1
|
Gómez-García R, Sousa SC, Ramos ÓL, Campos DA, Aguilar CN, Madureira AR, Pintado M. Obtention and Characterization of Microcrystalline Cellulose from Industrial Melon Residues Following a Biorefinery Approach. Molecules 2024; 29:3285. [PMID: 39064864 PMCID: PMC11279406 DOI: 10.3390/molecules29143285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Residual melon by-products were explored for the first time as a bioresource of microcrystalline cellulose (MCC) obtention. Two alkaline extraction methods were employed, the traditional (4.5% NaOH, 2 h, 80 °C) and a thermo-alkaline in the autoclave (2% NaOH, 1 h, 100 °C), obtaining a yield of MCC ranging from 4.76 to 9.15% and 2.32 to 3.29%, respectively. The final MCCs were characterized for their chemical groups by Fourier-transform infrared spectroscopy (FTIR), crystallinity with X-ray diffraction, and morphology analyzed by scanning electron microscope (SEM). FTIR spectra showed that the traditional protocol allows for a more effective hemicellulose and lignin removal from the melon residues than the thermo-alkaline process. The degree of crystallinity of MCC ranged from 51.51 to 61.94% and 54.80 to 55.07% for the thermo-alkaline and traditional processes, respectively. The peaks detected in X-ray diffraction patterns indicated the presence of Type I cellulose. SEM analysis revealed microcrystals with rough surfaces and great porosity, which could remark their high-water absorption capacity and drug-carrier capacities. Thus, these findings could respond to the need to valorize industrial melon by-products as raw materials for MCC obtention with potential applications as biodegradable materials.
Collapse
Affiliation(s)
- Ricardo Gómez-García
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (R.G.-G.)
- CIICYT—Centro de Investigación e Innovación Científica y Tecnológica, Unidad Camporredondo, Autonomous University of Coahuila, Saltillo 25280, Coahuila, Mexico
| | - Sérgio C. Sousa
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (R.G.-G.)
| | - Óscar L. Ramos
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (R.G.-G.)
| | - Débora A. Campos
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (R.G.-G.)
| | - Cristóbal N. Aguilar
- BBG-DIA—Bioprocesses and Bioproducts Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25730, Coahuila, Mexico
| | - Ana R. Madureira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (R.G.-G.)
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (R.G.-G.)
| |
Collapse
|
2
|
Alamdari NE, Aksoy B, Babu RJ, Jiang Z. Microcrystalline cellulose from soybean hull as an excipient in solid dosage forms: Preparation, powder characterization, and tableting properties. Int J Biol Macromol 2024; 270:132298. [PMID: 38750863 DOI: 10.1016/j.ijbiomac.2024.132298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
Microcrystalline cellulose (MCC) is one of the essential functional excipients in the formulation of tablets. The need for cheaper MCC sources has drawn significant attention to exploring renewable sources. In this study, MCC was produced from soybean hull (SBH), the primary by-product of the soy industry, using a novel, simplified, and cost-effective approach. Various characterization techniques were used to study the physicochemical properties and micromeritics of the SBH-based MCC powders and compare them to those of the commercial Avicel PH-101. SBH MCCs had a larger particle size, a broader particle size distribution, a higher degree of polymerization, a higher degree of crystallinity, better thermal stability, and slightly superior flowability and compressibility than Avicel PH-101. The tableting blends (containing 60 % MCC) were prepared, and the post-compression out-of-die Heckel analysis showed that formulations with aggregated SBH MCCs were less ductile than those made with Avicel PH-101, resulting in a lower porosity (better compressibility) of the latter at higher compression pressures. The hardness values for all formulations were above 6 kg, with higher values for those made with Avicel PH-101. The lubricant sensitivity was lower for SBH MCCs. All tablets made using developed formulations showed very low friability (<0.1 %) and short disintegration times (<90 s), making them well-suited candidates for manufacturing orally disintegrating tablets (ODTs).
Collapse
Affiliation(s)
- Navid Etebari Alamdari
- Alabama Center for Paper and Bioresource Engineering (AC-PABE), Department of Chemical Engineering, Auburn University, Auburn, AL, USA
| | - Burak Aksoy
- College of Forestry, Wildlife and Environment, Auburn University, Auburn, AL, USA
| | | | - Zhihua Jiang
- Alabama Center for Paper and Bioresource Engineering (AC-PABE), Department of Chemical Engineering, Auburn University, Auburn, AL, USA.
| |
Collapse
|
3
|
Lan Z, Wang Y, Hu K, Shi S, Meng Q, Sun Q, Shen X. Anti-swellable cellulose hydrogel for underwater sensing. Carbohydr Polym 2023; 306:120541. [PMID: 36746563 DOI: 10.1016/j.carbpol.2023.120541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
Underwater sensing is of great significance in ocean exploration by divers to monitor their movements and keep in touch with the shore. However, unique sensors are required to apply in the marine environment that is quite different from the land circumstance. Herein, we reported a cellulose-skeleton-based composite hydrogel that is constraint to expand underwater under the effect of hydrogen bonds (H-bonds) and features advantages of high swelling resistance, structural durability, mechanical robustness, medium flexibility, high gauge factor (2.33) and long-term stability in water as a highly efficient wearable underwater sensor. This cellulose-based anti-swellable underwater hydrogel sensor showed tremendous potentials in underwater sensing applications for posture monitoring, communication, and marine biological research, etc.
Collapse
Affiliation(s)
- Zhuyue Lan
- College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300, China
| | - Yuanyuan Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300, China
| | - Ke Hu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300, China
| | - Shitao Shi
- College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300, China
| | - Qingyu Meng
- College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300, China
| | - Qingfeng Sun
- College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300, China.
| | - Xiaoping Shen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou 311300, China.
| |
Collapse
|
4
|
Chai YD, Pang YL, Lim S, Chong WC, Lai CW, Abdullah AZ. Recent Progress on Tailoring the Biomass-Derived Cellulose Hybrid Composite Photocatalysts. Polymers (Basel) 2022; 14:5244. [PMID: 36501638 PMCID: PMC9736154 DOI: 10.3390/polym14235244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Biomass-derived cellulose hybrid composite materials are promising for application in the field of photocatalysis due to their excellent properties. The excellent properties between biomass-derived cellulose and photocatalyst materials was induced by biocompatibility and high hydrophilicity of the cellulose components. Biomass-derived cellulose exhibited huge amount of electron-rich hydroxyl group which could promote superior interaction with the photocatalyst. Hence, the original sources and types of cellulose, synthesizing methods, and fabrication cellulose composites together with applications are reviewed in this paper. Different types of biomasses such as biochar, activated carbon (AC), cellulose, chitosan, and chitin were discussed. Cellulose is categorized as plant cellulose, bacterial cellulose, algae cellulose, and tunicate cellulose. The extraction and purification steps of cellulose were explained in detail. Next, the common photocatalyst nanomaterials including titanium dioxide (TiO2), zinc oxide (ZnO), graphitic carbon nitride (g-C3N4), and graphene, were introduced based on their distinct structures, advantages, and limitations in water treatment applications. The synthesizing method of TiO2-based photocatalyst includes hydrothermal synthesis, sol-gel synthesis, and chemical vapor deposition synthesis. Different synthesizing methods contribute toward different TiO2 forms in terms of structural phases and surface morphology. The fabrication and performance of cellulose composite catalysts give readers a better understanding of the incorporation of cellulose in the development of sustainable and robust photocatalysts. The modifications including metal doping, non-metal doping, and metal-organic frameworks (MOFs) showed improvements on the degradation performance of cellulose composite catalysts. The information and evidence on the fabrication techniques of biomass-derived cellulose hybrid photocatalyst and its recent application in the field of water treatment were reviewed thoroughly in this review paper.
Collapse
Affiliation(s)
- Yi Ding Chai
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Yean Ling Pang
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Steven Lim
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Woon Chan Chong
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, Kuala Lumpur 50603, Malaysia
| | | |
Collapse
|
5
|
Adeleye OA, Bamiro OA, Albalawi DA, Alotaibi AS, Iqbal H, Sanyaolu S, Femi-Oyewo MN, Sodeinde KO, Yahaya ZS, Thiripuranathar G, Menaa F. Characterizations of Alpha-Cellulose and Microcrystalline Cellulose Isolated from Cocoa Pod Husk as a Potential Pharmaceutical Excipient. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5992. [PMID: 36079372 PMCID: PMC9457090 DOI: 10.3390/ma15175992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Cellulose is a non-toxic, bio-degradable, and renewable biopolymer which is abundantly available in nature. The most common source of commercial microcrystalline cellulose is fibrous wood pulp. Cellulose and its derivatives have found wide commercial applications in the pharmaceutical, cosmetic, food, paper, textile, and engineering industries. This study aims to isolate and characterize cellulose forms from cocoa pod husk (CPH) and to assess its mechanical and disintegration properties as a direct compression excipient in metronidazole tablets. Two isolated cellulose types (i.e., cocoa alpha-cellulose (CAC) and cocoa microcrystalline cellulose (C-MCC)) were compared with avicel (AV). CAC and C-MCC were characterized for their physicochemical properties using Scanning Electron Microscopy (SEM), FTIR spectroscopy, Differential Scanning Calorimetry (DSC), and X-Ray Powder Diffraction (XRD). Metronidazole tablets were produced by direct compression with cellulose. The mechanical and disintegration properties of the tablets were evaluated. CAC and C-MCC yield was 42.3% w/w and 38.25% w/w, respectively. Particle diameters were significantly different with CAC (282.22 μm) > C-MCC (161.32 μm) > AV (72.51 μm). CAC and C-MCC had a better flow than AV. SEM revealed the fibrous nature of the cellulose. FTIR and XRD analysis confirmed the presence of cellulose with crystallinity index of 69.26%, 43.83%, and 26.32% for AV, C-MCC, and CAC, respectively. C-MCC and AV are more crystalline and thermally stable at high temperatures compared to CAC. The mechanical and disintegration properties of C-MCC and AV tablets complied with pharmacopeia specifications. Taken together, C-MCC isolated from CPH displayed some fundamental characteristics suitable for use as a pharmaceutical excipient and displayed better properties compared to that of AV.
Collapse
Affiliation(s)
- Olutayo A. Adeleye
- Department of Pharmaceutics and Pharmaceutical Technology, Federal University Oye-Ekiti, Oye-Ekiti 3600001, Ekiti State, Nigeria
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Afe Babalola University, Ado-Ekiti 360101, Ekiti State, Nigeria
| | - Oluyemisi A. Bamiro
- Department of Pharmaceutics and Pharmaceutical Technology, Olabisi Onabanjo University, Ago-Iwoye 120107, Ogun State, Nigeria
| | - Doha A. Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Amenah S. Alotaibi
- Genomic & Biotechnology Unit, Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Haroon Iqbal
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Saheed Sanyaolu
- Department of Pharmaceutics and Pharmaceutical Technology, Olabisi Onabanjo University, Ago-Iwoye 120107, Ogun State, Nigeria
| | - Mbang N. Femi-Oyewo
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Afe Babalola University, Ado-Ekiti 360101, Ekiti State, Nigeria
| | - Kehinde O. Sodeinde
- Department of Industrial Chemistry, Federal University Oye-Ekiti, Oye-Ekiti 3600001, Ekiti State, Nigeria
| | - Zwanden S. Yahaya
- Department of Pharmaceutics and Industrial Pharmacy, Kaduna State University, Kabala Coastain 800283, Kaduna State, Nigeria
| | - Gobika Thiripuranathar
- Institute of Chemistry Ceylon, College of Chemical Sciences, Rajagiriya 10107, Sri Lanka
| | - Farid Menaa
- Department of Pharmaceutics and Nanomedicine, Fluorotronics Inc. and California Innovations Corp., San Diego, CA 92037, USA
| |
Collapse
|
6
|
Asif M, Ahmed D, Ahmad N, Qamar MT, Alruwaili NK, Bukhari SNA. Extraction and Characterization of Microcrystalline Cellulose from Lagenaria siceraria Fruit Pedicles. Polymers (Basel) 2022; 14:1867. [PMID: 35567035 PMCID: PMC9101574 DOI: 10.3390/polym14091867] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Microcrystalline cellulose (MCC) is a versatile polymer commonly employed in food, chemical, and biomedical formulations. Lagenaria siceraria (bottle gourd) fruit is consumed in many parts of the world, and its pedicle is discarded as waste. In the quest for a novel renewable source of the MCC, the present study investigates the extraction and characterization of MCC from the pedicle of Lagenaria siceraria fruits. The MCC was extracted by sequentially treating pedicles with water, alkali, bleaching (sodium chlorite), and dilute sulfuric acid (acid hydrolysis). The removal of associated impurities from pedicle fibers was confirmed by Fourier transform infrared analyses. The extracted MCC exhibited a characteristic crystalline structure of cellulose in X-ray diffraction with a 64.53% crystallinity index. The scanning electron microscopy (SEM) showed the variation in the morphology of the fibers and the formation of MCC of approximately 100 µm. The thermogravimetric analysis (TGA) indicated higher thermal stability of MCC. MCC production from biowaste (pedicle) holds potential for application as an emulsifier, stabilizer, and thickener in the chemical, pharmaceutical, and food industries.
Collapse
Affiliation(s)
- Muhammad Asif
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore 54600, Pakistan; (M.A.); (D.A.); (M.T.Q.)
| | - Dildar Ahmed
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore 54600, Pakistan; (M.A.); (D.A.); (M.T.Q.)
| | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia;
| | - Muhammad Tariq Qamar
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore 54600, Pakistan; (M.A.); (D.A.); (M.T.Q.)
| | - Nabil K. Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia;
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia;
| |
Collapse
|
7
|
Zhao H, Zhao L, Lin X, Shen L. An update on microcrystalline cellulose in direct compression: Functionality, critical material attributes, and co-processed excipients. Carbohydr Polym 2022; 278:118968. [PMID: 34973783 DOI: 10.1016/j.carbpol.2021.118968] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/02/2022]
Abstract
Microcrystalline cellulose (MCC) is one of the most popular cellulose derivatives in the pharmaceutical industry. Thanks to its outstanding tabletability, MCC is generally included in direct compression (DC) tablet formulations containing poor-tabletability active pharmaceutical ingredients. Nowadays, numerous grades of MCC from various brands are accessible for pharmaceutical manufacturers, leading to variability in MCC properties. Hence, it seems to be worthy and urgent to evaluate the influences of MCC variability on tablet quality and to identify critical material attributes (CMAs) based on the idea of Quality by Control. Besides, MCC-based co-processed excipients can effectively combine the functions of the filler, binder, disintegrant, lubricant, glidant, or flavor, and thus have drawn extensive interest. In this review, we focused specifically on the recent advances and development of MCC on DC tableting, including the functions in tablet formulations, potential CMAs, and MCC-based co-possessed excipients, therefore providing a reference for further studies.
Collapse
Affiliation(s)
- Haiyue Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China
| | - Lijie Zhao
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China.
| | - Xiao Lin
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China.
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, PR China.
| |
Collapse
|
8
|
Holilah H, Bahruji H, Ediati R, Asranudin A, Jalil AA, Piluharto B, Nugraha RE, Prasetyoko D. Uniform rod and spherical nanocrystalline celluloses from hydrolysis of industrial pepper waste (Piper nigrum L.) using organic acid and inorganic acid. Int J Biol Macromol 2022; 204:593-605. [PMID: 35157900 DOI: 10.1016/j.ijbiomac.2022.02.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/14/2022] [Accepted: 02/09/2022] [Indexed: 12/22/2022]
Abstract
Conversion of lignocellulosic biowastes from agricultural industry into nanocrystalline cellulose provides pathway to reduce environmental pollution while enhancing the economic value of biowastes. Nanocellulose (NCC) with uniform morphology was isolated from pepper (Piper nigrum L.) stalk waste (PW) using acid hydrolysis method. The role of inorganic acids (sulfuric acid, hydrochloric acid, phosphoric acid), organic acids (oxalic acid, citric acid, acetic acid) and variation of sonication times were investigated on the physicochemical characteristics, self-assembled structure, crystallinity, particle size, zeta potential and thermal stability of the isolated nanocellulose. Hydrolysis using inorganic acids transformed cellulose from PW into a spherical shaped NCC at ~33-67 nm of average diameter. Meanwhile hydrolysis in organic acids produced rod-shaped NCC at 210-321 nm in length. This study highlighted the role of acidity strength for organic acid and inorganic acid in controlling the level of hydrogen bond dissociation and the dissolution of amorphous fragments, which consequently directing the morphology and the physicochemical properties of NCCs.
Collapse
Affiliation(s)
- Holilah Holilah
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Sukolilo, Surabaya, 60111, Indonesia; Department of Food Science and Technology, Faculty of Agriculture, Halu Oleo University, Kendari, Indonesia
| | - Hasliza Bahruji
- Centre of Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Jl. Tungku Link, BE 1410, Brunei
| | - Ratna Ediati
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Sukolilo, Surabaya, 60111, Indonesia
| | - Asranudin Asranudin
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Sukolilo, Surabaya, 60111, Indonesia; Department of Food Science and Technology, Faculty of Agriculture, Halu Oleo University, Kendari, Indonesia
| | - Aishah Abdul Jalil
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM, Skudai, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, UTM, Skudai, Johor Bahru, Johor, Malaysia
| | - Bambang Piluharto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Jember, Indonesia
| | - Reva Edra Nugraha
- Department of Chemical Engineering, Faculty of Engineering, Universitas Pembangunan Nasional "Veteran" Jawa Timur, Surabaya 60294, Indonesia
| | - Didik Prasetyoko
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Sukolilo, Surabaya, 60111, Indonesia.
| |
Collapse
|
9
|
Tarchoun AF, Trache D, Klapötke TM, Slimani K, Belouettar B, Abdelaziz A, Bekhouche S, Bessa W. Valorization of Esparto Grass Cellulosic Derivatives for the Development of Promising Energetic Azidodeoxy Biopolymers: Synthesis, Characterization and Isoconversional Thermal Kinetic Analysis. PROPELLANTS EXPLOSIVES PYROTECHNICS 2022. [DOI: 10.1002/prep.202100293] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ahmed Fouzi Tarchoun
- Energetic Materials Laboratory Teaching and Research unit of Energetic Processes Ecole Militaire Polytechnique BP 17, Bordj El-Bahri 16046 Algiers Algeria
- Energetic Propulsion Laboratory Teaching and Research unit of Energetic Processes Ecole Militaire Polytechnique BP 17, Bordj El-Bahri 16046 Algiers Algeria
| | - Djalal Trache
- Energetic Materials Laboratory Teaching and Research unit of Energetic Processes Ecole Militaire Polytechnique BP 17, Bordj El-Bahri 16046 Algiers Algeria
| | - Thomas M. Klapötke
- Department of Chemistry Ludwig Maximilian University Butenandtstrasse 5–13 (D) D-81377 Munich Germany
| | - Kheireddine Slimani
- Energetic Materials Laboratory Teaching and Research unit of Energetic Processes Ecole Militaire Polytechnique BP 17, Bordj El-Bahri 16046 Algiers Algeria
| | - Baha‐eddine Belouettar
- Energetic Materials Laboratory Teaching and Research unit of Energetic Processes Ecole Militaire Polytechnique BP 17, Bordj El-Bahri 16046 Algiers Algeria
| | - Amir Abdelaziz
- Energetic Materials Laboratory Teaching and Research unit of Energetic Processes Ecole Militaire Polytechnique BP 17, Bordj El-Bahri 16046 Algiers Algeria
| | - Slimane Bekhouche
- Energetic Materials Laboratory Teaching and Research unit of Energetic Processes Ecole Militaire Polytechnique BP 17, Bordj El-Bahri 16046 Algiers Algeria
| | - Wissam Bessa
- Energetic Materials Laboratory Teaching and Research unit of Energetic Processes Ecole Militaire Polytechnique BP 17, Bordj El-Bahri 16046 Algiers Algeria
| |
Collapse
|
10
|
Insuasti‐Cruz E, Suárez‐Jaramillo V, Mena Urresta KA, Pila‐Varela KO, Fiallos‐Ayala X, Dahoumane SA, Alexis F. Natural Biomaterials from Biodiversity for Healthcare Applications. Adv Healthc Mater 2022; 11:e2101389. [PMID: 34643331 DOI: 10.1002/adhm.202101389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/20/2021] [Indexed: 12/22/2022]
Abstract
Natural biomaterials originating during the growth cycles of all living organisms have been used for many applications. They span from bioinert to bioactive materials including bioinspired ones. As they exhibit an increasing degree of sophistication, natural biomaterials have proven suitable to address the needs of the healthcare sector. Here the different natural healthcare biomaterials, their biodiversity sources, properties, and promising healthcare applications are reviewed. The variability of their properties as a result of considered species and their habitat is also discussed. Finally, some limitations of natural biomaterials are discussed and possible future developments are provided as more natural biomaterials are yet to be discovered and studied.
Collapse
Affiliation(s)
- Erick Insuasti‐Cruz
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| | | | | | - Kevin O. Pila‐Varela
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| | - Xiomira Fiallos‐Ayala
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| | - Si Amar Dahoumane
- Department of Chemical Engineering Polytech Montreal Montreal Quebec H3C 3A7 Canada
- Center for Advances in Water and Air Quality (CAWAQ) Lamar University Beaumont TX 77710 USA
| | - Frank Alexis
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| |
Collapse
|
11
|
Debnath B, Haldar D, Purkait MK. A critical review on the techniques used for the synthesis and applications of crystalline cellulose derived from agricultural wastes and forest residues. Carbohydr Polym 2021; 273:118537. [PMID: 34560949 DOI: 10.1016/j.carbpol.2021.118537] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022]
Abstract
In order to meet the growing energy crisis of the 21st century, the utilization of bio-based materials has become a field of high research endeavour. In view of that, the present review paper is focused on different techniques that are frequently explored for the synthesis of value-added crystalline derivatives of cellulose like MCC and NCC from agricultural wastes and forest residues. Moreover, a comparative analysis between thermochemical and biochemical methods is carried out for such valorization of biomass considering the mechanism involved with various reactions. Further, a critical analysis is performed on various individual techniques specifically used for the applications of MCC and NCC in different fields including environmental, polymer industry, pharmaceutical and other emerging sectors. This article will assist the readers not only to explore new biomass sources but also provides an in-depth insight on various green and cost-effective methods for sustainable production of crystalline cellulose.
Collapse
Affiliation(s)
- Banhisikha Debnath
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Dibyajyoti Haldar
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
12
|
Ünver N, Çelik Ş. Effect of antioxidant‐enriched microcrystalline cellulose obtained from almond residues on the storage stability of mayonnaise. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Naciye Ünver
- Engineering Faculty, Food Engineering Department Harran University Sanliurfa Turkey
| | - Şerafettin Çelik
- Engineering Faculty, Food Engineering Department Harran University Sanliurfa Turkey
| |
Collapse
|
13
|
Tarchoun AF, Trache D, Klapötke TM, Selmani A, Saada M, Chelouche S, Mezroua A, Abdelaziz A. New insensitive high-energy dense biopolymers from giant reed cellulosic fibers: their synthesis, characterization, and non-isothermal decomposition kinetics. NEW J CHEM 2021. [DOI: 10.1039/d0nj05484d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Renewable giant reed has been explored for the first time to develop new advanced high-energy dense biopolymers through carbamate surface functionalization and nitration of native cellulose and cellulose microcrystals.
Collapse
Affiliation(s)
- Ahmed Fouzi Tarchoun
- Energetic Materials Laboratory
- Teaching and Research Unit of Energetic Processes
- Ecole Militaire Polytechnique
- Algeria
- Energetic Propulsion Laboratory
| | - Djalal Trache
- Energetic Materials Laboratory
- Teaching and Research Unit of Energetic Processes
- Ecole Militaire Polytechnique
- Algeria
| | - Thomas M. Klapötke
- Energetic Propulsion Laboratory
- Teaching and Research Unit of Energetic Processes
- Ecole Militaire Polytechnique
- Algeria
| | - Aimen Selmani
- Energetic Materials Laboratory
- Teaching and Research Unit of Energetic Processes
- Ecole Militaire Polytechnique
- Algeria
| | - Mohamed Saada
- Energetic Materials Laboratory
- Teaching and Research Unit of Energetic Processes
- Ecole Militaire Polytechnique
- Algeria
| | - Salim Chelouche
- Energetic Materials Laboratory
- Teaching and Research Unit of Energetic Processes
- Ecole Militaire Polytechnique
- Algeria
| | - Abderrahmane Mezroua
- Energetic Materials Laboratory
- Teaching and Research Unit of Energetic Processes
- Ecole Militaire Polytechnique
- Algeria
| | - Amir Abdelaziz
- Energetic Materials Laboratory
- Teaching and Research Unit of Energetic Processes
- Ecole Militaire Polytechnique
- Algeria
| |
Collapse
|
14
|
Krivokapić J, Ivanović J, Djuriš J, Medarević D, Potpara Z, Maksimović Z, Ibrić S. Tableting properties of microcrystalline cellulose obtained from wheat straw measured with a single punch bench top tablet press. Saudi Pharm J 2020; 28:710-718. [PMID: 32550803 PMCID: PMC7292874 DOI: 10.1016/j.jsps.2020.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/25/2020] [Indexed: 11/17/2022] Open
Abstract
The objective of this work was to study the relation between the manufacturing conditions of microcrystalline cellulose (MCC), its physicochemical properties and its tableting behavior. Two different preparation procedures were used to produce MCC from wheat straw, utilizing an acid hydrolysis method, either using only sulfuric acid or combination of sulfuric and hydrochloric acid. The tableting behavior of obtained MCC samples and mixtures of MCC with ibuprofen was studied using a dynamic powder compaction analyzer. It was observed that some of the obtained MCC samples showed better flowing properties than commercially available Vivapur® PH101 and also very high values of tensile strength, solid fraction and elastic recovery. This can be linked with its good compaction behavior, but on the other hand it can cause problems with the disintegration of the tablets. In mixtures with ibuprofen, MCC samples showed lower values of tensile strength, while on the other hand elastic recovery did not seem to be much affected, still exhibiting very high values. According to the obtained results, it can be concluded that MCC obtained from the agricultural waste could have satisfactory properties for tablet preparation by the direct compression method. Further studies are needed to optimize process conditions in order to achieve better physicochemical characteristics, especially in terms of elastic recovery.
Collapse
Affiliation(s)
- Jovana Krivokapić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
- Corresponding author at: Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Jasna Ivanović
- Department of Organic Chemical Technology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Jelena Djuriš
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Djordje Medarević
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Zorica Potpara
- Department of Pharmaceutical Technology, Faculty of Medicine, University of Montenegro, Ljubljanska bb, 20000 Podgorica, Montenegro
| | - Zoran Maksimović
- Department of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Svetlana Ibrić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| |
Collapse
|
15
|
Isolation and characterization of microcrystalline cellulose from date seeds (Phoenix dactylifera L.). Int J Biol Macromol 2020; 155:730-739. [PMID: 32251746 DOI: 10.1016/j.ijbiomac.2020.03.255] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 11/23/2022]
Abstract
This article reports the isolation and characterization of microcrystalline cellulose from date seeds of the date palm tree. The raw ground date seeds (RG-DS) are composed of cellulose matrix wrapped by lignin and hemicellulose as amorphous components. Cellulose was isolated from RG-DS through the following sequence: dewaxing, delignification/(bleaching) and acid hydrolysis. FTIR and Raman analysis for the bleached date seeds (B-DS) revealed the successful removal of the amorphous components from the polymer matrix. The X-ray diffractogram of the obtained (B-DS) exhibited the characteristic peaks of native cellulose (type I), with a crystallinity index (CrI = 62%). An additional acid hydrolysis step was used to convert native cellulose into microcrystalline cellulose (MCC-DS) with higher crystallinity (CrI = 70%). SEM analysis showed that the obtained microcrystals exhibit agglomerated and irregular elongated or semi-spherical shaped morphology. TEM analysis confirmed the semicrystalline nature of the MCC-DS. Thermal analysis showed enhanced thermal stability of MCC-DS. The current study shows the feasibility of using date seeds as a low-price source for obtaining MCC which is envisaged for applications in pharmaceutical and food industries as well as for preparing bionanocomposites with enhanced thermal properties.
Collapse
|
16
|
Ventura-Cruz S, Flores-Alamo N, Tecante A. Preparation of microcrystalline cellulose from residual Rose stems (Rosa spp.) by successive delignification with alkaline hydrogen peroxide. Int J Biol Macromol 2020; 155:324-329. [PMID: 32234444 DOI: 10.1016/j.ijbiomac.2020.03.222] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/30/2022]
Abstract
Agricultural residues of Rose flowers (Rosa x hybrida L.) are abundant, cheap, and renewable. These lignocellulosic remains are composed of cellulose, hemicellulose, and lignin. They are an attractive feedstock to produce various value-added products, as microcrystalline cellulose (MCC). The objective of this study was to obtain MCC from residual Rose stems (RS) using a successive alkaline peroxide treatment. X-ray diffraction, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to determine the degree of crystallinity, structure characteristics, thermal properties, and morphology, respectively, of MCC. The properties of RS-MCC were compared with those of commercial MCC. The degree of crystallinity of RS-MCC was 70.21%. The X-ray diffraction patterns reveal the presence of Type I cellulose. FTIR showed the absence of non-cellulosic components, mainly lignin, present in the amorphous regions of the RS fibers. Results are promising for taking advantage of agricultural residues as a source of MCC, which could be used as a reinforcing agent in polymeric matrices.
Collapse
Affiliation(s)
- Sagnite Ventura-Cruz
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, CdMx 04510, Mexico
| | - Nicolas Flores-Alamo
- Instituto Tecnológico de Toluca, Av. Instituto Tecnológico S/N, Colonia Agrícola Bellavista, C.P. 52149 Metepec, Estado de México, Mexico
| | - Alberto Tecante
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, CdMx 04510, Mexico.
| |
Collapse
|
17
|
Tarchoun AF, Trache D, Klapötke TM. Microcrystalline cellulose from Posidonia oceanica brown algae: Extraction and characterization. Int J Biol Macromol 2019; 138:837-845. [PMID: 31356946 DOI: 10.1016/j.ijbiomac.2019.07.176] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 10/26/2022]
Abstract
Posidonia oceanica brown algae (POBA) represent an abundant and renewable biomass in Algerian seas. In the present study, the POBA were chemically treated through delignification and alkali treatment followed by acid hydrolysis to produce pure microcrystalline cellulose (MCC). FTIR analysis indicates that most lignin and hemicellulose were eliminated during the chemical treatments. The XRD measurements revealed that the obtained cellulose and MCC belong to cellulose I polymorph, with crystallinity index of 60.50% and 74.23%, respectively. SEM micrographs of the produced MCC showed a non-uniform micro sized rod-like shape morphology with an average diameter of 8.4 ± 2.1 μm. The thermal analysis results exhibited that the decomposition temperature of the prepared MCC shifted to higher temperature compared to that of the respective cellulose and raw POBA. The authenticity of the prepared MCC was also examined by comparing its physicochemical properties with those of commercial MCC. Based on these analyses, POBA-MCC showed tremendous potential to be used in several applications.
Collapse
Affiliation(s)
- Ahmed Fouzi Tarchoun
- UER Procédés Energétiques, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria.
| | - Djalal Trache
- UER Procédés Energétiques, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria.
| | - Thomas M Klapötke
- Department of Chemistry, Ludwig Maximilian University, Butenandtstrasse 5-13(D), 81377 Munich, Germany
| |
Collapse
|