. [PMID: 37659491 DOI: 10.1016/j.ijbiomac.2023.126618] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Currently, bio-natural injectable hydrogels are receiving a lot of attention due to their ability to control, adjust, and adapt to random bone defects, in addition, to their ability to mimic the composition of natural bones. From such a viewpoint, this study goal is to prepare and characterize the injectable hydrogels paste based on the natural alginate (Alg) derived from brown sea algae as a polysaccharide polymer, which coupled with nano biogenic-hydroxyapatite (n-HA) prepared from eggshells and enriched with valuable trace elements. The viscosity and mechanical properties of the paste were investigated. As well as the in-vitro study in terms of water absorption and biodegradability in the PBS, biocompatibility and the capability of the injectable Alginate/n-Hydroxyapatite (Alg/n-HA) to regenerate bone for the most suitable injectable form. The injectable hydrogel (BP -B sample) was chosen for the study as it had an appropriate setting time for injecting (13 mins), and suitable compressive strength reached 6.3 MPa. The in vivo study was also carried out including a post-surgery follow-up test of the newly formed bone (NB) in the defect area after 10 and 20 weeks using different techniques such as (SEM/EDX) and histological analysis, the density of the newly formed bone by Dual x-ray absorptiometry (DEXA), blood biochemistry and the radiology test. The results proved that the injectable hydrogels Alginate/n-Hydroxyapatite (Alg/n-HA) had an appreciated biodegradability and bioactivity, which allow the progress of angiogenesis, endochondral ossification, and osteogenesis throughout the defect area, which positively impacts the healing time and ensures the full restoration for the well-mature bone tissue that similar to the natural bone.
Collapse
Affiliation(s)
- Abeer M El-Kady
- Glass Research Department, National Research Centre, El-Bohous Str., 12622 Cairo, Egypt
| | - E M Mahmoud
- Ceramics Department, National Research Centre, El-Bohous Str., 12622 Cairo, Egypt.
| | - M Sayed
- Ceramics Department, National Research Centre, El-Bohous Str., 12622 Cairo, Egypt
| | - S M Kamel
- Oral Biology Department, MSA University, Egypt
| | - S M Naga
- Ceramics Department, National Research Centre, El-Bohous Str., 12622 Cairo, Egypt
| |
Collapse
|
10
|
Sivakumar PM, Yetisgin AA, Demir E, Sahin SB, Cetinel S. Polysaccharide-bioceramic composites for bone tissue engineering: A review. Int J Biol Macromol 2023; 250:126237. [PMID: 37567538 DOI: 10.1016/j.ijbiomac.2023.126237] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/05/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Limitations associated with conventional bone substitutes such as autografts, increasing demand for bone grafts, and growing elderly population worldwide necessitate development of unique materials as bone graft substitutes. Bone tissue engineering (BTE) would ensure therapy advancement, efficiency, and cost-effective treatment modalities of bone defects. One way of engineering bone tissue scaffolds by mimicking natural bone tissue composed of organic and inorganic phases is to utilize polysaccharide-bioceramic hybrid composites. Polysaccharides are abundant in nature, and present in human body. Biominerals, like hydroxyapatite are present in natural bone and some of them possess osteoconductive and osteoinductive properties. Ion doped bioceramics could substitute protein-based biosignal molecules to achieve osteogenesis, vasculogenesis, angiogenesis, and stress shielding. This review is a systemic summary on properties, advantages, and limitations of polysaccharide-bioceramic/ion doped bioceramic composites along with their recent advancements in BTE.
Collapse
Affiliation(s)
- Ponnurengam Malliappan Sivakumar
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; School of Medicine and Pharmacy, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Abuzer Alp Yetisgin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Istanbul 34956, Turkey
| | - Ebru Demir
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey
| | - Sevilay Burcu Sahin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey.
| |
Collapse
|
11
|
Bushra R, Ahmad M, Seidi F, Qurtulen, Song J, Jin Y, Xiao H. Polysaccharide-based nanoassemblies: From synthesis methodologies and industrial applications to future prospects. Adv Colloid Interface Sci 2023; 318:102953. [PMID: 37399637 DOI: 10.1016/j.cis.2023.102953] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Polysaccharides, due to their remarkable features, have gained significant prominence in the sustainable production of nanoparticles (NPs). High market demand and minimal production cost, compared to the chemically synthesised NPs, demonstrate a drive towards polysaccharide-based nanoparticles (PSNPs) benign to environment. Various approaches are used for the synthesis of PSNPs including cross-linking, polyelectrolyte complexation, and self-assembly. PSNPs have the potential to replace a wide diversity of chemical-based agents within the food, health, medical and pharmacy sectors. Nevertheless, the considerable challenges associated with optimising the characteristics of PSNPs to meet specific targeting applications are of utmost importance. This review provides a detailed compilation of recent accomplishments in the synthesis of PSNPs, the fundamental principles and critical factors that govern their rational fabrication, as well as various characterisation techniques. Noteworthy, the multiple use of PSNPs in different disciplines such as biomedical, cosmetics agrochemicals, energy storage, water detoxification, and food-related realms, is accounted in detail. Insights into the toxicological impacts of the PSNPs and their possible risks to human health are addressed, and efforts made in terms of PSNPs development and optimising strategies that allow for enhanced delivery are highlighted. Finally, limitations, potential drawbacks, market diffusion, economic viability and future possibilities for PSNPs to achieve widespread commercial use are also discussed.
Collapse
Affiliation(s)
- Rani Bushra
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Mehraj Ahmad
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; College of Light Industry and Food, Department of Food Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qurtulen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Junlong Song
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yongcan Jin
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
12
|
Farzamfar S, Richer M, Rahmani M, Naji M, Aleahmad M, Chabaud S, Bolduc S. Biological Macromolecule-Based Scaffolds for Urethra Reconstruction. Biomolecules 2023; 13:1167. [PMID: 37627232 PMCID: PMC10452429 DOI: 10.3390/biom13081167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
Urethral reconstruction strategies are limited with many associated drawbacks. In this context, the main challenge is the unavailability of a suitable tissue that can endure urine exposure. However, most of the used tissues in clinical practices are non-specialized grafts that finally fail to prevent urine leakage. Tissue engineering has offered novel solutions to address this dilemma. In this technology, scaffolding biomaterials characteristics are of prime importance. Biological macromolecules are naturally derived polymers that have been extensively studied for various tissue engineering applications. This review discusses the recent advances, applications, and challenges of biological macromolecule-based scaffolds in urethral reconstruction.
Collapse
Affiliation(s)
- Saeed Farzamfar
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (S.F.); (M.R.); (S.C.)
| | - Megan Richer
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (S.F.); (M.R.); (S.C.)
| | - Mahya Rahmani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran;
| | - Mohammad Naji
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran;
| | - Mehdi Aleahmad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran 1417613151, Iran;
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (S.F.); (M.R.); (S.C.)
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (S.F.); (M.R.); (S.C.)
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
13
|
Zhai Z, Zhou Y, Korovich AG, Hall BA, Yoon HY, Yao Y, Zhang J, Bortner MJ, Roman M, Madsen LA, Edgar KJ. Synthesis and Characterization of Multi-Reducing-End Polysaccharides. Biomacromolecules 2023. [PMID: 37262428 DOI: 10.1021/acs.biomac.3c00104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Site-specific modification is a great challenge for polysaccharide scientists. Chemo- and regioselective modification of polysaccharide chains can provide many useful natural-based materials and help us illuminate fundamental structure-property relationships of polysaccharide derivatives. The hemiacetal reducing end of a polysaccharide is in equilibrium with its ring-opened aldehyde form, making it the most uniquely reactive site on the polysaccharide molecule, ideal for regioselective decoration such as imine formation. However, all natural polysaccharides, whether they are branched or not, have only one reducing end per chain, which means that only one aldehyde-reactive substituent can be added. We introduce a new approach to selective functionalization of polysaccharides as an entrée to useful materials, appending multiple reducing ends to each polysaccharide molecule. Herein, we reduce the approach to practice using amide formation. Amine groups on monosaccharides such as glucosamine or galactosamine can react with carboxyl groups of polysaccharides, whether natural uronic acids like alginates, or derivatives with carboxyl-containing substituents such as carboxymethyl cellulose (CMC) or carboxymethyl dextran (CMD). Amide formation is assisted using the coupling agent 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM). By linking the C2 amines of monosaccharides to polysaccharides in this way, a new class of polysaccharide derivatives possessing many reducing ends can be obtained. We refer to this class of derivatives as multi-reducing-end polysaccharides (MREPs). This new family of derivatives creates the potential for designing polysaccharide-based materials with many potential applications, including in hydrogels, block copolymers, prodrugs, and as reactive intermediates for other derivatives.
Collapse
Affiliation(s)
- Zhenghao Zhai
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yang Zhou
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Andrew G Korovich
- Department of Chemistry, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Brady A Hall
- GlycoMIP, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Hu Young Yoon
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yimin Yao
- Department of Chemical Engineering, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Junchen Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Michael J Bortner
- Department of Chemical Engineering, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Maren Roman
- Department of Sustainable Biomaterials, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Louis A Madsen
- Department of Chemistry, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kevin J Edgar
- Department of Sustainable Biomaterials, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
14
|
Cernencu AI, Ioniță M. The current state of the art in gellan-based printing inks in tissue engineering. Carbohydr Polym 2023; 309:120676. [PMID: 36906360 DOI: 10.1016/j.carbpol.2023.120676] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
With the advancement of enhanced fabrication technologies, specifically 3D printing, it is now possible to build artificial tissue for personalized healing. However, inks developed from polymers often fail to meet expectations in terms of mechanical strength, scaffold integrity, and the stimulation of tissue formation. Developing new printable formulations as well as adapting existing printing methods is an essential aspect of contemporary biofabrication research. In order to push the boundaries of the printability window, various strategies have been developed employing gellan gum. This has resulted in major breakthroughs in the development of 3D hydrogels scaffolds that exhibit significant resemblance to genuine tissues and enables the fabrication of more complex systems. In light of the many uses of gellan gum, the purpose of this paper is to provide a synopsis of the printable ink designs drawing attention to the various compositions and fabrication approaches that may be used for tuning the properties of 3D printed hydrogels for tissue engineering applications. The purpose of this article is to outline the development of gellan-based 3D printing inks and to encourage research by highlighting the possible applications of gellan gum.
Collapse
Affiliation(s)
- Alexandra I Cernencu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, SplaiulIndependenței, 313, 060042, Bucharest, Romania
| | - Mariana Ioniță
- Advanced Polymer Materials Group, University Politehnica of Bucharest, SplaiulIndependenței, 313, 060042, Bucharest, Romania; Faculty of Medical Engineering, University Politehnica of Bucharest, Bucharest 011061, Romania.
| |
Collapse
|
15
|
Serafin A, Culebras M, Collins MN. Synthesis and evaluation of alginate, gelatin, and hyaluronic acid hybrid hydrogels for tissue engineering applications. Int J Biol Macromol 2023; 233:123438. [PMID: 36709805 DOI: 10.1016/j.ijbiomac.2023.123438] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Tissue engineering (TE) has been proposed extensively as a potential solution to the worldwide shortages of donor organs needed for transplantation. Over the years, numerous hydrogel formulations have been studied for various TE endeavours, including bone, cardiac or neural TE treatment strategies. Amongst the materials used, organic and biocompatible materials which aim to mimic the natural extracellular matrix of the native tissue have been investigated to create biomimicry regenerative environments. As such, the comparison between studies using the same materials is often difficult to accomplish due to varying material concentrations, preparation strategies, and laboratory settings, and as such these variables have a huge impact on the physio-chemical properties of the hydrogel systems. The purpose of the current study is to investigate popular biomaterials such as alginate, hyaluronic acid and gelatin in a variety of concentrations and hydrogel formulations. This aims to provide a clear and comprehensive understanding of their behaviours and provide a rational approach as to the appropriate selection of natural polysaccharides in specific targeted TE strategies.
Collapse
Affiliation(s)
- Aleksandra Serafin
- School of Engineering, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Mario Culebras
- Materials Science Institute (ICMUV), Universitat de València, c/ Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain
| | - Maurice N Collins
- School of Engineering, Bernal Institute, University of Limerick, Limerick, Ireland; Health Research Institute and AMBER University of Limerick, Limerick V94 T9PX, Ireland.
| |
Collapse
|
16
|
Goksen G, Demir D, Dhama K, Kumar M, Shao P, Xie F, Echegaray N, Lorenzo JM. Mucilage polysaccharide as a plant secretion: Potential trends in food and biomedical applications. Int J Biol Macromol 2023; 230:123146. [PMID: 36610576 DOI: 10.1016/j.ijbiomac.2023.123146] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/05/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
Current trends are shifting away from using synthetic compounds in favor of discovering new natural component sources that will allow them to create goods that are healthful, environmentally friendly, sustainable, and profitable. The food industry, in light of these trends, has opted to look for safe natural ingredients that will allow the production of low-fat, artificial-additive-free, gluten-free, prebiotic, and fortified foods. Similarly, the pharmaceutical and medical industries have attempted to apply natural ingredients to address the challenges related to biomaterials more efficiently than synthetic ingredients. Against this background, plant mucilage has proven to be a polysaccharide with excellent health features and technological properties, useful for both food and biomedical applications. Many studies have shown that its inclusion in different food matrices improves the quality of the products obtained under appropriate reformulations. At the same time, plant mucilage has been indicated to be a very interesting matrix in biomedical field especially tissue engineering applications since it has been emerged to favor tissue regeneration with its highly biocompatible structure. This concise review discusses the most recent advances of the applications of plant mucilage in different foods as well as its recent use in biomedical field. In this context, firstly, a general definition of mucilage was made and information about plant-based mucilage, which is frequently used, about the plant parts they are found in, their content and how they are obtained are presented. Then, the use of mucilage in the food industry including bakery products, meat emulsions, fermented dairy products, ice cream, and other foods is presented with case studies. Afterwards, the use of plant mucilage in the biomedical field, which has attracted attention in recent years, especially in applications with tissue engineering approach such as scaffolds for tissue regeneration, wound dressings, drug delivery systems and pharmaceutical industry was evaluated.
Collapse
Affiliation(s)
- Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Didem Demir
- Department of Chemistry and Chemical Process Technologies, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Fengwei Xie
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, San Cibrao das Viñas, Avd. Galicia N° 4, 32900 Ourense, Spain
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, San Cibrao das Viñas, Avd. Galicia N° 4, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, 32004 Ourense, Spain.
| |
Collapse
|
17
|
Sukhavattanakul P, Pisitsak P, Ummartyotin S, Narain R. Polysaccharides for Medical Technology: Properties and Applications. Macromol Biosci 2023; 23:e2200372. [PMID: 36353915 DOI: 10.1002/mabi.202200372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/18/2022] [Indexed: 11/12/2022]
Abstract
Over the past decade, the use of polysaccharides has gained tremendous attention in the field of medical technology. They have been applied in various sectors such as tissue engineering, drug delivery system, face mask, and bio-sensing. This review article provides an overview and background of polysaccharides for biomedical uses. Different types of polysaccharides, for example, cellulose and its derivatives, chitin and chitosan, hyaluronic acid, alginate, and pectin are presented. They are fabricated in various forms such as hydrogels, nanoparticles, membranes, and as porous mediums. Successful development and improvement of polysaccharide-based materials will effectively help users to enhance their quality of personal health, decrease cost, and eventually increase the quality of life with respect to sustainability.
Collapse
Affiliation(s)
- Pongpat Sukhavattanakul
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum, Thani, 12120, Thailand
| | - Penwisa Pisitsak
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum, Thani, 12120, Thailand
| | - Sarute Ummartyotin
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum, Thani, 12120, Thailand
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G1H9, Canada
| |
Collapse
|
18
|
Emami A, Namdari H, Parvizpour F, Arabpour Z. Challenges in osteoarthritis treatment. Tissue Cell 2023; 80:101992. [PMID: 36462384 DOI: 10.1016/j.tice.2022.101992] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
Osteoarthritis (OA) is the most common form of arthritis and a degenerative joint cartilage disease that is the most common cause of disability in the world among the elderly. It leads to social, psychological, and economic costs with financial consequences. The principles of OA treatment are to reduce pain and stiffness as well as maintain function. In recent years, due to a better understanding of the underlying pathophysiology of OA, a number of potential therapeutic advances have been made, which include tissue engineering, immune system manipulation, surgical technique, pharmacological, and non-pharmacological treatments. Despite this, there is still no certain cure for OA, and different OA treatments are usually considered in relation to the stage of the disease. The purpose of the present review is to summarize and discuss the latest results of new treatments for OA and potential targets for future research.
Collapse
Affiliation(s)
- Asrin Emami
- Iranian tissue bank and research center, Tehran University of Medical Sciences, Tehran, Iran
| | - Haideh Namdari
- Iranian tissue bank and research center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Parvizpour
- Iranian tissue bank and research center, Tehran University of Medical Sciences, Tehran, Iran; Molecular Medicine department, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Zohreh Arabpour
- Iranian tissue bank and research center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
V. K. AD, Udduttula A, Jaiswal AK. Unveiling the secrets of marine-derived fucoidan for bone tissue engineering-A review. Front Bioeng Biotechnol 2023; 10:1100164. [PMID: 36698636 PMCID: PMC9868180 DOI: 10.3389/fbioe.2022.1100164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023] Open
Abstract
Biomedical uses for natural polysaccharides of marine origin are growing in popularity. The most prevalent polysaccharides, including alginates, agar, agarose and carrageenan, are found in seaweeds. One among these is fucoidan, which is a sulfated polysaccharide derived from brown algae. Compared to many of the biomaterials of marine origin currently in research, it is more broadly accessible and less expensive. This polysaccharide comes from the same family of brown algae from which alginate is extracted, but has garnered less research compared to it. Although it was the subject of research beginning in the 1910's, not much has been done on it since then. Few researchers have focused on its potential for biomedical applications; nevertheless, a thorough knowledge of the molecular mechanisms behind its diverse features is still lacking. This review provides a quick outline of its history, sources, and organization. The characteristics of this potential biomaterial have also been explored, with a thorough analysis concentrating on its use in bone tissue engineering. With the preclinical research completed up to this point, the fucoidan research status globally has also been examined. Therefore, the study might be utilized as a comprehensive manual to understand in depth the research status of fucoidan, particularly for applications related to bone tissue engineering.
Collapse
Affiliation(s)
- Anupama Devi V. K.
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India,School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Anjaneyulu Udduttula
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Amit Kumar Jaiswal
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India,*Correspondence: Amit Kumar Jaiswal,
| |
Collapse
|
20
|
Li D, Liao Y, Chen X, Wang H, Wen Y, Cheng K, Chen W, Yan H, Lin Q. Preparation and properties of homogeneous oxidized sodium alginate/silica/polyacrylamide–gelatin composite hydrogel based on interpenetrating network technology. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04631-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Comparative Study of Physicochemical Properties of Alginate Composite Hydrogels Prepared by the Physical Blending and Electrostatic Assembly Methods. Gels 2022; 8:gels8120799. [PMID: 36547323 PMCID: PMC9777933 DOI: 10.3390/gels8120799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Alginate hydrogel commonly suffers from defects, such as weak mechanical properties, the shortage of long-term stability in physiological medium and the lack of mammalian cell adhesivity due to its strong hydrophilicity in biomedical application. For this reason, the homogeneous alginate hydrogels (Alg Gel) were successfully prepared by the D-glucono-δ-lactone/hydroxyapatite (HAP/GDL) cross-linking system, and then, the physical blending and alternating electrostatic assembly technology were proposed to fabricate alginate composite hydrogels (Alg-GT, Alg-CS-GT and ALG/GT-CS). The feasibility of the design methods was verified through the comparative analysis of their physicochemical properties and biological activity. In particular, the effects of physical blending and alternating electrostatic assembly technology on the pore structure, mechanical properties, swelling, degradation, cell adhesion and proliferation of composite hydrogels were also investigated. Experimental results showed that the formation of polyelectrolyte complexes by electrostatic assembly between biological macromolecules and the covalent cross-linking of EDC/NHS to GT improved the vulnerability of ion cross-linking, enhanced the mechanical properties and swelling stability of the composite hydrogels, and regulated their pore structure and in vitro biodegradability properties. Furthermore, MC3T3-E1 cells could exhibit good cell adhesion, cell viability and cell proliferation on the alginate composite hydrogels. Among them, Alg-CS-GT showed the best cell proliferation ability and differentiation effect due to its good cell adhesion. In view of the excellent physicochemical properties and biological activity of Alg-CS-GT, it exhibited great potential in biomedical application for tissue engineering.
Collapse
|
22
|
Montazerian H, Davoodi E, Baidya A, Badv M, Haghniaz R, Dalili A, Milani AS, Hoorfar M, Annabi N, Khademhosseini A, Weiss PS. Bio-macromolecular design roadmap towards tough bioadhesives. Chem Soc Rev 2022; 51:9127-9173. [PMID: 36269075 PMCID: PMC9810209 DOI: 10.1039/d2cs00618a] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Emerging sutureless wound-closure techniques have led to paradigm shifts in wound management. State-of-the-art biomaterials offer biocompatible and biodegradable platforms enabling high cohesion (toughness) and adhesion for rapid bleeding control as well as robust attachment of implantable devices. Tough bioadhesion stems from the synergistic contributions of cohesive and adhesive interactions. This Review provides a biomacromolecular design roadmap for the development of tough adhesive surgical sealants. We discuss a library of materials and methods to introduce toughness and adhesion to biomaterials. Intrinsically tough and elastic polymers are leveraged primarily by introducing strong but dynamic inter- and intramolecular interactions either through polymer chain design or using crosslink regulating additives. In addition, many efforts have been made to promote underwater adhesion via covalent/noncovalent bonds, or through micro/macro-interlock mechanisms at the tissue interfaces. The materials settings and functional additives for this purpose and the related characterization methods are reviewed. Measurements and reporting needs for fair comparisons of different materials and their properties are discussed. Finally, future directions and further research opportunities for developing tough bioadhesive surgical sealants are highlighted.
Collapse
Affiliation(s)
- Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
| | - Elham Davoodi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
- Multi-Scale Additive Manufacturing Lab, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Maryam Badv
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
| | - Arash Dalili
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Abbas S Milani
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
- School of Engineering and Computer Science, University of Victoria, Victoria, British Columbia V8P 3E6, Canada
| | - Nasim Annabi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
| | - Paul S Weiss
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
23
|
Duceac IA, Coseri S. Biopolymers and their derivatives: Key components of advanced biomedical technologies. Biotechnol Adv 2022; 61:108056. [DOI: 10.1016/j.biotechadv.2022.108056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/26/2022] [Accepted: 10/23/2022] [Indexed: 11/02/2022]
|
24
|
Shokrani H, Shokrani A, Sajadi SM, Khodadadi Yazdi M, Seidi F, Jouyandeh M, Zarrintaj P, Kar S, Kim SJ, Kuang T, Rabiee N, Hejna A, Saeb MR, Ramakrishna S. Polysaccharide-based nanocomposites for biomedical applications: a critical review. NANOSCALE HORIZONS 2022; 7:1136-1160. [PMID: 35881463 DOI: 10.1039/d2nh00214k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polysaccharides (PSA) have taken specific position among biomaterials for advanced applications in medicine. Nevertheless, poor mechanical properties are known as the main drawback of PSA, which highlights the need for PSA modification. Nanocomposites PSA (NPSA) are a class of biomaterials widely used as biomedical platforms, but despite their importance and worldwide use, they have not been reviewed. Herein, we critically reviewed the application of NPSA by categorizing them into generic and advanced application realms. First, the application of NPSA as drug and gene delivery systems, along with their role in the field as an antibacterial platform and hemostasis agent is discussed. Then, applications of NPSA for skin, bone, nerve, and cartilage tissue engineering are highlighted, followed by cell encapsulation and more critically cancer diagnosis and treatment potentials. In particular, three features of investigations are devoted to cancer therapy, i.e., radiotherapy, immunotherapy, and photothermal therapy, are comprehensively reviewed and discussed. Since this field is at an early stage of maturity, some other aspects such as bioimaging and biosensing are reviewed in order to give an idea of potential applications of NPSA for future developments, providing support for clinical applications. It is well-documented that using nanoparticles/nanomaterials above a critical concentration brings about concerns of toxicity; thus, their effect on cellular interactions would become critical. We compared nanoparticles used in the fabrication of NPSA in terms of toxicity mechanism to shed more light on future challenging aspects of NPSA development. Indeed, the neutralization mechanisms underlying the cytotoxicity of nanomaterials, which are expected to be induced by PSA introduction, should be taken into account for future investigations.
Collapse
Affiliation(s)
- Hanieh Shokrani
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China.
- Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Amirhossein Shokrani
- Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Kurdistan Region, 625, Erbil, Iraq
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China.
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Seok-Jhin Kim
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Tairong Kuang
- College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Alexander Hejna
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University Singapore, 10 Kent Ridge, Crescent 119260, Singapore.
| |
Collapse
|
25
|
Bochek AM, Terekhova EA, Popova EN, Smirnova VE, Yudin VE, Gofman IV, Abalov IV, Lavrent’ev VK. Aqueous Solutions of Carboxymethyl Chitosan Mixtures with Methyl Cellulose and Composite Films on Their Basis. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22700298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Trends on CO2 Capture with Microalgae: A Bibliometric Analysis. Molecules 2022; 27:molecules27154669. [PMID: 35897845 PMCID: PMC9331766 DOI: 10.3390/molecules27154669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 01/26/2023] Open
Abstract
The alarming levels of carbon dioxide (CO2) are an environmental problem that affects the economic growth of the world. CO2 emissions represent penalties and restrictions due to the high carbon footprint. Therefore, sustainable strategies are required to reduce the negative impact that occurs. Among the potential systems for CO2 capture are microalgae. These are defined as photosynthetic microorganisms that use CO2 and sunlight to obtain oxygen (O2) and generate value-added products such as biofuels, among others. Despite the advantages that microalgae may present, there are still technical–economic challenges that limit industrial-scale commercialization and the use of biomass in the production of added-value compounds. Therefore, this study reviews the current state of research on CO2 capture with microalgae, for which bibliometric analysis was used to establish the trends of the subject in terms of scientometric parameters. Technological advances in the use of microalgal biomass were also identified. Additionally, it was possible to establish the different cooperation networks between countries, which showed interactions in the search to reduce CO2 concentrations through microalgae.
Collapse
|
27
|
Abdelbasset WK, Jasim SA, Bokov DO, Shalaby MN, Opulencia MJC, Thangavelu L, Alkadir OKA, Ansari MJ, Kzar HH, Al-Gazally ME. Polysaccharides, as biological macromolecule-based platforms in skeletal muscle tissue engineering: a systematic review. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2090940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
- Federal Research Center of Nutrition, Biotechnology and Food Safety, Laboratory of Food Chemistry, Moscow, Russia
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Sheikh Zayed City, Egypt
| | | | - Lakshmi Thangavelu
- Department of Pharmacology, Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | | | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hamzah H. Kzar
- College of Veterinary Medicine, Al Qasim Green University, Iraq
| | | |
Collapse
|
28
|
Sharma R, Kumar S, Bhawna, Gupta A, Dheer N, Jain P, Singh P, Kumar V. An Insight of Nanomaterials in Tissue Engineering from Fabrication to Applications. Tissue Eng Regen Med 2022; 19:927-960. [PMID: 35661124 DOI: 10.1007/s13770-022-00459-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 01/09/2023] Open
Abstract
Tissue engineering is a research domain that deals with the growth of various kinds of tissues with the help of synthetic composites. With the culmination of nanotechnology and bioengineering, tissue engineering has emerged as an exciting domain. Recent literature describes its various applications in biomedical and biological sciences, such as facilitating the growth of tissue and organs, gene delivery, biosensor-based detection, etc. It deals with the development of biomimetics to repair, restore, maintain and amplify or strengthen several biological functions at the level of tissue and organs. Herein, the synthesis of nanocomposites based on polymers, along with their classification as conductive hydrogels and bioscaffolds, is comprehensively discussed. Furthermore, their implementation in numerous tissue engineering and regenerative medicine applications is also described. The limitations of tissue engineering are also discussed here. The present review highlights and summarizes the latest progress in the tissue engineering domain directed at functionalized nanomaterials.
Collapse
Affiliation(s)
- Ritika Sharma
- Department of Biochemistry, University of Delhi, Delhi, India
| | - Sanjeev Kumar
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Bhawna
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Akanksha Gupta
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, India.
| | - Neelu Dheer
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Delhi, India
| | - Pallavi Jain
- Department of Chemistry, SRM Institute of Science and Technology, Delhi NCR Campus, Ghaziabad, Uttar Pradesh, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India.
| | - Vinod Kumar
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India. .,Special Centre for Nano Science, Jawaharlal Nehru University, Delhi, India.
| |
Collapse
|
29
|
Dong Q, Wu D, Li M, Dong W. Polysaccharides, as biological macromolecule-based scaffolding biomaterials in cornea tissue engineering: A review. Tissue Cell 2022; 76:101782. [PMID: 35339801 DOI: 10.1016/j.tice.2022.101782] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022]
Abstract
Corneal-related diseases and injuries are the leading causes of vision loss, estimated to affect over 10 million people worldwide. Currently, cadaveric corneal grafts are considered the gold standard of treatment to restore cornea-related vision. However, this treatment modality faces different challenges such as donor shortage and graft failure. Therefore, the need for alternative solutions continues to grow. Tissue engineering has dramatically progressed to produce artificial cornea implants in order to repair, regenerate, or replace the damaged cornea. In this regard, a variety of polysaccharides such as cellulose, chitosan, alginate, agarose, and hyaluronic acid have been widely explored as scaffolding biomaterials for the production of tissue-engineered cornea. These polymers are known for their excellent biocompatibility, versatile properties, and processability. Recent progress and future perspectives of polysaccharide-based biomaterials in cornea tissue engineering is reviewed here.
Collapse
Affiliation(s)
- Qiwei Dong
- School of medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Dingkun Wu
- Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian, Liaoning, China, 116024
| | - Moqiu Li
- Center for Cancer Prevention Research, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Wei Dong
- School of Mathematics Sciences, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
30
|
Li J, Xiang H, Zhang Q, Miao X. Polysaccharide-Based Transdermal Drug Delivery. Pharmaceuticals (Basel) 2022; 15:ph15050602. [PMID: 35631428 PMCID: PMC9146969 DOI: 10.3390/ph15050602] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
Materials derived from natural plants and animals have great potential for transdermal drug delivery. Polysaccharides are widely derived from marine, herbal, and microbial sources. Compared with synthetic polymers, polysaccharides have the advantages of non-toxicity and biodegradability, ease of modification, biocompatibility, targeting, and antibacterial properties. Currently, polysaccharide-based transdermal drug delivery vehicles, such as hydrogel, film, microneedle (MN), and tissue scaffolds are being developed. The addition of polysaccharides allows these vehicles to exhibit better-swelling properties, mechanical strength, tensile strength, etc. Due to the stratum corneum’s resistance, the transdermal drug delivery system cannot deliver drugs as efficiently as desired. The charge and hydration of polysaccharides allow them to react with the skin and promote drug penetration. In addition, polysaccharide-based nanotechnology enhances drug utilization efficiency. Various diseases are currently treated by polysaccharide-based transdermal drug delivery devices and exhibit promising futures. The most current knowledge on these excellent materials will be thoroughly discussed by reviewing polysaccharide-based transdermal drug delivery strategies.
Collapse
Affiliation(s)
- Jingyuan Li
- Marine College, Shandong University, Weihai 264209, China; (J.L.); (H.X.); (Q.Z.)
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Hong Xiang
- Marine College, Shandong University, Weihai 264209, China; (J.L.); (H.X.); (Q.Z.)
| | - Qian Zhang
- Marine College, Shandong University, Weihai 264209, China; (J.L.); (H.X.); (Q.Z.)
| | - Xiaoqing Miao
- Marine College, Shandong University, Weihai 264209, China; (J.L.); (H.X.); (Q.Z.)
- Weihai Changqing Ocean Science Technology Co., Ltd., Weihai 264209, China
- Correspondence: ; Tel.: +86-19806301068
| |
Collapse
|
31
|
Natural Polymers in Heart Valve Tissue Engineering: Strategies, Advances and Challenges. Biomedicines 2022; 10:biomedicines10051095. [PMID: 35625830 PMCID: PMC9139175 DOI: 10.3390/biomedicines10051095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
In the history of biomedicine and biomedical devices, heart valve manufacturing techniques have undergone a spectacular evolution. However, important limitations in the development and use of these devices are known and heart valve tissue engineering has proven to be the solution to the problems faced by mechanical and prosthetic valves. The new generation of heart valves developed by tissue engineering has the ability to repair, reshape and regenerate cardiac tissue. Achieving a sustainable and functional tissue-engineered heart valve (TEHV) requires deep understanding of the complex interactions that occur among valve cells, the extracellular matrix (ECM) and the mechanical environment. Starting from this idea, the review presents a comprehensive overview related not only to the structural components of the heart valve, such as cells sources, potential materials and scaffolds fabrication, but also to the advances in the development of heart valve replacements. The focus of the review is on the recent achievements concerning the utilization of natural polymers (polysaccharides and proteins) in TEHV; thus, their extensive presentation is provided. In addition, the technological progresses in heart valve tissue engineering (HVTE) are shown, with several inherent challenges and limitations. The available strategies to design, validate and remodel heart valves are discussed in depth by a comparative analysis of in vitro, in vivo (pre-clinical models) and in situ (clinical translation) tissue engineering studies.
Collapse
|
32
|
Electrospun Polysaccharides for Periodontal Tissue Engineering: A Review of Recent Advances and Future Perspectives. Ann Biomed Eng 2022; 50:769-793. [DOI: 10.1007/s10439-022-02952-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/16/2022] [Indexed: 12/18/2022]
|
33
|
Varghese M, Haque F, Lu W, Grinstaff MW. Synthesis and Characterization of Regioselectively Functionalized Mono-Sulfated and -Phosphorylated Anionic Poly-Amido-Saccharides. Biomacromolecules 2022; 23:2075-2088. [PMID: 35420791 DOI: 10.1021/acs.biomac.2c00086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polysaccharides are abundant in nature and employed in various biomedical applications ranging from scaffolds for tissue engineering to carriers for drug delivery systems. However, drawbacks such as tedious isolation protocols, contamination, batch-to-batch consistency, and lack of compositional control with regards to stereo- and regioselectivity impede the development and utility of polysaccharides, and thus mimetics are highly sought after. We report a synthetic strategy to regioselectively functionalize poly-amido-saccharides with sulfate or phosphate groups using post-polymerization modification reactions. Orthogonally protected β-lactam monomers, synthesized from D-glucal, undergo anionic ring-opening polymerization to yield polymers with degrees of polymerization of 12, 25, and 50. Regioselective deprotection followed by functionalization and global deprotection affords the sulfated and phosphorylated poly-amido-saccharides. The resulting anionic polymers are water soluble and non-cytotoxic and adopt helical conformations. This new methodology provides access to otherwise inaccessible functional polysaccharide mimetics for biomedical applications.
Collapse
Affiliation(s)
- Maria Varghese
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Farihah Haque
- Tosoh Bioscience LLC, King of Prussia, Pennsylvania 19406-4705, United States
| | - Wei Lu
- Tosoh Bioscience LLC, King of Prussia, Pennsylvania 19406-4705, United States
| | - Mark W Grinstaff
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States.,Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
34
|
Jafari A, Farahani M, Sedighi M, Rabiee N, Savoji H. Carrageenans for tissue engineering and regenerative medicine applications: A review. Carbohydr Polym 2022; 281:119045. [DOI: 10.1016/j.carbpol.2021.119045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 12/19/2022]
|
35
|
Mohan T, Kleinschek KS, Kargl R. Polysaccharide peptide conjugates: Chemistry, properties and applications. Carbohydr Polym 2022; 280:118875. [PMID: 35027118 DOI: 10.1016/j.carbpol.2021.118875] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 11/02/2022]
Abstract
The intention of this publication is to give an overview on research related to conjugates of polysaccharides and peptides. Dextran, chitosan, and alginate were selected, to cover four of the most often encountered functional groups known to be present in polysaccharides. These groups are the hydroxyl, the amine, the carboxyl, and the acetal functionality. A collection of the commonly used chemical reactions for conjugation is provided. Conjugation results into distinct properties compared to the parent polysaccharide, and a number of these characteristics are highlighted. This review aims at demonstrating the applicability of said conjugates with a strong emphasis on biomedical applications, drug delivery, biosensing, and tissue engineering. Some suggestions are made for more rigorous chemistries and analytics that could be investigated. Finally, an outlook is given into which direction the field could be developed further. We hope that this survey provides the reader with a comprehensive summary and contributes to the progress of works that aim at synthetically combining two of the main building blocks of life into supramolecular structures with unprecedented biological response.
Collapse
Affiliation(s)
- Tamilselvan Mohan
- Institute for Chemistry and Technology of Biobased Systems (IBIOSYS), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Karin Stana Kleinschek
- Institute for Chemistry and Technology of Biobased Systems (IBIOSYS), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Rupert Kargl
- Institute for Chemistry and Technology of Biobased Systems (IBIOSYS), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria; Institute for Automation, Faculty of Electrical Engineering and Computer Science, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
36
|
Decellularized Alstroemeria flower stem modified with chitosan for tissue engineering purposes: A cellulose/chitosan scaffold. Int J Biol Macromol 2022; 204:321-332. [PMID: 35149092 DOI: 10.1016/j.ijbiomac.2022.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/18/2022]
Abstract
Utilizing plant-based scaffolds has pulled in the consideration of tissue engineers. Plant tissues own different structures with particular porosity and structure. In this study, the stem of the Alstroemeria flower was designated for decellularization to fabricate a new scaffold. The stems were decellularized and called AFSP and then modified by chitosan and named AFSPC. Osteoblast precursor cell line was employed to assess the biological potential of the final scaffolds. The results uncovered that AFSP owns linear microchannels with a smooth surface. AFSPC delineated uniform chitosan coating on the walls with appropriate roughness. AFSPC showed higher potential in swelling, degradation, diffusion, and having a porous structure than AFSP. Modification with chitosan improved mechanical behavior. Biological assays depicted no cytotoxicity for AFSP and AFSPC. AFSPC showed good cell attachment, proliferation, and migration. In conclusion, modified tissue plants can be a good candidate for tissue engineering of both soft and hard tissues.
Collapse
|
37
|
Sood A, Gupta A, Agrawal G. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100067] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
38
|
Chen X, Yan H, Bao C, Zhu Q, Liu Z, Wen Y, Li Z, Zhang T, Lin Q. Fabrication and evaluation of homogeneous alginate/polyacrylamide–chitosan–gelatin composite hydrogel scaffolds based on the interpenetrating networks for tissue engineering. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Xiuqiong Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Huiqiong Yan
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Chaoling Bao
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Qingmei Zhu
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Zhaowen Liu
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Yanshi Wen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Zhengyue Li
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Tong Zhang
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| | - Qiang Lin
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering Hainan Normal University Haikou China
| |
Collapse
|
39
|
Liang W, Lu Q, Yu F, Zhang J, Xiao C, Dou X, Zhou Y, Mo X, Li J, Lang M. A multifunctional green antibacterial rapid hemostasis composite wound dressing for wound healing. Biomater Sci 2021; 9:7124-7133. [PMID: 34581318 DOI: 10.1039/d1bm01185e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rapid hemostasis and antibacterial properties are essential for novel wound dressings to promote wound healing. In particular, timely and rapid hemostasis could be of benefit to reduce the mortality caused by excessive bleeding loss. Herein, we present a novel strategy of combining electrospinning technology with post-modification technology to prepare a multifunctional wound dressing, cellulose diacetate-based composite wound dressing (CDCE), with rapid hemostasis and antibacterial activity. It is interesting that the CDCE wound dressing had superhydrophilicity, high water absorption, and strong absorbing capacity, which could eliminate the exudate around the wound in a timely manner and further promote rapid hemostasis. Additionally, its excellent antibacterial properties could inhibit severe infection in the wound and accelerate wound healing. Based on these advantages, the novel CDCE wound dressing could promote wound contraction and further accelerate wound healing compared with the common traditional wound dressing gauze. Taken together, the multifunctional CDCE wound dressing has high potential for clinical application in the future.
Collapse
Affiliation(s)
- Wencheng Liang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China. .,Center of Photonics & Bio-Medical Diagnosis, School of science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Qiaohui Lu
- State Key Laboratory of Bioreactor Engineering, School of biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Fan Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Junyong Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| | - Chuang Xiao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| | - Xiaoming Dou
- Center of Photonics & Bio-Medical Diagnosis, School of science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, School of biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Jun Li
- Department of Orthopedics, Shanghai Tenth People's Hospital Affiliated to Tongji University, 301 Yanchang Road, Shanghai 200072, PR China.
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
40
|
Mommer S, Gehlen D, Akagi T, Akashi M, Keul H, Möller M. Thiolactone-Functional Pullulan for In Situ Forming Biogels. Biomacromolecules 2021; 22:4262-4273. [PMID: 34546742 DOI: 10.1021/acs.biomac.1c00807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gelation in the presence of cells with minimum cytotoxicity is highly desirable for materials with applications in tissue engineering. Herein, the naturally occurring polysaccharide pullulan is functionalized with thiolactones that undergo ring-opening addition of amines. As a result, the modified pullulan can be cross-linked with diamines and/or amine-containing biological substrates enhancing the system's versatility (e.g., gelatin and cell-binding ligands GHK/GRGDS). Thiolactone degrees of substitution of 2.5 or 5.0 mol % are achieved, and respective hydrogels exhibit mesh sizes of 27.8 to 49.1 nm. Cell proliferation studies on chosen gels (G' ≅ 500 Pa, over 14 days) demonstrate that for normal human dermal fibroblasts (NHDFs), both gelatin and GRGDS equally support cell proliferation, while in the case of hepatocytes (HepG2), the presence of GRGDS and GHK improve cell proliferation 10-fold compared to gelatin. Cells remain viable and in one instance were successfully encapsulated by in situ gelation, altogether confirming the mild and biocompatible nature of this strategy to produce biogels using biologically active substrates as cross-linkers.
Collapse
Affiliation(s)
- Stefan Mommer
- DWI - Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstrasse 50, 52056 Aachen, Germany
| | - David Gehlen
- DWI - Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstrasse 50, 52056 Aachen, Germany
| | - Takami Akagi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Mitsuru Akashi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Helmut Keul
- DWI - Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstrasse 50, 52056 Aachen, Germany
| | - Martin Möller
- DWI - Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstrasse 50, 52056 Aachen, Germany
| |
Collapse
|
41
|
Saravanakumar K, Park S, Sathiyaseelan A, Mariadoss AVA, Park S, Kim SJ, Wang MH. Isolation of Polysaccharides from Trichoderma harzianum with Antioxidant, Anticancer, and Enzyme Inhibition Properties. Antioxidants (Basel) 2021; 10:1372. [PMID: 34573005 PMCID: PMC8471597 DOI: 10.3390/antiox10091372] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 01/15/2023] Open
Abstract
In this work, a total of six polysaccharides were isolated from culture filtrate (EPS1, EPS2) and mycelia (IPS1-IPS4) of Trichoderma harzianum. The HPLC analysis results showed that EPS1, EPS2, IPS1, and IPS2 were composed of mannose, ribose, glucose, galactose, and arabinose. The FT-IR, 1H, and 13C NMR chemical shifts confirmed that the signals in EPS1 mainly consist of (1→4)-linked α-d-glucopyranose. EPS1 and IPS1 showed a smooth and clean surface, while EPS2, IPS2, and IPS3 exhibited a microporous structure. Among polysaccharides, EPS1 displayed higher ABTS+ (47.09 ± 2.25% and DPPH (26.44 ± 0.12%) scavenging activities, as well as higher α-amylase (69.30 ± 1.28%) and α-glucosidase (68.22 ± 0.64%) inhibition activity than the other polysaccharides. EPS1 exhibited high cytotoxicity to MDA-MB293 cells, with an IC50 of 0.437 mg/mL, and this was also confirmed by cell staining and FACS assays. These results report the physicochemical and bioactive properties of polysaccharides from T. harzianum.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Bio Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (A.V.A.M.); (S.P.)
| | - SeonJu Park
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea;
| | - Anbazhagan Sathiyaseelan
- Department of Bio Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (A.V.A.M.); (S.P.)
| | - Arokia Vijaya Anand Mariadoss
- Department of Bio Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (A.V.A.M.); (S.P.)
| | - Soyoung Park
- Department of Bio Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (A.V.A.M.); (S.P.)
| | - Seong-Jung Kim
- Department of Physical Therapy, College of Health and Science, Kangwon National University, Samcheok-si 24949, Korea
| | - Myeong-Hyeon Wang
- Department of Bio Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (A.V.A.M.); (S.P.)
| |
Collapse
|
42
|
Dobaj Štiglic A, Kargl R, Beaumont M, Strauss C, Makuc D, Egger D, Plavec J, Rojas OJ, Stana Kleinschek K, Mohan T. Influence of Charge and Heat on the Mechanical Properties of Scaffolds from Ionic Complexation of Chitosan and Carboxymethyl Cellulose. ACS Biomater Sci Eng 2021; 7:3618-3632. [PMID: 34264634 PMCID: PMC8396805 DOI: 10.1021/acsbiomaterials.1c00534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
As one of the most abundant, multifunctional biological polymers, polysaccharides are considered promising materials to prepare tissue engineering scaffolds. When properly designed, wetted porous scaffolds can have biomechanics similar to living tissue and provide suitable fluid transport, both of which are key features for in vitro and in vivo tissue growth. They can further mimic the components and function of glycosaminoglycans found in the extracellular matrix of tissues. In this study, we investigate scaffolds formed by charge complexation between anionic carboxymethyl cellulose and cationic protonated chitosan under well-controlled conditions. Freeze-drying and dehydrothermal heat treatment were then used to obtain porous materials with exceptional, unprecendent mechanical properties and dimensional long-term stability in cell growth media. We investigated how complexation conditions, charge ratio, and heat treatment significantly influence the resulting fluid uptake and biomechanics. Surprisingly, materials with high compressive strength, high elastic modulus, and significant shape recovery are obtained under certain conditions. We address this mostly to a balanced charge ratio and the formation of covalent amide bonds between the polymers without the use of additional cross-linkers. The scaffolds promoted clustered cell adhesion and showed no cytotoxic effects as assessed by cell viability assay and live/dead staining with human adipose tissue-derived mesenchymal stem cells. We suggest that similar scaffolds or biomaterials comprising other polysaccharides have a large potential for cartilage tissue engineering and that elucidating the reason for the observed peculiar biomechanics can stimulate further research.
Collapse
Affiliation(s)
- Andreja Dobaj Štiglic
- Laboratory
for Characterization and Processing of Polymers, Faculty of Mechanical
Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Rupert Kargl
- Laboratory
for Characterization and Processing of Polymers, Faculty of Mechanical
Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Institute
of Automation, Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroska cesta 46, 2000 Maribor, Slovenia
- Institute
of Chemistry and Technology of Biobased System (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Marco Beaumont
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo 00076, Finland
| | - Christine Strauss
- Department
of Biotechnology, University of Natural
Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Damjan Makuc
- Slovenian
NMR Center, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Dominik Egger
- Department
of Biotechnology, University of Natural
Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Janez Plavec
- Slovenian
NMR Center, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
- EN→FIST
Center of Excellence, Trg OF 13, SI-1000 Ljubljana, Slovenia
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna
pot 113, 1000 Ljubljana, Slovenia
| | - Orlando J. Rojas
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo 00076, Finland
- Departments
of Chemical and Biological Engineering, Chemistry, and Wood Science,
Bioproducts Institute, University of British
Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Karin Stana Kleinschek
- Institute
of Automation, Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroska cesta 46, 2000 Maribor, Slovenia
- Institute
of Chemistry and Technology of Biobased System (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Tamilselvan Mohan
- Institute
of Chemistry and Technology of Biobased System (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| |
Collapse
|
43
|
Abstract
Carbohydrates are the most abundant and one of the most important biomacromolecules in Nature. Except for energy-related compounds, carbohydrates can be roughly divided into two categories: Carbohydrates as matter and carbohydrates as information. As matter, carbohydrates are abundantly present in the extracellular matrix of animals and cell walls of various plants, bacteria, fungi, etc., serving as scaffolds. Some commonly found polysaccharides are featured as biocompatible materials with controllable rigidity and functionality, forming polymeric biomaterials which are widely used in drug delivery, tissue engineering, etc. As information, carbohydrates are usually referred to the glycans from glycoproteins, glycolipids, and proteoglycans, which bind to proteins or other carbohydrates, thereby meditating the cell-cell and cell-matrix interactions. These glycans could be simplified as synthetic glycopolymers, glycolipids, and glycoproteins, which could be afforded through polymerization, multistep synthesis, or a semisynthetic strategy. The information role of carbohydrates can be demonstrated not only as targeting reagents but also as immune antigens and adjuvants. The latter are also included in this review as they are always in a macromolecular formulation. In this review, we intend to provide a relatively comprehensive summary of carbohydrate-based macromolecular biomaterials since 2010 while emphasizing the fundamental understanding to guide the rational design of biomaterials. Carbohydrate-based macromolecules on the basis of their resources and chemical structures will be discussed, including naturally occurring polysaccharides, naturally derived synthetic polysaccharides, glycopolymers/glycodendrimers, supramolecular glycopolymers, and synthetic glycolipids/glycoproteins. Multiscale structure-function relationships in several major application areas, including delivery systems, tissue engineering, and immunology, will be detailed. We hope this review will provide valuable information for the development of carbohydrate-based macromolecular biomaterials and build a bridge between the carbohydrates as matter and the carbohydrates as information to promote new biomaterial design in the near future.
Collapse
Affiliation(s)
- Lu Su
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600, The Netherlands
| | - Yingle Feng
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Kongchang Wei
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Department of Materials meet Life, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Xuyang Xu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Rongying Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
44
|
Wu P, Xi X, Li R, Sun G. Engineering Polysaccharides for Tissue Repair and Regeneration. Macromol Biosci 2021; 21:e2100141. [PMID: 34219388 DOI: 10.1002/mabi.202100141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/11/2021] [Indexed: 12/22/2022]
Abstract
The success of repair or regeneration depends greatly on the architecture of 3D scaffolds that finely mimic natural extracellular matrix to support cell growth and assembly. Polysaccharides have excellent biocompatibility with intrinsic biological cues and they have been extensively investigated as scaffolds for tissue engineering and regenerative medicine (TERM). The physical and biochemical structures of natural polysaccharides, however, can barely meet all the requirements of tissue-engineered scaffolds. To take advantage of their inherent properties, many innovative approaches including chemical, physical, or joint modifications have been employed to improve their properties. Recent advancement in molecular and material building technology facilitates the fabrication of advanced 3D structures with desirable properties. This review focuses on the latest progress of polysaccharide-based scaffolds for TERM, especially those that construct advanced architectures for tissue regeneration.
Collapse
Affiliation(s)
- Pingli Wu
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Xin Xi
- Affiliated Hospital of Hebei University, College of Clinical Medicine, Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China
| | - Ruochen Li
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Guoming Sun
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.,Affiliated Hospital of Hebei University, College of Clinical Medicine, Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China
| |
Collapse
|
45
|
Abstract
The cultured meat market has been growing at an accelerated space since the first creation of cultured meat burger back in 2013. Substantial efforts have been made to reduce costs by eliminating serum in growth media and improving process efficiency by employing bioreactors. In parallel, efforts are also being made on scaffolding innovations to offer better cells proliferation, differentiation and tissue development. So far, scaffolds used in cultured meat research are predominantly collagen and gelatin, which are animal-derived. To align with cell-based meat vision i.e. environment conservation and animal welfare, plant-derived biomaterials for scaffolding are being intensively explored. This paper reviews and discusses the advantages and disadvantages of scaffold materials and potential scaffolding related to scale-up solution for the production of cultured meat.
Collapse
Affiliation(s)
- Jasmine Si Han Seah
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Satnam Singh
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Lay Poh Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Deepak Choudhury
- Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
46
|
Malhotra D, Pan S, Rüther L, Schlippe G, Voss W, Germann N. Polysaccharide-based skin scaffolds with enhanced mechanical compatibility with native human skin. J Mech Behav Biomed Mater 2021; 122:104607. [PMID: 34198231 DOI: 10.1016/j.jmbbm.2021.104607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 01/17/2023]
Abstract
We report a custom-made technique to synthesize process-convenient skin scaffolds by tuning the mechanical properties of hydrogels based on a few naturally occurring polysaccharides to match the rheological properties of previously established benchmarks, i.e., the ex vivo native human skins. We studied the mechanical parameters using oscillatory shear rheology. At small strain amplitudes, the intrinsic elastic modulus showed an almost linear dependence in the middle and a changing rate profile at the two ends with concentration of the principal hydrogel component variant, i.e., kappa (κ)-carrageenan. At large strain amplitudes, the hydrogels demonstrated intercycle strain-softening behavior, the onset of which was directly proportional to the κ-carrageenan concentration. We observed a concentration match for the intrinsic elastic modulus of the benchmark within this sigmoidal curve fit. Contextually, we need to explore other potent polymeric hydrogel systems to achieve mechanical affinity in terms of multiple rheological parameters derived from both strain amplitude and angular frequency sweeps. Additionally, we carried out diffusion experiments to study caffeine permeation attributes. The hydrogels show improved barrier features with increasing κ-carrageenan concentration. In terms of the penetration flux and total cumulative amount of permeated caffeine, this enhanced mechanical adherence demonstrates comparable penetration features with the commercial 3D skin model.
Collapse
Affiliation(s)
- Deepika Malhotra
- Fluid Dynamics of Complex Biosystems, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, 85354, Germany.
| | - Sharadwata Pan
- Fluid Dynamics of Complex Biosystems, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, 85354, Germany.
| | - Lars Rüther
- Dermatest GmbH, Engelstraße 37, Münster, 48143, Germany.
| | | | - Werner Voss
- Dermatest GmbH, Engelstraße 37, Münster, 48143, Germany.
| | - Natalie Germann
- Fluid Dynamics of Complex Biosystems, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, 85354, Germany.
| |
Collapse
|
47
|
Hernández-González AC, Téllez-Jurado L, Rodríguez-Lorenzo LM. Preparation of covalently bonded silica-alginate hybrid hydrogels by SCHIFF base and sol-gel reactions. Carbohydr Polym 2021; 267:118186. [PMID: 34119154 DOI: 10.1016/j.carbpol.2021.118186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022]
Abstract
Organic-inorganic hybrid materials overcome drawbacks associated with alginate hydrogels. In this work, covalently coupled silica-alginate hybrids were prepared by Schiff base formation and sol-gel reaction using alginate dialdehyde (ADA), (3-Aminopropyl) triethoxysilane (APTES), and APTES/tetraethylorthosilicate (TEOS) precursors. The influence of the polysaccharide/inorganic ratio, the nature of the inorganic precursor and the ionic crosslinking ability are studied. Prepared hybrids were characterized by FT-IR, 13C and 29Si NMR spectroscopies, SEM, and rheology. For ADA/APTES hybrids, at higher ADA content, Schiff base formation is predominant, but at lower ADA content, the sol-gel reaction is prevalent. However, the progress of the sol-gel reactions for ADA/(APTES+TEOS), is favored with higher ADA compositions. Introducing a posterior ionic crosslinking treatment was possible, increasing the moduli in ADA/(APTES+TEOS) hybrids from 86,207 Pa for 1.5 ADA/Si to 362,171 Pa for 1.5 ADA/Si-Ca. In-situ ADA-Silica hybrid hydrogels containing both ionic and covalent crosslinking can be successfully synthesized with the proposed method. CARBPOL-D-21-01042.
Collapse
Affiliation(s)
| | - Lucía Téllez-Jurado
- Instituto Politécnico Nacional, Depto. de Ingeniería en Metalurgia y Materiales-ESIQIE, CDMX, Mexico.
| | | |
Collapse
|
48
|
Reddy MSB, Ponnamma D, Choudhary R, Sadasivuni KK. A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers (Basel) 2021; 13:1105. [PMID: 33808492 PMCID: PMC8037451 DOI: 10.3390/polym13071105] [Citation(s) in RCA: 359] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering (TE) and regenerative medicine integrate information and technology from various fields to restore/replace tissues and damaged organs for medical treatments. To achieve this, scaffolds act as delivery vectors or as cellular systems for drugs and cells; thereby, cellular material is able to colonize host cells sufficiently to meet up the requirements of regeneration and repair. This process is multi-stage and requires the development of various components to create the desired neo-tissue or organ. In several current TE strategies, biomaterials are essential components. While several polymers are established for their use as biomaterials, careful consideration of the cellular environment and interactions needed is required in selecting a polymer for a given application. Depending on this, scaffold materials can be of natural or synthetic origin, degradable or nondegradable. In this review, an overview of various natural and synthetic polymers and their possible composite scaffolds with their physicochemical properties including biocompatibility, biodegradability, morphology, mechanical strength, pore size, and porosity are discussed. The scaffolds fabrication techniques and a few commercially available biopolymers are also tabulated.
Collapse
Affiliation(s)
- M. Sai Bhargava Reddy
- Center for Nanoscience and Technology, Institute of Science and Technology, Jawaharlal Nehru Technological University, Hyderabad 500085, India;
| | | | - Rajan Choudhary
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia
- Center for Composite Materials, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | | |
Collapse
|
49
|
The Marine Polysaccharide Ulvan Confers Potent Osteoinductive Capacity to PCL-Based Scaffolds for Bone Tissue Engineering Applications. Int J Mol Sci 2021; 22:ijms22063086. [PMID: 33802984 PMCID: PMC8002638 DOI: 10.3390/ijms22063086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Hybrid composites of synthetic and natural polymers represent materials of choice for bone tissue engineering. Ulvan, a biologically active marine sulfated polysaccharide, is attracting great interest in the development of novel biomedical scaffolds due to recent reports on its osteoinductive properties. Herein, a series of hybrid polycaprolactone scaffolds containing ulvan either alone or in blends with κ-carrageenan and chondroitin sulfate was prepared and characterized. The impact of the preparation methodology and the polysaccharide composition on their morphology, as well as on their mechanical, thermal, water uptake and porosity properties was determined, while their osteoinductive potential was investigated through the evaluation of cell adhesion, viability, and osteogenic differentiation of seeded human adipose-derived mesenchymal stem cells. The results verified the osteoinductive ability of ulvan, showing that its incorporation into the polycaprolactone matrix efficiently promoted cell attachment and viability, thus confirming its potential in the development of biomedical scaffolds for bone tissue regeneration applications.
Collapse
|
50
|
Gum Tragacanth (GT): A Versatile Biocompatible Material beyond Borders. Molecules 2021; 26:molecules26061510. [PMID: 33802011 PMCID: PMC8000171 DOI: 10.3390/molecules26061510] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/18/2023] Open
Abstract
The use of naturally occurring materials in biomedicine has been increasingly attracting the researchers’ interest and, in this regard, gum tragacanth (GT) is recently showing great promise as a therapeutic substance in tissue engineering and regenerative medicine. As a polysaccharide, GT can be easily extracted from the stems and branches of various species of Astragalus. This anionic polymer is known to be a biodegradable, non-allergenic, non-toxic, and non-carcinogenic material. The stability against microbial, heat and acid degradation has made GT an attractive material not only in industrial settings (e.g., food packaging) but also in biomedical approaches (e.g., drug delivery). Over time, GT has been shown to be a useful reagent in the formation and stabilization of metal nanoparticles in the context of green chemistry. With the advent of tissue engineering, GT has also been utilized for the fabrication of three-dimensional (3D) scaffolds applied for both hard and soft tissue healing strategies. However, more research is needed for defining GT applicability in the future of biomedical engineering. On this object, the present review aims to provide a state-of-the-art overview of GT in biomedicine and tries to open new horizons in the field based on its inherent characteristics.
Collapse
|