1
|
Hassan D, Sani A, Chanihoon GQ, Antonio Pérez A, Ehsan M, Torres Huerta AL. Environmentally Sustainable and Green Polymeric Method for Chitosan (CH) Film Synthesis Using Natural Acids and Impact of Zinc Ferrite Nanoparticles (NPs) on Water Solubility (WS) and Physical Properties. Polymers (Basel) 2024; 16:3466. [PMID: 39771318 PMCID: PMC11728712 DOI: 10.3390/polym16243466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 01/16/2025] Open
Abstract
Currently, there is a rush to develop green polymeric films such as biodegradable chitosan (CH) films to control and prevent plastic pollution from degrading the environment. This study reports a novel and sustainable green approach to the development of CH films using lemon juice (LJ) and lemon peel extract (LPE), the latter to dilute the LJ. The LPE was also utilized for the synthesis of ZnFe2O4 nanoparticles (NPs), adding to this work's novelty. The crystalline size of the ZnFe2O4 NPs was computed to be ~16 nm. The introduction of 1% and 2% ZnFe2O4 NPs improved not only the mechanical properties of the films, but also their barrier properties and water solubility (WS). The tensile strength increased from 0.641 MPa to 0.835 MPa when 2% NPs were incorporated, which is almost 1.30 times greater; the NPs also enhanced the surface strength by 2.66 times, which was demonstrated by the puncture strength. The introduction of NPs occupied the vacant spaces and improved the barrier capabilities of the CH film by reducing the water vapor permeability (WVP) value from 8.752 ± 0.015 for bare CH films to 6.299 ± 0.009 for 2% NP-containing CH films. Overall, the introduction of ZnFe2O4 NPs boosted the mechanical and barrier properties of the CH films, and offers a promising method for developing sustainable, eco-friendly, and biodegradable polymeric films for potential packaging and medical applications to contribute to circular economic efforts.
Collapse
Affiliation(s)
- Dilawar Hassan
- School of Engineering and Sciences, Tecnologico de Monterrey, Atizapan de Zaragoza C.P. 52926, Estado de Mexico, Mexico; (A.S.); (A.A.P.); (A.L.T.H.)
| | - Ayesha Sani
- School of Engineering and Sciences, Tecnologico de Monterrey, Atizapan de Zaragoza C.P. 52926, Estado de Mexico, Mexico; (A.S.); (A.A.P.); (A.L.T.H.)
| | - Ghulam Qadir Chanihoon
- National Centre of Excellence in Analytical Chemistry (NCEAC), University of Sindh, Jamshoro 76080, Pakistan;
| | - Aurora Antonio Pérez
- School of Engineering and Sciences, Tecnologico de Monterrey, Atizapan de Zaragoza C.P. 52926, Estado de Mexico, Mexico; (A.S.); (A.A.P.); (A.L.T.H.)
| | - Muhammad Ehsan
- Centro de Bachillerato Tecnológico Agropecuario, 162. Carr. Mexico-Veracruz Vía Texcoco km 95, Francisco I. Madero C.P. 90280, Tlaxcala, Mexico;
| | - Ana Laura Torres Huerta
- School of Engineering and Sciences, Tecnologico de Monterrey, Atizapan de Zaragoza C.P. 52926, Estado de Mexico, Mexico; (A.S.); (A.A.P.); (A.L.T.H.)
| |
Collapse
|
2
|
Ahmed EM, Feteha A, Kamal RS, Behalo MS, Abdel-Raouf ME. Preparation and potential of chitosan-based/Al 2O 3 green hydrogel composites for the removal of methyl red dye from simulated solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49626-49645. [PMID: 39080170 DOI: 10.1007/s11356-024-34347-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/07/2024] [Indexed: 08/15/2024]
Abstract
Different dyes are discharged into water streams, causing significant pollution to the entire ecosystem. The present work deals with the removal of acid red 2 dye (methyl red-as an anionic dye) by green sorbents based on chitosan derivatization. In this regard, two classes of chitosan derivatives-a total of six-were prepared by gamma irradiation at 30 kGy. The first group (group A) constitutes a crosslinked chitosan/polyacrylamide/aluminum oxide with different feed ratios, while the second group, identified as group B, is composed of crosslinked carboxymethyl chitosan/polyacrylamide/aluminum oxide with different ratios. Glycerol was added to soften the resultant hydrogels. The products were characterized by different tools, including FTIR for confirming the chemical modification, TGA for investigating their thermal properties, and XRD for verifying their crystalline structure. The morphology of the prepared derivatives was studied through SEM, while their topography before and after dye adsorption was monitored via the AFM. The removal efficiencies of the prepared sorbents were verified at different operation conditions, such as pH, temperature, adsorbent dose, initial concentration of dye solutions, and contact time. The data revealed that the optimum conditions for maximum dye uptake were as follows: pH 4, contact time 120 min, 0.1-g sorbent dose, and 50-ppm dye concentration. Additionally, the prepared sorbents demonstrated potent adsorption capacity and removal efficiency. It was found that the elements of the second group displayed higher performance than their counterparts. The data showed also that the adsorption process best fits with the Freundlich model and obeyed pseudo-first-order kinetic isotherm. In addition, the synthesized composites showed observable antibacterial potency toward E. coli as a Gram-negative bacterium and S. aureus as a Gram-positive bacterium.
Collapse
Affiliation(s)
- Ebtehal Mosaad Ahmed
- Organic Chemistry Laboratory, Chemistry Department, Faculty of Science, Benha University, P.O. Box 13518, Benha, Egypt
| | - Amr Feteha
- Organic Chemistry Laboratory, Chemistry Department, Faculty of Science, Benha University, P.O. Box 13518, Benha, Egypt
| | - Rasha S Kamal
- Petroleum Application Department, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| | - Mohamed S Behalo
- Organic Chemistry Laboratory, Chemistry Department, Faculty of Science, Benha University, P.O. Box 13518, Benha, Egypt.
| | - Manar E Abdel-Raouf
- Petroleum Application Department, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| |
Collapse
|
3
|
Tian S, Shi X, Wang S, He Y, Zheng B, Deng X, Zhou Z, Wu W, Xin K, Tang L. Recyclable Fe 3O 4@UiO-66-PDA core-shell nanomaterials for extensive metal ion adsorption: Batch experiments and theoretical analysis. J Colloid Interface Sci 2024; 665:465-476. [PMID: 38537592 DOI: 10.1016/j.jcis.2024.03.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
With the ever-increasing challenge of heavy metal pollution, the imperative for developing highly efficient adsorbents has become apparent to remove metal ions from wastewater completely. In this study, we introduce a novel magnetic core-shell adsorbent, Fe3O4@UiO-66-PDA. It features a polydopamine (PDA) modified zirconium-based metal-organic framework (UiO-66) synthesized through a simple solvothermal method. The adsorbent boasts a unique core-shell architecture with a high specific surface area, abundant micropores, and remarkable thermal stability. The adsorption capabilities of six metal ions (Fe3+, Mn2+, Pb2+, Cu2+, Hg2+, and Cd2+) were systematically investigated, guided by the theory of hard and soft acids and bases. Among these, three representative metal ions (Fe3+, Pb2+, and Hg2+) were scrutinized in detail. The activated Fe3O4@UiO-66-PDA exhibited exceptional adsorption capacities for these metal ions, achieving impressive values of 97.99 mg/g, 121.42 mg/g, and 130.72 mg/g, respectively, at pH 5.0. Moreover, the adsorbent demonstrated efficient recovery from aqueous solution using an external magnet, maintaining robust adsorption efficiency (>80%) and stability even after six cycles. To delve deeper into the optimized adsorption of Hg2+, density functional theory (DFT) analysis was employed, revealing an adsorption energy of -2.61 eV for Hg2+. This notable adsorption capacity was primarily attributed to electron interactions and coordination effects. This study offers valuable insights into metal ion adsorption facilitated, by magnetic metal-organic framework (MOF) materials.
Collapse
Affiliation(s)
- Shuangqin Tian
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Xin Shi
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China; Honghe Prefecture Nationality Senior High School, Honghe 661200, Yunnan Province, PR China.
| | - Shujie Wang
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Yi He
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Bifang Zheng
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Xianhong Deng
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Ziqin Zhou
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Wenbin Wu
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Kai Xin
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Lihong Tang
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| |
Collapse
|
4
|
Chen D, Gong K, Xu X, Huang C, Lei P. Enhancing the adsorption-photocatalytic efficiency of BiOBr for Congo red degradation by tuning the surface charge and bandgap via an Y 3+-I - co-doping strategy. Phys Chem Chem Phys 2024; 26:17155-17170. [PMID: 38847473 DOI: 10.1039/d4cp00876f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Metal-ion doping and halogen substitution have been largely applied to tune the bandgap of bismuth oxybromide (BiOBr) to upgrade its photodegradation capacity. In this work, the adsorption capacity and photocatalytic behavior of solvothermally synthesized BiOBr photocatalysts can be optimized via the synergistic effect of Y3+- and I--doping. After an adsorption reaction in the dark and exposure for another 80 min to visible light, pure BiOBr can remove 46.5% of Congo red (CR) from water with an initial CR concentration of 50 mg L-1. Meanwhile, Bi0.8Y0.20OBr0.97I0.03, the co-doped catalyst, displays total degradation rates exceeding 98% and 92% with CR dosages of 50 and 100 mg L-1, respectively, demonstrating a doubled degradation capacity. With the co-doping solution, the negative charges on the catalysts reduce, more oxygen vacancies are generated, the bandgap remarkably narrows, and the photoabsorption range broadens for derivation of photoinduced electron-hole pairs. The mechanism for optimized photodegradation behavior and dramatically increased adsorption capacity are discussed based on analyses of the structural evolution, surface properties including the chemical state and surface charge, electrochemical performance and the yield/type of photogenerated species. Density functional theory (DFT) simulations were conducted to investigate the structural state, density of states (DOS) and electrostatic potential.
Collapse
Affiliation(s)
- Dongsheng Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| | - Keqian Gong
- State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Xiangyang Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
- Hunan Key Laboratory of Mineral Materials and Applications, Changsha 410083, China
| | - Chenyu Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| | - Pengtao Lei
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| |
Collapse
|
5
|
Nguyen DTC, Jalil AA, Hassan NS, Nguyen LM, Nguyen DH, Tran TV. Synthesis of magnetic MFe 2O 4 (M = Ni, Co, Zn, Fe) supported on porous carbons derived from Bidens pilosa weed and their adsorptive comparison of toxic dyes. CHEMOSPHERE 2024; 358:142087. [PMID: 38657696 DOI: 10.1016/j.chemosphere.2024.142087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Bidens pilosa is classified as an invasive plant and has become a problematic weed to many agricultural crops. This species strongly germinates, grows and reproduces and competing for nutrients with local plants. To lessen the influence of Bidens pilosa, therefore, converting this harmful species into carbon materials as adsorbents in harm-to-wealth and valorization strategies is required. Here, we synthesized a series of magnetic composites based on MFe2O4 (M = Ni, Co, Zn, Fe) supported on porous carbon (MFOAC) derived from Bidens pilosa by a facile hydrothermal method. The Bidens pilosa carbon was initially activated by condensed H3PO4 to increase the surface chemistry. We observed that porous carbon loaded NiFe2O4 (NFOAC) reached the highest surface area (795.7 m2 g-1), followed by CoFe2O4/AC (449.1 m2 g-1), Fe3O4/AC (426.1 m2 g-1), ZnFe2O4/AC (409.5 m2 g-1). Morphological results showed nanoparticles were well-dispersed on the surface of carbon. RhB, MO, and MR dyes were used as adsorbate to test the adsorption by MFOAC. Effect of time (0-360 min), concentration (5-50 mg L-1), dosage (0.05-0.2 g L-1), and pH (3-9) on dyes adsorption onto MFOAC was investigated. It was found that NFOAC obtained the highest maximum adsorption capacity against dyes, RhB (107.96 mg g-1) < MO (148.05 mg g-1) < MR (153.1 mg g-1). Several mechanisms such as H bonding, π-π stacking, cation-π interaction, and electrostatic interaction were suggested. With sufficient stability and capacity, NFOAC can be used as potential adsorbent for real water treatment systems.
Collapse
Affiliation(s)
- Duyen Thi Cam Nguyen
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor, Bahru, Johor, Malaysia; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - A A Jalil
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor, Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia.
| | - N S Hassan
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor, Bahru, Johor, Malaysia
| | - Luan Minh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29, District 12, Ho Chi Minh City, 700000, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Viet Nam
| | - Dai Hai Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29, District 12, Ho Chi Minh City, 700000, Viet Nam
| | - Thuan Van Tran
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor, Bahru, Johor, Malaysia; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| |
Collapse
|
6
|
Gopalakrishnan S, Kannan P, Balasubramani K, Rajamohan N, Rajasimman M. Sustainable remediation of toxic congo red dye pollution using bio based carbon nanocomposite: Modelling and performance evaluation. CHEMOSPHERE 2023; 343:140206. [PMID: 37734504 DOI: 10.1016/j.chemosphere.2023.140206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023]
Abstract
Remediation of synthetic dyes found in aqueous environment poses a serious challenge for treatment due to their resistance to chemical and biological degradation. This research study investigated the application of Chitosan-ZnO-Seaweed bio nanocomposite in the remediation of congo red. The novel bionanocomposite was characterised by FTIR, SEM, TEM, EDS and XRD studies. The FTIR spectra and SEM images indicated the adsorption of congo red onto the synthesized bionanocomposite. The batch wise experimental studies were done to explore the influence of process variables on removal of congo red from synthetic wastewater and to determine optimized conditions. Under optimized conditions of pH 3, temperature 40 °C, initial congo red concentration 50 mg/L, bionanocomposite quantity 0.03 g/L and interaction period 30 min, the bionanocomposite removed 95.64% of congo red. Thermodynamic studies were carried out and the parameters, ΔH° and ΔS° were found to be 38.386 kJ/mol and 0.1451 kJ/mol. K, respectively. The isotherm and kinetic study showed that monolayer Langmuir model was obeyed (R2 = 0.968) and the experimental value of congo red adsorption correlated well with pseudo second order model (R2 = 0.9938) respectively. The maximum adsorption capacity was found to be 303.03 mg/g. Protonated amino group of chitosan, hydroxyl group of seaweed accounts for congo red adsorption along with zinc oxide.
Collapse
Affiliation(s)
- Sarojini Gopalakrishnan
- Department of Food Technology, Dhanalakshmi Srinivasan College of Engineering, Coimbatore, India.
| | - Pownsamy Kannan
- Department of Chemistry, V.S.B. College of Engineering Technical Campus, Coimbatore, India
| | - Kuppusamy Balasubramani
- Department of Chemical Engineering, Hindusthan College of Engineering and Technology, Valley Campus, Coimbatore, India
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, Oman
| | | |
Collapse
|
7
|
Xu Q, Jiang W, Bu F, Wang ZF, Jiang Y. Magnetic Dendritic Polymer Nanospheres for High-Performance Separation of Histidine-Rich Proteins. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37332160 DOI: 10.1021/acsami.3c05475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Magnetic nanospheres are becoming a promising platform for a wide range of applications in pharmacy, life science, and immunodiagnostics due to their high surface area, ease of synthesis and manipulation, fast separation, good biocompatibility, and recyclable performance. In this work, an innovative and efficient method is developed by in situ reducing and growing Ni(OH)2 for the preparation of dendritic mesoporous nanocomposites of silica@Fe3O4/tannic acid@nickel hydroxide (dSiO2@Fe3O4/TA@Ni(OH)2). The flower-like nanospheres have good magnetic response, large surface area, and high histidine-rich protein (His-protein) purification performance. The dSiO2@Fe3O4/TA@Ni(OH)2 nanospheres were synthesized on the basis of a φ(NaSal/CTAB) of 1/1 and a mass of ferrous chloride tetrahydrate of 0.3 g, resulting in a saturation magnetization value of 48.21 emu/g, which means it can be collected within ∼1 min using a magnetic stand. Also, the BET test showed that the surface area is 92.47 m2/g and the pore size is ∼3.9 nm for dSiO2@Fe3O4/TA@Ni(OH)2 nanocomposites. Notably, the nickel hydroxide with unique flower-like structural features enables the combination of a large number of Ni2+ ions and His-proteins for high performance. The isolation and purification experiments of the synthesized dSiO2@Fe3O4/TA@Ni(OH)2 were performed by separating His-proteins from a matrix composed of bovine hemoglobin (BHb), bovine serum albumin (BSA), and lysozyme (LYZ). The result showed that the nanospheres have a high combination capacity of ∼1880 mg/g in a rapid equilibrium time of 20 min, which was selective for the adsorption of BHb. In addition, the stability and recyclability of BHb are 80% after seven cycles. Furthermore, the nanospheres were also used to isolate His-proteins from fetal bovine serum, proving its utility. Therefore, the strategy of separating and purifying His-proteins using dSiO2@Fe3O4/TA@Ni(OH)2 nanospheres is promising for practical applications.
Collapse
Affiliation(s)
- Qianrui Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wenjie Jiang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Fengjie Bu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zhi-Fei Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yong Jiang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
8
|
Liu Q, Yang Q, Zhang Q, Lv F, Cheng A, Liu H, Ma S, Wang L, Liu Q. Mussel-inspired encapsulation of poly(pyrogallol-tetraethylenepentamine) resin into mesoporous MSU-H matrix and its rapid removal feature for Congo red from aquatic environment. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
9
|
Zong E, Fan R, Hua H, Yang J, Jiang S, Dai J, Liu X, Song P. A magnetically recyclable lignin-based bio-adsorbent for efficient removal of Congo red from aqueous solution. Int J Biol Macromol 2023; 226:443-453. [PMID: 36473527 DOI: 10.1016/j.ijbiomac.2022.11.317] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
It has been always attractive to design a sustainable bio-derived adsorbent based on industrial waste lignin for removing organic dyes from water. However, existing adsorbent strategies often lead to the difficulties in adsorbent separation and recycling. Herein, we report a novel magnetically recyclable bio-adsorbent of Mg(OH)2/Fe3O4/PEI functionalized enzymatic lignin (EL) composite (EL-PEI@Fe3O4-Mg) for removing Congo red (CR) by Mannish reaction and hydrolysis-precipitation. The Mg(OH)2 and PEI functionalized EL on the surface act as active sites for the removal of CR, while the Fe3O4 allows for the easy separation under the help of a magnet. As-obtained EL-PEI@Fe3O4-Mg forms flower-like spheres and has a relatively lager surface area of 24.8 m2 g-1 which is 6 times that of EL. The EL-PEI@Fe3O4-Mg exhibits a relatively high CR adsorption capacity of 74.7 mg g-1 which is 15 times that of EL when initial concentration is around 100 mg L-1. And it can be easily separated from water by applying an external magnetic field. Moreover, EL-PEI@Fe3O4-Mg shows an excellent anti-interference capability according to the results of pH values and salt ions influences. Importantly, EL-PEI@Fe3O4-Mg possesses a good reusability and a removal efficiency of 92 % for CR remains after five consecutive cycles. It is illustrated that electrostatic attraction, π-π interaction and hydrogen binding are primary mechanisms for the removal of CR onto EL-PEI@Fe3O4-Mg. This work provides a novel sustainable strategy for the development of highly efficient, easy separable, recyclability bio-derived adsorbents for removing organic dyes, boosting the efficient utilization of industrial waste lignin.
Collapse
Affiliation(s)
- Enmin Zong
- College of Life Science, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, 1139 Shifu Street, Taizhou 318000, PR China; School of Earth Science and Engineering, Nanjing University, Nanjing 210093, PR China
| | - Runfang Fan
- College of Life Science, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, 1139 Shifu Street, Taizhou 318000, PR China
| | - Hao Hua
- School of Engineering, Zhejiang A & F University, 666 Wusu Street, Hangzhou 311300, PR China
| | - Jiayao Yang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Shengtao Jiang
- College of Life Science, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, 1139 Shifu Street, Taizhou 318000, PR China
| | - Jinfeng Dai
- School of Engineering, Zhejiang A & F University, 666 Wusu Street, Hangzhou 311300, PR China
| | - Xiaohuan Liu
- College of Life Science, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, 1139 Shifu Street, Taizhou 318000, PR China; School of Engineering, Zhejiang A & F University, 666 Wusu Street, Hangzhou 311300, PR China.
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Central 4300, Australia; School of Agriculture and Environmental Science, University of Southern Queensland, Springfield Central 4300, Australia.
| |
Collapse
|
10
|
Cao H, Wang R, Dou K, Qiu J, Peng C, Tsidaeva N, Wang W. High-efficiency adsorption removal of CR and MG dyes using AlOOH fibers embedded with porous CoFe 2O 4 nanoparticles. ENVIRONMENTAL RESEARCH 2023; 216:114730. [PMID: 36372145 DOI: 10.1016/j.envres.2022.114730] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Owing to the toxicity and difficulty in degradation, how to the effective separation for the residual dyes in the aqueous solution is still an issue with great challenge in the area of environmental protection. Now, to high-efficiency removal of organic dyes from the aqueous solution, we design a unique AlOOH/CoFe2O4 adsorbent with porous CoFe2O4 nanoparticles embedded on the AlOOH fibers using a simple hydrothermal technique and calcination process. The structural properties and surface characteristics of the AlOOH/CoFe2O4 composites are detailedly analyzed by XRD, FTIR, XPS, TEM and SEM. Here, the high SBET and specific porous structure are beneficial to improve the adsorption performance of AlOOH/CoFe2O4 adsorbents. Especially, when the molar ratio of AlOOH to CoFe2O4 in the AlOOH/CoFe2O4 fibers is 1:1, an optimal performance on adsorbing anionic Congo red (CR) and cationic methyl green (MG) dyes can be obtained at pH = 6.29, where the corresponding maximum adsorption capacities reach up to 565.0 and 423.7 mg g-1, respectively. Factors leading to the change in the ability of adsorbing CR and MG dyes are systematically discussed, including contact time, temperature, initial concentrations, and pH values of the solutions. Meanwhile, the uptake of CR and MG dyes can best conform to Langmuir isotherm model and pseudo-second-order adsorption kinetics. The thermodynamic analysis verifies that the dye adsorption process is spontaneous and endothermic. Moreover, from the point view of practical application, the good reusability further makes the as-synthesized magnetic AlOOH/CoFe2O4 composite be a perfect adsorbent with efficiently removing both anionic and cationic dyes from aqueous solutions.
Collapse
Affiliation(s)
- Haopeng Cao
- Department of Physics and Electronics, School of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Rongchen Wang
- Department of Physics and Electronics, School of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kai Dou
- Department of Physics and Electronics, School of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junfeng Qiu
- Department of Physics and Electronics, School of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chunyi Peng
- Department of Physics and Electronics, School of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Natalia Tsidaeva
- Scientific Center "Magnetic Nanostructures", North Caucasus Mining and Metallurgical Institute, State Technological University, Vladikavkaz, 362021, Russia
| | - Wei Wang
- Department of Physics and Electronics, School of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China; Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
11
|
Nguyen LM, Nguyen NTT, Nguyen TTT, Nguyen DH, Nguyen DTC, Tran TV. Facile synthesis of CoFe 2O 4@MIL-53(Al) nanocomposite for fast dye removal: Adsorption models, optimization and recyclability. ENVIRONMENTAL RESEARCH 2022; 215:114269. [PMID: 36103925 DOI: 10.1016/j.envres.2022.114269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/15/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The global occurrence of textile dyes pollution has recently emerged, posing a serious threat to ecological systems. To abate dye contamination, we here developed a novel magnetic porous CoFe2O4@MIL-53(Al) nanocomposite by incorporating magnetic CoFe2O4 nanoparticles with MIL-53(Al) metal-organic framework. This nanocomposite possessed a surface area of 197.144 m2 g-1 and a pore volume of 0.413 cm3 g-1. The effect of contact time (5-120 min), concentration (5-50 mg L-1), dosage (0.1-1.0 g L-1), and pH (2-10) on Congo red adsorption was clarified. CoFe2O4@MIL-53(Al) could remove 95.85% of Cong red dye from water with an accelerated kinetic rate of 0.6544 min-1 within 10 min. The kinetic and isotherm models showed the predominance of Bangham and Temkin. According to Langmuir, the maximum uptake capacities of CoFe2O4@MIL-53(Al), CoFe2O4, and MIL-53(Al) adsorbents were 43.768, 17.982, and 15.295 mg g-1, respectively. CoFe2O4@MIL-53(Al) was selected to optimize Cong red treatment using Box-Behnken experimental design. The outcomes showed that CoFe2O4@MIL-53(Al) achieved the highest experimental uptake capacity of 35.919 mg g-1 at concentration (29.966 mg L-1), time (14.926 min), and dosage (0.486 g L-1). CoFe2O4@MIL-53(Al) could treat dye mixture (methylene blue, methyl orange, Congo red, malachite green, and crystal violet) with an outstanding removal efficiency of 81.24% for 30 min, and could be reused up to five cycles. Therefore, novel recyclable and stable CoFe2O4@MIL-53(Al) is recommended to integrate well with real dye treatments systems.
Collapse
Affiliation(s)
- Luan Minh Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam; Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Dai Hai Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, 70000, Viet Nam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| |
Collapse
|
12
|
Solanki S, Sinha S, Bisaria K, Singh R, Saxena R. Accurate data prediction by fuzzy inference model for adsorption of hazardous azo dyes by novel algal doped magnetic chitosan bionanocomposite. ENVIRONMENTAL RESEARCH 2022; 214:113844. [PMID: 35843281 DOI: 10.1016/j.envres.2022.113844] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
A bionanocomposite comprising of magnetic chitosan doped with algae isolated from native habitat was fabricated and utilized as an efficient adsorbent for the removal of hazardous azo dyes, namely, Direct Red 31 (DR31) and Direct Red 28 (DR28). The algal doped magnetic chitosan (Alg@mCS) was comprehensively characterized by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDAX), Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction analysis (XRD), and Brunauer-Emmett-Teller (BET). On the sorption of dyes, the influence of various process variables such as pH, adsorbent dosage, contact time, temperature, and initial dyes concentration were addressed. The adsorbent demonstrated maximal removal of DR31 and DR28 at pH 5 and 3, respectively. The maximum adsorption capacity of DR31 and DR28 was observed at Alg@mCS dose of 0.6 g L-1 and 7 g L-1 in 10 and 20 min, respectively. The Redlich Peterson isotherm model was shown to be appropriate for dye adsorption, indicating monolayer coverage of the dyes on the adsorbent surface (R2 > 0.99). The adsorption process followed pseudo-second-order kinetics (R2 > 0.99). Based on 320 experimental datasets from batch studies and interpolated data, adaptive neuro-fuzzy inference system (ANFIS) models were utilized to estimate dye elimination (percent). A number of parameters were calculated to validate the model's applicability. The Alg@mCS was proven to be a useful adsorbent for eliminating toxic and harmful azo dyes from aqueous solutions.
Collapse
Affiliation(s)
- Swati Solanki
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Surbhi Sinha
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Kavya Bisaria
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Reena Saxena
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India
| |
Collapse
|
13
|
Wang B, Wan X, Liu Z, Zhong J, Tan J, Li Y, Zhang YF. Synthesis of polyacrolein organic gel and its adsorption properties on acid fuchsin. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Hokonya N, Mahamadi C, Mukaratirwa-Muchanyereyi N, Gutu T, Zvinowanda C. Green synthesis of P − ZrO2CeO2ZnO nanoparticles using leaf extracts of Flacourtia indica and their application for the photocatalytic degradation of a model toxic dye, Congo red. Heliyon 2022; 8:e10277. [PMID: 36060994 PMCID: PMC9434050 DOI: 10.1016/j.heliyon.2022.e10277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/26/2022] [Accepted: 08/09/2022] [Indexed: 11/01/2022] Open
Abstract
In the present work P−ZrO2CeO2ZnO nanoparticles were synthesised for the first time using phytochemical extracts from Flacourtia indica leaves and applied in the photocatalytic degradation of Congo Red in the presence of Light Emitting Diode warm white light. The photocatalytic degradation was optimized with respect to P−ZrO2CeO2ZnO nanoparticle dosage, initial Congo Red concentration, and degradation time. The optimum conditions for P−ZrO2CeO2ZnO nanoparticle synthesis was pH 9, leaves extracts of F. indica dosage 4 g 100 mL−1, Zirconia, Cerium and Zinc metal ion concentration 0.05 mg/L and metal ion to plant volume ratio of 1:4. The leaves extract dosage, pH and metal concentration had the most significant effects on the synthesis of the nanoparticles. The nanoparticles followed type III physisorption adsorption isotherms with surface area of 0.4593 m3g−1, pore size of 6.80 nm, pore volume 0.000734 cmg−13 and average nanoparticle size 0.255 nm. A degradation efficiency of 86% was achieved and the optimum degradation conditions were 0.05 g/L of P−ZrO2CeO2ZnO nanoparticle dosage, 10 mg/L initial Congo red concentration, and 250 minutes irradiation time. Data from kinetic studies showed that the degradation followed pseudo first order kinetics at low concentration, with a rate constant of 0.069 min−1. The superoxide, h+ holes and light were the main determinants of the reaction mechanisms for the degradation of Congo Red. The investigation outcomes demonstrated that P−ZrO2CeO2ZnO nanoparticles offer a high potential for photocatalytic degradation of Congo Red. The most significant factors on P−ZrO2CeO2ZnO nanoparticles synthesis were plant leaves dosage, pH and initial metal concentration. The nanoparticles exhibited high catalytic activity towards photocatalytic degradation of Congo red. Superoxide, h+ holes and light were the main determinants of the photocatalytic degradation mechanisms.
Collapse
|
15
|
You J, Liu C, Feng X, Lu B, Xia L, Zhuang X. In situ synthesis of ZnS nanoparticles onto cellulose/chitosan sponge for adsorption–photocatalytic removal of Congo red. Carbohydr Polym 2022; 288:119332. [DOI: 10.1016/j.carbpol.2022.119332] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/11/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022]
|
16
|
Zou Q, Zhu Z, Bai R, Zhao H. FeNi alloy films prepared by directional magnetic field assistance and their degradation and adsorption on azo dyes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Galhardo Pimenta Tienne L, Tommasini Vieira Ramos FJH, Fátima Vieira Marques M, Santos Aguilera L, Silva Figueiredo AB. Thermal, Magnetic and Electrical Properties of PMMA Nanocomposites with Manganese and Zinc Ferrite Nanoparticles and Their Functionalization. ChemistrySelect 2022. [DOI: 10.1002/slct.202104001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lucas Galhardo Pimenta Tienne
- Instituto de Macromoléculas Professora Eloisa Mano Universidade Federal do Rio de Janeiro (IMA/UFRJ), Centro de Tecnologia, Bloco J, Lab. J-122, CEP 21945-970, Ilha do Fundão Avenida Horácio Macedo 2030 Rio de Janeiro RJ Brazil
| | - Flavio James Humberto Tommasini Vieira Ramos
- Instituto de Macromoléculas Professora Eloisa Mano Universidade Federal do Rio de Janeiro (IMA/UFRJ), Centro de Tecnologia, Bloco J, Lab. J-122, CEP 21945-970, Ilha do Fundão Avenida Horácio Macedo 2030 Rio de Janeiro RJ Brazil
| | - Maria Fátima Vieira Marques
- Instituto de Macromoléculas Professora Eloisa Mano Universidade Federal do Rio de Janeiro (IMA/UFRJ), Centro de Tecnologia, Bloco J, Lab. J-122, CEP 21945-970, Ilha do Fundão Avenida Horácio Macedo 2030 Rio de Janeiro RJ Brazil
| | - Letícia Santos Aguilera
- Universidade do Estado do Rio de Janeiro, NanoFab Rua Fonseca Teles, 121. CEP 20940-903, São Cristóvão Rio de Janeiro Brazil
| | - André Ben‐Hur Silva Figueiredo
- Military Institute of Engineering – IME Department of Materials Science Praça General Tibúrcio, 80, CEP 22290-270, Urca Rio de Janeiro Brazil
| |
Collapse
|
18
|
PVP modified rGO/CoFe2O4 magnetic adsorbents with a unique sandwich structure and superior adsorption performance for anionic and cationic dyes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Hydrogels produced from natural polymers: a review on its use and employment in water treatment. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00224-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
20
|
Zhu T, Li Y, Yang H, Liu J, Tao Y, Gan W, Wang S, Nong G. Preparation of an amphoteric adsorbent from cellulose for wastewater treatment. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Adsorption Behavior of Methylene Blue Dye by Novel CrossLinked O-CM-Chitosan Hydrogel in Aqueous Solution: Kinetics, Isotherm and Thermodynamics. Polymers (Basel) 2021; 13:polym13213659. [PMID: 34771216 PMCID: PMC8588159 DOI: 10.3390/polym13213659] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 11/27/2022] Open
Abstract
The chemical cross-linking of carboxymethyl chitosan (O-CM-chitosan), as a method for its modification, was performed using trimellitic anhydride isothiocyanate to obtain novel cross-linked O-CM-chitosan hydrogel. Its structure was proven using FTIR, XRD and SEM. Its adsorption capacity for the removal of Methylene Blue (MB) dye from aqueous solution was studied. The effects of different factors on the adsorption process, such as the pH, temperature and concentration of the dye, in addition to applications of the kinetic studies of the adsorption process, adsorption isotherm and thermodynamic parameters, were studied. It was found that the amount of adsorbed MB dye increases with increasing temperature. A significant increase was obtained in the adsorption capacities and removal percentage of MB dye with increasing pH values. An increase in the initial dye concentration increases the adsorption capacities, and decreases the removal percentage. It was found that the pseudo-second-order mechanism is predominant, and the overall rate of the dye adsorption process appears to be controlled by more than one step. The Langmuir model showed high applicability for the adsorption of MB dye onto O-CM-chitosan hydrogel. The value of the activation energy (Ea) is 27.15 kJ mol−1 and the thermodynamic parameters were evaluated. The regeneration and reuse of the investigated adsorbent was investigated.
Collapse
|
22
|
Tanis I, Kostarellou E, Karatasos K. Molecular dynamics simulations of hyperbranched poly(ethylene imine)-graphene oxide nanocomposites as dye adsorbents for water purification. Phys Chem Chem Phys 2021; 23:22874-22884. [PMID: 34668493 DOI: 10.1039/d1cp02461b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atomistically detailed molecular dynamics simulations were employed to study the adsorption capacity of graphene-oxide-based (GO) aqueous systems for the methylene blue (MB) dye in the presence of branched poly(ethylene imine) (BPEI) polymers. The polymeric component was either freely mixed or chemically attached to GO. The main focus was the elucidation of the effects originating from the presence of BPEI molecules in the association of MB with the formed GO complexes. The effect of temperature was also examined. It was found that the presence of the cationic BPEI molecules results in the formation of a distinct microenvironment characterized by a polymer-mediated interconnected morphology which promotes the development of larger-sized MB clusters. These clusters were found to form in the vicinity of the GO flakes, increasing thus the adsorption capacity of the dye molecules in the polymer-containing systems. Particularly in the system with the BPEI-functionalized GO flakes, a persistent percolated structure is formed, which results in a more restricted diffusion of the MB molecules, increasing thus significantly their residence time close to the GO surface. The clustering behavior of MB was found to be temperature-dependent in the BPEI-based models, providing useful information regarding the conditions for optimal adsorption performance of such membranes, in nanofiltration processes.
Collapse
Affiliation(s)
- I Tanis
- Laboratory of Physical Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - E Kostarellou
- Laboratory of Physical Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - K Karatasos
- Laboratory of Physical Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
23
|
Dalponte Dallabona I, Mathias ÁL, Jorge RMM. A new green floating photocatalyst with Brazilian bentonite into TiO2/alginate beads for dye removal. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127159] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Li Y, Tang J, Liu Y, Xiao Z, Zhang YF. Concentration-driven selective adsorption of Congo red in binary dyes solution using polyacrolein: Experiments, characterization and mechanism studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Simonescu CM, Tătăruş A, Culiţă DC, Stănică N, Ionescu IA, Butoi B, Banici AM. Comparative Study of CoFe 2O 4 Nanoparticles and CoFe 2O 4-Chitosan Composite for Congo Red and Methyl Orange Removal by Adsorption. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:711. [PMID: 33808975 PMCID: PMC8001270 DOI: 10.3390/nano11030711] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
(1) Background: A comparative research study to remove Congo Red (CR) and Methyl Orange (MO) from single and binary solutions by adsorption onto cobalt ferrite (CoFe2O4) and cobalt ferrite-chitosan composite (CoFe2O4-Chit) prepared by a simple coprecipitation method has been performed. (2) Methods: Structural, textural, morphology, and magnetic properties of the obtained magnetic materials were examined by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, N2 adsorption-desorption analysis, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and magnetic measurements. The optimal operating conditions of the CR and MO removal processes were established in batch experiments. The mathematical models used to describe the processes at equilibrium were Freundlich and Langmuir adsorption isotherms. (3) Results: Cobalt ferrite-chitosan composite has a lower specific surface area (SBET) and consequently a lower adsorption capacity than cobalt ferrite. CoFe2O4 and CoFe2O4-Chit particles exhibited a superparamagnetic behavior which enabled their efficient magnetic separation after the adsorption process. The research indicates that CR and MO adsorption onto prepared magnetic materials takes place as monolayer onto a homogeneous surface. According to Langmuir isotherm model that best fits the experimental data, the maximum CR/MO adsorption capacity is 162.68/94.46 mg/g for CoFe2O4 and 15.60/66.18 mg/g for CoFe2O4-Chit in single solutions. The results of the kinetics study revealed that in single-component solutions, both pseudo-first-order and pseudo-second-order kinetics models represent well the adsorption process of CR/MO on both magnetic adsorbents. In binary solutions, adsorption of CR/MO on CoFe2O4 better follows the pseudo-second-order kinetics model, while the kinetic of CR/MO adsorption on CoFe2O4-Chit is similar to that of the dyes in single-component solutions. Acetone and ethanol were successfully used as desorbing agents. (4) Conclusions: Our study revealed that CoFe2O4 and CoFe2O4-Chit particles are good candidates for dye-contaminated wastewater remediation.
Collapse
Affiliation(s)
- Claudia Maria Simonescu
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Polizu Street, No. 1-7, District 1, 011061 Bucharest, Romania;
| | - Alina Tătăruş
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Polizu Street, No. 1-7, District 1, 011061 Bucharest, Romania;
- National Research and Development Institute for Industrial Ecology, INCD ECOIND Bucuresti, 71-73 Drumul Podul Dambovitei Str., 060652 Bucharest, Romania;
| | - Daniela Cristina Culiţă
- Ilie Murgulescu Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | - Nicolae Stănică
- Ilie Murgulescu Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | - Ioana Alexandra Ionescu
- National Research and Development Institute for Industrial Ecology, INCD ECOIND Bucuresti, 71-73 Drumul Podul Dambovitei Str., 060652 Bucharest, Romania;
| | - Bogdan Butoi
- National Institute for Laser, Plasma and Radiation Physics, 077125 Măgurele, Romania; (B.B.); (A.-M.B.)
| | - Ana-Maria Banici
- National Institute for Laser, Plasma and Radiation Physics, 077125 Măgurele, Romania; (B.B.); (A.-M.B.)
| |
Collapse
|
26
|
Eltaweil AS, El-Tawil AM, Abd El-Monaem EM, El-Subruiti GM. Zero Valent Iron Nanoparticle-Loaded Nanobentonite Intercalated Carboxymethyl Chitosan for Efficient Removal of Both Anionic and Cationic Dyes. ACS OMEGA 2021; 6:6348-6360. [PMID: 33718725 PMCID: PMC7948244 DOI: 10.1021/acsomega.0c06251] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/17/2021] [Indexed: 05/12/2023]
Abstract
A zero valent iron-loaded nano-bentonite intercalated carboxymethyl chitosan (nZVI@nBent-CMC) composite was fabricated and characterized by FT-IR, TEM, TEM-EDX, XRD, BET surface area, and zeta potential measurements. The as-fabricated nZVI@nBent-CMC composite exhibited excellent removal efficiency for both anionic Congo red (CR) dye and cationic crystal violet (CV) dye. The maximum uptake capacities of CR and CV onto the nZVI@nBent-CMC composite were found to be 884.95 and 505.05 mg/g, respectively. The adsorption process of both dyes well fitted with the Langmuir isotherm model and pseudo-second order kinetic model. Thermodynamic data clarified that the adsorptions of both CR and CV onto the nZVI@nBent-CMC composite are spontaneous processes. Moreover, the adsorption of CR onto the nZVI@nBent-CMC composite was found to be an exothermic process while that of CV is an endothermic process. The nZVI@nBent-CMC composite also exhibited excellent reusability for both studied dyes without noticeable loss in the removal efficiency, suggesting its validity to remove both anionic and cationic dyes from wastewater.
Collapse
Affiliation(s)
- Abdelazeem S. Eltaweil
- Department of Chemistry, Faculty of
Science, Chemistry, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Ashraf M. El-Tawil
- Department of Chemistry, Faculty of
Science, Chemistry, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Eman M. Abd El-Monaem
- Department of Chemistry, Faculty of
Science, Chemistry, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Gehan M. El-Subruiti
- Department of Chemistry, Faculty of
Science, Chemistry, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| |
Collapse
|
27
|
Song Y, Wang Q, Yang W, Chen Q, Zhou Y, Zhou L. Chitosan-nickel oxide composite as an efficient adsorbent for removal of Congo red from aqueous solution. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1878901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yu Song
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, China
| | - Qing Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, China
| | - Wenjuan Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, China
| | - Qilin Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, China
| | - Yafen Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, China
| | - Limei Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, China
| |
Collapse
|
28
|
Boukhalfa N, Darder M, Boutahala M, Aranda P, Ruiz-Hitzky E. Composite Nanoarchitectonics: Alginate Beads Encapsulating Sepiolite/Magnetite/Prussian Blue for Removal of Cesium Ions from Water. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200247] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nadia Boukhalfa
- Laboratory of Chemical Process Engineering, Department of Process Engineering, Faculty of Technology, University of Ferhat Abbas Setif-1, 19000 Setif, Algeria
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Margarita Darder
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Mokhtar Boutahala
- Laboratory of Chemical Process Engineering, Department of Process Engineering, Faculty of Technology, University of Ferhat Abbas Setif-1, 19000 Setif, Algeria
| | - Pilar Aranda
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Eduardo Ruiz-Hitzky
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| |
Collapse
|
29
|
Garg M, Bhullar N, Bajaj B, Sud D. Terephthalaldehyde as a good crosslinking agent in crosslinked chitosan hydrogel for the selective removal of anionic dyes. NEW J CHEM 2021. [DOI: 10.1039/d0nj05758d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This work reports the selectivity and good adsorption performance for the removal of anionic dyes using an ultrasonic-synthesized terephthalaldehyde crosslinked chitosan hydrogel.
Collapse
Affiliation(s)
- Madhvi Garg
- Department of Chemistry
- Sant Longowal Institute of Engineering and Technology
- Sangrur
- India
| | - Navneet Bhullar
- Department of Chemical engineering
- Sant Longowal Institute of Engineering and Technology
- Sangrur
- India
| | - Bharat Bajaj
- Center for Nanoscience and Nanotechnology
- Panjab University
- Chandigarh-160025
- India
| | - Dhiraj Sud
- Department of Chemistry
- Sant Longowal Institute of Engineering and Technology
- Sangrur
- India
| |
Collapse
|
30
|
Adsorption of arsenic onto films based on chitosan and chitosan/nano-iron oxide. Int J Biol Macromol 2020; 165:1286-1295. [DOI: 10.1016/j.ijbiomac.2020.09.244] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/27/2022]
|
31
|
Tang J, Zhang YF, Liu Y, Li Y, Hu H. Efficient ion-enhanced adsorption of congo red on polyacrolein from aqueous solution: Experiments, characterization and mechanism studies. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117445] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Iovescu A, Stîngă G, Maxim ME, Gosecka M, Basinska T, Slomkowski S, Angelescu D, Petrescu S, Stănică N, Băran A, Anghel DF. Chitosan-polyglycidol complexes to coating iron oxide particles for dye adsorption. Carbohydr Polym 2020; 246:116571. [DOI: 10.1016/j.carbpol.2020.116571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 05/26/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022]
|
33
|
Radoor S, Karayil J, Parameswaranpillai J, Siengchin S. Removal of anionic dye Congo red from aqueous environment using polyvinyl alcohol/sodium alginate/ZSM-5 zeolite membrane. Sci Rep 2020; 10:15452. [PMID: 32963327 PMCID: PMC7509836 DOI: 10.1038/s41598-020-72398-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022] Open
Abstract
In this study, a novel PVA/SA/ZSM-5 zeolite membrane with good regeneration capacity was successfully prepared by solvent casting technique. The properties of the membranes were assessed by employing different characterization techniques such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), optical microscopy (OP), thermogravimetric analysis (TGA), contact angle and universal testing machine (UTM). XRD, TGA and UTM results revealed that the crystallinity and thermo-mechanical performance of the membrane could be tuned with zeolite content. The successful incorporation of zeolite into the polymer matrix was confirmed by FT-IR, SEM and OP analysis. The adsorption ability of the as-prepared membrane was evaluated with a model anionic dye, Congo red. Adsorption studies show that the removal efficiency of the membrane could be tuned by varying zeolite content, initial concentration of dye, contact time, pH and temperature. Maximum dye adsorption (5.33 mg/g) was observed for 2.5 wt% zeolite loaded membrane, at an initial dye concentration of 10 ppm, pH 3 and temperature 30 °C. The antibacterial efficiency of the membrane against gram-positive (Staphylococcus aureus) and gram-negative bacteria (Escherichia coli) was also reported. The results show that membrane inhibits the growth of both gram-positive and gram-negative bacteria. The adsorption isotherm was studied using two models: Langmuir and Freundlich isotherm. The results show that the experimental data fitted well with Freundlich isotherm with a high correlation coefficient (R2 = 0.998). Meanwhile, the kinetic studies demonstrate that pseudo-second-order (R2 = 0.999) model describe the adsorption of Congo red onto PVA/SA/ZSM-5 zeolite membrane better than pseudo-first-order (R2 = 0.972) and intra particle diffusion model (R2 = 0.91). The experimental studies thus suggest that PVA/SA/ZSM-5 zeolite could be a promising candidate for the removal of Congo red from aqueous solution.
Collapse
Affiliation(s)
- Sabarish Radoor
- Department of Mechanical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok, 1518 Wongsawang Road, Bangsue, Bangkok, 10800, Thailand.
| | - Jasila Karayil
- Government Women's Polytechnic College, Calicut, Kerala, India
| | - Jyotishkumar Parameswaranpillai
- Department of Mechanical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok, 1518 Wongsawang Road, Bangsue, Bangkok, 10800, Thailand
| | - Suchart Siengchin
- Department of Mechanical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok, 1518 Wongsawang Road, Bangsue, Bangkok, 10800, Thailand.
| |
Collapse
|
34
|
Wang J, Cheng G, Lu J, Chen H, Zhou Y. PDA-cross-linked beta-cyclodextrin: a novel adsorbent for the removal of BPA and cationic dyes. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:2337-2350. [PMID: 32784278 DOI: 10.2166/wst.2020.286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this study, 4,4'-(hexafluoroisopropene) diphthalic acid (PDA)-CD polymers containing β-cyclodextrin (CD) were synthesized for the adsorption of endocrine disrupting chemicals (EDCs) and dyes. It features great adsorption of bisphenol A (BPA), methylene blue (MB) and neutral red (NR). The maximum adsorption capacities of MB, NR and BPA can reach 113.06, 106.8 and 51.74 mg/g, respectively. The tandem adsorption results revealed that adsorptions of dyes and BPA onto PDA-CD polymer were two independent processes: non-polar BPA entrapment by cyclodextrin cavities while dyes were captured by the carboxyl groups and π-π stacking interactions. The adsorption processes performed well in a wide range of pH (4.0-10.0) and were not affected by fulvic acid (FA) and inorganic ions.
Collapse
Affiliation(s)
- Jianyu Wang
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China E-mail:
| | - Guang Cheng
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China E-mail:
| | - Jian Lu
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China E-mail:
| | - Huafeng Chen
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China E-mail:
| | - Yanbo Zhou
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China E-mail: ; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
35
|
Chang S, Zhang Q, Lu Y, Wu S, Wang W. High-efficiency and selective adsorption of organic pollutants by magnetic CoFe2O4/graphene oxide adsorbents: Experimental and molecular dynamics simulation study. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116400] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Mohammadi SZ, Safari Z, Madady N. Synthesis of Co3O4@SiO2 Core/Shell–Nylon 6 Magnetic Nanocomposite as an Adsorbent for Removal of Congo Red from Wastewater. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01485-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Highly efficient selective adsorption of anionic dyes by modified β-cyclodextrin polymers. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|