1
|
Ahmed S, Islam MS, Antu UB, Islam MM, Rajput VD, Mahiddin NA, Paul JR, Ismail Z, Ibrahim KA, Idris AM. Nanocellulose: A novel pathway to sustainable agriculture, environmental protection, and circular bioeconomy. Int J Biol Macromol 2025; 285:137979. [PMID: 39592042 DOI: 10.1016/j.ijbiomac.2024.137979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Nanocellulose, obtained from natural cellulose, has attracted considerable interest for its distinctive properties and wide-ranging potential applications. Studies suggest that nanocellulose improves the thermal, mechanical, and barrier properties of conventional cellulose. This review investigates the production, properties, approach, and application of nanocellulose from various sources in agriculture. The main role play of cellulose-nanocomposite is discussed as a seed coating agent to improve seed dispersal, germination, protection against fungi and insects, plant growth promoter, adsorption of targeted pollutants, providing water and nutrient retention, and other advantages. As a nobility, we included all mechanical, chemical, and static culture approaches to the production procedure of nanocellulose and its application as a nanocarrier in soil, including the unique properties of nanocellulose, such as its high surface area, inherent hydrophilicity, and ease of surface modification. Here, methods such as melt compounding, solution casting, and in situ polymerization were evaluated to incorporate nanoparticles into cellulose materials and produce nanocellulose and cellulose-nanocomposites with improved strength, stability, water resistance, and reduced gas permeability. The commercialization faces challenges such as high production costs, scalability issues, and the need for more research on environmental impacts and plant interactions. Despite these hurdles, this field is promising, with ongoing advancements likely to yield new and improved agricultural materials. This review thoroughly examines the innovative application of nanocellulose in slow and controlled-release fertilizers and pesticides, to transform nutrient management, boost crop productivity, and minimize the environmental impact.
Collapse
Affiliation(s)
- Sujat Ahmed
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Md Saiful Islam
- Department of Soil Science, Faculty of Agriculture, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh; East Coast Environmental Research Institute (ESERI), Gong Badak Campus, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia.
| | - Uttam Biswas Antu
- Department of Soil Science, Faculty of Agriculture, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Md Moshiul Islam
- Department of Agronomy, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia.
| | - Nor Aida Mahiddin
- East Coast Environmental Research Institute (ESERI), Gong Badak Campus, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia.
| | - Joyti Rani Paul
- Faculty of Agriculture, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Zulhilmi Ismail
- Centre for River and Coastal Engineering (CRCE), Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia; Department of Water & Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia.
| | - Khalid A Ibrahim
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Center for Environment and Tourism Studies and Research, King Khalid University, Abha, Saudi Arabia.
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
2
|
Kassie BB, Getahun MJ, Azanaw A, Ferede BT, Tassew DF. Surface modification of cellulose nanocrystals for biomedical and personal hygiene applications. Int J Biol Macromol 2024; 282:136949. [PMID: 39490486 DOI: 10.1016/j.ijbiomac.2024.136949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The increasing demand for sustainable and effective materials in biomedical and personal hygiene applications has driven the exploration of cellulose nanocrystals (CNCs) derived from biomass. These nanomaterials are highly valued for their exceptional mechanical properties, biocompatibility, and renewable nature. Researchers are exploring CNCs for advancing medical and hygiene products, but surface modification is often needed to maximize their benefits. Techniques such as chemical functionalization, physical coating, and hybridization can significantly enhance CNCs dispersibility, stability, and interaction with biological systems. This versatility makes CNCs suitable for a variety of applications, including drug delivery systems, wound dressings, and personal hygiene products. Despite their advantages, maintaining the inherent properties of CNCs while integrating new functionalities through modification poses a challenge. Understanding the impact of various modification techniques on CNC performance is crucial for optimizing their effectiveness. This review aimed to consolidate current knowledge on the surface modification of biomass-derived CNCs, offering insights into different methods and their implications for biomedical and personal hygiene applications. By highlighting advancements, challenges, and prospects, it served as a crucial resource for advancing the development and application of CNCs in these critical fields.
Collapse
Affiliation(s)
- Bantamlak Birlie Kassie
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia; Medical Textile Research Center, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia.
| | | | - Aklilu Azanaw
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| | - Bayu Teshome Ferede
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| | - Dehenenet Flatie Tassew
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| |
Collapse
|
3
|
Zhong C, Nidetzky B. Bottom-Up Synthesized Glucan Materials: Opportunities from Applied Biocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400436. [PMID: 38514194 DOI: 10.1002/adma.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/05/2024] [Indexed: 03/23/2024]
Abstract
Linear d-glucans are natural polysaccharides of simple chemical structure. They are comprised of d-glucosyl units linked by a single type of glycosidic bond. Noncovalent interactions within, and between, the d-glucan chains give rise to a broad variety of macromolecular nanostructures that can assemble into crystalline-organized materials of tunable morphology. Structure design and functionalization of d-glucans for diverse material applications largely relies on top-down processing and chemical derivatization of naturally derived starting materials. The top-down approach encounters critical limitations in efficiency, selectivity, and flexibility. Bottom-up approaches of d-glucan synthesis offer different, and often more precise, ways of polymer structure control and provide means of functional diversification widely inaccessible to top-down routes of polysaccharide material processing. Here the natural and engineered enzymes (glycosyltransferases, glycoside hydrolases and phosphorylases, glycosynthases) for d-glucan polymerization are described and the use of applied biocatalysis for the bottom-up assembly of specific d-glucan structures is shown. Advanced material applications of the resulting polymeric products are further shown and their important role in the development of sustainable macromolecular materials in a bio-based circular economy is discussed.
Collapse
Affiliation(s)
- Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, 8010, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, 8010, Austria
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, Graz, 8010, Austria
| |
Collapse
|
4
|
Calvo V, Martínez-Barón C, Fuentes L, Maser WK, Benito AM, González-Domínguez JM. Nanocellulose: The Ultimate Green Aqueous Dispersant for Nanomaterials. Polymers (Basel) 2024; 16:1664. [PMID: 38932013 PMCID: PMC11207634 DOI: 10.3390/polym16121664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Nanocellulose, a nanoscale derivative from renewable biomass sources, possesses remarkable colloidal properties in water, mechanical strength, and biocompatibility. It emerges as a promising bio-based dispersing agent for various nanomaterials in water. This mini-review explores the interaction between cellulose nanomaterials (nanocrystals or nanofibers) and water, elucidating how this may enable their potential as an eco-friendly dispersing agent. We explore the potential of nanocellulose derived from top-down processes, nanocrystals, and nanofibers for dispersing carbon nanomaterials, semiconducting oxide nanoparticles, and other nanomaterials in water. We also highlight its advantages over traditional methods by not only effectively dispersing those nanomaterials but also potentially eliminating the need for further chemical treatments or supporting stabilizers. This not only preserves the exceptional properties of nanomaterials in aqueous dispersion, but may even lead to the emergence of novel hybrid functionalities. Overall, this mini-review underscores the remarkable versatility of nanocellulose as a green dispersing agent for a variety of nanomaterials, inspiring further research to expand its potential to other nanomaterials and applications.
Collapse
Affiliation(s)
- Víctor Calvo
- Instituto de Carboquímica (ICB-CSIC), C/Miguel Luesma Castán 4, 50018 Zaragoza, Spain; (C.M.-B.); (L.F.); (W.K.M.); (A.M.B.)
| | | | | | | | | | - José M. González-Domínguez
- Instituto de Carboquímica (ICB-CSIC), C/Miguel Luesma Castán 4, 50018 Zaragoza, Spain; (C.M.-B.); (L.F.); (W.K.M.); (A.M.B.)
| |
Collapse
|
5
|
Sun J, Fang W, Liza AA, Gao R, Song J, Guo J, Rojas OJ. Photoluminescent Nanocellulosic Film for Selective Hg 2+ Ion Detection. Polymers (Basel) 2024; 16:1583. [PMID: 38891529 PMCID: PMC11174859 DOI: 10.3390/polym16111583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
We developed a highly sensitive solid-state sensor for mercury detection by stabilizing red-sub-nanometric fluorescent gold nanoclusters (AuNC, 0.9 ± 0.1 nm diameter) with bovine serum albumin in a matrix composed of cellulose nanofibrils (CNF) (BSA-AuNC/CNF). The main morphological and optical features of the system were investigated via atomic force/transmission electron microscopy and UV-Vis/fluorescence spectroscopy. The hybrid film (off-white and highly transparent) showed strong photoluminescene under UV irradiation. The latter is assigned to the AuNC, which also increase the ductility of the emitting film, which was demonstrated for high sensitivity Hg2+ detection. When used as a sensor system, following AuNC printing on CNF hybrid films, a limit of detection <10 nM was confirmed. What is more, nanocellulose films have a high pore structure and selective separation properties, showcasing a wide range of potential applications in many fields such as water treatment and oil-water separation.
Collapse
Affiliation(s)
- Jing Sun
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; (J.S.); (A.A.L.); (R.G.); (J.S.)
| | - Wenwen Fang
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076 Helsinki, Finland;
| | - Afroza Akter Liza
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; (J.S.); (A.A.L.); (R.G.); (J.S.)
| | - Rui Gao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; (J.S.); (A.A.L.); (R.G.); (J.S.)
| | - Junlong Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; (J.S.); (A.A.L.); (R.G.); (J.S.)
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; (J.S.); (A.A.L.); (R.G.); (J.S.)
| | - Orlando J. Rojas
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, 00076 Helsinki, Finland;
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, 2360, East Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
6
|
Fate AS, Maheshwari Y, Shekhar Tiwari S, Das P, Bal M. Exploring nanocellulose's role in revolutionizing the pharmaceutical and biomedical fields. Int J Biol Macromol 2024; 272:132837. [PMID: 38848844 DOI: 10.1016/j.ijbiomac.2024.132837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/28/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
The increasing global demand for eco-friendly products derived from natural resources has spurred intensive research into biomaterials. Among these materials, nanocellulose stands out as a highly efficient option, consisting of tightly packed cellulose fibrils derived from lignocellulosic biomass. Nanocellulose boasts a remarkable combination of attributes, including a high specific surface area, impressive mechanical strength, abundant hydroxyl groups for easy modification, as well as non-toxic, biodegradable, and environmentally friendly properties. Consequently, nanocellulose has been extensively studied for advanced applications. This paper provides a comprehensive overview of the various sources of nanocellulose derived from diverse natural sources and outlines the wide array of production methods available. Furthermore, it delves into the extensive utility of nanocellulose within the biomedical and pharmaceutical industries, shedding light on its potential role in these fields. Additionally, it highlights the significance of nanocellulose composites and their applications, while also addressing key challenges that must be overcome to enable widespread utilization of nanocellulose.
Collapse
Affiliation(s)
- Abhay Sandip Fate
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India
| | - Yash Maheshwari
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India
| | - Shashank Shekhar Tiwari
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India
| | - Payal Das
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India
| | - Manisha Bal
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India.
| |
Collapse
|
7
|
Khorsandi D, Jenson S, Zarepour A, Khosravi A, Rabiee N, Iravani S, Zarrabi A. Catalytic and biomedical applications of nanocelluloses: A review of recent developments. Int J Biol Macromol 2024; 268:131829. [PMID: 38677670 DOI: 10.1016/j.ijbiomac.2024.131829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Nanocelluloses exhibit immense potential in catalytic and biomedical applications. Their unique properties, biocompatibility, and versatility make them valuable in various industries, contributing to advancements in environmental sustainability, catalysis, energy conversion, drug delivery, tissue engineering, biosensing/imaging, and wound healing/dressings. Nanocellulose-based catalysts can efficiently remove pollutants from contaminated environments, contributing to sustainable and cleaner ecosystems. These materials can also be utilized as drug carriers, enabling targeted and controlled drug release. Their high surface area allows for efficient loading of therapeutic agents, while their biodegradability ensures safer and gradual release within the body. These targeted drug delivery systems enhance the efficacy of treatments and minimizes side effects. Moreover, nanocelluloses can serve as scaffolds in tissue engineering due to their structural integrity and biocompatibility. They provide a three-dimensional framework for cell growth and tissue regeneration, promoting the development of functional and biologically relevant tissues. Nanocellulose-based dressings have shown great promise in wound healing and dressings. Their ability to absorb exudates, maintain a moist environment, and promote cell proliferation and migration accelerates the wound healing process. Herein, the recent advancements pertaining to the catalytic and biomedical applications of nanocelluloses and their composites are deliberated, focusing on important challenges, advantages, limitations, and future prospects.
Collapse
Affiliation(s)
- Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Serena Jenson
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia.
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan.
| |
Collapse
|
8
|
Tang J, Zhang Y, Liu X, Lin Y, Liang L, Li X, Casals G, Zhou X, Casals E, Zeng M. Versatile Antibacterial and Antioxidant Bacterial Cellulose@Nanoceria Biotextile: Application in Reusable Antimicrobial Face Masks. Adv Healthc Mater 2024; 13:e2304156. [PMID: 38271691 DOI: 10.1002/adhm.202304156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Despite considerable interest in medical and pharmaceutical fields, there remains a notable absence of functional textiles that concurrently exhibit antibacterial and antioxidant properties. Herein, a new composite fabric constructed using nanostructured bacterial cellulose (BC) covalently-linked with cerium oxide nanoparticles (BC@CeO2NPs) is introduced. The synthesis of CeO2NPs on the BC is performed via a microwave-assisted, in situ chemical deposition technique, resulting in the formation of mixed valence Ce3+/Ce4+ CeO2NPs. This approach ensures the durability of the composite fabric subjected to multiple washing cycles. The Reactive oxygen species (ROS) scavenging activity of CeO2NPs and their rapid and efficient eradication of >99% model microbes, such as Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus remain unaltered in the composite. To demonstrate the feasibility of incorporating the fabric in marketable products, antimicrobial face masks are fabricated with filter layers made of BC@CeO2NPs cross-linked with propylene or cotton fibers. These masks exhibit complete inhibition of bacterial growth in the three bacterial strains, improved breathability compared to respirator masks and enhanced filtration efficiency compared to single-use surgical face masks. This study provides valuable insights into the development of functional BC@CeO2NPs biotextiles in which design can be extended to the fabrication of medical dressings and cosmetic products with combined antibiotic, antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Jie Tang
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| | - Yuping Zhang
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| | - Xingfei Liu
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| | - Yichao Lin
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| | - Lihua Liang
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| | - Xiaofang Li
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| | - Gregori Casals
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari and The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Carrer de Villarroel, 170, Barcelona, 08036, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), Av. Monforte de Lemos, 3-5, Madrid, 28029, Spain
- Department of Fundamental Care and Medical-Surgical Nursing, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, 08007, Spain
| | - Xiangyu Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai Medical College, State Key Lab of Genetic Engineering, Fudan University, Shanghai, 200011, China
| | - Eudald Casals
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| | - Muling Zeng
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| |
Collapse
|
9
|
Koshy JT, Sangeetha D, Bele Y, Rakshitha M. Fabrication, Characterization, and Biological Evaluation of T. terrestris Incorporated Titanium-Doped ZnO/Cellulose Nanocomposite Films as a Therapeutic Hemostatic Scaffolds for Diabetic Wound Healing. ACS OMEGA 2024; 9:18327-18340. [PMID: 38680366 PMCID: PMC11044262 DOI: 10.1021/acsomega.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024]
Abstract
The advent of biobased materials exhibiting remarkable effectiveness and performance has ushered in a paradigm shift in the field of biomedical science. Polymers are often used in the medical sector, particularly in the regeneration of bones, tissues, and wounds. Fast wound healing and self-healing polymers created from sustainable surroundings are attractive alternatives to create demand for new pathways in polymer research. This study investigates the efficacy of a biowaste-derived polymer, which was extracted and supplemented with titanium-doped ZnO nanoparticles along with medication in the form of an extract to evaluate its effectiveness in promoting wound healing. The prepared materials were further characterized using X-ray diffraction (XRD), UV-visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), optical microscopy, atomic force microscopy (AFM), tensile, and its color parameters. In vitro studies on wound healing were also conducted. The results clearly showed that the produced substance possesses properties that are noteworthy for wound healing.
Collapse
Affiliation(s)
- Jijo Thomas Koshy
- Department
of Chemistry, SAS, Vellore Institute of
Technology, Vellore 632 014, India
| | - Dhanaraj Sangeetha
- Department
of Chemistry, SAS, Vellore Institute of
Technology, Vellore 632 014, India
| | - Yogesh Bele
- Department
of Microbiology, Sant Gadge Baba Amravati
University, Amravati 444602, India
| | - Murugan Rakshitha
- Department
of Chemistry, SAS, Vellore Institute of
Technology, Vellore 632 014, India
| |
Collapse
|
10
|
Baruah R, Hazarika MP, Das AM, Sastry GN, Nath D, Talukdar K. Green synthesis of nanocellulose supported cu-bionanocomposites and their profound applicability in the synthesis of amide derivatives and controlling of food-borne pathogens. Carbohydr Polym 2024; 330:121786. [PMID: 38368093 DOI: 10.1016/j.carbpol.2024.121786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 02/19/2024]
Abstract
Copper bionanocomposites (CBNCS) were synthesized using Ipomoea carnea- sourced nanocellulose as support via an eco-friendly and cost-effective method. X-ray Diffractometer (XRD) pattern of CBNCS confirmed the octahedral structure of Cu2O, the face-centered cubic (FCC) crystal structure of Cu(0). XRD also revealed the crystal lattice of cellulose II. Surface Electron Microscope (SEM) and Transmission Electron Microscope (TEM) revealed the uniform distribution of copper nanoparticles (Cu NPs) with an average size of 10 nm due to the presence of nanocellulose. X-ray photoelectron spectroscopy (XPS) provided information about the electronic, chemical state and elemental composition of CBNCS. Thermogravimetric Analysis (TGA) showed the thermal stability of CBNCS. CBNCS catalyzed the rearrangement of oximes to primary amides in a very mild condition with a high yield of up to 92 %. CBNCS effectively inhibited the growth of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) with lower minimum inhibitory concentration MIC values. Antioxidant activity and electrical conductivity of CBNCS were also determined.
Collapse
Affiliation(s)
- Rebika Baruah
- Natural Product Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manash Protim Hazarika
- Natural Product Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Archana Moni Das
- Natural Product Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - G Narahari Sastry
- Natural Product Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Dushmanta Nath
- Natural Product Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Karishma Talukdar
- Natural Product Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Yang Y, Guo Y, Qiu Z, Gong W, Wang Y, Xie Y, Xiao Z. In situ growth of Zr-based metal-organic frameworks on cellulose sponges for Hg 2+ and methylene blue removal. Carbohydr Polym 2024; 328:121750. [PMID: 38220333 DOI: 10.1016/j.carbpol.2023.121750] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024]
Abstract
Metal-organic frameworks (MOFs) are characterised by high porosity levels and controllable structures, making them ideal adsorbents for wastewater. However, obtaining substrate materials with mechanical stability, excellent pore accessibility, and good processability for compositing MOF crystal powders to adsorb multiple pollutants in complex aqueous environments is challenging. In this study, porous MOFs@ modified cellulose sponge (MCS) composites were fabricated using MCS as a scaffold to provide anchoring sites for the coordination of Zr4+ ions and further in situ synthesis of MOFs, namely UiO-66@MCS and UiO-66-NH2@MCS, which effectively removed heavy metal ions and organic dyes. MOFs@MCS composites exhibit excellent water and dimensional stability, maintaining the pore structure by ambient drying during reuse. Compared with UiO-66@MCS composite, UiO-66-NH2@MCS composite exhibited a higher adsorption capacity of 224.5 mg·g-1 for Hg2+ and 400.9 mg·g-1 for methylene blue (MB). The adsorption of Hg2+ onto the MOFs@MCS composites followed the Langmuir and pseudo-second-order models, whereas the Freundlich and pseudo-second-order models were more suitable for MB adsorption. Moreover, the MOFs@MCS composites exhibited excellent reusability and were selective for the removal of Hg2+. Overall, this approach effectively combines Zr-based MOFs with mechanically and dimensionally stable porous cellulose sponges, rendering the approach suitable for purifying complex wastewater.
Collapse
Affiliation(s)
- Yanxiao Yang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China
| | - Yunfeng Guo
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China
| | - Zhe Qiu
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China
| | - Weihua Gong
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China
| | - Yonggui Wang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China.
| | - Yanjun Xie
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China
| | - Zefang Xiao
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Hexing 26 Road, Harbin 150040, PR China
| |
Collapse
|
12
|
Huang Y, Huang J, Zhou Y, Fan X, Li Y. Pd@HKUST-1@Cu(II)/CMC composite bead as an efficient synergistic bimetallic catalyst for Sonogashira cross-coupling reactions. Carbohydr Polym 2024; 324:121531. [PMID: 37985060 DOI: 10.1016/j.carbpol.2023.121531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
We fabricated an efficient Pd@HKUST-1@Cu(II)/CMC composite bead catalyst through an innovative strategy based on the unique properties of metal-organic frameworks (MOFs) and carboxymethylcellulose (CMC). In this strategy, HKUST-1 MOFs were grown in-situ on the surface of micrometer-sized Cu-based CMC beads (Cu(II)/CMC), then Pd(II) ions were incorporated into the pores of the MOF and further be partially reduced to Pd(0) NPs, which is an active species for oxidative addition with aryl halides in Sonogashira reactions. The micron-sized Cu(II)/CMC beads were formed through inter/intramolecularly crosslinking facilitated by Cu(II) ions, which was achieved by the metathesis of Cu(II) with numerous carboxylic groups of CMC. Such Cu(II)/CMC bead offers many Cu(II) ions as interaction sites for in-situ nucleation and growth of HKUST-1 MOFs. The architecture and composition of the prepared Pd@HKUST-1@Cu(II)/CMC composite were fully verified by various techniques such as FTIR, XRD, TGA, BET, XPS, SEM, TEM, EDX, and elemental mapping analysis. This novel composite bead was applied as an efficient and reusable heterogeneous Pd/Cu bimetallic catalyst for Sonogashira reactions, decarbonylative Sonogashira reaction, and Sonogashira cyclization tandem reactions. The catalyst is readily isolated by simple filtration, and can be reused for five consecutive runs with retaining its activity and structural integrity.
Collapse
Affiliation(s)
- Yuling Huang
- Department of Chemistry, College of Chemistry and Materials Science, Panyu Campus, Jinan University, Guangzhou 511443, China
| | - Jiayi Huang
- Department of Chemistry, College of Chemistry and Materials Science, Panyu Campus, Jinan University, Guangzhou 511443, China
| | - Yuping Zhou
- Department of Chemistry, College of Chemistry and Materials Science, Panyu Campus, Jinan University, Guangzhou 511443, China
| | - Xuetao Fan
- Department of Chemistry, College of Chemistry and Materials Science, Panyu Campus, Jinan University, Guangzhou 511443, China
| | - Yiqun Li
- Department of Chemistry, College of Chemistry and Materials Science, Panyu Campus, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
13
|
Jiang L, Jiang B, Xu J, Wang T. Preparation of pH-responsive oxidized regenerated cellulose hydrogels compounded with nano-ZnO/chitosan/aminocyclodextrin ibuprofen complex for wound dressing. Int J Biol Macromol 2023; 253:126628. [PMID: 37657582 DOI: 10.1016/j.ijbiomac.2023.126628] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/12/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Recently, using oxidized regenerated cellulose (ORC) to build a hydrogel system on promoting healing in wounds has a fast-growing market. However, it remains a challenge to improve the degree of oxidation of regenerated cellulose (RC) and to prepare matrices that are uniquely responsive to the wound environment. Herein, highly oxidized aldehyde-based cellulose from porous RC was prepared by NaBH4-HCl swelling and then NaIO4 oxidation pathway. Chitosan (CS), ethylenediamine-cyclodextrin (EDA-CD) along with ORC have been used to construct hydrogel matrices that are pH-responsive and capable of controlled drug release for use as future wound dressings. And zinc oxide nanoparticles (ZnO NPs) with antimicrobial effect and ibuprofen (IBU) with analgesic effect were piggybacked into the hydrogel system. XRD was used to study the presence of ZnO. SEM was used to observe the surface structure of the prepared hydrogel. TEM was used to observe the particle size of the ZnO NPs. Meanwhile, the oxidation conditions of the ORC were explored. Furthermore, the mechanical, swelling, water retention, cytotoxicity, bacterial inhibition properties and treatment effect, which are closely related to the application of wound dressing, were carefully researched. The unique characteristics of prepared hydrogel, including pH-responsive degradability and sustained release properties of IBU, were also investigated.
Collapse
Affiliation(s)
- Lihui Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin 150040, Heilongjiang, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Boning Jiang
- Aulin College, Northeast Forestry University, 26 Hexing Road, Harbin 150040, Heilongjiang, China
| | - Juan Xu
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Haidian district, No.12, Da Hui Si Road, Beijing 100081, China; National Research Institute for Family Planning, Haidian district, No.12, Da Hui Si Road, Beijing 100081, China.
| | - Ting Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin 150040, Heilongjiang, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
| |
Collapse
|
14
|
Alvi NUH, Mulla MY, Abitbol T, Fall A, Beni V. The Fast and One-Step Growth of ZnO Nanorods on Cellulose Nanofibers for Highly Sensitive Photosensors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2611. [PMID: 37764641 PMCID: PMC10538090 DOI: 10.3390/nano13182611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Cellulose is the most abundant organic material on our planet which has a key role in our daily life (e.g., paper, packaging). In recent years, the need for replacing fossil-based materials has expanded the application of cellulose and cellulose derivatives including into electronics and sensing. The combination of nanostructures with cellulose nanofibers (CNFs) is expected to create new opportunities for the development of innovative electronic devices. In this paper, we report on a single-step process for the low temperature (<100 °C), environmentally friendly, and fully scalable CNF-templated highly dense growth of zinc oxide (ZnO) nanorods (NRs). More specifically, the effect of the degree of substitution of the CNF (enzymatic CNFs and carboxymethylated CNFs with two different substitution levels) on the ZnO growth and the application of the developed ZnO NRs/CNF nanocomposites in the development of UV sensors is reported herein. The results of this investigation show that the growth and nature of ZnO NRs are strongly dependent on the charge of the CNFs; high charge promotes nanorod growth whereas with low charge, ZnO isotropic microstructures are created that are not attached to the CNFs. Devices manufactured via screen printing/drop-casting of the ZnO NRs/CNF nanocomposites demonstrate a good photo-sensing response with a very stable UV-induced photocurrent of 25.84 µA. This also exhibits excellent long-term stability with fast ON/OFF switching performance under the irradiance of a UV lamp (15 W).
Collapse
Affiliation(s)
- Naveed Ul Hassan Alvi
- Smart Hardware, RISE Research Institutes of Sweden, Bio- and Organic Electronics, Södra Grytsgatan 4, Plan2, 602-33 Norrköping, Sweden
- Digital Cellulose Center, 602-33 Norrköping, Sweden
| | - Mohammad Yusuf Mulla
- Smart Hardware, RISE Research Institutes of Sweden, Bio- and Organic Electronics, Södra Grytsgatan 4, Plan2, 602-33 Norrköping, Sweden
- Digital Cellulose Center, 602-33 Norrköping, Sweden
| | - Tiffany Abitbol
- Digital Cellulose Center, 602-33 Norrköping, Sweden
- Smart Materials, RISE Research Institutes of Sweden, Bioeconomy & Health, Drottning Kristinas Väg 61B, 114-28 Stockholm, Sweden
| | - Andreas Fall
- Digital Cellulose Center, 602-33 Norrköping, Sweden
- Smart Materials, RISE Research Institutes of Sweden, Bioeconomy & Health, Drottning Kristinas Väg 61B, 114-28 Stockholm, Sweden
| | - Valerio Beni
- Smart Hardware, RISE Research Institutes of Sweden, Bio- and Organic Electronics, Södra Grytsgatan 4, Plan2, 602-33 Norrköping, Sweden
- Digital Cellulose Center, 602-33 Norrköping, Sweden
| |
Collapse
|
15
|
Dadigala R, Bandi R, Han SY, Kwon GJ, Lee SH. Rapid in-situ growth of enzyme-mimicking Pd nanoparticles on TEMPO-oxidized nanocellulose for the efficient detection of ascorbic acid. Int J Biol Macromol 2023; 234:123657. [PMID: 36796553 DOI: 10.1016/j.ijbiomac.2023.123657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Rapid, efficient and green method of Pd nanoparticles (PdNPs) synthesis on TEMPO-oxidized cellulose nanofibril (TCNF) is demonstrated here. The nanohybrid (PdNPs/TCNF) exhibited peroxidase and oxidase-like activities evident by the oxidation of three chromogenic substrates. Enzyme kinetic studies using 3,3',5,5'-Tetramethylbenzidine (TMB) oxidation uncovered the excellent kinetic parameters (low Km and high Vmax) and good specific activities of 215 U/g and 107 U/g for peroxidase and oxidase-like activities, respectively. A colorimetric assay for ascorbic acid (AA) detection is proposed based on its ability to reduce oxidized TMB to its colorless form. However, presence of nanozyme caused re-oxidation of TMB to its blue colored form within few minutes resulting in time limitation and inaccurate detection. Thanks to the film forming nature of TCNF; this limitation was overcome by employing PdNPs/TCNF film strips that can be easily removed before AA addition. The assay allowed AA detection in the linear range of 0.25-10 μM with a detection limit of 0.039 μM. The results of AA detection in commercial beverages and vitamin C tablets are matching with the specified values. Further the nanozyme exhibited high tolerance to pH (2-10) and temperature (up to 80 °C) and good recyclability for five cycles.
Collapse
Affiliation(s)
- Ramakrishna Dadigala
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Rajkumar Bandi
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Song-Yi Han
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gu-Joong Kwon
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Institute of Inclusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seung-Hwan Lee
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
16
|
Prasad C, Madkhali N, Jeong SG, Malkappa K, Choi HY, Govinda V. Recent advances in the hybridization of cellulose and semiconductors: Design, fabrication and emerging multidimensional applications: A review. Int J Biol Macromol 2023; 233:123551. [PMID: 36740107 DOI: 10.1016/j.ijbiomac.2023.123551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Cellulose is a plentiful, biodegradable, renewable, and natural polymer in the world that can be widely utilized in the production of polymer nanocomposites. Cellulose is developed in nanomaterials owing to its remarkable inherent features of low density, non-toxicity, and affordability, as well as the amazing sample characteristics of strength and thermal stability. Recently, there has been a lot of interest in organic-inorganic composites because of their adaptable qualities. Cellulose and semiconductors have exciting properties, and new combinations of both materials may result in efficient functional hybrid composites with distinct properties. Lately, a huge study was reported on cellulose and semiconductor-based nanocomposites. In this review, we summarize the present research development in the preparation methods, structure, features, and possible applications of multifunctional cellulose and semiconductor-based nanocomposites. The cellulose/semiconductor based nanocomposites have massive potential applications in the areas of photodegradation of organic dyes, hydrogen production, metal removal, biomedical, and sensor applications. It is also assumed that this article will promote additional investigation and will establish innovative capabilities to enhance novel cellulose and semiconductor based nanocomposites with new and exciting applications.
Collapse
Affiliation(s)
- Cheera Prasad
- Department of Fashion and Textiles, Dong-A University, Busan 49315, Republic of Korea
| | - Nawal Madkhali
- Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Seong-Geun Jeong
- Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
| | - Kuruma Malkappa
- Department of Fashion and Textiles, Dong-A University, Busan 49315, Republic of Korea
| | - Hyeong Yeol Choi
- Department of Fashion and Textiles, Dong-A University, Busan 49315, Republic of Korea.
| | - V Govinda
- Department of Chemistry, Gayatri Vidya Parishad College for Degree and PG Courses (A), Rushikonda campus, Visakhapatnam 530045, India
| |
Collapse
|
17
|
Feng Y, Cölfen H, Xiong R. Organized mineralized cellulose nanostructures for biomedical applications. J Mater Chem B 2023. [PMID: 36892529 DOI: 10.1039/d2tb02611b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Cellulose is the most abundant naturally-occurring polymer, and possesses a one-dimensional (1D) anisotropic crystalline nanostructure with outstanding mechanical robustness, biocompatibility, renewability and rich surface chemistry in the form of nanocellulose in nature. Such features make cellulose an ideal bio-template for directing the bio-inspired mineralization of inorganic components into hierarchical nanostructures that are promising in biomedical applications. In this review, we will summarize the chemistry and nanostructure characteristics of cellulose and discuss how these favorable characteristics regulate the bio-inspired mineralization process for manufacturing the desired nanostructured bio-composites. We will focus on uncovering the design and manipulation principles of local chemical compositions/constituents and structural arrangement, distribution, dimensions, nanoconfinement and alignment of bio-inspired mineralization over multiple length-scales. In the end, we will underline how these cellulose biomineralized composites benefit biomedical applications. It is expected that this deep understanding of design and fabrication principles will enable construction of outstanding structural and functional cellulose/inorganic composites for more challenging biomedical applications.
Collapse
Affiliation(s)
- Yanhuizhi Feng
- Department of Periodontology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, Konstanz, Germany.
| | - Rui Xiong
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
18
|
Solhi L, Guccini V, Heise K, Solala I, Niinivaara E, Xu W, Mihhels K, Kröger M, Meng Z, Wohlert J, Tao H, Cranston ED, Kontturi E. Understanding Nanocellulose-Water Interactions: Turning a Detriment into an Asset. Chem Rev 2023; 123:1925-2015. [PMID: 36724185 PMCID: PMC9999435 DOI: 10.1021/acs.chemrev.2c00611] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Modern technology has enabled the isolation of nanocellulose from plant-based fibers, and the current trend focuses on utilizing nanocellulose in a broad range of sustainable materials applications. Water is generally seen as a detrimental component when in contact with nanocellulose-based materials, just like it is harmful for traditional cellulosic materials such as paper or cardboard. However, water is an integral component in plants, and many applications of nanocellulose already accept the presence of water or make use of it. This review gives a comprehensive account of nanocellulose-water interactions and their repercussions in all key areas of contemporary research: fundamental physical chemistry, chemical modification of nanocellulose, materials applications, and analytical methods to map the water interactions and the effect of water on a nanocellulose matrix.
Collapse
Affiliation(s)
- Laleh Solhi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Valentina Guccini
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Katja Heise
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Iina Solala
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Elina Niinivaara
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada
| | - Wenyang Xu
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Laboratory of Natural Materials Technology, Åbo Akademi University, TurkuFI-20500, Finland
| | - Karl Mihhels
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Marcel Kröger
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Zhuojun Meng
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Jakob Wohlert
- Wallenberg Wood Science Centre (WWSC), Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044Stockholm, Sweden
| | - Han Tao
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Emily D Cranston
- Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1Z3, Canada
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| |
Collapse
|
19
|
Du P, Xu Y, Shi Y, Xu Q, Xu Y. Amino modified cellulose fibers loaded zinc oxide nanoparticles via paper-making wet-forming for antibacterial materials. Int J Biol Macromol 2023; 227:795-804. [PMID: 36549617 DOI: 10.1016/j.ijbiomac.2022.12.145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Bacterial infection has become one of the major threats to human health all over the world, and the development and application of antibacterial materials has drawn great attention. Based on the Schiff-base structure, ZnONPs@ACFs are obtained by loading zinc oxide nanoparticles (ZnONPs) on amino cellulose fibers (ACFs) in-situ through the coordination of amino groups with metal ions. The results of FT-IR, XRD and UV-vis demonstrate that ZnONPs are successfully loaded and uniformly dispersed on ACF surface, and the ACFs maintain intact morphology observed by SEM. Furthermore, the zero-span tensile strength of ZnONPs@ACFs is 66.48 N/cm (ROL: 24.98 N/cm/s) under the optimum conditions, which indicates that ZnONPs@ACFs have a certain strength and can be used to make antibacterial sheet materials via paper-making wet-forming process. Accordingly, the ZnONPs@ACF composites show inhibition zones of 4.95 mm and 1.10 mm against E. coli and S. aureus, respectively. The new cellulose-based antibacterial materials demonstrate potential applications in the field of food packaging and biological medicine etc.
Collapse
Affiliation(s)
- Peng Du
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yongjian Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Yun Shi
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Qinghua Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yang Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
20
|
Thach-Nguyen R, Lam HH, Phan HP, Dang-Bao T. Cellulose nanocrystals isolated from corn leaf: straightforward immobilization of silver nanoparticles as a reduction catalyst. RSC Adv 2022; 12:35436-35444. [PMID: 36540239 PMCID: PMC9742858 DOI: 10.1039/d2ra06689k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/06/2022] [Indexed: 10/29/2023] Open
Abstract
As the most abundant natural biopolymer on earth, celluloses have long-term emerged as a capable platform for diverse purposes. In the context of metal nanoparticles applied to catalysis, the alternatives to traditional catalyst supports by using biomass-derived renewable materials, likely nanocelluloses, have been paid a great effort, in spite of being less exploited. In this study, cellulose nanocrystals were isolated from corn leaf via chemical treatment involving alkalizing, bleaching and acid hydrolysis. The crystallinity of obtained cellulose was evaluated in each step, focusing on the effects of reactant concentration and reaction time. Cellulose nanocrystals were characterized by powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), evidencing the presence of cellulose nanospheres (crystallinity index of 67.3% in comparison with 38.4% from untreated raw material) in the size range of 50 nm. Without using any additional surfactants or stabilizers, silver nanoparticles (AgNPs) well-dispersed on the surface of cellulose nanocrystals (silver content of 5.1 wt%) could be obtained by a simple chemical reduction using NaBH4 at room temperature. The catalytic activity was evaluated in the selective reductions of 4-nitrophenol towards 4-aminophenol and methyl orange towards aromatic amine derivatives in water at room temperature. The effects of catalyst amount and reaction time were also studied in both reduction processes, showing near-quantitative conversions within 5 minutes and obeying the pseudo-first-order kinetics, with the apparent kinetic rate constants of 8.9 × 10-3 s-1 (4-nitrophenol) and 13.6 × 10-3 s-1 (methyl orange). The chemical structure of the catalytic system was found to be highly stable during reaction and no metal leaching was detected in reaction medium, evidencing adaptability of cellulose nanocrystals in immobilizing noble metal nanoparticles.
Collapse
Affiliation(s)
- Roya Thach-Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Hoa-Hung Lam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Hong-Phuong Phan
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Trung Dang-Bao
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| |
Collapse
|
21
|
Surface modification of cellulose via photo-induced click reaction. Carbohydr Polym 2022; 301:120321. [DOI: 10.1016/j.carbpol.2022.120321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022]
|
22
|
Bao F, Liang Z, Deng J, Lin Q, Li W, Peng Q, Fang Y. Toward intelligent food packaging of biosensor and film substrate for monitoring foodborne microorganisms: A review of recent advancements. Crit Rev Food Sci Nutr 2022; 64:3920-3931. [PMID: 36300845 DOI: 10.1080/10408398.2022.2137774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Microorganisms in food do harms to human. They can cause serious adverse reactions and sometimes even death. So it is an urgent matter to find an effective method to control them. The research of intelligent- biosensor packaging is in the ascendant in recent years, which is mainly promoted by reflecting on food safety and reducing resource waste. Intelligent biosensor-packaging is an instant and efficient intelligent packaging technology, which can directly and scientifically manifest the quality of food without complex operation. In this review, the purposes of providing relevant information on intelligent biosensor-packaging are reviewed, such as types of biosensors for monitoring foodborne microorganism, the suitable material for intelligent biosensor-packaging and design and fabrication of intelligent biosensor-packaging. The potential of intelligent biosensor-packaging in the detection of foodborne microorganisms is emphasized. The challenges and directions of the intelligent biosensor-packaging in the detection of foodborne pathogens are discussed. With the development of science and technology in the future, the intelligent biosensor-packaging should be commercialized in a real sense. And it is expected that commercial products can be manufactured in the future, which will provide a far-reaching approach in food safety and food prevention. HighlightsSeveral biosensors are suitable for the detection of food microorganisms.Plastic polymer is an excellent choice for the construction of intelligent biosensor packaging.Design and fabrication can lay the foundation for intelligent-biosensor packaging.Intelligent biosensor-packaging can realize fast and real-time detection of microorganisms in food.
Collapse
Affiliation(s)
- Feng Bao
- Hunan Province Key Laboratory of Edible forestry Resource Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, JiangShu, Nanjing, China
| | - Zhao Liang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo City, P. R. China
| | - Jing Deng
- Hunan Province Key Laboratory of Edible forestry Resource Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Qinlu Lin
- Hunan Province Key Laboratory of Edible forestry Resource Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, JiangShu, Nanjing, China
| | - Wen Li
- Hunan Province Key Laboratory of Edible forestry Resource Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, JiangShu, Nanjing, China
| | - Qiong Peng
- Hunan Province Key Laboratory of Edible forestry Resource Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, JiangShu, Nanjing, China
| |
Collapse
|
23
|
Adegoke KA, Oyedotun KO, Ighalo J, Amaku JF, Olisah C, Adeola AO, Iwuozor KO, Akpomie KG, Conradie J. Cellulose derivatives and cellulose-metal-organic frameworks for CO2 adsorption and separation. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
24
|
Chen H, Liu X, Zhang Q, Li P, Wu W. Ultrastable Water-dispersible One-dimensional Gold Nanoparticles@cellulose Nanocrystal. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Dadigala R, Bandi R, Alle M, Park CW, Han SY, Kwon GJ, Lee SH. Effective fabrication of cellulose nanofibrils supported Pd nanoparticles as a novel nanozyme with peroxidase and oxidase-like activities for efficient dye degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129165. [PMID: 35739705 DOI: 10.1016/j.jhazmat.2022.129165] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Nanozyme-based dye degradation methods are promising for the remediation of water pollution. Though Pd nanoparticles (PdNPs) are known to act as nanozymes, their dye degradation capability has not been investigated. Low nanozyme activities, easy aggregation, difficulties in recovery and reuse are the major challenges in achieving this. For the first time, cellulose nanofibrils-supported PdNPs (PdNPs/PCNF) as a novel nanozyme with good peroxidase and oxidase-mimicking activities and easy recyclability is explored for dye degradation. An efficient and rapid method of PdNPs/PCNF preparation was demonstrated by adjusting the pH and microwave irradiation. Enzyme kinetic studies revealed good kinetic parameters and specific activities of 415 and 277 U/g for peroxidase and oxidase, respectively. PdNPs/PCNF offered 99.64% degradation of methylene blue within 12 min (0.468 min-1) with 0.4 M H2O2 at pH 5.0. Mechanistic studies revealed the involvement of hydroxyl and superoxide radicals. Owing to the network-like structure of PCNF, films and foams were prepared, their dye degradation potentials were compared, and recyclability was tested. Successful degradation of mixed dye solutions and spiked real water samples was achieved and a continuous flow method was demonstrated using a foam-packed column.
Collapse
Affiliation(s)
- Ramakrishna Dadigala
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Rajkumar Bandi
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Madhusudhan Alle
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chan-Woo Park
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Song-Yi Han
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gu-Joong Kwon
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Institute of Inclusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seung-Hwan Lee
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
26
|
Electroconductive cellulose nanocrystals — Synthesis, properties and applications: A review. Carbohydr Polym 2022; 289:119419. [DOI: 10.1016/j.carbpol.2022.119419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/29/2022]
|
27
|
Contemporary nanocellulose-composites: A new paradigm for sensing applications. Carbohydr Polym 2022; 298:120052. [DOI: 10.1016/j.carbpol.2022.120052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 01/21/2023]
|
28
|
Li S, Chen H, Liu X, Li P, Wu W. Nanocellulose as a promising substrate for advanced sensors and their applications. Int J Biol Macromol 2022; 218:473-487. [PMID: 35870627 DOI: 10.1016/j.ijbiomac.2022.07.124] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 01/14/2023]
Abstract
Nanocellulose has broad and promising applications owing to its low density, large specific surface area, high mechanical strength, modifiability, renewability. Recently, nanocellulose has been widely used to fabricate flexible, durable and environmental-friendly sensor substrates. In this contribution, the construction and characteristics of nanocellulose-based sensors are comprehensively reviewed. Various nanocellulose-based sensors are summarized and divided into colorimetric, fluorescent, electronic, electrochemical and SERS types according to the sensing mechanism. This review also introduces the applications of nanocellulose-based sensors in the fields of biomedicine, environmental monitoring, food safety, and wearable devices.
Collapse
Affiliation(s)
- Sijie Li
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haibo Chen
- School of Electronic and Information Engineering, Soochow University, Suzhou 215000, Jiangsu, China
| | - Xingyue Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Peng Li
- School of Electronic and Information Engineering, Soochow University, Suzhou 215000, Jiangsu, China.
| | - Weibing Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
29
|
El Idrissi N, Belachemi L, Merle N, Zinck P, Kaddami H. Comprehensive preparation and catalytic activities of co/TEMPO-cellulose nanocomposites: A promising green catalyst. Carbohydr Polym 2022; 295:119765. [DOI: 10.1016/j.carbpol.2022.119765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/02/2022]
|
30
|
Boopasiri S, Thaptong P, Sae‐Oui P, Siriwong C. Fabrication of zinc oxide‐coated microcrystalline cellulose and its application in truck tire tread compounds. J Appl Polym Sci 2022. [DOI: 10.1002/app.52701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Supparoek Boopasiri
- Materials Chemistry Research Center (MCRC), Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH‐CIC), Faculty of Science Khon Kaen University Khon Kaen Thailand
| | - Puchong Thaptong
- National Metal and Materials Technology Center (MTEC) National Science and Technology Development Agency (NSTDA) Pathum Thani 12120 Thailand
| | - Pongdhorn Sae‐Oui
- National Metal and Materials Technology Center (MTEC) National Science and Technology Development Agency (NSTDA) Pathum Thani 12120 Thailand
| | - Chomsri Siriwong
- Materials Chemistry Research Center (MCRC), Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH‐CIC), Faculty of Science Khon Kaen University Khon Kaen Thailand
| |
Collapse
|
31
|
Zhu W, Han M, Kim D, Zhang Y, Kwon G, You J, Jia C, Kim J. Facile preparation of nanocellulose/Zn-MOF-based catalytic filter for water purification by oxidation process. ENVIRONMENTAL RESEARCH 2022; 205:112417. [PMID: 34856164 DOI: 10.1016/j.envres.2021.112417] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Sulfate radical (SO4•-)-based advanced oxidation processes (SR-AOPs) have recently attracted much attention due to their potential in degrading organic pollutants. Metal-organic frameworks (MOFs) have been reported as effective materials to generate SO4•-. However, it is challenging to separate and recover the dispersed MOF particles from the reaction solution when MOFs are used alone. We used cellulose nanofibers (CNFs) as a porous filter template to immobilize Zn-based MOF, zeolitic imidazolate framework-8 (ZIF-8), and obtained a catalytic composite membrane having peroxymonosulfate (PMS) activating function to produce SO4•-. The CNF was effective in holding ZIF-8 nanoparticle and making a durable porous filter. The activated PMS-produced •OH and SO4•- radicals from ZIF-8 play an important role in the catalytic reaction. More than 90% of methylene blue and rhodamine B was degraded by ZIF-8/CNFs composite membrane in the PMS environment within 60 min. The ZIF-8/CNFs catalytic filters can be used several times without performance reduction for organic dye degradation. The results show that ZIF-8/CNFs catalytic membrane can be separated from organic pollution system quickly and used for the efficient separation and recovery of MOF particle-based catalytic materials. Therefore, this study provides a new perspective for fabricating the MOFs particles-immobilized catalytic filter by biomass nanocellulose-based materials for water purification. This method can be used for facile fabrication of the cellulose-based porous functional filter and open diverse applications.
Collapse
Affiliation(s)
- Wenkai Zhu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China; Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Minsu Han
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Donggyun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yang Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Goomin Kwon
- Department of Plant & Environmental New Resources, Graduate School of Biotechnology, Institute of Life Science and Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Jungmok You
- Department of Plant & Environmental New Resources, Graduate School of Biotechnology, Institute of Life Science and Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
| | - Chong Jia
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Jeonghun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
32
|
TEMPO-mediated oxidized cellulose nanofibers-Cd2+ derived hierarchically porous carbon aerogel for oxygen reduction electrocatalysis. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Das R, Lindström T, Sharma PR, Chi K, Hsiao BS. Nanocellulose for Sustainable Water Purification. Chem Rev 2022; 122:8936-9031. [PMID: 35330990 DOI: 10.1021/acs.chemrev.1c00683] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanocelluloses (NC) are nature-based sustainable biomaterials, which not only possess cellulosic properties but also have the important hallmarks of nanomaterials, such as large surface area, versatile reactive sites or functionalities, and scaffolding stability to host inorganic nanoparticles. This class of nanomaterials offers new opportunities for a broad spectrum of applications for clean water production that were once thought impractical. This Review covers substantial discussions based on evaluative judgments of the recent literature and technical advancements in the fields of coagulation/flocculation, adsorption, photocatalysis, and membrane filtration for water decontamination through proper understanding of fundamental knowledge of NC, such as purity, crystallinity, surface chemistry and charge, suspension rheology, morphology, mechanical properties, and film stability. To supplement these, discussions on low-cost and scalable NC extraction, new characterizations including solution small-angle X-ray scattering evaluation, and structure-property relationships of NC are also reviewed. Identifying knowledge gaps and drawing perspectives could generate guidance to overcome uncertainties associated with the adaptation of NC-enabled water purification technologies. Furthermore, the topics of simultaneous removal of multipollutants disposal and proper handling of post/spent NC are discussed. We believe NC-enabled remediation nanomaterials can be integrated into a broad range of water treatments, greatly improving the cost-effectiveness and sustainability of water purification.
Collapse
Affiliation(s)
- Rasel Das
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Tom Lindström
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States.,KTH Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Priyanka R Sharma
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Kai Chi
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
34
|
Hitam CNC, Jalil AA. Recent advances on nanocellulose biomaterials for environmental health photoremediation: An overview. ENVIRONMENTAL RESEARCH 2022; 204:111964. [PMID: 34461122 DOI: 10.1016/j.envres.2021.111964] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
As one of the potential bionanomaterials, nanocellulose has appeared as a favorable candidate for photoremediation of the environment because of its abundance in nature, inexpensive, eco-friendly, decomposable, high surface area, and outstanding mechanical properties. The current review carefully summarized the diverse type of nanocellulose, their preparation approaches, and several previous works on the use of nanocellulose for photoremediation. These include the role of nanocellulose for the increased surface active site of the hybrid photocatalysts by providing a large surface area for enhanced adsorption of photons and pollutant molecules, as a dispersing agent to increase distribution of metal/non-metal dopants photocatalysts, as well as for controlled size and morphology of the dopants photocatalysts. Furthermore, the recommendations for upcoming research provided in this review are anticipated to ignite an idea for the development of other nanocellulose-based photocatalysts. Other than delivering beneficial information on the present growth of the nanocellulose biomaterials photocatalysts, this review is expected will attract more interest to the utilization of nanocellulose photocatalyst and distribute additional knowledge in this exciting area of environmental photoremediation. This could be attained by considering that a review on nanocellulose biomaterials for environmental health photoremediation has not been described elsewhere, notwithstanding intensive research works have been dedicated to this topic.
Collapse
Affiliation(s)
- C N C Hitam
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia.
| |
Collapse
|
35
|
Azman Mohammad Taib MN, Hamidon TS, Garba ZN, Trache D, Uyama H, Hussin MH. Recent progress in cellulose-based composites towards flame retardancy applications. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
36
|
Tarrahi R, Khataee A, Karimi A, Yoon Y. The latest achievements in plant cellulose-based biomaterials for tissue engineering focusing on skin repair. CHEMOSPHERE 2022; 288:132529. [PMID: 34637866 DOI: 10.1016/j.chemosphere.2021.132529] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The present work reviews recent developments in plant cellulose-based biomaterial design and applications, properties, characterizations, and synthesis for skin tissue engineering and wound healing. Cellulose-based biomaterials are promising materials for their remarkable adaptability with three-dimensional polymeric structure. They are capable of mimicking tissue properties, which plays a key role in tissue engineering. Besides, concerns for environmental issues have motivated scientists to move toward eco-friendly materials and natural polymer-based materials for applications in the tissue engineering field these days. Therefore, cellulose as an appropriate substitute for common polymers based on crude coal, animal, and human-derived biomolecules is greatly considered for various applications in biomedical fields. Generally, natural biomaterials lack good mechanical properties for skin tissue engineering. But using modified cellulose-based biopolymers tackles these restrictions and prevents immunogenic responses. Moreover, tissue engineering is a quick promoting field focusing on the generation of novel biomaterials with modified characteristics to improve scaffold function through physical, biochemical, and chemical tailoring. Also, nanocellulose with a broad range of applications, particularly in tissue engineering, advanced wound dressing, and as a material for coupling with drugs and sensorics, has been reviewed here. Moreover, the potential cytotoxicity and immunogenicity of cellulose-based biomaterials are addressed in this review.
Collapse
Affiliation(s)
- Roshanak Tarrahi
- Health Promotion Research Center, Iran University of Medical Sciences, 14496-14535, Tehran, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey
| | - Afzal Karimi
- Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, 1449614535, Tehran, Iran
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
37
|
Hu S, Zhi Y, Shan S, Ni Y. Research progress of smart response composite hydrogels based on nanocellulose. Carbohydr Polym 2022; 275:118741. [PMID: 34742444 DOI: 10.1016/j.carbpol.2021.118741] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022]
Abstract
In recent years, smart-responsive nanocellulose composite hydrogels have attracted extensive attention due to their unique porous substrate, hydrophilic properties, biocompatibility and stimulus responsiveness. At present, the research on smart response nanocellulose composite hydrogel mainly focuses on the selection of composite materials and the construction of internal chemical bonds. The common composite materials and connection methods used for preparation of smart response nanocellulose composite hydrogels are compared according to the different types of response sources such as temperature, pH and so on. The response mechanisms and the application prospects of different response types of nanocellulose composite hydrogels are summarized, and the transformation of internal ions, functional groups and chemical bonds, as well as the changes in mechanical properties such as modulus and strength are discussed. Finally, the shortcomings and application prospects of nanocellulose smart response composite hydrogels are summarized and prospected.
Collapse
Affiliation(s)
- Shuai Hu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Yunfei Zhi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China.
| | - Shaoyun Shan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China.
| | - Yonghao Ni
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China; Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton E3B 5A3, Canada
| |
Collapse
|
38
|
Sun Z, Gao Y, Niu Z, Pan H, Xu X, Zhang W, Zou X. Programmable-Printing Paper-Based Device with a MoS 2 NP and Gmp/Eu-Cit Fluorescence Couple for Ratiometric Tetracycline Analysis in Various Natural Samples. ACS Sens 2021; 6:4038-4047. [PMID: 34672196 DOI: 10.1021/acssensors.1c01448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Paper-based fluorescence devices, with smartphone aids, bring considerable operation convenience for tetracycline (TC) sensing. Nevertheless, they must meet the challenge in real determination against complicated backgrounds. Considering that, we present a programmable-printing paper-based device and then apply it to TC determination for various natural samples. MoS2 NPs and Gmp/Eu-Cit are synthetized as composite probes. A static quenching process is found with MoS2 NP fluorescence at 430 nm, while significant magnification of Gmp/Eu-Cit emission is obtained at 617 nm, establishing a valuable ratiometric indicator. Remarkably, two-stage programmable printing maximizes the proposed sensing capability. A transitive device, containing a gradually changing amount of a certain probe, is prepared to sense TC. With a homemade smartphone application and 3D-printed measurement chamber, the corresponding signals are examined to explore optimal setups. These setups are automatically processed to prepare the final-version device, not requiring manual operations. Benefitting from this interesting feature, the proposed device gains many rewards in performances. It effectively senses TC in a wide range from 12.7 nM to 80 μM and simultaneously provides naked eye-legible signals and smartphone-based readouts with confident selectivity and stability. This device is consequently applied for various samples of soil, river water, milk, and serum and meets well with HPLC-MS and recovery tests.
Collapse
Affiliation(s)
- Zongbao Sun
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Yunlong Gao
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Zeng Niu
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Haodong Pan
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Xuechao Xu
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Wen Zhang
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Xiaobo Zou
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| |
Collapse
|
39
|
Gröndahl J, Karisalmi K, Vapaavuori J. Micro- and nanocelluloses from non-wood waste sources; processes and use in industrial applications. SOFT MATTER 2021; 17:9842-9858. [PMID: 34713883 DOI: 10.1039/d1sm00958c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In addition to renewability and abundance, nanocellulose materials have tremendous (and variable) properties for different applications, ranging from bulk applications, such as paper and packaging reinforcement, to emerging high added-value applications, such as substrates for optoelectronics. Lignocellulosic biomass from agricultural and industrial waste sources is readily available and shows great promise as an inexpensive and sustainable raw material for nanocellulose production. However, the understanding of the potential of using non-wood based biowaste sources is not established and systematic comparisons of versatile agricultural and industrial waste sources can elucidate this complex topic. Here we present an overview of the most studied and most promising sources from agro-industrial waste, the processes to convert them into nanocellulose, some of the established and emerging applications, and discuss the advancements that are still needed for large-scale production. Sugarcane bagasse and oil palm empty fruit bunch have been the most researched waste-based sources for nanocellulose production and demonstrate the most promise due to availability and access. Industrial sources seem to have advantages over agricultural sources in collectability and ease of access. This work gives insight on the potential and the challenges of nanocellulose production from waste sources and discusses how the criteria set for nanocellulose materials in different applications can be met, thus opening new routes for circular economy.
Collapse
Affiliation(s)
- Julius Gröndahl
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 AALTO, Finland.
| | - Kaisa Karisalmi
- Kaisa Karisalmi, Kemira Oyj, Espoo R&D Center, Luoteisrinne 2, FI-02270 Espoo, Finland
| | - Jaana Vapaavuori
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 AALTO, Finland.
| |
Collapse
|
40
|
Danial WH, Md Bahri NF, Abdul Majid Z. Preparation, Marriage Chemistry and Applications of Graphene Quantum Dots-Nanocellulose Composite: A Brief Review. Molecules 2021; 26:6158. [PMID: 34684739 PMCID: PMC8537986 DOI: 10.3390/molecules26206158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 12/03/2022] Open
Abstract
Graphene quantum dots (GQDs) are zero-dimensional carbon-based materials, while nanocellulose is a nanomaterial that can be derived from naturally occurring cellulose polymers or renewable biomass resources. The unique geometrical, biocompatible and biodegradable properties of both these remarkable nanomaterials have caught the attention of the scientific community in terms of fundamental research aimed at advancing technology. This study reviews the preparation, marriage chemistry and applications of GQDs-nanocellulose composites. The preparation of these composites can be achieved via rapid and simple solution mixing containing known concentration of nanomaterial with a pre-defined composition ratio in a neutral pH medium. They can also be incorporated into other matrices or drop-casted onto substrates, depending on the intended application. Additionally, combining GQDs and nanocellulose has proven to impart new hybrid nanomaterials with excellent performance as well as surface functionality and, therefore, a plethora of applications. Potential applications for GQDs-nanocellulose composites include sensing or, for analytical purposes, injectable 3D printing materials, supercapacitors and light-emitting diodes. This review unlocks windows of research opportunities for GQDs-nanocellulose composites and pave the way for the synthesis and application of more innovative hybrid nanomaterials.
Collapse
Affiliation(s)
- Wan Hazman Danial
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Nur Fathanah Md Bahri
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Zaiton Abdul Majid
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia;
| |
Collapse
|
41
|
|
42
|
Shah SS, Shaikh MN, Khan MY, Alfasane MA, Rahman MM, Aziz MA. Present Status and Future Prospects of Jute in Nanotechnology: A Review. CHEM REC 2021; 21:1631-1665. [PMID: 34132038 DOI: 10.1002/tcr.202100135] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Nanotechnology has transformed the world with its diverse applications, ranging from industrial developments to impacting our daily lives. It has multiple applications throughout financial sectors and enables the development of facilitating scientific endeavors with extensive commercial potentials. Nanomaterials, especially the ones which have shown biomedical and other health-related properties, have added new dimensions to the field of nanotechnology. Recently, the use of bioresources in nanotechnology has gained significant attention from the scientific community due to its 100 % eco-friendly features, availability, and low costs. In this context, jute offers a considerable potential. Globally, its plant produces the second most common natural cellulose fibers and a large amount of jute sticks as a byproduct. The main chemical compositions of jute fibers and sticks, which have a trace amount of ash content, are cellulose, hemicellulose, and lignin. This makes jute as an ideal source of pure nanocellulose, nano-lignin, and nanocarbon preparation. It has also been used as a source in the evolution of nanomaterials used in various applications. In addition, hemicellulose and lignin, which are extractable from jute fibers and sticks, could be utilized as a reductant/stabilizer for preparing other nanomaterials. This review highlights the status and prospects of jute in nanotechnology. Different research areas in which jute can be applied, such as in nanocellulose preparation, as scaffolds for other nanomaterials, catalysis, carbon preparation, life sciences, coatings, polymers, energy storage, drug delivery, fertilizer delivery, electrochemistry, reductant, and stabilizer for synthesizing other nanomaterials, petroleum industry, paper industry, polymeric nanocomposites, sensors, coatings, and electronics, have been summarized in detail. We hope that these prospects will serve as a precursor of jute-based nanotechnology research in the future.
Collapse
Affiliation(s)
- Syed Shaheen Shah
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - M Nasiruzzaman Shaikh
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Mohd Yusuf Khan
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | | | - Mohammad Mizanur Rahman
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
43
|
Salimi F, Moradi M, Tajik H, Molaei R. Optimization and characterization of eco-friendly antimicrobial nanocellulose sheet prepared using carbon dots of white mulberry (Morus alba L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3439-3447. [PMID: 33289129 DOI: 10.1002/jsfa.10974] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 12/02/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Carbon dots (C-dots) with antimicrobial activity were synthesized from the white mulberry extract with the aim of fabricating anti-listeria nanopaper using bacterial nanocellulose (BNC). Highly dispersed synthesized C-dots with a size smaller than 10 nm (approximately 4.9 nm) were impregnated into BNC by an ex situ coating method and then mechanical, morphological, UV-protectant and antibacterial activity were assessed. Randomized response surface methodology using a central composite design was applied to investigate the optimized concentration of C-dots in the BNC membrane. RESULTS An optimized nanopaper including C-dots at a concentration of 530 g L-1 and an impregnation time of 14 h at 30 °C with significant antimicrobial activity on Listeria monocytogenes was designed. The addition of C-dots into BNC significantly increased ultimate tensile strength and decreased strain with respect to breaking BNC. A BNC sheet with high-efficient UV-blocking property was prepared using C-dots. CONCLUSION Based on the results, the designed nanopaper shows a substantial capacity with respect to the fabrication of antimicrobial/UV-blocking sheets for food active packaging. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fatemeh Salimi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hossein Tajik
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Rahim Molaei
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
44
|
Versatile nanocellulose-based nanohybrids: A promising-new class for active packaging applications. Int J Biol Macromol 2021; 182:1915-1930. [PMID: 34058213 DOI: 10.1016/j.ijbiomac.2021.05.169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022]
Abstract
The food packaging industry is rapidly growing as a consequence of the development of nanotechnology and changing consumers' preferences for food quality and safety. In today's globalization of markets, active packaging has achieved many advantages with the capability to absorb or release substances for prolonging the food shelf life over the traditional one. Therefore, it is critical to developing multifunctional active packaging materials from biodegradable polymers with active agents to decrease environmental challenges. This review article addresses the recent advances in nanocelluloses (NCs)- baseds nanohybrids with new function features in packaging, focusing on the various synthesis methods of NCs-based nanohybrids, and their reinforcing effects as active agents on food packaging properties. The applications of NCs-based nanohybrids as antioxidants, antimicrobial agents, and UV blocker absorbers for prolonging food shelf-life are also reviewed. Overall, these advantages make the CNs-based nanohybrids with versatile properties promising in food and packaging industries, which will impact more readership with concern for future research.
Collapse
|
45
|
Zhong C, Zajki-Zechmeister K, Nidetzky B. Reducing end thiol-modified nanocellulose: Bottom-up enzymatic synthesis and use for templated assembly of silver nanoparticles into biocidal composite material. Carbohydr Polym 2021; 260:117772. [PMID: 33712130 DOI: 10.1016/j.carbpol.2021.117772] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022]
Abstract
Nanoparticle-polymer composites are important functional materials but structural control of their assembly is challenging. Owing to its crystalline internal structure and tunable nanoscale morphology, cellulose is promising polymer scaffold for templating such composite materials. Here, we show bottom-up synthesis of reducing end thiol-modified cellulose chains by iterative bi-enzymatic β-1,4-glycosylation of 1-thio-β-d-glucose (10 mM), to a degree of polymerization of ∼8 and in a yield of ∼41% on the donor substrate (α-d-glucose 1-phosphate, 100 mM). Synthetic cellulose oligomers self-assemble into highly ordered crystalline (cellulose allomorph II) material showing long (micrometers) and thin nanosheet-like morphologies, with thickness of 5-7 nm. Silver nanoparticles were attached selectively and well dispersed on the surface of the thiol-modified cellulose, in excellent yield (≥ 95%) and high loading efficiency (∼2.2 g silver/g thiol-cellulose). Examined against Escherichia coli and Staphylococcus aureus, surface-patterned nanoparticles show excellent biocidal activity. Bottom-up approach by chemical design to a functional cellulose nanocomposite is presented. Synthetic thiol-containing nanocellulose can expand the scope of top-down produced cellulose materials.
Collapse
Affiliation(s)
- Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria.
| | - Krisztina Zajki-Zechmeister
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria.
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), 8010 Graz, Austria.
| |
Collapse
|
46
|
Moradi M, Jacek P, Farhangfar A, Guimarães JT, Forough M. The role of genetic manipulation and in situ modifications on production of bacterial nanocellulose: A review. Int J Biol Macromol 2021; 183:635-650. [PMID: 33957199 DOI: 10.1016/j.ijbiomac.2021.04.173] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 01/18/2023]
Abstract
Natural polysaccharides are well-known biomaterials because of their availability and low-cost, with applications in diverse fields. Cellulose, a renowned polysaccharide, can be obtained from different sources including plants, algae, and bacteria, but recently much attention has been paid to the microorganisms due to their potential of producing renewable compounds. In this regard, bacterial nanocellulose (BNC) is a novel type of nanocellulose material that is commercially synthesized mainly by Komagataeibacter spp. Characteristics such as purity, porosity, and remarkable mechanical properties made BNC a superior green biopolymer with applications in pharmacology, biomedicine, bioprocessing, and food. Genetic manipulation of BNC-producing strains and in situ modifications of the culturing conditions can lead to BNC with enhanced yield/productivity and properties. This review mainly highlights the role of genetic engineering of Komagataeibacter strains and co-culturing of bacterial strains with additives such as microorganisms and nanomaterials to synthesize BNC with improved functionality and productivity rate.
Collapse
Affiliation(s)
- Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Paulina Jacek
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, 35043 Marburg, Germany.
| | | | - Jonas T Guimarães
- Department of Food Technology, Faculty of Veterinary Medicine, Federal Fluminense University (UFF), Niterói, Rio de Janeiro, Brazil.
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| |
Collapse
|
47
|
Multifunctional cellulose based substrates for SERS smart sensing: Principles, applications and emerging trends for food safety detection. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
48
|
Ee LY, Yau Li SF. Recent advances in 3D printing of nanocellulose: structure, preparation, and application prospects. NANOSCALE ADVANCES 2021; 3:1167-1208. [PMID: 36132876 PMCID: PMC9418582 DOI: 10.1039/d0na00408a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/26/2020] [Indexed: 05/08/2023]
Abstract
Emerging cellulose nanomaterials extracted from agricultural biomasses have recently received extensive attention due to diminishing fossil resources. To further reduce the carbon footprints and wastage of valuable resources, additive manufacturing techniques of new nanocellulosic materials have been developed. Studies on the preparation and characterization of 3D-printable functional nanocellulosic materials have facilitated a deeper understanding into their desirable attributes such as high surface area, biocompatibility, and ease of functionalization. In this critical review, we compare and highlight the different methods of extracting nanocellulose from biorenewable resources and the strategies for transforming the obtained nanocellulose into nanocomposites with high 3D printability. Optimistic technical applications of 3D-printed nanocellulose in biomedical, electronics, and environmental fields are finally described and evaluated for future perspectives.
Collapse
Affiliation(s)
- Liang Ying Ee
- Department of Chemistry, National University of Singapore Lower Kent Ridge Road, Science Drive 4, S5-02-03 Singapore 117549
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore Lower Kent Ridge Road, Science Drive 4, S5-02-03 Singapore 117549
| |
Collapse
|
49
|
Lamm ME, Li K, Qian J, Wang L, Lavoine N, Newman R, Gardner DJ, Li T, Hu L, Ragauskas AJ, Tekinalp H, Kunc V, Ozcan S. Recent Advances in Functional Materials through Cellulose Nanofiber Templating. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005538. [PMID: 33565173 DOI: 10.1002/adma.202005538] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Advanced templating techniques have enabled delicate control of both nano- and microscale structures and have helped thrust functional materials into the forefront of society. Cellulose nanomaterials are derived from natural polymers and show promise as a templating source for advanced materials. Use of cellulose nanomaterials in templating combines nanoscale property control with sustainability, an attribute often lacking in other templating techniques. Use of cellulose nanofibers for templating has shown great promise in recent years, but previous reviews on cellulose nanomaterial templating techniques have not provided extensive analysis of cellulose nanofiber templating. Cellulose nanofibers display several unique properties, including mechanical strength, porosity, high water retention, high surface functionality, and an entangled fibrous network, all of which can dictate distinctive aspects in the final templated materials. Many applications exploit the unique aspects of templating with cellulose nanofibers that help control the final properties of the material, including, but not limited to, applications in catalysis, batteries, supercapacitors, electrodes, building materials, biomaterials, and membranes. A detailed analysis on the use of cellulose nanofibers templating is provided, addressing specifically how careful selection of templating mechanisms and methodologies, combined toward goal applications, can be used to directly benefit chosen applications in advanced functional materials.
Collapse
Affiliation(s)
- Meghan E Lamm
- Manufacturing Demonstration Facility, Energy and Transportation Science Division, Oak Ridge National Laboratory, 2350 Cherahala Boulevard, Knoxville, TN, 37932, USA
| | - Kai Li
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
| | - Ji Qian
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Lu Wang
- Advanced Structures and Composites Center, University of Maine, 35 Flagstaff Road, Orono, ME, 04469, USA
- School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, ME, 04469, USA
| | - Nathalie Lavoine
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Reagan Newman
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Douglas J Gardner
- Advanced Structures and Composites Center, University of Maine, 35 Flagstaff Road, Orono, ME, 04469, USA
- School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, ME, 04469, USA
| | - Teng Li
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Arthur J Ragauskas
- Center for BioEnergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Forestry, Wildlife and Fisheries, Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Estabrook Road, Knoxville, TN, 37916, USA
| | - Halil Tekinalp
- Manufacturing Demonstration Facility, Energy and Transportation Science Division, Oak Ridge National Laboratory, 2350 Cherahala Boulevard, Knoxville, TN, 37932, USA
| | - Vlastimil Kunc
- Manufacturing Demonstration Facility, Energy and Transportation Science Division, Oak Ridge National Laboratory, 2350 Cherahala Boulevard, Knoxville, TN, 37932, USA
| | - Soydan Ozcan
- Manufacturing Demonstration Facility, Energy and Transportation Science Division, Oak Ridge National Laboratory, 2350 Cherahala Boulevard, Knoxville, TN, 37932, USA
| |
Collapse
|
50
|
Alle M, Park SC, Bandi R, Lee SH, Kim JC. Rapid in-situ growth of gold nanoparticles on cationic cellulose nanofibrils: Recyclable nanozyme for the colorimetric glucose detection. Carbohydr Polym 2021; 253:117239. [PMID: 33278995 DOI: 10.1016/j.carbpol.2020.117239] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 01/11/2023]
Abstract
Novel microwave-assisted green in-situ synthesis of positively charged gold nanoparticles (AuNPs) supported by cationic cellulose nanofibrils (C.CNF) within 30 s and devoid of additional reducing agent is reported. Peroxidase activity of these positive AuNPs was studied and that appeared to be superior over its negative charged counterpart. Further the AuNPs@C.CNF is casted into a film which makes it reusable. Using TMB substrate, simple and sensitive colorimetric detection methods for H2O2 and glucose were established. Under optimal conditions, the linear ranges were found to be 0.5-30 μM and 1-60 μM, and the detection limits were 0.30 and 0.67 μM for H2O2 and glucose, respectively. The film was potentially reused for the detection of glucose up to five cycles without a decrease in the activity. Further, this technique was employed to quantify glucose in human serum samples, and the obtained results were comparable with those of the standard GOD-POD method.
Collapse
Affiliation(s)
- Madhusudhan Alle
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Soo Chan Park
- Department of Medical Biomaterials Engineering, College of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rajkumar Bandi
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seung-Hwan Lee
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Jin-Chul Kim
- Department of Medical Biomaterials Engineering, College of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|