1
|
Malcı K, Li IS, Kisseroudis N, Ellis T. Modulating Microbial Materials - Engineering Bacterial Cellulose with Synthetic Biology. ACS Synth Biol 2024; 13:3857-3875. [PMID: 39509658 DOI: 10.1021/acssynbio.4c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The fusion of synthetic biology and materials science offers exciting opportunities to produce sustainable materials that can perform programmed biological functions such as sensing and responding or enhance material properties through biological means. Bacterial cellulose (BC) is a unique material for this challenge due to its high-performance material properties and ease of production from culturable microbes. Research in the past decade has focused on expanding the benefits and applications of BC through many approaches. Here, we explore how the current landscape of BC-based biomaterials is being shaped by progress in synthetic biology. As well as discussing how it can aid production of more BC and BC with tailored material properties, we place special emphasis on the potential of using BC for engineered living materials (ELMs); materials of a biological nature designed to carry out specific tasks. We also explore the role of 3D bioprinting being used for BC-based ELMs and highlight specific opportunities that this can bring. As synthetic biology continues to advance, it will drive further innovation in BC-based materials and ELMs, enabling many new applications that can help address problems in the modern world, in both biomedicine and many other application fields.
Collapse
Affiliation(s)
- Koray Malcı
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
| | - Ivy S Li
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
| | - Natasha Kisseroudis
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Tom Ellis
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
2
|
Pogorelova N, Parshin D, Lipovka A, Besov A, Digel I, Larionov P. Structural and Viscoelastic Properties of Bacterial Cellulose Composites: Implications for Prosthetics. Polymers (Basel) 2024; 16:3200. [PMID: 39599291 PMCID: PMC11597974 DOI: 10.3390/polym16223200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
This study investigates the morphological, mechanical, and viscoelastic properties of bacterial cellulose (BC) hydrogels synthesized by the microbial consortium Medusomyces gisevii. BC gel films were produced under static (S) or bioreactor (BioR) conditions. Additionally, an anisotropic sandwich-like composite BC film was developed and tested, consisting of a rehydrated (S-RDH) BC film synthesized under static conditions, placed between two BioR-derived BC layers. Sample characterization was performed using scanning electron microscopy (SEM), atomic force microscopy (AFM), rheometry, and uniaxial stretching tests. To our knowledge, this is the first study to combine uniaxial and rheological tests for BC gels. AFM and SEM revealed that the organization of BC fibrils (80±20 nm in diameter) was similar to that of collagen fibers (96±31 nm) found in human dura mater, suggesting potential implications for neurosurgical practice. Stretching tests demonstrated that the drying and rehydration of BC films resulted in a 2- to 8-fold increase in rigidity compared to other samples. This trend was consistent across both small and large deformations, regardless of direction. Mechanically, the composite (BioR+S-RDH) outperformed BC hydrogels synthesized under static and bioreactor conditions by approx. 26%. The composite material (BioR+S-RDH) exhibited greater anisotropy in the stretching tests compared to S-RDH, but less than the BioR-derived hydrogels, which had anisotropy coefficients ranging from 1.29 to 2.03. BioR+S-RDH also demonstrated the most consistent viscoelastic behavior, indicating its suitability for withstanding shear stress and potential use in prosthetic applications. These findings should provide opportunities for further research and medical applications.
Collapse
Affiliation(s)
- Natalia Pogorelova
- Department of Food and Food Biotechnology, Omsk State Agrarian University, Omsk 644008, Russia;
| | - Daniil Parshin
- Lavrentyev Institute of Hydrodynamics, Novosibirsk 630090, Russia; (A.L.); (A.B.)
| | - Anna Lipovka
- Lavrentyev Institute of Hydrodynamics, Novosibirsk 630090, Russia; (A.L.); (A.B.)
| | - Alexey Besov
- Lavrentyev Institute of Hydrodynamics, Novosibirsk 630090, Russia; (A.L.); (A.B.)
| | - Ilya Digel
- Institute for Bioengineering, FH Aachen—University of Applied Sciences, 52066 Aachen, Germany;
| | - Pyotr Larionov
- Novosibirsk Research Institute of Traumatology and Orthopaedics n.a. Ya.L. Tsivyan, Novosibirsk 630091, Russia;
| |
Collapse
|
3
|
Al-Hasabe ASH, Abdull Razis AFB, Baharum NAB, Yu CY, Mat Isa N. Production and characterization of bacterial cellulose synthesized by Enterobacter chuandaensis strain AEC using Phoenix dactylifera and Musa acuminata. Arch Microbiol 2024; 206:447. [PMID: 39470811 DOI: 10.1007/s00203-024-04182-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
Bacterial cellulose (BC) is a biopolymer synthesized extracellularly by certain bacteria through the polymerization of glucose monomers. This study aimed to produce BC using Enterobacter chuandaensis with fruit extracts from Phoenix dactylifera (D) and Musa acuminata (M) as carbon sources. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) showed characteristic cellulose vibrations, while X-ray diffraction (XRD) identified distinct peaks at 15.34°, 19.98°, 22.58°, and 34.6°, confirming the cellulose structure. Whole-genome sequencing of E. chuandaensis identified key genes involved in BC production. The BC produced then exhibited a molecular weight of 1,857,804 g/mol, with yields of 2.8 g/L and 2.5 g/L for treatments D and M, respectively. The crystallinity index of the purified BC was 74.1, and 13C NMR analysis confirmed the dominant cellulose Iα crystalline form. The BC showed high biocompatibility in cytotoxicity assays, with cell viability between 92% and 100%, indicating its potential for use in biomedical applications. This investigation represents the first report of BC production by E. chuandaensis, which promises a new avenue for sustainable and efficient BC synthesis using fruit extracts as carbon sources.
Collapse
Affiliation(s)
- Ashraf Sami Hassan Al-Hasabe
- Department of Cell & Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
- Department of Biology, Faculty of Science, Mustansiriyah University, Baghdad, Iraq
| | - Ahmad Faizal Bin Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Nadiya Akmal Binti Baharum
- Department of Cell & Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Choo Yee Yu
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Nurulfiza Mat Isa
- Department of Cell & Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.
| |
Collapse
|
4
|
Al-Hasabe ASH, Abdull Razis AFB, Baharum NAB, Yu CY, Mat Isa NB. Production and analysis of synthesized bacterial cellulose by Enterococcus faecalis strain AEF using Phoenix dactylifera and Musa acuminata fruit extracts. World J Microbiol Biotechnol 2024; 40:362. [PMID: 39446188 DOI: 10.1007/s11274-024-04159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Bacterial cellulose (BC) is a highly versatile biopolymer renowned for its exceptional mechanical strength, water retention, and biocompatibility. These properties make it a valuable material for various industrial and biomedical applications. In this study, Enterococcus faecalis synthesized extracellular BC, utilizing Phoenix dactylifera and Musa acuminata fruit extracts as sustainable carbon sources. LC-MS analysis identified glucose as the primary carbohydrate in these extracts, providing a suitable substrate for BC production. Scanning Electron Microscopy (SEM) revealed a network of BC nanofibers on Congo red agar plates. ATR-FTIR spectroscopy confirmed the presence of characteristic cellulose functional groups, further supporting BC synthesis. X-ray diffraction (XRD) analysis indicated a high crystallinity index of 71%, consistent with the cellulose I structure, as evidenced by peaks at 16.22°, 21.46°, 22.52°, and 34.70°. Whole-genome sequencing of E. faecalis identified vital genes involved in BC biosynthesis, including bcsA, bcsB, diguanylate cyclase (DGC), and 6-phosphofructokinase (pfkA). Antibiotic susceptibility tests revealed resistance to cefotaxime, ceftazidime, and ceftriaxone, while susceptibility to imipenem was observed. Quantitative assessment demonstrated that higher concentrations of fruit extracts (5.0-20 mg/mL) significantly enhanced BC production. Cytotoxicity testing via the MTT assay confirmed excellent biocompatibility with NIH/3T3 fibroblast cells, showing high cell viability (97-105%). Unlike commonly studied Gram-negative bacteria like Acetobacter xylinum for BC production, this research focuses on Gram-positive Enterococcus faecalis and utilizes Phoenix dactylifera and Musa acuminata fruit extracts as carbon sources. This approach offers a sustainable and promising avenue for BC production.
Collapse
Affiliation(s)
- Ashraf Sami Hassan Al-Hasabe
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
- Department of Biology, Faculty of Science, Mustansiriyah University, Baghdad, Iraq
| | - Ahmad Faizal Bin Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Nadiya Akmal Binti Baharum
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Choo Yee Yu
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Nurulfiza Binti Mat Isa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.
| |
Collapse
|
5
|
Xu Y, Xin J, Lyu Y, Zhang C. Effects of bacterial cellulose/thyme essential oil emulsion coating on the shelf life of chilled chicken meat. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5577-5587. [PMID: 38372374 DOI: 10.1002/jsfa.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/10/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Bacterial cellulose (BC) is a fiber substance produced by microbial fermentation. It is widely used in the food preservation industry because of its extremely pure texture, high crystallinity and high biocompatibility. In the present study, bacterial cellulose/thyme essential oil (BC/TEO-E) with antibacterial and fresh-keeping functions was prepared by ultrasonic treatment of modified bacterial cellulose for encapsulation of thyme essential oil, which effectively inhibited the spoilage of chilled chicken. RESULTS The purified BC, produced by Acetobacter xylinum ATCC 53524, was ultrasonically treated wih different times (0, 30, 60 and 90 min). Transmission electron microscopy, scanning electron microscopy, Fourier transformed infrared spectroscopy, X-ray diffraction, differential scanning calorimetry and zeta potential were used to characterize the structure of BC after ultrasound, showing that BC, treated for 30 min, had the optimal fiber structure, crystallinity (85.8%), thermal stability (347.77 °C) and solution stability (-26.63 ± 1.96 mV). BC/TEO-E was prepared by a homogenizer for the preservation of chilled chicken. Optical microscopy indicated that the BC/TEO-E prepared by 0.5% BC had optimal dispersion and stability, and even no delamination was observed in the emulsion. Compared with other groups (control, 0.5% BC and Tween-E), the total number of colonies and coliforms in chilled chicken treated with 0.5% BC/TEO-E was the lowest during the whole storage period (12 days), indicating that it can effectively inhibit bacterial growth. In addition, total volatile base nitrogen (TVB-N), thiobarbituric acid reactive substances, pH and drip loss results showed that 0.5% BC/TEO-E could effectively inhibit the spoilage of chilled chicken compared to the other treatment groups. CONCLUSION All of the results acquired in the present study indicate that BC/TEO-E has a potential application in chilled chicken preservation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuelong Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiajin Xin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yunbin Lyu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chong Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Li W, Huang X, Liu H, Lian H, Xu B, Zhang W, Sun X, Wang W, Jia S, Zhong C. Improvement in bacterial cellulose production by co-culturing Bacillus cereus and Komagataeibacter xylinus. Carbohydr Polym 2023; 313:120892. [PMID: 37182977 DOI: 10.1016/j.carbpol.2023.120892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023]
Abstract
Bacterial cellulose (BC) is a bio-produced nanostructure material widely used in biomedical, food, and paper-manufacturing industries. However, low production efficiency and high-cost have limited its industrial applications. This study aimed to examine the level of improvement in BC production by co-culturing Bacillus cereus and Komagataeibacter xylinus. The BC yield in corn stover enzymatic hydrolysate was found to be obviously enhanced from 1.2 to 4.4 g/L after the aforementioned co-culturing. The evidence indicated that acetoin (AC) and 2,3-butanediol (2,3-BD) produced by B. cereus were the key factors dominating BC increment. The mechanism underlying BC increment was that AC and 2,3-BD increased the specific activity of AC dehydrogenase and the contents of adenosine triphosphate (ATP) and acetyl coenzyme A (acetyl-CoA), thus promoting the growth and energy level of K. xylinus. Meanwhile, the immobilization of BC could also facilitate oxygen acquisition in B. cereus under static conditions. This study was novel in reporting that the co-culture could effectively enhance BC production from the lignocellulosic enzymatic hydrolysate.
Collapse
Affiliation(s)
- Wenchao Li
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, 300457 Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, 300457 Tianjin, PR China
| | - Xinxin Huang
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, 300457 Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, 300457 Tianjin, PR China
| | - Huan Liu
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, 300457 Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, 300457 Tianjin, PR China
| | - Hao Lian
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, 300457 Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, 300457 Tianjin, PR China
| | - Bin Xu
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, 300457 Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, 300457 Tianjin, PR China
| | - Wenjin Zhang
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, 300457 Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, 300457 Tianjin, PR China
| | - Xuewen Sun
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, 300457 Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, 300457 Tianjin, PR China
| | - Wei Wang
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, 300457 Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, 300457 Tianjin, PR China
| | - Shiru Jia
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, 300457 Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, 300457 Tianjin, PR China
| | - Cheng Zhong
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, 300457 Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, 300457 Tianjin, PR China.
| |
Collapse
|
7
|
Solhi L, Guccini V, Heise K, Solala I, Niinivaara E, Xu W, Mihhels K, Kröger M, Meng Z, Wohlert J, Tao H, Cranston ED, Kontturi E. Understanding Nanocellulose-Water Interactions: Turning a Detriment into an Asset. Chem Rev 2023; 123:1925-2015. [PMID: 36724185 PMCID: PMC9999435 DOI: 10.1021/acs.chemrev.2c00611] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Modern technology has enabled the isolation of nanocellulose from plant-based fibers, and the current trend focuses on utilizing nanocellulose in a broad range of sustainable materials applications. Water is generally seen as a detrimental component when in contact with nanocellulose-based materials, just like it is harmful for traditional cellulosic materials such as paper or cardboard. However, water is an integral component in plants, and many applications of nanocellulose already accept the presence of water or make use of it. This review gives a comprehensive account of nanocellulose-water interactions and their repercussions in all key areas of contemporary research: fundamental physical chemistry, chemical modification of nanocellulose, materials applications, and analytical methods to map the water interactions and the effect of water on a nanocellulose matrix.
Collapse
Affiliation(s)
- Laleh Solhi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Valentina Guccini
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Katja Heise
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Iina Solala
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Elina Niinivaara
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada
| | - Wenyang Xu
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Laboratory of Natural Materials Technology, Åbo Akademi University, TurkuFI-20500, Finland
| | - Karl Mihhels
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Marcel Kröger
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Zhuojun Meng
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Jakob Wohlert
- Wallenberg Wood Science Centre (WWSC), Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044Stockholm, Sweden
| | - Han Tao
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Emily D Cranston
- Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1Z3, Canada
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| |
Collapse
|
8
|
Campano C, Rivero-Buceta V, Fabra MJ, Prieto MA. Gaining control of bacterial cellulose colonization by polyhydroxyalkanoate-producing microorganisms to develop bioplasticized ultrathin films. Int J Biol Macromol 2022; 223:1495-1505. [PMID: 36395938 DOI: 10.1016/j.ijbiomac.2022.11.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022]
Abstract
Synergistic methodological strategies based on the fields of microbial biotechnology and materials science open up an enormous range of possibilities for the sustainable production of advanced materials with predictable properties. This study shows how naturally produced polyhydroxyalkanoate (PHA) particles are introduced into bacterial cellulose (BC) driven by their bacterial producers. Thanks to an extensive knowledge of the internal structure of BC, it was possible to control the colonization process, i.e. loading and localization of PHA. A subsequent acid treatment favored the PHA-BC bonding at the position reached by the bacteria. These biodegradable films showed improved mechanical and barrier properties even with respect to reference plastic films 8 times thicker, reaching a Young's modulus 4.25 times higher and an oxygen permeability 3 times lower than those of polyethylene terephthalate (PET) films. Owing to the versatility of the method, a wide variety of materials can be developed for very diverse fields of application.
Collapse
Affiliation(s)
- Cristina Campano
- Polymer Biotechnology Group, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain.
| | - Virginia Rivero-Buceta
- Polymer Biotechnology Group, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
| | - María José Fabra
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - M Auxiliadora Prieto
- Polymer Biotechnology Group, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain.
| |
Collapse
|
9
|
González-García Y, Meza-Contreras JC, Gutiérrez-Ortega JA, Manríquez-González R. In Vivo Modification of Microporous Structure in Bacterial Cellulose by Exposing Komagataeibacter xylinus Culture to Physical and Chemical Stimuli. Polymers (Basel) 2022; 14:polym14204388. [PMID: 36297965 PMCID: PMC9611358 DOI: 10.3390/polym14204388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022] Open
Abstract
Bacterial cellulose (BC) samples were obtained in a static culture of K. xylinus under the effect of a low-intensity magnetic field, UV light, NaCl, and chloramphenicol. The effect of such stimuli on the amount of BC produced and its production rate, specific area, pore volume, and pore diameter were evaluated. The polysaccharide production was enhanced 2.28-fold by exposing K. xylinus culture to UV light (366 nm) and 1.7-fold by adding chloramphenicol (0.25 mM) to the medium in comparison to BC control. All the stimuli triggered a decrease in the rate of BC biosynthesis. BC membranes were found to be mesoporous materials with an average pore diameter from 21.37 to 25.73 nm. BC produced under a magnetic field showed the lowest values of specific area and pore volume (2.55 m2 g−1 and 0.024 cm3 g−1), while the BC synthesized in the presence of NaCl showed the highest (15.72 m2 g−1 and 0.11 cm3 g−1). FTIR spectra of the BC samples also demonstrated changes related to structural order. The rehydration property in these BC samples is not mainly mediated by the crystallinity level or porosity. In summary, these results support that BC production, surface, and structural properties could be modified by manipulating the physical and chemical stimuli investigated.
Collapse
Affiliation(s)
- Yolanda González-García
- Departamento de Madera, Celulosa y Papel, CUCEI, Universidad de Guadalajara, Km 15.5, Carretera Guadalajara-Nogales, Las Agujas, Zapopan 45020, Jalisco, Mexico
| | - Juan C. Meza-Contreras
- Departamento de Madera, Celulosa y Papel, CUCEI, Universidad de Guadalajara, Km 15.5, Carretera Guadalajara-Nogales, Las Agujas, Zapopan 45020, Jalisco, Mexico
| | - José A. Gutiérrez-Ortega
- Departamento de Química, CUCEI, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, Esq. Calzada Olímpica, Guadalajara 44430, Jalisco, Mexico
| | - Ricardo Manríquez-González
- Departamento de Madera, Celulosa y Papel, CUCEI, Universidad de Guadalajara, Km 15.5, Carretera Guadalajara-Nogales, Las Agujas, Zapopan 45020, Jalisco, Mexico
- Correspondence:
| |
Collapse
|
10
|
Zefirov VV, Sadykova VS, Ivanenko IP, Kuznetsova OP, Butenko IE, Gromovykh TI, Kiselyova OI. Liquid-crystalline ordering in bacterial cellulose produced by Gluconacetobaсter hansenii on glucose-containing media. Carbohydr Polym 2022; 292:119692. [PMID: 35725180 DOI: 10.1016/j.carbpol.2022.119692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022]
Abstract
This research is dedicated to the studies of the microscale morphology of bacterial cellulose (BC) obtained by means of static cultivation of Gluconacetobacter hansenii GH-1/2008. We found that the microscale morphology depended on the BC production rate that was varied by using different glucose concentrations in the cultivation medium. It was revealed that at higher production rates, BC fibrils were aligned in a liquid-crystalline-like (LC-like) order. The observed helical alignment was always left-handed. The half-periods of the helix varied from 50 μm to 150 μm depending on the cultivation conditions. The mechanical and water absorption properties of the obtained BC pellicles were measured. The former correlated mainly with the density of the samples; the latter were the best for films with layered structure, where the BC had segregated into fleece sheets separated by gaps with low density of fibrils.
Collapse
Affiliation(s)
- Vadim V Zefirov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie gory 1-2, Moscow 119991, Russian Federation; A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str., 28, Moscow 119991, Russian Federation
| | - Vera S Sadykova
- G.F. Gauze Institute of New Antibiotics, Bolshaya Pirogovskaya str., 11, bld. 1, Moscow 119021, Russian Federation
| | - Ilya P Ivanenko
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie gory 1-2, Moscow 119991, Russian Federation
| | - Olga P Kuznetsova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina str., 4, Moscow 119991, Russian Federation
| | - Ivan E Butenko
- G.F. Gauze Institute of New Antibiotics, Bolshaya Pirogovskaya str., 11, bld. 1, Moscow 119021, Russian Federation
| | - Tatiana I Gromovykh
- ChemBioTech Department, Moscow Polytechnic University, Bolshaya Semenovskaya str., 38, Moscow 107023, Russian Federation
| | - Olga I Kiselyova
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie gory 1-2, Moscow 119991, Russian Federation.
| |
Collapse
|
11
|
dos Santos GR, Soeiro VS, Talarico CF, Ataide JA, Lopes AM, Mazzola PG, Oliveira TJ, Oliveira Junior JM, Grotto D, Jozala AF. Bacterial Cellulose Membranes as Carriers for Nisin: Incorporation, Antimicrobial Activity, Cytotoxicity and Morphology. Polymers (Basel) 2022; 14:polym14173497. [PMID: 36080572 PMCID: PMC9460746 DOI: 10.3390/polym14173497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Based on the previous study, in which nisin and bacterial cellulose were utilized, this new experiment loads nisin into bacterial cellulose (N–BC) and evaluates the morphological characteristics, cytotoxicity, antimicrobial activity and stability of the developed system. The load efficiency of nisin in BC was evaluated by an agar diffusion assay, utilizing Lactobacillus sakei, and total proteins. After having found the ideal time and concentration for the loading process, the system stability was evaluated for 100 days at 4, 25 and 37 °C against Staphylococcus aureus and L. sakei. Thus, in this study, there is a system that proves to be efficient, once BC has enhanced the antimicrobial activity of nisin, acting as a selective barrier for other compounds present in the standard solution and protecting the peptide. After 4 h, with 45% of proteins, this activity was almost 2 log10 higher than that of the initial solution. Once the nisin solution was not pure, it is possible to suggest that the BC may have acted as a filter. This barrier enhanced the nisin activity and, as a consequence of the nisin loading, a stable N–BC system formed. The N–BC could create meaningful material for pharmaceutical and food applications.
Collapse
Affiliation(s)
- Gabriela Ribeiro dos Santos
- LAMINFE—Laboratory of Industrial Microbiology and Fermentation Process, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
| | - Victória Soares Soeiro
- LAMINFE—Laboratory of Industrial Microbiology and Fermentation Process, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
| | - Carolina Fernanda Talarico
- LAMINFE—Laboratory of Industrial Microbiology and Fermentation Process, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
| | - Janaína Artem Ataide
- Faculty of Pharmaceutical Science, University of Campinas (Unicamp), Campinas 13083-871, SP, Brazil
| | - André Moreni Lopes
- Faculty of Pharmaceutical Science, University of Campinas (Unicamp), Campinas 13083-871, SP, Brazil
| | - Priscila Gava Mazzola
- Faculty of Pharmaceutical Science, University of Campinas (Unicamp), Campinas 13083-871, SP, Brazil
| | - Thais Jardim Oliveira
- LAMINFE—Laboratory of Industrial Microbiology and Fermentation Process, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
- LAFINAU—Laboratory of Nuclear Physics, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
| | | | - Denise Grotto
- LAPETOX—Laboratory of Toxicological Research, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
| | - Angela F. Jozala
- LAMINFE—Laboratory of Industrial Microbiology and Fermentation Process, University of Sorocaba, Sorocaba 18023-000, SP, Brazil
- Correspondence:
| |
Collapse
|
12
|
Babayekhorasani F, Hosseini M, Spicer PT. Molecular and Colloidal Transport in Bacterial Cellulose Hydrogels. Biomacromolecules 2022; 23:2404-2414. [PMID: 35544686 DOI: 10.1021/acs.biomac.2c00178] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial cellulose biofilms are complex networks of strong interwoven nanofibers that control transport and protect bacterial colonies in the film. The design of diverse applications of these bacterial cellulose films also relies on understanding and controlling transport through the fiber mesh, and transport simulations of the films are most accurate when guided by experimental characterization of the structures and the resultant diffusion inside. Diffusion through such films is a function of their key microstructural length scales, determining how molecules, as well as particles and microorganisms, permeate them. We use microscopy to study the unique bacterial cellulose film via its pore structure and quantify the mobility dynamics of various sizes of tracer particles and macromolecules. Mobility is hindered within the films, as confinement and local movement strongly depend on the void size relative to diffusing tracers. The biofilms have a naturally periodic structure of alternating dense and porous layers of nanofiber mesh, and we tune the magnitude of the spacing via fermentation conditions. Micron-sized particles can diffuse through the porous layers but cannot penetrate the dense layers. Tracer mobility in the porous layers is isotropic, indicating a largely random pore structure there. Molecular diffusion through the whole film is only slightly reduced by the structural tortuosity. Knowledge of transport variations within bacterial cellulose networks can be used to guide the design of symbiotic cultures in these structures and enhance their use in applications like biomedical implants, wound dressings, lab-grown meat, clothing textiles, and sensors.
Collapse
Affiliation(s)
| | - Maryam Hosseini
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Patrick T Spicer
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
13
|
Li ZY, Azi F, Ge ZW, Liu YF, Yin XT, Dong MS. Bio-conversion of kitchen waste into bacterial cellulose using a new multiple carbon utilizing Komagataeibacter rhaeticus: Fermentation profiles and genome-wide analysis. Int J Biol Macromol 2021; 191:211-221. [PMID: 34547311 DOI: 10.1016/j.ijbiomac.2021.09.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/02/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
A cellulose-producing bacterium Komagataeibacter rhaeticus K15 was isolated from kombucha tea, and its metabolic pathways and cellulose synthesis operon were analyzed by genome sequencing. Different from the reported K. rhaeticus, the K15 produced little gluconic acid (2.26 g/L) when glucose was the sole carbon source and has the capacity for high cellulose production (4.76 g/L) with other carbon sources. Furthermore, six nitrogen-fixing genes were found to be responsible for the survival of K15 on a nitrogen-free medium. Based on its fermentation characteristics, K15 was cultured in a kitchen waste medium as a strategy for green and sustainable bacterial cellulose production. The SEM, XRD, and FTIR results indicated that synthesized cellulose has a mean diameter of 40-50 nm nanofiber, good crystallinity, and the same chemical structure. The K15 strain provides a highly viable alternative strategy to reduce the costs of bacterial cellulose production using agro-industrial residues as nutrient sources.
Collapse
Affiliation(s)
- Zhi-Yu Li
- College of Food Science &Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Fidelis Azi
- College of Food Science &Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zhi-Wen Ge
- College of Food Science &Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yi-Fei Liu
- College of Food Science &Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xin-Tao Yin
- College of Food Science &Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ming-Sheng Dong
- College of Food Science &Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
14
|
Chen SQ, Meldrum OW, Liao Q, Li Z, Cao X, Guo L, Zhang S, Zhu J, Li L. The influence of alkaline treatment on the mechanical and structural properties of bacterial cellulose. Carbohydr Polym 2021; 271:118431. [PMID: 34364571 DOI: 10.1016/j.carbpol.2021.118431] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
The unique mechanical properties of hydrated bacterial cellulose make it suitable for biomedical applications. This study evaluates the effect of concentrated sodium hydroxide treatment on the structural and mechanical properties of bacterial cellulose hydrogels using rheological, tensile, and compression tests combined with mathematical modelling. Bacterial cellulose hydrogels show a concentration-dependent and irreversible reduction in shear moduli, compression, and tensile strength after alkaline treatment. Applying a poroelastic biphasic model to through-thickness compressive stress-relaxation tests showed the alkaline treatment to induce no significant change in axial compression, an effect was observed in the radial direction, potentially due to the escape of water from within the hydrogel. Scanning electron microscopy showed a more porous structure of bacterial cellulose. These results show how concentration-dependent alkaline treatment induces selective weakening of intramolecular interactions between cellulose fibres, allowing the opportunity to precisely tune the mechanical properties for specific biomedical application, e.g., faster-degradable materials.
Collapse
Affiliation(s)
- Si-Qian Chen
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, PR China
| | - Oliver W Meldrum
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Qiudong Liao
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhaofeng Li
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiao Cao
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, PR China
| | - Lei Guo
- The School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Shuyan Zhang
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, PR China
| | - Jie Zhu
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, PR China.
| | - Lin Li
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, PR China.
| |
Collapse
|
15
|
Sun P, Valenzuela SV, Chunkrua P, Javier Pastor FI, Laurent CVF, Ludwig R, van Berkel WJH, Kabel MA. Oxidized Product Profiles of AA9 Lytic Polysaccharide Monooxygenases Depend on the Type of Cellulose. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:14124-14133. [PMID: 34722005 PMCID: PMC8549066 DOI: 10.1021/acssuschemeng.1c04100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are essential for enzymatic conversion of lignocellulose-rich biomass in the context of biofuels and platform chemicals production. Considerable insight into the mode of action of LPMOs has been obtained, but research on the cellulose specificity of these enzymes is still limited. Hence, we studied the product profiles of four fungal Auxiliary Activity family 9 (AA9) LPMOs during their oxidative cleavage of three types of cellulose: bacterial cellulose (BC), Avicel PH-101 (AVI), and regenerated amorphous cellulose (RAC). We observed that attachment of a carbohydrate-binding module 1 (CBM1) did not change the substrate specificity of LPMO9B from Myceliophthora thermophila C1 (MtLPMO9B) but stimulated the degradation of all three types of cellulose. A detailed quantification of oxidized ends in both soluble and insoluble fractions, as well as characterization of oxidized cello-oligosaccharide patterns, suggested that MtLPMO9B generates mainly oxidized cellobiose from BC, while producing oxidized cello-oligosaccharides from AVI and RAC ranged more randomly from DP2-8. Comparable product profiles, resulting from BC, AVI, and RAC oxidation, were found for three other AA9 LPMOs. These distinct cleavage profiles highlight cellulose specificity rather than an LPMO-dependent mechanism and may further reflect that the product profiles of AA9 LPMOs are modulated by different cellulose types.
Collapse
Affiliation(s)
- Peicheng Sun
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Susana V. Valenzuela
- Department
of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
- Institute
of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Pimvisuth Chunkrua
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Francisco I. Javier Pastor
- Department
of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
- Institute
of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Christophe V. F.
P. Laurent
- Biocatalysis
and Biosensing Laboratory, Department of Food Science and Technology, BOKU−University of Natural Resources and Life
Sciences, Muthgasse 18, 1190 Vienna, Austria
- Institute
of Molecular Modeling and Simulation, Department of Material Sciences
and Process Engineering, BOKU−University
of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Roland Ludwig
- Biocatalysis
and Biosensing Laboratory, Department of Food Science and Technology, BOKU−University of Natural Resources and Life
Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Willem J. H. van Berkel
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Mirjam A. Kabel
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
16
|
Momin M, Mishra V, Gharat S, Omri A. Recent advancements in cellulose-based biomaterials for management of infected wounds. Expert Opin Drug Deliv 2021; 18:1741-1760. [PMID: 34605347 DOI: 10.1080/17425247.2021.1989407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Chronic wounds are a substantial burden on the healthcare system. Their treatment requires advanced dressings, which can provide a moist wound environment, prevent bacterial infiltration, and act as a drug carrier. Cellulose is biocompatible, biodegradable, and can be functionalized according to specific requirements, which makes it a highly versatile biomaterial. Antimicrobial cellulose dressings are proving to be highly effective against infected wounds. AREAS COVERED This review briefly addresses the mechanism of wound healing and its pathophysiology. It also discusses wound infections, biofilm formation, and progressive emergence of drug-resistant bacteria in chronic wounds and the treatment strategies for such types of infected wounds. It also summarizes the general properties, method of production, and types of cellulose wound dressings. It explores recent studies and advancements regarding the use of cellulose and its derivatives in wound management. EXPERT OPINION Cellulose and its various functionalized derivatives represent a promising choice of wound dressing material. Cellulose-based dressings loaded with antimicrobials are very useful in controlling infection in a chronic wound. Recent studies showing its efficacy against drug-resistant bacteria make it a favorable choice for chronic wound infections. Further research and large-scale clinical trials are required for better clinical evidence of its efficiency.
Collapse
Affiliation(s)
- Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.,SVKM's C B Patel Research Center for Chemistry and Biological Sciences, Mumbai, India
| | - Varsha Mishra
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Sankalp Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada
| |
Collapse
|
17
|
Tailor-made microbial consortium for Kombucha fermentation: Microbiota-induced biochemical changes and biofilm formation. Food Res Int 2021; 147:110549. [PMID: 34399526 DOI: 10.1016/j.foodres.2021.110549] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/28/2021] [Accepted: 06/16/2021] [Indexed: 12/26/2022]
Abstract
Kombucha is a very distinct naturally fermented sweetened tea that has been produced for thousands of years. Fermentation relies on metabolic activities of the complex autochthonous symbiotic microbiota embedded in a floating biofilm and used as a backslop for successive fermentations. Here, we designed a tailor-made microbial consortium representative of the core Kombucha microbiota to drive this fermentation. Microbial (counts, metagenetics), physico-chemical (pH, density) and biochemical (organic acids, volatile compounds) parameters were monitored as well as biofilm formation by confocal laser scanning microscopy and scanning electron microscopy. While nine species were co-inoculated, four (Dekkera bruxellensis, Hanseniaspora uvarum, Acetobacter okinawensis and Liquorilactobacillus nagelii) largely dominated. Microbial activities led to acetic, lactic, succinic and oxalic acids being produced right from the start of fermentation while gluconic and glucuronic acids progressively increased. A distinct shift in volatile profile was also observed with mainly aldehydes identified early on, then high abundances of fatty acids, ketones and esters at the end. Correlation analyses, combining metabolomic and microbial data also showed a shift in species abundances during fermentation. We also determined distinct bacteria-yeast co-occurence patterns in biofilms by microscopy. Our study provides clear evidence that a tailor-made consortium can be successfully used to drive Kombucha fermentations.
Collapse
|
18
|
Skiba EA, Shavyrkina NA, Budaeva VV, Sitnikova AE, Korchagina AA, Bychin NV, Gladysheva EK, Pavlov IN, Zharikov AN, Lubyansky VG, Semyonova EN, Sakovich GV. Biosynthesis of Bacterial Cellulose by Extended Cultivation with Multiple Removal of BC Pellicles. Polymers (Basel) 2021; 13:2118. [PMID: 34203298 PMCID: PMC8271380 DOI: 10.3390/polym13132118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 01/16/2023] Open
Abstract
Extended cultivation with multiple removal of BC pellicles is proposed herein as a new biosynthetic process for bacterial cellulose (BC). This method enhances the BC surface area by 5-11 times per unit volume of the growth medium, improving the economic efficiency of biosynthesis. The resultant BC gel-films were thin, transparent, and congruent. The degree of polymerization (DP) and elastic modulus (EM) depended on the number of BC pellicle removals, vessel shape, and volume. The quality of BC from removals II-III to VII was better than from removal I. The process scale-up of 1:40 by volume increased DP by 1.5 times and EM by 5 times. A fact was established that the symbiotic Medusomyces gisevii Sa-12 was adaptable to exhausted growth medium: the medium was able to biosynthesize BC for 60 days, while glucose ran low at 24 days. On extended cultivation, DP and EM were found to decline by 39-64% and 57-65%, respectively. The BC gel-films obtained upon removals I-VI were successfully trialed in experimental tension-free hernioplasty.
Collapse
Affiliation(s)
- Ekaterina A. Skiba
- Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Altai Krai, Russia; (E.A.S.); (N.A.S.); (A.E.S.); (A.A.K.); (N.V.B.); (E.K.G.); (I.N.P.); (G.V.S.)
| | - Nadezhda A. Shavyrkina
- Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Altai Krai, Russia; (E.A.S.); (N.A.S.); (A.E.S.); (A.A.K.); (N.V.B.); (E.K.G.); (I.N.P.); (G.V.S.)
- Biysk Technological Institute, Polzunov Altai State Technical University, 659305 Biysk, Altai Krai, Russia
| | - Vera V. Budaeva
- Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Altai Krai, Russia; (E.A.S.); (N.A.S.); (A.E.S.); (A.A.K.); (N.V.B.); (E.K.G.); (I.N.P.); (G.V.S.)
| | - Anastasia E. Sitnikova
- Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Altai Krai, Russia; (E.A.S.); (N.A.S.); (A.E.S.); (A.A.K.); (N.V.B.); (E.K.G.); (I.N.P.); (G.V.S.)
- Biysk Technological Institute, Polzunov Altai State Technical University, 659305 Biysk, Altai Krai, Russia
| | - Anna A. Korchagina
- Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Altai Krai, Russia; (E.A.S.); (N.A.S.); (A.E.S.); (A.A.K.); (N.V.B.); (E.K.G.); (I.N.P.); (G.V.S.)
| | - Nikolay V. Bychin
- Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Altai Krai, Russia; (E.A.S.); (N.A.S.); (A.E.S.); (A.A.K.); (N.V.B.); (E.K.G.); (I.N.P.); (G.V.S.)
| | - Evgenia K. Gladysheva
- Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Altai Krai, Russia; (E.A.S.); (N.A.S.); (A.E.S.); (A.A.K.); (N.V.B.); (E.K.G.); (I.N.P.); (G.V.S.)
| | - Igor N. Pavlov
- Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Altai Krai, Russia; (E.A.S.); (N.A.S.); (A.E.S.); (A.A.K.); (N.V.B.); (E.K.G.); (I.N.P.); (G.V.S.)
- Biysk Technological Institute, Polzunov Altai State Technical University, 659305 Biysk, Altai Krai, Russia
| | - Andrey N. Zharikov
- Chair of Neymark Departmental Surgery and Hospital Surgery, Altai State Medical University, 656038 Barnaul, Altai Krai, Russia; (A.N.Z.); (V.G.L.)
| | - Vladimir G. Lubyansky
- Chair of Neymark Departmental Surgery and Hospital Surgery, Altai State Medical University, 656038 Barnaul, Altai Krai, Russia; (A.N.Z.); (V.G.L.)
| | - Elena N. Semyonova
- Anatomic Pathology Department, Altai Krai Clinical Hospital, 656024 Barnaul, Altai Krai, Russia;
| | - Gennady V. Sakovich
- Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Altai Krai, Russia; (E.A.S.); (N.A.S.); (A.E.S.); (A.A.K.); (N.V.B.); (E.K.G.); (I.N.P.); (G.V.S.)
| |
Collapse
|
19
|
Shavyrkina NA, Budaeva VV, Skiba EA, Mironova GF, Bychin NV, Gismatulina YA, Kashcheyeva EI, Sitnikova AE, Shilov AI, Kuznetsov PS, Sakovich GV. Scale-Up of Biosynthesis Process of Bacterial Nanocellulose. Polymers (Basel) 2021; 13:1920. [PMID: 34207774 PMCID: PMC8227711 DOI: 10.3390/polym13121920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Bacterial nanocellulose (BNC) is a unique product of microbiological synthesis, having a lot of applications among which the most important is biomedicine. Objective complexities in scaling up the biosynthesis of BNC are associated with the nature of microbial producers for which BNC is not the target metabolite, therefore biosynthesis lasts long, with the BNC yield being small. Thus, the BNC scale-up problem has not yet been overcome. Here we performed biosynthesis of three scaled sheets of BNC (each having a surface area of 29,400 cm2, a container volume of 441 L, and a nutrient medium volume of 260 L and characterized them. The static biosynthesis of BNC in a semisynthetic nutrient medium was scaled up using the Medusomyces gisevii Sa-12 symbiotic culture. The experiment was run in duplicate. The BNC pellicle was removed once from the nutrient medium in the first experiment and twice in the second experiment, in which case the inoculum and glucose were not additionally added to the medium. The resultant BNC sheets were characterized by scanning electron microscopy, capillary viscosimetry, infrared spectroscopy, thermomechanical and thermogravimetric analyses. When the nutrient medium was scaled up from 0.1 to 260 L, the elastic modulus of BNC samples increased tenfold and the degree of polymerization 2.5-fold. Besides, we demonstrated that scaled BNC sheets could be removed at least twice from one volume of the nutrient medium, with the yield and quality of BNC remaining the same. Consequently, the world's largest BNC sheets 210 cm long and 140 cm wide, having a surface area of 29,400 cm2 each (weighing 16.24 to 17.04 kg), have been obtained in which an adult with burns or vast wounds can easily be wrapped. The resultant sheets exhibit a typical architecture of cellulosic fibers that form a spatial 3D structure which refers to individual and extremely important characteristics of BNC. Here we thus demonstrated the scale-up of biosynthesis of BNC with improved properties, and this result was achieved by using the symbiotic culture.
Collapse
Affiliation(s)
- Nadezhda A. Shavyrkina
- Laboratory of Bioconversion, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Altai Krai, Russia; (N.A.S.); (E.A.S.); (G.F.M.); (N.V.B.); (Y.A.G.); (E.I.K.); (A.E.S.); (A.I.S.); (P.S.K.); (G.V.S.)
- Biysk Technological Institute, Polzunov Altai State Technical University, 659305 Biysk, Altai Krai, Russia
| | - Vera V. Budaeva
- Laboratory of Bioconversion, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Altai Krai, Russia; (N.A.S.); (E.A.S.); (G.F.M.); (N.V.B.); (Y.A.G.); (E.I.K.); (A.E.S.); (A.I.S.); (P.S.K.); (G.V.S.)
| | - Ekaterina A. Skiba
- Laboratory of Bioconversion, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Altai Krai, Russia; (N.A.S.); (E.A.S.); (G.F.M.); (N.V.B.); (Y.A.G.); (E.I.K.); (A.E.S.); (A.I.S.); (P.S.K.); (G.V.S.)
| | - Galina F. Mironova
- Laboratory of Bioconversion, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Altai Krai, Russia; (N.A.S.); (E.A.S.); (G.F.M.); (N.V.B.); (Y.A.G.); (E.I.K.); (A.E.S.); (A.I.S.); (P.S.K.); (G.V.S.)
| | - Nikolay V. Bychin
- Laboratory of Bioconversion, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Altai Krai, Russia; (N.A.S.); (E.A.S.); (G.F.M.); (N.V.B.); (Y.A.G.); (E.I.K.); (A.E.S.); (A.I.S.); (P.S.K.); (G.V.S.)
| | - Yulia A. Gismatulina
- Laboratory of Bioconversion, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Altai Krai, Russia; (N.A.S.); (E.A.S.); (G.F.M.); (N.V.B.); (Y.A.G.); (E.I.K.); (A.E.S.); (A.I.S.); (P.S.K.); (G.V.S.)
| | - Ekaterina I. Kashcheyeva
- Laboratory of Bioconversion, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Altai Krai, Russia; (N.A.S.); (E.A.S.); (G.F.M.); (N.V.B.); (Y.A.G.); (E.I.K.); (A.E.S.); (A.I.S.); (P.S.K.); (G.V.S.)
| | - Anastasia E. Sitnikova
- Laboratory of Bioconversion, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Altai Krai, Russia; (N.A.S.); (E.A.S.); (G.F.M.); (N.V.B.); (Y.A.G.); (E.I.K.); (A.E.S.); (A.I.S.); (P.S.K.); (G.V.S.)
- Biysk Technological Institute, Polzunov Altai State Technical University, 659305 Biysk, Altai Krai, Russia
| | - Aleksei I. Shilov
- Laboratory of Bioconversion, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Altai Krai, Russia; (N.A.S.); (E.A.S.); (G.F.M.); (N.V.B.); (Y.A.G.); (E.I.K.); (A.E.S.); (A.I.S.); (P.S.K.); (G.V.S.)
- Biysk Technological Institute, Polzunov Altai State Technical University, 659305 Biysk, Altai Krai, Russia
| | - Pavel S. Kuznetsov
- Laboratory of Bioconversion, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Altai Krai, Russia; (N.A.S.); (E.A.S.); (G.F.M.); (N.V.B.); (Y.A.G.); (E.I.K.); (A.E.S.); (A.I.S.); (P.S.K.); (G.V.S.)
- Biysk Technological Institute, Polzunov Altai State Technical University, 659305 Biysk, Altai Krai, Russia
| | - Gennady V. Sakovich
- Laboratory of Bioconversion, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Altai Krai, Russia; (N.A.S.); (E.A.S.); (G.F.M.); (N.V.B.); (Y.A.G.); (E.I.K.); (A.E.S.); (A.I.S.); (P.S.K.); (G.V.S.)
| |
Collapse
|
20
|
Vázquez M, Velazquez G, Cazón P. UV-Shielding films of bacterial cellulose with glycerol and chitosan. Part 1: equilibrium moisture content and mechanical properties. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2020.1870566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Manuel Vázquez
- Department of Analytical Chemistry, Faculty of Veterinary, University of Santiago De Compostela, Lugo, Spain
| | - Gonzalo Velazquez
- Instituto Politécnico Nacional, CICATA Unidad Querétaro, Querétaro, México
| | - Patricia Cazón
- Department of Analytical Chemistry, Faculty of Veterinary, University of Santiago De Compostela, Lugo, Spain
| |
Collapse
|
21
|
Pillai MM, Tran HN, Sathishkumar G, Manimekalai K, Yoon J, Lim D, Noh I, Bhattacharyya A. Symbiotic culture of nanocellulose pellicle: A potential matrix for 3D bioprinting. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111552. [DOI: 10.1016/j.msec.2020.111552] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022]
|
22
|
Novikov IV, Pigaleva MA, Naumkin AV, Badun GA, Levin EE, Kharitonova EP, Gromovykh TI, Gallyamov MO. Green approach for fabrication of bacterial cellulose-chitosan composites in the solutions of carbonic acid under high pressure CO 2. Carbohydr Polym 2021; 258:117614. [PMID: 33593532 DOI: 10.1016/j.carbpol.2021.117614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/12/2020] [Accepted: 01/03/2021] [Indexed: 02/02/2023]
Abstract
The functionalization of the bacterial cellulose (BC) surface with a chitosan biopolymer to expand the areas of possible applications of the modified BC is an important scientific task. The creation of such composites in the carbonic acid solutions that were performed in this work has several advantages in terms of being biocompatible and eco-friendly. Quantitative analysis of chitosan content in the composite was conducted by tritium-labeled chitosan radioactivity detection method and this showed three times increased chitosan loading. Different physicochemical methods showed successful incorporation of chitosan into the BC matrix and interaction with it through hydrogen bonds. Microscopy results showed that the chitosan coating with a thickness of around 10 nm was formed in the bulk of BC, covering each microfibril. It was found that the inner specific surface area increased 1.5 times on deposition of chitosan from the solutions in carbonic acid.
Collapse
Affiliation(s)
- Ilya V Novikov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1-2, Moscow, 119991, Russian Federation.
| | - Marina A Pigaleva
- Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1-2, Moscow, 119991, Russian Federation.
| | - Alexander V Naumkin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow, 119991, Russian Federation.
| | - Gennady A Badun
- Faculty of Chemistry, Lomonosov Moscow State University, 1-2 Leninskie gory, Moscow, 119991, Russian Federation.
| | - Eduard E Levin
- Faculty of Chemistry, Lomonosov Moscow State University, 1-2 Leninskie gory, Moscow, 119991, Russian Federation; FSRC "Crystallography and Photonics" RAS, Leninsky Prospekt 59, 119333, Moscow, Russian Federation.
| | - Elena P Kharitonova
- Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1-2, Moscow, 119991, Russian Federation.
| | - Tatiana I Gromovykh
- Department of Biotechnology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Bolshaya Pirogovskaya st., Moscow, 119991, Russian Federation.
| | - Marat O Gallyamov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1-2, Moscow, 119991, Russian Federation; Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow, 119991, Russian Federation.
| |
Collapse
|
23
|
Santos TA, Spinacé MAS. Sandwich panel biocomposite of thermoplastic corn starch and bacterial cellulose. Int J Biol Macromol 2020; 167:358-368. [PMID: 33278430 DOI: 10.1016/j.ijbiomac.2020.11.156] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Inadequate disposition and long period for degradation of Petroleum-derived polymers promote damages in the environment, which could be minimized by the use of biodegradable polymers such as starch and cellulose. Films of thermoplastic corn starch (TPS) and bacterial cellulose (BC) were used to produce sandwich panel biocomposite. RXD, SEM and FTIR were used to verify the transformation of TPS from native corn starch. TPS/BC is flexible and transparent, but it is less transparent that TPS and BC due to its multilayer format. TPS/BC presented similar thermal events to TPS and BC samples and thermal stability similar to TPS. The FTIR spectrum of the TPS/BC showed bands observed in the BC and TPS spectra. BC, TPS and TPS/BC showed faster water absorption in the initial stage reaching a stability at about 50 h and presenting Fickian behavior. TPS/BC showed lower water absorption and a good adhesion between the phases observed by SEM images, which can be associated to hydrogen interactions in the interface improving mechanical properties. TPS/BC showed an increase of about 3.6 times in the tensile strength compared to TPS, indicating that BC is a good reinforcement for TPS.
Collapse
Affiliation(s)
- Talita A Santos
- Federal University of ABC, Natural and Human Sciences Center, Av. dos Estados 5001, Bangu, 09.210-170 Santo André, SP, Brazil
| | - Márcia A S Spinacé
- Federal University of ABC, Natural and Human Sciences Center, Av. dos Estados 5001, Bangu, 09.210-170 Santo André, SP, Brazil.
| |
Collapse
|
24
|
Rubina MS, Pigaleva MA, Naumkin AV, Gromovykh TI. Bacterial Cellulose Film Produced by Gluconacetobacter hansenii as a Source Material for Oxidized Nanofibrillated Cellulose. DOKLADY PHYSICAL CHEMISTRY 2020. [DOI: 10.1134/s0012501620080023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
25
|
Zhang Y, Chen Y, Cao G, Ma X, Zhou J, Xu W. Bacterial cellulose production from terylene ammonia hydrolysate by Taonella mepensis WT-6. Int J Biol Macromol 2020; 166:251-258. [PMID: 33122073 DOI: 10.1016/j.ijbiomac.2020.10.172] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/28/2022]
Abstract
Hydrothermal degradation was used to pretreat terylene with an aim of noticeably improving the yield of fermentable monomers: terephthalic acid (TPA), mono (2- hydroxyethyl) terephthalic acid (MHET), bis-hydroxyethyl terephthalate (BHET), and ethylene glycol (EG). After 0.5 h of reaction time at 180 °C, hydrothermal degradation with ammonia led to almost complete conversion of the terylene to TPA, MHET, BHET and EG, which were then transformed by Taonella mepensis WT-6 to bacterial cellulose (BC). Furthermore, the optimum fermentation conditions with the maximum BC yield were 5.0 g/L yeast extract, 30.0 °C, pH 9.0, 8.0% inoculum, and hydrolysate TOC (5.02 g/L). Additionally, mechanical and thermal analysis revealed that the properties of BC produced from TAH medium were similar to those of BC produced with HS medium. Considering the substantial amount of global terylene waste being produced, this study provides an alternative solution for the biosynthesis of BC.
Collapse
Affiliation(s)
- Yanbo Zhang
- Hubei Key Laboratory of Biomass Fibers & Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan 430200, China
| | - Yihui Chen
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Gang Cao
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Xiaoyu Ma
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jiangang Zhou
- Hubei Key Laboratory of Biomass Fibers & Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan 430200, China; School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
26
|
Chen SQ, Cao X, Li Z, Zhu J, Li L. Effect of lyophilization on the bacterial cellulose produced by different Komagataeibacter strains to adsorb epicatechin. Carbohydr Polym 2020; 246:116632. [DOI: 10.1016/j.carbpol.2020.116632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 11/24/2022]
|