1
|
Luo B, Bai X, Hou Y, Guo J, Liu Z, Duan Y, Wu Z. Research progress on MXenes in polysaccharide-based hemostasis and wound healing: A review. Int J Biol Macromol 2025; 303:140613. [PMID: 39900158 DOI: 10.1016/j.ijbiomac.2025.140613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/16/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Traumatic events occur frequently in daily life, and hemostasis and infection prevention represent key challenges in trauma care. Polysaccharide-based materials (chitosan, cellulose, etc.) are widely used as hemostasis materials due to their excellent designability and biocompatibility. However, their insufficient antibacterial activity and limited hemostatic capabilities diminish their effectiveness in wound care. As emerging two-dimensional nanomaterials, MXene offers promising solutions to these limitations. With superior hydrophilicity, antibacterial properties and biocompatibility, MXene enhances the performance of polysaccharide-based hemostasis materials. This review summarizes the characteristics and synthesis methods of MXenes and outlines recent advances in MXene/polysaccharide composites for promoting wound healing by controlling bleeding and preventing infection. Additionally, we discuss the preparation methods, the mechanisms of action, and challenges in practical applications of MXene/polysaccharide composites, and propose future research directions. By integrating the advantages of MXenes and polysaccharides, we hope to provide a more effective solution for the research of polysaccharide-based hemostatic materials.
Collapse
Affiliation(s)
- Bichong Luo
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China.
| | - Xiaofei Bai
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujie Hou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongshuang Liu
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Yongbing Duan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Zhengguo Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Leng F, Liu J, Du E, Lei S, Xie C, Jiang X, Li TF. Recent progress in polysaccharide microsphere-based hemostatic material for intravascular and extravascular hemostasis: A review. Int J Biol Macromol 2025; 300:140280. [PMID: 39870271 DOI: 10.1016/j.ijbiomac.2025.140280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/04/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Hemorrhage, a common consequence of diseases, surgical procedures, and traffic accidents, poses a significant threat to public health. Effective hemostasis is crucial for patient survival and prognosis, particular in case of internal bleeding. While polysaccharide microsphere-based hemostatic materials have gained clinical acceptance due to their effectiveness, good biocompatibility, and versatility in both intravascular and extravascular hemostasis, they are limited by their single function and insufficient hemostatic properties. Recently, booming developments have been witnessed in microsphere-based biomaterials to achieve a combination therapy for hemostasis. This review first examines the fundamentals of coagulation process, hemostatic mechanisms, and microsphere fabrication techniques. We then discuss the latest investigations in functionalized microsphere-based hemostatic materials for controlling intravascular and extravascular hemorrhage, focusing on design strategies, hemostatic properties, and clinical implementation. Finally, we also propose some limitations and challenges of these hemostatic materials, aiming to provide valuable insights for future research in novel polysaccharide microsphere-based biomaterial.
Collapse
Affiliation(s)
- Fan Leng
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Jie Liu
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
| | - Enfu Du
- Medical Imaging Center, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Sai Lei
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
| | - Cong Xie
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China.
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Tong-Fei Li
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
3
|
Gupta A, Kulkarni S, Soman S, Saha M, Kulkarni J, Rana K, Dhas N, Ayesha Farhana S, Kumar Tiyyagura P, Pandey A, Moorkoth S, Mutalik S. Breaking barriers in cancer management: The promising role of microsphere conjugates in cancer diagnosis and therapy. Int J Pharm 2024; 665:124687. [PMID: 39265846 DOI: 10.1016/j.ijpharm.2024.124687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
Cancer is a significant worldwide health concern, and there is a demand for ongoing breakthroughs in treatment techniques. Microspheres are among the most studied drug delivery platforms for delivering cargo to a specified location over an extended period of time. They are biocompatible, biodegradable, and capable of surface modifications. Microspheres and their conjugates have emerged as potential cancer therapeutic options throughout the years. This review provides an in-depth look at the current advancements and applications of microspheres and their conjugates in cancer treatment. The review encompasses a wide array of conjugates, ranging from polymers such as ethyl cellulose and Eudragit to stimuli-responsive polymers, proteins, peptides, polysaccharides such as HA and chitosan, inorganic metals, aptamers, quantum dots (QDs), biomimetic conjugates, and radio conjugates designed for radioembolization. Conjugated microspheres precisely deliver chemotherapeutics to the intended target while achieving controlled drug release to prevent side effects. It offers a means of integrating several distinct therapeutic modalities (chemotherapy, photothermal therapy, photodynamic therapy, radiotherapy, immunotherapy, etc.) to provide synergistic effects during cancer treatment. This review offers insights into the prospects and evolving role of microspheres and their conjugates in the dynamic landscape of cancer therapy. This review provides a comprehensive resource for researchers and clinicians working towards advancements in cancer treatment through innovative applications in therapy and translational research.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Moumita Saha
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jahnavi Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Komal Rana
- Manipal - Government of Karnataka Bioincubator, 3rd Floor, Advanced Research Centre, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Syeda Ayesha Farhana
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah, Qassim 51452, Saudi Arabia
| | - Pavan Kumar Tiyyagura
- Department of Chemical Engineering, Manipal Institute of Technology Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Abhijeet Pandey
- Global Drug Development/ Technical Research and Development, Novartis Healthcare Private Limited, Genome Valley, Hyderabad 500081, Telangana, India
| | - Sudheer Moorkoth
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
4
|
Yu L, Tian Y, Ding Y, Chi Z, Liu C. Chitosan/β-glycerophosphate porous microsphere prepared by facile water-in-water emulsion as a topical hemostatic material. Int J Biol Macromol 2024; 277:133683. [PMID: 39084969 DOI: 10.1016/j.ijbiomac.2024.133683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
Acute hemorrhage is a major cause of death in many emergency cases. Although many hemostatic materials have been studied in recent years, it is still necessary to develop new hemostatic materials with remarkable efficiency, biosafety, convenient preparation, low cost, and good biodegradability. In this work, novel chitosan (CS)/β-glycerophosphate (β-GP) composite porous microsphere with a uniform size of 210.00 ± 2.14 μm was fabricated through water-in-water (W/W) emulsion via microencapsulation, which can avoid the use of toxic crosslink chemicals and organic solvents to achieve facile and efficient preparation of microspheres. β-GP could promote the formation of microspheres by enhancing the hydrogen-bonding interaction between CS chains, which contributed to the macro-porous structure. Owing to their large pore size (6.0 μm) and high specific surface area (37.8 m2/g), the CS/β-GP microspheres could absorb water quickly and adsorb protein, red blood cells, and platelets through electrostatic forces to promote blood coagulation. Furthermore, the CS/β-GP microspheres achieved a significantly shortened hemostatic time (45 s) and reduced blood loss (0.03 g) in a rat liver injury model. Rat tail amputation test also showed a satisfactory hemostatic effect. Overall, the green and porous CS/β-GP microspheres can be used as a facile and topical rapid hemostatic material.
Collapse
Affiliation(s)
- Lejun Yu
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, 266003 Qingdao, China
| | - Yu Tian
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, 266003 Qingdao, China
| | - Yuanyuan Ding
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, 266003 Qingdao, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, 266003 Qingdao, China
| | - Chenguang Liu
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, 266003 Qingdao, China.
| |
Collapse
|
5
|
Świerczyńska M, Mrozińska Z, Juszczak M, Woźniak K, Kudzin MH. Preparation and Biochemical Activity of Copper-Coated Cellulose Nonwoven Fabric via Magnetron Sputtering and Alginate-Calcium Ion Complexation. Mar Drugs 2024; 22:436. [PMID: 39452844 PMCID: PMC11509239 DOI: 10.3390/md22100436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Alginate-based materials have gained significant recognition in the medical industry due to their favorable biochemical properties. As a continuation of our previous studies, we have introduced a new composite consisting of cellulose nonwoven fabric charged with a metallic copper core (CNW-Cu0) covered with a calcium alginate (ALG-Ca2+) layer. The preparation process for these materials involved three main steps: coating the cellulose nonwoven fabric with copper via magnetron sputtering (CNW → CNW-Cu0), subsequent deposition with sodium alginate (CNW-Cu0 → CNW-Cu0/ALG-Na+), followed by cross-linking the alginate chains with calcium ions (CNW-Cu0/ALG-Na+ → CNW-Cu0/ALG-Ca2+). The primary objective of the work was to supply these composites with such biological attributes as antibacterial and hemostatic activity. Namely, equipping the antibacterial materials (copper action on representative Gram-positive and Gram-negative bacteria and fungal strains) with induction of blood plasma clotting processes (activated partial thromboplastin time (aPTT) and prothrombin time (PT)). We determined the effect of CNW-Cu0/ALG-Ca2+ materials on the viability of Peripheral blood mononuclear (PBM) cells. Moreover, we studied the interactions of CNW-Cu0/ALG-Ca2+ materials with DNA using the relaxation plasmid assay. However, results showed CNW-Cu0/ALG-Ca2+'s cytotoxic properties against PBM cells in a time-dependent manner. Furthermore, the CNW-Cu0/ALG-Ca2+ composite exhibited the potential to interact directly with DNA. The results demonstrated that the CNW-Cu0/ALG-Ca2+ composites synthesized show promising potential for wound dressing applications.
Collapse
Affiliation(s)
- Małgorzata Świerczyńska
- Łukasiewicz Research Network—Łódź Institute of Technology, Marii Sklodowskiej-Curie 19/27, 90-570 Lodz, Poland
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Zdzisława Mrozińska
- Łukasiewicz Research Network—Łódź Institute of Technology, Marii Sklodowskiej-Curie 19/27, 90-570 Lodz, Poland
| | - Michał Juszczak
- Łukasiewicz Research Network—Łódź Institute of Technology, Marii Sklodowskiej-Curie 19/27, 90-570 Lodz, Poland
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Katarzyna Woźniak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Marcin H. Kudzin
- Łukasiewicz Research Network—Łódź Institute of Technology, Marii Sklodowskiej-Curie 19/27, 90-570 Lodz, Poland
| |
Collapse
|
6
|
Hassanzadeh-Tabrizi SA. Alginate based hemostatic materials for bleeding management: A review. Int J Biol Macromol 2024; 274:133218. [PMID: 38901512 DOI: 10.1016/j.ijbiomac.2024.133218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
Severe bleeding has caused significant financial losses as well as a major risk to the lives and health of military and civilian populations. Under some situations, the natural coagulation mechanism of the body is unable to achieve fast hemostasis without the use of hemostatic drugs. Thus, the development of hemostatic materials and techniques is essential. Improving the quality of life and survival rate of patients and minimizing bodily damage requires fast, efficient hemostasis and prevention of bleeding. Alginate is regarded as an outstanding hemostatic polymer because of its non-immunogenicity, biodegradability, good biocompatibility, simple gelation, non-toxicity, and easy availability. This review summarizes the basics of hemostasis and emphasizes the recent developments regarding alginate-based hemostatic systems. Structural modifications and mixing with other materials have widely been used for the improvement of hemostatic characteristics of alginate and for making multifunctional medical devices that not only prevent uncontrolled bleeding but also have antibacterial characteristics, drug delivery abilities, and curing effects. This review is hoped to prepare critical insights into alginate modifications for better hemostatic properties.
Collapse
Affiliation(s)
- S A Hassanzadeh-Tabrizi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| |
Collapse
|
7
|
Zhai M, Wu P, Liao Y, Wu L, Zhao Y. Polymer Microspheres and Their Application in Cancer Diagnosis and Treatment. Int J Mol Sci 2024; 25:6556. [PMID: 38928262 PMCID: PMC11204375 DOI: 10.3390/ijms25126556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer is a significant global public health issue with increasing morbidity and mortality rates. To address this challenge, novel drug carriers such as nano-materials, liposomes, hydrogels, fibers, and microspheres have been extensively researched and utilized in oncology. Among them, polymer microspheres are gaining popularity due to their ease of preparation, excellent performance, biocompatibility, and drug-release capabilities. This paper categorizes commonly used materials for polymer microsphere preparation, summarizes various preparation methods (emulsification, phase separation, spray drying, electrospray, microfluidics, and membrane emulsification), and reviews the applications of polymer microspheres in cancer diagnosis, therapy, and postoperative care. The current status and future development directions of polymer microspheres in cancer treatment are analyzed, highlighting their importance and potential for improving patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Yongxiang Zhao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (M.Z.); (P.W.); (Y.L.); (L.W.)
| |
Collapse
|
8
|
Wang X, Yuan Z, Shafiq M, Cai G, Lei Z, Lu Y, Guan X, Hashim R, El-Newehy M, Abdulhameed MM, Lu X, Xu Y, Mo X. Composite Aerogel Scaffolds Containing Flexible Silica Nanofiber and Tricalcium Phosphate Enable Skin Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25843-25855. [PMID: 38717308 DOI: 10.1021/acsami.4c03744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Poor hemostatic ability and less vascularization at the injury site could hinder wound healing as well as adversely affect the quality of life (QOL). An ideal wound dressing should exhibit certain characteristics: (a) good hemostatic ability, (b) rapid wound healing, and (c) skin appendage formation. This necessitates the advent of innovative dressings to facilitate skin regeneration. Therapeutic ions, such as silicon ions (Si4+) and calcium ions (Ca2+), have been shown to assist in wound repair. The Si4+ released from silica (SiO2) can upregulate the expression of proteins, including the vascular endothelial growth factor (VEGF) and alpha smooth muscle actin (α-SMA), which is conducive to vascularization; Ca2+ released from tricalcium phosphate (TCP) can promote the coagulation alongside upregulating the expression of cell migration and cell differentiation related proteins, thereby facilitating the wound repair. The overarching objective of this study was to exploit short SiO2 nanofibers along with the TCP to prepare TCPx@SSF aerogels and assess their wound healing ability. Short SiO2 nanofibers were prepared by electrospinning and blended with varying proportions of TCP to afford TCPx@SSF aerogel scaffolds. The TCPx@SSF aerogels exhibited good cytocompatibility in a subcutaneous implantation model and manifested a rapid hemostatic effect (hemostatic time 75 s) in a liver trauma model in the rabbit. These aerogel scaffolds also promoted skin regeneration and exhibited rapid wound closure, epithelial tissue regeneration, and collagen deposition. Taken together, TCPx@SSF aerogels may be valuable for wound healing.
Collapse
Affiliation(s)
- Xinyi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zhengchao Yuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Muhammad Shafiq
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Guangfang Cai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zheng Lei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yifan Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xiangheng Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Rashida Hashim
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Meera Moydeen Abdulhameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Xiao Lu
- Shanghai Orthopedic Biomaterial Technology Innovation Center, Shanghai Bio-lu Biomaterials Co., Ltd., Shanghai 201114, P. R. China
| | - Yuan Xu
- Department of Orthopaedics, Xinqiao Hospital, Army Military Medical University, No. 183, Xinqiao Street, Shapingba District, Chongqing 400037, P. R. China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
9
|
Zhou M, Lin X, Wang L, Yang C, Yu Y, Zhang Q. Preparation and Application of Hemostatic Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309485. [PMID: 38102098 DOI: 10.1002/smll.202309485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Hemorrhage remains a critical challenge in various medical settings, necessitating the development of advanced hemostatic materials. Hemostatic hydrogels have emerged as promising solutions to address uncontrolled bleeding due to their unique properties, including biocompatibility, tunable physical characteristics, and exceptional hemostatic capabilities. In this review, a comprehensive overview of the preparation and biomedical applications of hemostatic hydrogels is provided. Particularly, hemostatic hydrogels with various materials and forms are introduced. Additionally, the applications of hemostatic hydrogels in trauma management, surgical procedures, wound care, etc. are summarized. Finally, the limitations and future prospects of hemostatic hydrogels are discussed and evaluated. This review aims to highlight the biomedical applications of hydrogels in hemorrhage management and offer insights into the development of clinically relevant hemostatic materials.
Collapse
Affiliation(s)
- Minyu Zhou
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiang Lin
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Li Wang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Chaoyu Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yunru Yu
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Qingfei Zhang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| |
Collapse
|
10
|
Shao H, Wu X, Xiao Y, Yang Y, Ma J, Zhou Y, Chen W, Qin S, Yang J, Wang R, Li H. Recent research advances on polysaccharide-, peptide-, and protein-based hemostatic materials: A review. Int J Biol Macromol 2024; 261:129752. [PMID: 38280705 DOI: 10.1016/j.ijbiomac.2024.129752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/05/2023] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Hemorrhage is a potentially life-threatening emergency that can occur at any time or place. Whether traumatic, congenital, surgical, disease-related, or drug-induced, bleeding can lead to severe complications or death. Therefore, the development of efficient hemostatic materials is critical. However, the results and prognosis demonstrated by clinical means of hemostasis do not reach expectations. With the development of technology, novel hemostatic materials have been developed from polysaccharides (chitosan, hyaluronic acid, alginate, cellulose, cyclodextrins, starch, dextran, and carrageenan), peptides (self-assembling peptides), and proteins (silk fibroin, collagen, gelatin, keratin, and thrombin). These new materials exhibit high hemostatic efficacy due to the enhancement or interaction of various hemostatic mechanisms. The main forms include adhesives, sealants, bandages, hemostatic powders, and hemostatic sponges. This article introduces the clotting process and principles of hemostatic methods and reviews the research on polysaccharide-, peptide-, and protein-based hemostatic materials in the last five years. The design ideas and hemostatic principles of polysaccharide-, peptide-, and protein-based hemostatic materials are mainly introduced. Finally, we summarize material designs, advantages, disadvantages, and challenges regarding hemostatic materials.
Collapse
Affiliation(s)
- Hanjie Shao
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Xiang Wu
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Ying Xiao
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Yanyu Yang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Jingyun Ma
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Li Huili Hospital, Ningbo University, Ningbo 315100, PR China
| | - Yang Zhou
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Li Huili Hospital, Ningbo University, Ningbo 315100, PR China
| | - Wen Chen
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China
| | - Shaoxia Qin
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China
| | - Jiawei Yang
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China
| | - Rong Wang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China.
| | - Hong Li
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China.
| |
Collapse
|
11
|
Ren Z, Wang Y, Wu H, Cong H, Yu B, Shen Y. Preparation and application of hemostatic microspheres containing biological macromolecules and others. Int J Biol Macromol 2024; 257:128299. [PMID: 38008144 DOI: 10.1016/j.ijbiomac.2023.128299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
Bleeding from uncontrollable wounds can be fatal, and the body's clotting mechanisms are unable to control bleeding in a timely and effective manner in emergencies such as battlefields and traffic accidents. For irregular and inaccessible wounds, hemostatic materials are needed to intervene to stop bleeding. Hemostatic microspheres are promising for hemostasis, as their unique structural features can promote coagulation. There is a wide choice of materials for the preparation of microspheres, and the modification of natural macromolecular materials such as chitosan to enhance the hemostatic properties and make up for the deficiencies of synthetic macromolecular materials makes the hemostatic microspheres multifunctional and expands the application fields of hemostatic microspheres. Here, we focus on the hemostatic mechanism of different materials and the preparation methods of microspheres, and introduce the modification methods, related properties and applications (in cancer therapy) for the structural characteristics of hemostatic microspheres. Finally, we discuss the future trends of hemostatic microspheres and research opportunities for developing the next generation of hemostatic microsphere materials.
Collapse
Affiliation(s)
- Zekai Ren
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yumei Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Han Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
12
|
Du Y, Chen X, Li L, Zheng H, Yang A, Li H, Lv G. Benzeneboronic-alginate/quaternized chitosan-catechol powder with rapid self-gelation, wet adhesion, biodegradation and antibacterial activity for non-compressible hemorrhage control. Carbohydr Polym 2023; 318:121049. [PMID: 37479426 DOI: 10.1016/j.carbpol.2023.121049] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 07/23/2023]
Abstract
Although hemostatic powders have excellent adaptability for irregular and inaccessible wounds, their hemostasis for continuous bleeding or bleeding wounds of non-compressible organs remains a critical challenge. Herein, a series of benzeneboronic acid-modified sodium alginate/catechol-modified quaternized chitosan (SA-BA/QCS-C, SBQCC) powders is developed by borate ester crosslinking for non-compressible hemorrhage control. SBQCC powders possess remarkable tissue adhesion, rapid self-gelation, good cytocompatibility and antibacterial activity against S. aureus and E. coil. The blood coagulation assays show that SBQCC powders display excellent blood clotting ability due to the synergistic effect of SA-BA and QCS-C. The SBQCC2 powder with the SA-BA to QCS-C mass ratio of 5 to 3 has the greatest effect on the blood-clotting rate. Upon depositing SBQCC2 powder to bleeding wounds of rabbit liver, the powder can absorb a large amount of blood and form a stable hydrogel physical barrier at the bleeding wounds in situ to achieve non-pressing rapid hemostasis. The SBQCC2 powder also has good biocompatibility and can be degraded in vivo. Altogether, the SBQCC powders can be a promising candidate for rapid hemostasis, and these findings may provide a new perspective for improving the hemostatic efficiency of the hemostatic powder in biomedical fields.
Collapse
Affiliation(s)
- Yan Du
- College of Physics, Sichuan University, Chengdu 610065, China
| | - Xingtao Chen
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Orthopaedics, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Lin Li
- College of Physics, Sichuan University, Chengdu 610065, China
| | - Heng Zheng
- College of Physics, Sichuan University, Chengdu 610065, China
| | - Aiping Yang
- College of Physics, Sichuan University, Chengdu 610065, China
| | - Hong Li
- College of Physics, Sichuan University, Chengdu 610065, China.
| | - Guoyu Lv
- College of Physics, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
13
|
Feyissa Z, Edossa GD, Gupta NK, Negera D. Development of double crosslinked sodium alginate/chitosan based hydrogels for controlled release of metronidazole and its antibacterial activity. Heliyon 2023; 9:e20144. [PMID: 37809897 PMCID: PMC10559936 DOI: 10.1016/j.heliyon.2023.e20144] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Double network sodium alginate/chitosan hydrogels were prepared using calcium chloride (CaCl2) and glutaraldehyde as the crosslinking agents by the ionotropic interaction method for controlled metronidazole release. The effect of polymer ratios and CaCl2 amount is investigated by the developing porosity, gel fraction, and extent of swelling in simulated physiological fluids. Interaction between the polymers with the formation of crosslinked structures, good stability, phase nature, and morphology of the hydrogels is revealed by Fourier-transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, and scanning electron microscopy. A sodium alginate/chitosan hydrogel (weight ratio of 75:25) crosslinked with two percent CaCl2 is chosen for the in-situ loading of 200 mg of metronidazole. The drug release kinetics using different models show that the best-fit Korsmeyer-Peppas model suggests metronidazole release from the matrix follows diffusion and swelling-controlled time-dependent non-Fickian transport related to hydrogel erosion. This composition displays enhanced antimicrobial activity against Staphylococcus aureus and Escherichia coli.
Collapse
Affiliation(s)
- Zerihun Feyissa
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Gemechu Deressa Edossa
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Neeraj Kumar Gupta
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Defaru Negera
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| |
Collapse
|
14
|
Yang C, Zhang Z, Gan L, Zhang L, Yang L, Wu P. Application of Biomedical Microspheres in Wound Healing. Int J Mol Sci 2023; 24:7319. [PMID: 37108482 PMCID: PMC10138683 DOI: 10.3390/ijms24087319] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Tissue injury, one of the most common traumatic injuries in daily life, easily leads to secondary wound infections. To promote wound healing and reduce scarring, various kinds of wound dressings, such as gauze, bandages, sponges, patches, and microspheres, have been developed for wound healing. Among them, microsphere-based tissue dressings have attracted increasing attention due to the advantage of easy to fabricate, excellent physicochemical performance and superior drug release ability. In this review, we first introduced the common methods for microspheres preparation, such as emulsification-solvent method, electrospray method, microfluidic technology as well as phase separation methods. Next, we summarized the common biomaterials for the fabrication of the microspheres including natural polymers and synthetic polymers. Then, we presented the application of the various microspheres from different processing methods in wound healing and other applications. Finally, we analyzed the limitations and discussed the future development direction of microspheres in the future.
Collapse
Affiliation(s)
- Caihong Yang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Zhikun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Lu Gan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Lexiang Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Lei Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
15
|
Yu X, Gao Z, Mu J, Lian H, Meng Z. Gelatin/calcium chloride electrospun nanofibers for rapid hemostasis. Biomater Sci 2023; 11:2158-2166. [PMID: 36734397 DOI: 10.1039/d2bm01767a] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Blood coagulation is the body's main defense to bleeding caused by trauma and is divided into endogenous and exogenous pathways. Calcium ions play a very important role in the process of blood coagulation, as the ions activate the many enzymes that are required for coagulation. In this paper, gelatin hemostatic membranes containing calcium ions were prepared by electrospinning. The fibers were characterized with scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. The biocompatibility and coagulation processes using the calcium ion-containing gelatin fibrous membranes were evaluated in vitro with dynamic whole-blood coagulation tests, hemolysis tests, coagulation time tests, and platelet adhesion tests. It was demonstrated that the calcium ion-containing gelatin membranes had lower hemolysis rates and shorter clotting times than commercially available hemostatic sponges and hemostatic gauzes. In vivo hemostasis experiments were also conducted on the tail vein and liver of mice. Animal experiments demonstrated that the incorporation of calcium ions into the electrospun gelatin membranes promoted platelet aggregation, ensured adhesion of the electrospun membrane to the wound and reduced the bleeding volume and hemostasis time. The composite calcium ion-gelatin electrospun membranes exhibited good in vivo and in vitro hemostatic abilities and accelerated blood clotting by stimulating the coagulation pathway to promote platelet aggregation at the wounds and the formation of mature blood clots for a new approach for acute trauma treatment.
Collapse
Affiliation(s)
- Xinrong Yu
- Faculty of Medical Instrument, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Zichun Gao
- Faculty of Medical Instrument, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jiaxiang Mu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - He Lian
- Faculty of Medical Instrument, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Zhaoxu Meng
- Faculty of Medical Instrument, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
16
|
Gupta R, Mohanty S, Verma D. Current status of hemostatic agents, their mechanism of action, and future directions. J BIOACT COMPAT POL 2023. [DOI: 10.1177/08839115221147935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The bleeding problem might seem straightforward, but it involves a plethora of complex biochemical pathways and responses. Hemorrhage control remains one of the leading causes of “preventable deaths” worldwide. The past few decades have seen a wide range of biomaterials and their derivatives targeted to serve as hemostatic agents, but none can be deemed as an ideal solution. In this review, we have highlighted the current diversity in hemostatic agents and their modalities. We have enclosed a comprehensive outlook of the proposed solutions and their clinical performance so far. In addition to these, several promising compositions are still in their infancy or developmental phases. The inclusion of novel upcoming nanocomposites has further widened the potencies of existing formulations as well.
Collapse
Affiliation(s)
- Ritvesh Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Sibanwita Mohanty
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Devendra Verma
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| |
Collapse
|
17
|
Li X, Chen X, Ji Z, Pan L, Liu Y, Yang X, Shi C. Preparation and evaluation of aldehyde starch hemostatic microspheres crosslinked with L‐cystine dimethyl ester for ultrarapid rapid hemostasis. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.5995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Xujian Li
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou, Zhejiang China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute University of Chinese Academy of Sciences Wenzhou, Zhejiang China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute University of Chinese Academy of Sciences Wenzhou, Zhejiang China
| | - Xumin Chen
- Department of Nephrology The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang China
| | - Zhixiao Ji
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou, Zhejiang China
| | - Luqi Pan
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou, Zhejiang China
| | - Yi Liu
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou, Zhejiang China
- Department of Nephrology The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang China
| | - Xiao Yang
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou, Zhejiang China
| | - Changcan Shi
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou, Zhejiang China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute University of Chinese Academy of Sciences Wenzhou, Zhejiang China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute University of Chinese Academy of Sciences Wenzhou, Zhejiang China
| |
Collapse
|
18
|
Zou CY, Li QJ, Hu JJ, Song YT, Zhang QY, Nie R, Li-Ling J, Xie HQ. Design of biopolymer-based hemostatic material: Starting from molecular structures and forms. Mater Today Bio 2022; 17:100468. [PMID: 36340592 PMCID: PMC9626749 DOI: 10.1016/j.mtbio.2022.100468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Uncontrolled bleeding remains as a leading cause of death in surgical, traumatic, and emergency situations. Management of the hemorrhage and development of hemostatic materials are paramount for patient survival. Owing to their inherent biocompatibility, biodegradability and bioactivity, biopolymers such as polysaccharides and polypeptides have been extensively researched and become a focus for the development of next-generation hemostatic materials. The construction of novel hemostatic materials requires in-depth understanding of the physiological hemostatic process, fundamental hemostatic mechanisms, and the effects of material chemistry/physics. Herein, we have recapitulated the common hemostatic strategies and development status of biopolymer-based hemostatic materials. Furthermore, the hemostatic mechanisms of various molecular structures (components and chemical modifications) are summarized from a microscopic perspective, and the design based on them are introduced. From a macroscopic perspective, the design of various forms of hemostatic materials, e.g., powder, sponge, hydrogel and gauze, is summarized and compared, which may provide an enlightenment for the optimization of hemostat design. It has also highlighted current challenges to the development of biopolymer-based hemostatic materials and proposed future directions in chemistry design, advanced form and clinical application.
Collapse
Affiliation(s)
- Chen-Yu Zou
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qian-Jin Li
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Juan-Juan Hu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yu-Ting Song
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Rong Nie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jesse Li-Ling
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
- Department of Medical Genetics, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| |
Collapse
|
19
|
Pascual M, Salcedo MF, Sanchez LM, Mansilla AY, Alvarez VA, Casalongué C, Tomadoni B. Development and Characterization of Biobased Superabsorbent Materials for Agricultural Applications: Study in Lettuce (Lactuca sativa L.) under Drought Stress. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22700456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
20
|
Wang N, Zhao S, Tian X, Guang S, Xu H. Fabrication of microspheres containing coagulation factors by reverse microemulsion method for rapid hemostasis and wound healing. Colloids Surf B Biointerfaces 2022; 218:112742. [DOI: 10.1016/j.colsurfb.2022.112742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/17/2022] [Accepted: 07/30/2022] [Indexed: 02/07/2023]
|
21
|
Mecwan M, Li J, Falcone N, Ermis M, Torres E, Morales R, Hassani A, Haghniaz R, Mandal K, Sharma S, Maity S, Zehtabi F, Zamanian B, Herculano R, Akbari M, V. John J, Khademhosseini A. Recent advances in biopolymer-based hemostatic materials. Regen Biomater 2022; 9:rbac063. [PMID: 36196294 PMCID: PMC9522468 DOI: 10.1093/rb/rbac063] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/09/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Hemorrhage is the leading cause of trauma-related deaths, in hospital and prehospital settings. Hemostasis is a complex mechanism that involves a cascade of clotting factors and proteins that result in the formation of a strong clot. In certain surgical and emergency situations, hemostatic agents are needed to achieve faster blood coagulation to prevent the patient from experiencing a severe hemorrhagic shock. Therefore, it is critical to consider appropriate materials and designs for hemostatic agents. Many materials have been fabricated as hemostatic agents, including synthetic and naturally derived polymers. Compared to synthetic polymers, natural polymers or biopolymers, which include polysaccharides and polypeptides, have greater biocompatibility, biodegradability and processibility. Thus, in this review, we focus on biopolymer-based hemostatic agents of different forms, such as powder, particles, sponges and hydrogels. Finally, we discuss biopolymer-based hemostatic materials currently in clinical trials and offer insight into next-generation hemostats for clinical translation.
Collapse
Affiliation(s)
- Marvin Mecwan
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Jinghang Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Emily Torres
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Ramon Morales
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Alireza Hassani
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Saurabh Sharma
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Surjendu Maity
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Fatemeh Zehtabi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Behnam Zamanian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Rondinelli Herculano
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
- Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP 14800-903, Brazil
| | - Mohsen Akbari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
- Biotechnology Center, Silesian University of Technology, Gliwice 44-100, Poland
| | - Johnson V. John
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| |
Collapse
|
22
|
Chitin-glucan composite sponge hemostat with rapid shape-memory from Pleurotus eryngii for puncture wound. Carbohydr Polym 2022; 291:119553. [DOI: 10.1016/j.carbpol.2022.119553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022]
|
23
|
Chang L, Chang R, Liu X, Ma X, Chen D, Wang Y, Li W, Qin J. Self-healing hydrogel based on polyphosphate-conjugated pectin with hemostatic property for wound healing applications. BIOMATERIALS ADVANCES 2022; 139:212974. [PMID: 35882131 DOI: 10.1016/j.bioadv.2022.212974] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/14/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Self-healing hydrogels have important application in hemostasis and wound repairing. In this research, pectin based self-healing hydrogel was fabricated with conjugated polyphosphate for hemostatic and wound healing applications. The hydrogel formed without any stimulus and hydrogel kept its biocompatibility; at the same time, the hydrogel degraded completely by enzyme and in vivo. The polyphosphate conjugated hydrogel also showed self-healing property and sustained release performance with strong coagulation characteristic. More importantly, the in vivo experiment revealed that the polyphosphate conjugated hydrogel reduced the blood loss and hemostasis time in hemorrhage model; meanwhile, the hydrogel accelerated the wound repairing rate of the open wound by preventing bacterial invasion. Altogether, the PolyP conjugated hemostatic pectin-based hydrogel is a good candidate as wound dressing material applied in clinic or open wound repairing.
Collapse
Affiliation(s)
- Limin Chang
- College of Chemistry and Environmental Science, Hebei University, Baoding City 071002, China
| | - Ruixue Chang
- China Lucky Group Corporation, Baoding City 071002, China
| | - Xiaojun Liu
- Warrenmore Biotechnology Ltd., Handan 056002, China
| | - Xiangbo Ma
- Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding City 071002, China
| | - Danyang Chen
- College of Chemistry and Environmental Science, Hebei University, Baoding City 071002, China
| | - Yong Wang
- Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding City 071002, China.
| | - Wenjuan Li
- Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding City 071002, China
| | - Jianglei Qin
- College of Chemistry and Environmental Science, Hebei University, Baoding City 071002, China; Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding City 071002, China.
| |
Collapse
|
24
|
Tian Y, Sun DW, Xu L, Fan TH, Zhu Z. Bio-inspired eutectogels enabled by binary natural deep eutectic solvents (NADESs): Interfacial anti-frosting, freezing-tolerance, and mechanisms. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Catechol modification of non-woven chitosan gauze for enhanced hemostatic efficacy. Carbohydr Polym 2022; 286:119319. [DOI: 10.1016/j.carbpol.2022.119319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/15/2022] [Accepted: 03/02/2022] [Indexed: 01/06/2023]
|
26
|
Xie Y, Gao P, He F, Zhang C. Application of Alginate-Based Hydrogels in Hemostasis. Gels 2022; 8:109. [PMID: 35200490 PMCID: PMC8871293 DOI: 10.3390/gels8020109] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 12/24/2022] Open
Abstract
Hemorrhage, as a common trauma injury and clinical postoperative complication, may cause serious damage to the body, especially for patients with huge blood loss and coagulation dysfunction. Timely and effective hemostasis and avoidance of bleeding are of great significance for reducing body damage and improving the survival rate and quality of life of patients. Alginate is considered to be an excellent hemostatic polymer-based biomaterial due to its excellent biocompatibility, biodegradability, non-toxicity, non-immunogenicity, easy gelation and easy availability. In recent years, alginate hydrogels have been more and more widely used in the medical field, and a series of hemostatic related products have been developed such as medical dressings, hemostatic needles, transcatheter interventional embolization preparations, microneedles, injectable hydrogels, and hemostatic powders. The development and application prospects are extremely broad. This manuscript reviews the structure, properties and history of alginate, as well as the research progress of alginate hydrogels in clinical applications related to hemostasis. This review also discusses the current limitations and possible future development prospects of alginate hydrogels in hemostatic applications.
Collapse
Affiliation(s)
| | | | | | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.X.); (P.G.); (F.H.)
| |
Collapse
|
27
|
Ma RR, Xu HX, Ni L, Xiong JM, Chen YL, He JY, Li Q, Yang LL, Zhou LD, Zhang QH, Luo L. Swelling of Multilayered Calcium Alginate Microspheres for Drug-Loaded Dressing Induced Rapid Lidocaine Release for Better Pain Control. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:2085-2102. [DOI: 10.1142/s0192415x22500896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The development of effective drug-loaded dressings has been considered a hot research topic for biomedical therapeutics, including the use of botanical compounds. For wound healing, adequate dressings can provide a good microenvironment for drug release, such as lidocaine. Biological macromolecular materials such as alginate show excellent properties in wound management. This study involves the preparation and evaluation of biocompatible multilayered-structure microspheres composed of chitosan, porous gelatin, and calcium alginate microspheres. The multilayered structure microspheres were named chitosan@ porous gelatin@ calcium alginate microspheres (CPAMs) and the drugs were rapidly released by the volume expansion of the calcium alginate microspheres. The in vitro release curve revealed that the peak release of lidocaine from CPAMs was reached within 18[Formula: see text]min. After 21[Formula: see text]min, the remaining lidocaine was then slowly released, and the active drug release was converted to a passive drug release phase. The initial release effect of lidocaine was much better than that reported in the published studies. Additionally, blood coagulation experiments showed that CPAMs coagulated blood in 60[Formula: see text]s, and the blood liquidity of the CPAMs group was worse than that of the woundplast group. Therefore, the coagulation characteristics of CPAMs were superior to the commonly used woundplast containing lidocaine healing gel. These study outcomes indicated that the CPAMs acted as fast-release dressings for faster pain control and better coagulation properties.
Collapse
Affiliation(s)
- Rong-Rong Ma
- School of Chemistry and Chemical Engineering, Chongqing University, University Town South Road 55, Chongqing 400044, P. R. China
| | - Hui-Xian Xu
- School of Chemistry and Chemical Engineering, Chongqing University, University Town South Road 55, Chongqing 400044, P. R. China
| | - Li Ni
- School of Chemistry and Chemical Engineering, Chongqing University, University Town South Road 55, Chongqing 400044, P. R. China
| | - Jia-Min Xiong
- School of Chemistry and Chemical Engineering, Chongqing University, University Town South Road 55, Chongqing 400044, P. R. China
| | - Yi-Lin Chen
- School of Chemistry and Chemical Engineering, Chongqing University, University Town South Road 55, Chongqing 400044, P. R. China
| | - Jia-Yuan He
- School of Chemistry and Chemical Engineering, Chongqing University, University Town South Road 55, Chongqing 400044, P. R. China
| | - Qin Li
- School of Chemistry and Chemical Engineering, Chongqing University, University Town South Road 55, Chongqing 400044, P. R. China
| | - Li-Li Yang
- School of Chemistry and Chemical Engineering, Chongqing University, University Town South Road 55, Chongqing 400044, P. R. China
| | - Lian-Di Zhou
- Basic Medical College, Chongqing Medical University, University Town Middle Road 61, Chongqing 400016, P. R. China
| | - Qi-Hui Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, University Town South Road 55, Chongqing 400044, P. R. China
| | - Ling Luo
- Chongqing Cancer Institute, Chongqing University Cancer Hospital, Hanyu Road 181, Chongqing 400030, P. R. China
| |
Collapse
|
28
|
Yamaguchi K, Hiraike O, Iwaki H, Matsumiya K, Nakamura N, Sone K, Ohta S, Osuga Y, Ito T. Intraperitoneal Administration of a Cisplatin-Loaded Nanogel through a Hybrid System Containing an Alginic Acid-Based Nanogel and an In Situ Cross-Linkable Hydrogel for Peritoneal Dissemination of Ovarian Cancer. Mol Pharm 2021; 18:4090-4098. [PMID: 34662129 DOI: 10.1021/acs.molpharmaceut.1c00514] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Intraperitoneal chemotherapy demonstrates potential applicability in the treatment of peritoneally disseminated ovarian cancer because the disseminated tumors can directly receive exposure to high concentrations of anticancer drugs. However, a considerable proportion of drugs, particularly micromolecular and hydrophilic drugs, such as cisplatin (CDDP), are often excreted through glomerular filtration for a short period. To effectively deliver CDDP into peritoneally disseminated ovarian cancer tissues, we developed an alginate (AL)-based hybrid system in which a CDDP-loaded AL nanogel (AL/CDDP-nanogel) was encapsulated in an injectable AL-hydrogel cross-linked with calcium ions. This system enabled the sustained release of CDDP from the AL/CDDP-nanogel/AL-hydrogel hybrid for over a week. Herein, we constructed a peritoneally disseminated ovarian cancer mouse model using ovarian cancer cell lines with KRAS mutations (ID8-KRAS: KRASG12V). The AL/CDDP-nanogel/AL-hydrogel hybrid system showed significant antitumor activity in vivo. This therapy may be considered a novel strategy for the treatment of advanced-stage ovarian cancer with KRAS mutations.
Collapse
Affiliation(s)
- Kohei Yamaguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Osamu Hiraike
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Haruna Iwaki
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kazuki Matsumiya
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Noriko Nakamura
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Seiichi Ohta
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.,Institute of Engineering Innovation, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Taichi Ito
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.,Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
29
|
Combination of Mussel Inspired Method and "Thiol-Michael" Click Reaction for Biocompatible Alginate-Modified Carbon Nanotubes. NANOMATERIALS 2021; 11:nano11092191. [PMID: 34578507 PMCID: PMC8471357 DOI: 10.3390/nano11092191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022]
Abstract
Carbon nanotubes (CNTs) have attracted great interest in biomedical fields. However, the potential toxicity and poor dispersion of CNTs have greatly limited its application. In this work, a mussel-inspired method combined with the "thiol-Michael" click reaction was used to modify the surface of CNT and improve its properties. Firstly, a CNT was treated with dopamine, and then alginate grafted with L-cysteine was anchored onto the surface of CNT via click reaction, which realized the long-time dispersion of CNT in water. Furthermore, the in vitro test also demonstrated that the alginate may improve the biocompatibility of CNT, and thus may broaden the application of CNT in the biomedical field.
Collapse
|
30
|
Cheng H, Shi W, Feng L, Bao J, Chen Q, Zhao W, Zhao C. Facile and green approach towards biomass-derived hydrogel powders with hierarchical micro-nanostructures for ultrafast hemostasis. J Mater Chem B 2021; 9:6678-6690. [PMID: 34378629 DOI: 10.1039/d1tb01477c] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Although a series of biomass-derived hemostats has been developed, the desire for green-prepared hemostatic materials with biosafety has not decreased. Herein, we constructed porous carboxymethyl chitosan/sodium alginate/Ca(OH)2 powders (PCSCPs) with suitable adaptability for instant control of irregular hemorrhage via a facile and green approach. By one-pot chemical crosslinking of carboxymethyl chitosan and sodium alginate, hydrogels were formed and immediately ionically cross-linked along with the generation of Ca(OH)2 to prepare PCSCPs. As hydrogel powders, PCSCPs with abundant hydrophilic carboxymethyl groups and porous hierarchically micro-nanostructures displayed a high water absorption ratio of over 1600%. The PCSCPs were confirmed with favorable hemocompatibility, non-cytotoxic effects and excellent degradability. Hemostasis assays in vitro showed that PCSCPs possessed an outstanding property of platelet activation and red blood cell aggregation. The PCSCPs effectively shortened the hemostatic time and blood loss to ca. 50% in rodent bleeding models compared with medical gauze and commercial chitosan-based hemostats. Furthermore, a mouse subcutaneous implantation model demonstrated an ignorable inflammation response and potential tissue repair capability of PCSCPs. It's believed that green-prepared and biomass-derived PCSCPs are feasible biomedical hemostatic materials in view of engineering and provide a promising platform to design hemostats in prehospital management and clinical settings.
Collapse
Affiliation(s)
- Huitong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Zhao T, Li X, Gong Y, Guo Y, Quan F, Shi Q. Study on polysaccharide polyelectrolyte complex and fabrication of alginate/chitosan derivative composite fibers. Int J Biol Macromol 2021; 184:181-187. [PMID: 34051261 DOI: 10.1016/j.ijbiomac.2021.05.150] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
Sodium alginate (SA) blending with quaternary ammonium chitosan (QAC) polysaccharide polyelectrolyte complex (PEC) system was chosen to research the binary blending of anionic and cationic polyelectrolytes in detail and to fabricate SA/QAC composite fibers. The potential charge and the rheology of the PEC solution were characterized through Zeta Laser Particle Size Analyzer and DV-C Rotary Rheometer, the structure and properties of the composite fiber were examined by FT-IR, XRD, SEM, EDS, and YG004 single fiber strength meter. The results showed that as the mass ratio of SA to QAC increased from 0/1 to 10/1, the state of the binary solution in water changed from transparent uniform solution to turbid solution with flocculent precipitate, then back to uniform solution, accompanied by the electrical potential change. Moreover, the electrical potential also depended on salt in solution. By using this uniform PEC solution with the mass ratio of SA to QAC 10/1 and concentration 5.5 wt% in water, SA/QAC composite fibers with excellent performances of breaking strength 2.37 cN·dtex-1 and breaking elongation 14.11%, good antibacterial and hydrophobic properties were fabricated via green wet-spinning process. The FT-IR and EDS determination indicated there formed egg-box between SA and Ca2+, cross-linked network between glutaraldehyde(GA) and SA, QAC, respectively. Depending on its mechanical, natural, and antibacterial properties, the SA/QAC composite fiber has advantages in wound dressing, medical gauze, medical absorbable suture, and tissue engineering.
Collapse
Affiliation(s)
- Tongyao Zhao
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoyan Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yumei Gong
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Yanzhu Guo
- School of Light and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fengyu Quan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
32
|
Chen D, Zhou X, Chang L, Wang Y, Li W, Qin J. Hemostatic Self-Healing Hydrogel with Excellent Biocompatibility Composed of Polyphosphate-Conjugated Functional PNIPAM-Bearing Acylhydrazide. Biomacromolecules 2021; 22:2272-2283. [PMID: 33905651 DOI: 10.1021/acs.biomac.1c00349] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biocompatible self-healing hydrogels present an effective application as drug-releasing vehicles for tissue engineering and wound repairing. At the same time, the effective hemostatic property of the hydrogels also improves the application property as wound dressing materials. In this research, the PNIPAM-bearing acylhydrazide P(NIPAM-co-AH) was synthesized and then hemostatic polyphosphate (PolyP) was imported to prepare polyphosphate-conjugated P(NIPAM-co-AH) (PNAP). Through the acylhydrazone connection of PNAP and aldehyde functional PEO (PEO DA), the self-healing hydrogel with a hemostatic property was fabricated with good flexibility and sealing effect. The resultant hydrogels kept excellent biocompatibility and showed controlled drug release behavior. More importantly, the hydrogel accelerated the coagulation rate in vitro and presented a strong hemostatic effect as the binder in the hemorrhage model in vivo, which endow the hemostatic hydrogel with a very useful drug delivery carrier for wound healing applications or first aid treatment of the wounded in critical situations.
Collapse
Affiliation(s)
- Danyang Chen
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, China
| | - Xiangyang Zhou
- Medical College, Hebei University, Baoding City, Hebei Province 071002, China
| | - Limin Chang
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, China
| | - Yong Wang
- Medical College, Hebei University, Baoding City, Hebei Province 071002, China.,Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding 071002, China
| | - Wenjuan Li
- Medical College, Hebei University, Baoding City, Hebei Province 071002, China.,Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding 071002, China
| | - Jianglei Qin
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province 071002, China.,Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding 071002, China
| |
Collapse
|