1
|
An Y, Li F, Di Y, Zhang X, Lu J, Wang L, Yan Z, Wang W, Liu M, Fei P. Hydrophobic Modification of Cellulose Acetate and Its Application in the Field of Water Treatment: A Review. Molecules 2024; 29:5127. [PMID: 39519768 PMCID: PMC11547652 DOI: 10.3390/molecules29215127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
With the inherent demand for hydrophobic materials in processes such as membrane distillation and unidirectional moisture conduction, the preparation and application development of profiles such as modified cellulose acetate membranes that have both hydrophobic functions and biological properties have become a research hotspot. Compared with the petrochemical polymer materials used in conventional hydrophobic membrane preparation, cellulose acetate, as the most important cellulose derivative, exhibits many advantages, such as a high natural abundance, good film forming, and easy modification and biodegradability, and it is a promising polymer raw material for environmental purification. This paper focuses on the research progress of the hydrophobic cellulose acetate preparation process and its current application in the water-treatment and resource-utilization fields. It provides a detailed introduction and comparison of the technical characteristics, existing problems, and development trends of micro- and nanostructure and chemical functional surface construction in the hydrophobic modification of cellulose acetate. Further review was conducted and elaborated on the applications of hydrophobic cellulose acetate membranes and other profiles in oil-water separation, brine desalination, water-repellent protective materials, and other separation/filtration fields. Based on the analysis of the technological and performance advantages of profile products such as hydrophobic cellulose acetate membranes, it is noted that key issues need to be addressed and urgently resolved for the further development of hydrophobic cellulose acetate membranes. This will provide a reference basis for the expansion and application of high-performance cellulose acetate membrane products in the environmental field.
Collapse
Affiliation(s)
- Yaxin An
- College of Textile Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Fu Li
- College of Textile Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Youbo Di
- College of Textile Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | | | - Jianjun Lu
- College of Textile Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Le Wang
- College of Textile Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Zhifeng Yan
- College of Textile Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Wei Wang
- College of Textile Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Mei Liu
- College of Textiles and Apparel, Quanzhou Normal University, Quanzhou 362000, China
| | - Pengfei Fei
- College of Textile Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| |
Collapse
|
2
|
Patel DK, Jung E, Won SY, Priya S, Han SS. Nanocellulose-assisted mechanically tough hydrogel platforms for sustained drug delivery. Int J Biol Macromol 2024; 271:132374. [PMID: 38754669 DOI: 10.1016/j.ijbiomac.2024.132374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/22/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
The controlled delivery of the desired bioactive molecules is required to achieve the maximum therapeutic effects with minimum side effects. Biopolymer-based hydrogels are ideal platforms for delivering the desired molecules owing to their superior biocompatibility, biodegradability, and low-immune response. However, the prolonged delivery of the drugs through biopolymer-based hydrogels is restricted due to their weak mechanical stability. We developed mechanically tough and biocompatible hydrogels to address these limitations using carboxymethyl chitosan, sodium alginate, and nanocellulose for sustained drug delivery. The hydrogels were cross-linked through calcium ions to enhance their mechanical strength. Nanocellulose-added hydrogels exhibited improved mechanical strength (Young's modulus; 23.36 → 30.7 kPa, Toughness; 1.39 → 5.65 MJm-3) than pure hydrogels. The composite hydrogels demonstrated increased recovery potential (66.9 → 84.5 %) due to the rapid reformation of damaged polymeric networks. The hydrogels were stable in an aqueous medium and demonstrated reduced swelling potential. The hydrogels have no adverse effects on embryonic murine fibroblast (3 T3), showing their biocompatibility. No bacterial growth was observed in hydrogels-treated groups, indicating their antibacterial characteristics. The sustained drug released was observed from nanocellulose-assisted hydrogel scaffolds compared to the pure polymer hydrogel scaffold. Thus, hydrogels have potential and could be used as a sustained drug carrier.
Collapse
Affiliation(s)
- Dinesh K Patel
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Eunseo Jung
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - So-Yeon Won
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sahariya Priya
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
3
|
Lopez E, Gómez M, Becar I, Zapata P, Pizarro J, Navlani-García M, Cazorla-Amorós D, Presser V, Gómez T, Cárdenas C. Removal of Mo(VI), Pb(II), and Cu(II) from wastewater using electrospun cellulose acetate/chitosan biopolymer fibers. Int J Biol Macromol 2024; 269:132160. [PMID: 38718995 DOI: 10.1016/j.ijbiomac.2024.132160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/18/2024] [Accepted: 05/05/2024] [Indexed: 05/30/2024]
Abstract
Environmentally friendly polymers such as cellulose acetate (CA) and chitosan (CS) were used to obtain electrospun fibers for Cu2+, Pb2+, and Mo6+ capture. The solvents dichloromethane (DCM) and dimethylformamide (DMF) allowed the development of a surface area of 148 m2 g-1 for CA fibers and 113 m2 g-1 for cellulose acetate/chitosan (CA/CS) fibers. The fibers were characterized by IR-DRIFT, SEM, TEM, CO2 sorption isotherms at 273 K, Hg porosimetry, TGA, stress-strain tests, and XPS. The CA/CS fibers had a higher adsorption capacity than CA fibers without affecting their physicochemical properties. The capture capacity reached 102 mg g-1 for Cu2+, 49.3 mg g-1 for Pb2+, and 13.1 mg g-1 for Mo6+. Furthermore, optimal pH, adsorption times qt, and C0 were studied for the evaluation of kinetic models and adsorption isotherms. Finally, a proposal for adsorbate-adsorbent interactions is presented as a possible capture mechanism where, in the case of Mo6+, a computational study is presented. The results demonstrate the potential to evaluate the fibers in tailings wastewater from copper mining.
Collapse
Affiliation(s)
- Esmeralda Lopez
- Departamento de Ingeniería Metalúrgica, Facultad de Ingeniería, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile; Laboratorio de Química Ambiental y Remediación, Departamento de Ingeniería Geoespacial y Ambiental, Facultad de Ingeniería, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile; Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile.
| | - Mauricio Gómez
- Laboratorio de Química Ambiental y Remediación, Departamento de Ingeniería Geoespacial y Ambiental, Facultad de Ingeniería, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile; Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile.
| | - Ian Becar
- Laboratorio de Química Ambiental y Remediación, Departamento de Ingeniería Geoespacial y Ambiental, Facultad de Ingeniería, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile
| | - Paula Zapata
- Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile
| | - Jaime Pizarro
- Laboratorio de Química Ambiental y Remediación, Departamento de Ingeniería Geoespacial y Ambiental, Facultad de Ingeniería, Universidad de Santiago de Chile, USACH, Santiago 9170022, Chile
| | - Miriam Navlani-García
- Instituto Universitario de Materiales, Departamento de Química Inorgánica, Universidad de Alicante, Apartado 99, 03080 Alicante, Spain
| | - Diego Cazorla-Amorós
- Instituto Universitario de Materiales, Departamento de Química Inorgánica, Universidad de Alicante, Apartado 99, 03080 Alicante, Spain
| | - Volker Presser
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; Department of Material Science and Engineering, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany; Saarene - Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123 Saarbrücken, Germany
| | - Tatiana Gómez
- Theoretical and Computational Chemistry Center, Institute of Applied Sciences, Faculty of Engineering, Universidad Autonoma de Chile, Santiago, Chile
| | - Carlos Cárdenas
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Av. Las Palmeras 3425, Ñuñoa, Santiago, Chile; Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Av. Ecuador 3493, Santiago 9170124, Chile
| |
Collapse
|
4
|
Thivya P, Gururaj PN, Reddy NBP, Rajam R. Recent advances in protein-polysaccharide based biocomposites and their potential applications in food packaging: A review. Int J Biol Macromol 2024; 268:131757. [PMID: 38657934 DOI: 10.1016/j.ijbiomac.2024.131757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/09/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
This review addresses the current trend of replacing petroleum-based polymers in food packaging with bio-based alternatives, specifically focusing on proteins and polysaccharides. While these biopolymers exhibit excellent film-forming properties and are abundant in nature, their individual use in packaging lacks ideal plastic-like characteristics, especially in terms of mechanical and barrier properties. A recent solution involves the formulation of biocomposites through the reinforcement of one biopolymer with another (e.g., protein with a polysaccharide), significantly enhancing the physical, mechanical, and barrier properties of packaging materials. The review concentrates on the integration of proteins and polysaccharides in biocomposite materials, emphasizing their potential applications in active and intelligent food packaging systems. It covers sources, manufacturing methods, interaction mechanisms, recent developments, perspectives, and opportunities. The exploration extends to practical implementations of these biocomposites in enhancing food quality, safety, and shelf life-a green technological approach contributing to the reduction of food waste and loss.
Collapse
Affiliation(s)
- P Thivya
- Department of Food Technology, Kalasalingam Academy of Research and Education (KARE), Krishnankoil, Virudhunagar, Tamilnadu, India.
| | - P N Gururaj
- Department of Food Science and Technology, Hamelmalo Agricultural College, Hamelmalo, Zoba-Anseba, Eritrea
| | - N Bhanu Prakash Reddy
- Department of Food Process Engineering, National Institute of Food Technology, Entrepreneurship and Management, (NIFTEM-T), Thanjavur, Tamil Nadu, India
| | - R Rajam
- Department of Food Technology, Kalasalingam Academy of Research and Education (KARE), Virudhunagar 626126, Tamilnadu, India
| |
Collapse
|
5
|
Pang H, Wu Y, Tao Q, Xiao Y, Ji W, Li L, Wang H. Active cellulose acetate/purple sweet potato anthocyanins@cyclodextrin metal-organic framework/eugenol colorimetric film for pork preservation. Int J Biol Macromol 2024; 263:130523. [PMID: 38428771 DOI: 10.1016/j.ijbiomac.2024.130523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
As a natural pH-sensing colorant, purple sweet potato anthocyanins (PSPAs) have demonstrated great potential in colorimetric film for freshness monitoring. However, the photothermal instability of PSPAs is still a challengeable issue. Herein, γ-cyclodextrin metal-organic framework (CD-MOF) loaded with PSPAs (PSPAs@CD-MOF, i.e., PM) and eugenol (EUG) were incorporated in cellulose acetate (CA) matrix for developing a smart active colorimetric film of CA/PM/EUG, where PM and EUG were hydrogen-bonded with CA. Attentions were focused on the photothermal colorimetric stability, colorimetric response, and antibacterial activity of the films. The presence of PM and EUG endowed the film outstanding UV-blocking performance and enhanced the barrier against water vapor and oxygen. Target film of CA/PM15/EUG10 had good photothermal colorimetric stability due to the protection of CD-MOF on PSPAs and the color changes with pH-stimuli were sensitive and reversible. In addition to antioxidant activity, CA/PM15/EUG10 had antibacterial activity against Escherichia coli and Staphylococcus aureus. The application trial results indicated that the CA/PM15/EUG10 was valid to indicate pork freshness and extended the shelf-life by 100 % at 25 °C, which has demonstrated a good perspective on smart active packaging for freshness monitoring and shelf-life extension.
Collapse
Affiliation(s)
- Huaiting Pang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Yimin Wu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Qianlan Tao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Yewen Xiao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Wei Ji
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Linlin Li
- School of Food and Biological Engineering, Hefei University of Technology, 230601 Hefei, Anhui, China; Province Key Laboratory of Agricultural Products Modern Processing, 230601 Hefei, Anhui, China
| | - Hualin Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China; Anhui Province Engineering Research Center of Flexible and Intelligent Materials, 230009 Hefei, Anhui, China; Province Key Laboratory of Agricultural Products Modern Processing, 230601 Hefei, Anhui, China.
| |
Collapse
|
6
|
Sun F, Shan P, Liu B, Li Y, Wang K, Zhuang Y, Ning D, Li H. Gelatin-based multifunctional composite films integrated with dialdehyde carboxymethyl cellulose and coffee leaf extract for active food packaging. Int J Biol Macromol 2024; 263:130302. [PMID: 38382794 DOI: 10.1016/j.ijbiomac.2024.130302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
In this study, dialdehyde carboxymethyl cellulose (DCMC, 10 wt% based on gelatin) and varying contents of coffee leaf extract (CLE, 1, 3, 5 and 7 wt% based on gelatin) were incorporated into gelatin (GEL) matrix to develop multifunctional food packaging films. DCMC acted as a physical reinforcing filler through crosslinking with GEL matrix by Schiff-base reaction, CLE served as an active filler to confer film functional properties. The micro-morphology, micro-structure, physicochemical and functional properties of the GEL/DCMC/CLE composite film were investigated. The results demonstrated that mechanical, barrier properties and thermal stability of films were significantly improved by incorporation of CLE. Compared with pure GEL film, the GEL/DCMC/5%CLE film exhibited excellent UV light blocking while kept enough transparency, the best mechanical property, water resistance, water vapor and oxygen barrier, as well as thermal stability. GEL/DCMC/5%CLE film also possessed strong antioxidant activity and some antibacterial activity against E. coli and S. aureus. Packaging application testing demonstrated that the resultant GEL/DCMC/5%CLE film effectively delayed the lipid oxidation of walnut oil and preserved the postharvest freshness of fresh walnut kernels under ambient conditions.
Collapse
Affiliation(s)
- Fangfei Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Peng Shan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bingzhen Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongshi Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Kun Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Delu Ning
- Yunnan Academy of Forestry and Grassland, Kunming 650201, China
| | - Hui Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
7
|
Zhou Y, Zheng L, Chen X, Huang Y, Essawy H, Du G, Zhou X, Zhang J. Developing high performance biodegradable film based on crosslinking of cellulose acetate and tannin using caprolactone. Int J Biol Macromol 2024; 262:130067. [PMID: 38336318 DOI: 10.1016/j.ijbiomac.2024.130067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
The use of metal catalysts during the production process of cellulose acetate (CA) film can have an impact on the environment, due to their toxicity. Diphenyl phosphate (DPP) was used instead of toxic metal catalyst to react with cellulose acetate, tannin (T) and caprolactone (CL) for preparation of cellulose acetate-caprolactone-tannin (CA-CL-T) film. The results show that DPP can produce a cross-linked network structure composed of tannin, caprolactone and cellulose acetate. The maximum molecular weight reached 113,260 Da. The introduction of tannin and caprolactone into cellulose acetate caused the resulting CA-CL-T film acquire excellent strengthening/toughening effect, in which a tensile strength of 23 MPa and elongation at break of 18 % were attained. More importantly, the resistance of the film to UV radiation was significantly improved with the tannin addition, which was corroborated by the CA-CL-T film still exhibiting a tensile strength of 13 MPa and elongation at break around 13 % after continuous exposure to UV radiation for 9 days. On the other hand, the insertion of caprolactone provoked enhancement of the overall moisture resistance. Five days treatment of the films with Penicillium sp. induced gradual drop in quality, indicating the CA-CL-T film show response to biodegradation. In all, the effective crosslinking between the components of the developed material is responsible for the acquired set of these distinct characteristics.
Collapse
Affiliation(s)
- Yunxia Zhou
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China; Research Institute of Wood Industry, Chinese Academy of Forestry, Haidian, 100091 Beijing, China
| | - LuLu Zheng
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Xinyi Chen
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Yuxiang Huang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Haidian, 100091 Beijing, China.
| | - Hisham Essawy
- Department of Polymers and Pigments, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Guanben Du
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Xiaojian Zhou
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China.
| | - Jun Zhang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
8
|
Usha ZR, Iqbal O, Aslam MA, Ali S, Liu C, Li N, Zhang S, Wang Z. Pulp waste extracted reinforced powder incorporated biodegradable chitosan composite film for enhancing red grape shelf-life. Int J Biol Macromol 2023; 252:126375. [PMID: 37598829 DOI: 10.1016/j.ijbiomac.2023.126375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/06/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Chitosan (CS) is widely used as a natural biopolymer due to its semi-crystalline structure, good film-forming properties, and easy availability. CS-based composite films are widely used in industry, particularly in the food sector as active food packaging. Despite all of these advantages, their wide range of applications are constrained by poor mechanical properties. Therefore, this work introduced refined bamboo cellulose powder (RBCP), a reinforcing material that is extracted from waste bamboo pulp and applied to CS composite films to enhance their mechanical and physicochemical properties. The chemical composition and crystallinity properties of CS composite films with RBCP addition were observed by ATR-FTIR and XRD. The homogeneous and heterogeneous surfaces of the RBCP incorporated films before biodegradation and after biodegradation (20 days) were observed by scanning electron microscopy (SEM). The increase in reinforcing RBCP materials from 0.00 to 5.00 % resulted in an increase in tensile strength for CS/RBCP films from 2.9 to 8.3 MPa. The application of the CS/RBCP/5 composite film as red grapefruit storage was also investigated, which performed much better than commercial plastic and control CS films with 92.8 and 88.6 % viability of S. aureus and E. coli bacteria. Overall achieved properties demonstrated strong potential for usage as active packaging materials to preserve and lengthen the shelf life of red grapefruits.
Collapse
Affiliation(s)
- Zubaida Rukhsana Usha
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China.
| | - Obaid Iqbal
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Muhammad Adnan Aslam
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Sarmad Ali
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Cui Liu
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Nian Li
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Shudong Zhang
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Zhenyang Wang
- Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
9
|
Wang K, Li F, Sun X, Wang F, Xie D, Wei Y. Transparent chitosan/hexagonal boron nitride nanosheets composite films with enhanced UV shielding and gas barrier properties. Int J Biol Macromol 2023; 251:126308. [PMID: 37573919 DOI: 10.1016/j.ijbiomac.2023.126308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/10/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
It is of great significance to develop natural renewable polymer materials for different applications. Herein, the nano-sized hexagonal boron nitride nanosheets (hBNNSs) were facilely exfoliated through liquid-nitrogen, microwave, and ultrasonication treatments, and novel chitosan/hBNNSs (CS/hBNNSs) films were fabricated via solution casting. The obtained transparent CS/hBNNSs films demonstrated outstanding UV shielding ability with 98.51 % UV-A and 96.40 % UV-B lights being resisted. Compared to those properties of CS film, the oxygen permeability (OP) and carbon dioxide permeability (CO2P) of CS/hBNNSs films are significantly lowered by 96.35 % and 94.06 %, respectively, which are much better than CS/graphene oxide or other CS nanocomposite films. Moreover, the addition of hBNNSs in CS films also obviously improves their water vapor barrier ability, thermostability, mechanical properties, and antibacterial activity. The CS/hBNNSs films and the strategy developed in this work prove their great prospect in producing high-performance packaging films with desirable excellent UV shielding and oxygen barrier qualities.
Collapse
Affiliation(s)
- Ke Wang
- Guangdong Biomaterials Engineering Technology Research Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Fayong Li
- Guangdong Biomaterials Engineering Technology Research Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Xiaoyan Sun
- Guangdong Biomaterials Engineering Technology Research Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Feiyan Wang
- Guangdong Biomaterials Engineering Technology Research Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Dong Xie
- Guangdong Biomaterials Engineering Technology Research Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Trodtfeld F, Tölke T, Wiegand C. Developing a Prolamin-Based Gel for Food Packaging: In-Vitro Assessment of Cytocompatibility. Gels 2023; 9:740. [PMID: 37754421 PMCID: PMC10531018 DOI: 10.3390/gels9090740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/28/2023] Open
Abstract
Growing environmental concerns drive efforts to reduce packaging waste by adopting biodegradable polymers, coatings, and films. However, biodegradable materials used in packaging face challenges related to barrier properties, mechanical strength, and processing compatibility. A composite gel was developed using biodegradable compounds (prolamin, d-mannose, citric acid), as a coating to increase the oxygen barrier of food packaging materials. To improve gel stability and mechanical properties, the gels were physically cross-linked with particles synthesized from tetraethyl orthosilicate and tetramethyl orthosilicate precursors. Additionally, biocompatibility assessments were performed on human keratinocytes and fibroblasts, demonstrating the safety of the gels for consumer contact. The gel properties were characterized, including molecular structure, morphology, and topography. Biocompatibility of the gels was assessed using bioluminescent ATP assay to detect cell viability, lactate dehydrogenase assay to determine cell cytotoxicity, and a leukocyte stimulation test to detect inflammatory potential. A composite gel with strong oxygen barrier properties in low-humidity environments was prepared. Increasing the silane precursor to 50 wt% during gel preparation slowed degradation in water. The addition of citric acid decreased gel solubility. However, higher precursor amounts increased surface roughness, making the gel more brittle yet mechanically resistant. The increase of precursor in the gel also increased gel viscosity. Importantly, the gels showed no cytotoxicity on human keratinocytes or fibroblasts and had no inflammatory effects on leukocytes. This composite gel holds promise for oxygen barrier food packaging and is safe for consumer contact. Further research should focus on optimizing the stability of the oxygen barrier in humid environments and investigate the potential sensitizing effects of biodegradable materials on consumers.
Collapse
Affiliation(s)
- Franziska Trodtfeld
- Department of Dermatology, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, D-07747 Jena, Germany
- INNOVENT e.V., Prüssingstraße 27 B, D-07745 Jena, Germany;
| | - Tina Tölke
- INNOVENT e.V., Prüssingstraße 27 B, D-07745 Jena, Germany;
| | - Cornelia Wiegand
- Department of Dermatology, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, D-07747 Jena, Germany
| |
Collapse
|
11
|
Kramar A, Luxbacher T, Moshfeghi Far N, González-Benito J. Active Cellulose Acetate/Chitosan Composite Films Prepared Using Solution Blow Spinning: Structure and Electrokinetic Properties. Polymers (Basel) 2023; 15:3276. [PMID: 37571170 PMCID: PMC10422433 DOI: 10.3390/polym15153276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Cellulose acetate (CA), a very promising derivative of cellulose, has come into the focus of research due to its highly desired good film-forming ability for food packaging applications. Frequently, this derivative is used in combination with other compounds (polymers, nanoparticles) in order to obtain active materials. Here, we report the preparation of thin films made of cellulose acetate loaded with chitosan (CS) using the solution blow spinning (SBS) method. Films are prepared by SBS processing of the polymers mixture solution, considering the following variables: (i) the concentration of cellulose acetate and chitosan in the solution and (ii) the solvent system consisting of acetic or formic acid. The prepared materials are characterized in terms of physical properties, roughness (optical profilometer), porosity, wettability (contact angle measurements), chemical structure (Fourier transform infrared spectrometry), and electrokinetic properties (zeta potential). SBS enables the preparation of CA/CS films with high water vapor permeability, high porosity, and also higher water contact angle compared with pure CA films. The electrokinetic properties of composites are influenced by the inclusion of chitosan, which causes a shift of the isoelectric point (IEP) towards higher pH values, but the magnitude of the shift is not in correlation with chitosan concentration. Adsorption kinetic studies using bovine serum albumin (BSA) as a model protein reveal that chitosan modified cellulose acetate films manifest low affinity towards proteins that suggests prevention of biofilm formation on its surface.
Collapse
Affiliation(s)
- Ana Kramar
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain; (N.M.F.); (J.G.-B.)
- Institute of Chemistry and Materials Álvaro Alonso Barba, IQMAAB, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain
| | | | - Nasrin Moshfeghi Far
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain; (N.M.F.); (J.G.-B.)
| | - Javier González-Benito
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain; (N.M.F.); (J.G.-B.)
- Institute of Chemistry and Materials Álvaro Alonso Barba, IQMAAB, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain
| |
Collapse
|
12
|
Grzebieniarz W, Tkaczewska J, Juszczak L, Kawecka A, Krzyściak P, Nowak N, Guzik P, Kasprzak M, Janik M, Jamróz E. The influence of aqueous butterfly pea (Clitoria ternatea) flower extract on active and intelligent properties of furcellaran Double-Layered films - in vitro and in vivo research. Food Chem 2023; 413:135612. [PMID: 36773363 DOI: 10.1016/j.foodchem.2023.135612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/22/2022] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Innovative, intelligent and active double-layer films, based on furcellaran and with the addition of gelatin hydrolysates, have been obtained for the first time. An aqueous extract of clitoria flower in 3 concentrations was included in the 1st FUR layer. The films demonstrated strong antimicrobial effects, but did not exhibit fungicidal properties. The antioxidant properties of the films were within the range of 2.27-3.92 mM Trolox/mg (FRAP method) and 36.67-61.24 % (DPPH method). The films were used as active packaging materials in salmon fillets, which were stored for a period of 12 days in 4 °C. Analysis concerning microbiological properties of the stored fillets showed the possibility of extending their shelf-life by 6 days. Lipid oxidation, determined by TBARS has delayed. The obtained films are a promising material for the packaging industry. This is an important aspect within the context of global food waste and also the need to reduce synthetic materials.
Collapse
Affiliation(s)
- Wiktoria Grzebieniarz
- Department of Chemistry, University of Agriculture, Balicka Street 122, PL-30-149 Kraków, Poland.
| | - Joanna Tkaczewska
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, PL-30-149 Kraków, Poland
| | - Lesław Juszczak
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej Street 13/15, PL-42-200 Częstochowa, Poland
| | - Agnieszka Kawecka
- Department of Product Packaging, Cracow University of Economics, Rakowicka Street 27, PL-31-510 Kraków, Poland
| | - Paweł Krzyściak
- Department of Infection Control and Mycology, Faculty of Medicine, Jagiellonian University Medical College, Czysta Street 18, PL-31-121 Kraków, Poland
| | - Nikola Nowak
- Department of Chemistry, University of Agriculture, Balicka Street 122, PL-30-149 Kraków, Poland
| | - Paulina Guzik
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, PL-30-149 Kraków, Poland
| | - Mirosław Kasprzak
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, PL-30-149 Kraków, Poland
| | - Magdalena Janik
- Department of Chemistry, University of Agriculture, Balicka Street 122, PL-30-149 Kraków, Poland
| | - Ewelina Jamróz
- Department of Chemistry, University of Agriculture, Balicka Street 122, PL-30-149 Kraków, Poland
| |
Collapse
|
13
|
Dobos AM, Bargan A, Dunca S, Rîmbu CM, Filimon A. Cellulose acetate/silica composites: Physicochemical and biological characterization. J Mech Behav Biomed Mater 2023; 144:106002. [PMID: 37402341 DOI: 10.1016/j.jmbbm.2023.106002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023]
Abstract
Cellulose acetate is of remarkable scientific interest, becoming more useful when is used in obtaining of the composite materials containing nanoparticles, as result of its improved properties. Thus, cellulose acetate/silica composite films obtained by casting the solutions of cellulose acetate (CA)/tetraethyl orthosilicate (TEOS) in different mixing ratios were analyzed in this paper. The impact of TEOS addition, and implicitly of the silica nanoparticles on the mechanical strength, water vapor sorption properties and antimicrobial activity of the cellulose acetate/silica films were mainly monitored. The results of the tensile strength tests were discussed in correlation with data obtained from Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. It was found that samples with low TEOS content show improved mechanical strength compared to samples with high amounts of TEOS. The microstructural characteristics of the studied films affect their moisture sorption capacity so that the weight of the adsorbed water increases with the addition of TEOS. These features are complemented with the antimicrobial activity against Staphylococcus aureus and Escherichia coli bacterial species. The obtained data show that the cellulose acetate/silica films, and especially those with low silica content have improved properties that can recommend them for applications in the biomedical field.
Collapse
Affiliation(s)
- Adina Maria Dobos
- "Petru Poni" Institute of Macromolecular Chemistry, Polycondensation and Thermostable Polymers Department, Grigore Ghica Voda Alley No. 41A, 700487, Iasi, Romania.
| | - Alexandra Bargan
- "Petru Poni" Institute of Macromolecular Chemistry, Inorganic Polymers Department, Grigore Ghica Voda Alley No. 41A, 700487, Iasi, Romania
| | - Simona Dunca
- "Alexandru Ioan Cuza" University of Iasi, Faculty of Biology, Microbiology Department, 11 Carol I Bvd., 700506, Iasi, Romania
| | - Cristina Mihaela Rîmbu
- "Ion Ionescu de la Brad" University of Life Science", Department of Public Health, 8 Mihail Sadoveanu Alley, 707027, Iasi, Romania
| | - Anca Filimon
- "Petru Poni" Institute of Macromolecular Chemistry, Polycondensation and Thermostable Polymers Department, Grigore Ghica Voda Alley No. 41A, 700487, Iasi, Romania
| |
Collapse
|
14
|
Morales-Jiménez M, Palacio DA, Palencia M, Meléndrez MF, Rivas BL. Bio-Based Polymeric Membranes: Development and Environmental Applications. MEMBRANES 2023; 13:625. [PMID: 37504991 PMCID: PMC10383737 DOI: 10.3390/membranes13070625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023]
Abstract
Nowadays, membrane technology is an efficient process for separating compounds with minimal structural abrasion; however, the manufacture of membranes still has several drawbacks to being profitable and competitive commercially under an environmentally friendly approach. In this sense, this review focuses on bio-based polymeric membranes as an alternative to solve the environmental concern caused by the use of polymeric materials of fossil origin. The fabrication of bio-based polymeric membranes is explained through a general description of elements such as the selection of bio-based polymers, the preparation methods, the usefulness of additives, the search for green solvents, and the characterization of the membranes. The advantages and disadvantages of bio-based polymeric membranes are discussed, and the application of bio-based membranes to recover organic and inorganic contaminants is also discussed.
Collapse
Affiliation(s)
- Mónica Morales-Jiménez
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR-Unidad Oaxaca), Instituto Politécnico Nacional, Calle Hornos 1003, Colonia Noche Buena, Santa Cruz Xoxocotlán 71230, Mexico
| | - Daniel A Palacio
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070371, Chile
| | - Manuel Palencia
- GI-CAT, Department of Chemistry, Faculty of Natural and Exact Science, Universidad del Valle, Cali 25360, Colombia
| | - Manuel F Meléndrez
- Departamento de Ingeniería de Materiales (DIMAT), Facultad de Ingeniería, Universidad de Concepción, Edmundo Larenas 270, Casilla 160-C, Concepción 4070371, Chile
- Unidad de Desarrollo Tecnológico, 2634 Av. Cordillera, Parque Industrial Coronel, P.O. Box 4051, Concepción 4191996, Chile
| | - Bernabé L Rivas
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070371, Chile
| |
Collapse
|
15
|
Palanisamy G, Im YM, Muhammed AP, Palanisamy K, Thangarasu S, Oh TH. Fabrication of Cellulose Acetate-Based Proton Exchange Membrane with Sulfonated SiO 2 and Plasticizers for Microbial Fuel Cell Applications. MEMBRANES 2023; 13:581. [PMID: 37367785 DOI: 10.3390/membranes13060581] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Developing a hybrid composite polymer membrane with desired functional and intrinsic properties has gained significant consideration in the fabrication of proton exchange membranes for microbial fuel cell applications. Among the different polymers, a naturally derived cellulose biopolymer has excellent benefits over synthetic polymers derived from petrochemical byproducts. However, the inferior physicochemical, thermal, and mechanical properties of biopolymers limit their benefits. In this study, we developed a new hybrid polymer composite of a semi-synthetic cellulose acetate (CA) polymer derivate incorporated with inorganic silica (SiO2) nanoparticles, with or without a sulfonation (-SO3H) functional group (sSiO2). The excellent composite membrane formation was further improved by adding a plasticizer (glycerol (G)) and optimized by varying the SiO2 concentration in the polymer membrane matrix. The composite membrane's effectively improved physicochemical properties (water uptake, swelling ratio, proton conductivity, and ion exchange capacity) were identified because of the intramolecular bonding between the cellulose acetate, SiO2, and plasticizer. The proton (H+) transfer properties were exhibited in the composite membrane by incorporating sSiO2. The composite CAG-2% sSiO2 membrane exhibited a higher proton conductivity (6.4 mS/cm) than the pristine CA membrane. The homogeneous incorporation of SiO2 inorganic additives in the polymer matrix provided excellent mechanical properties. Due to the enhancement of the physicochemical, thermal, and mechanical properties, CAG-sSiO2 can effectively be considered an eco-friendly, low-cost, and efficient proton exchange membrane for enhancing MFC performance.
Collapse
Affiliation(s)
- Gowthami Palanisamy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Yeong Min Im
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ajmal P Muhammed
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Karvembu Palanisamy
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| | - Sadhasivam Thangarasu
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
16
|
A comprehensive review of chitosan applications in paper science and technologies. Carbohydr Polym 2023; 309:120665. [PMID: 36906368 DOI: 10.1016/j.carbpol.2023.120665] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Using environmentally friendly biomaterials in different aspects of human life has been considered extensively. In this respect, different biomaterials have been identified and different applications have been found for them. Currently, chitosan, the well-known derivative of the second most abundant polysaccharide in the nature (i.e., chitin), has been receiving a lot of attention. This unique biomaterial can be defined as a renewable, high cationic charge density, antibacterial, biodegradable, biocompatible, non-toxic biomaterial with high compatibility with cellulose structure, where it can be used in different applications. This review takes a deep and comprehensive look at chitosan and its derivative applications in different aspects of papermaking.
Collapse
|
17
|
Mishra V, Tarafdar A, Talukder S, Mendiratta SK, Agrawal RK, Jaiswal RK, Bomminayuni GP. Enhancing the shelf life of chevon Seekh Kabab using chitosan edible film and Cinnamomum zeylanicum essential oil. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1814-1825. [PMID: 37187978 PMCID: PMC10169963 DOI: 10.1007/s13197-023-05723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023]
Abstract
Chevon Seekh Kabab is a popular meat product of India. However, due to high protein and moisture content it undergoes quick microbial spoilage and oxidative reactions leading to lower shelf life. The combination of chitosan edible film and cinnamon essential oil (CEO) was chosen to remediate this problem because of its antimicrobial and antioxidative effect. Control and chitosan edible film with CEO coated chevon Seekh Kabab samples were stored at 4 °C. The physicochemical (pH, TBARS, TVBN, moisture, colour), microbiological (APC, psychrophilic, coliform and Staphylococcal count) and sensory attributes were evaluated over a 30 days period. The maximum shelf life of 27 days was observed when 2% chitosan edible film with 0.3% CEO was coated over samples. A reduction in moisture, L* value, a* value and sensory scores along with an increase in pH, TVBN, TBARS, b* value and microbiological parameters were observed during the storage period. Reaction kinetics for the physicochemical and microbiological parameters was also established. The physicochemical, microbiological and sensory parameters were within prescribed limits till spoilage in the treated sample. This investigation may aid researchers working on scaling up of processing and preservation of Seekh Kabab.
Collapse
Affiliation(s)
- V. Mishra
- Division of Livestock Products Technology, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izzatnagar, Bareilly, Uttar Pradesh 243122 India
| | - S. Talukder
- Division of Livestock Products Technology, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - S. K. Mendiratta
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - R. K. Agrawal
- Division of Livestock Products Technology, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - R. K. Jaiswal
- Department of Livestock Products Technology, Bihar Veterinary College, Bihar Animal Sciences University, Patna, Bihar 800014 India
| | - G. P. Bomminayuni
- Division of Livestock Products Technology, ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122 India
| |
Collapse
|
18
|
Zhou G, Zhang H, Su Z, Zhang X, Zhou H, Yu L, Chen C, Wang X. A Biodegradable, Waterproof, and Thermally Processable Cellulosic Bioplastic Enabled by Dynamic Covalent Modification. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2301398. [PMID: 37127887 DOI: 10.1002/adma.202301398] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Indexed: 05/03/2023]
Abstract
The growing environmental concern over petrochemical-based plastics continuously promotes the exploration of green and sustainable substitute materials. Compared with petrochemical products, cellulose has overwhelming superiority in terms of availability, cost, and biodegradability; however, cellulose's dense hydrogen-bonding network and highly ordered crystalline structure make it hard to be thermoformed. A strategy to realize the partial disassociation of hydrogen bonds in cellulose and the reassembly of cellulose chains via constructing a dynamic covalent network, thereby endowing cellulose with thermal processability as indicated by the observation of a moderate glass transition temperature (Tg = 240 °C), is proposed. Moreover, the cellulosic bioplastic delivers a high tensile strength of 67 MPa, as well as excellent moisture and solvent resistance, good recyclability, and biodegradability in nature. With these advantageous features, the developed cellulosic bioplastic represents a promising alternative to traditional plastics.
Collapse
Affiliation(s)
- Guowen Zhou
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Haishan Zhang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Zhiping Su
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China
| | - Xiaoqian Zhang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Haonan Zhou
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Le Yu
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Chaoji Chen
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, 510640, Guangzhou, China
| |
Collapse
|
19
|
Cellulose-Chitosan Functional Biocomposites. Polymers (Basel) 2023; 15:polym15020425. [PMID: 36679314 PMCID: PMC9863338 DOI: 10.3390/polym15020425] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
Here, we present a detailed review of recent research and achievements in the field of combining two extremely important polysaccharides; namely, cellulose and chitosan. The most important properties of the two polysaccharides are outlined, giving rise to the interest in their combination. We present various structures and forms of composite materials that have been developed recently. Thus, aerogels, hydrogels, films, foams, membranes, fibres, and nanofibres are discussed, alongside the main techniques for their fabrication, such as coextrusion, co-casting, electrospinning, coating, and adsorption. It is shown that the combination of bacterial cellulose with chitosan has recently gained increasing attention. This is particularly attractive, because both are representative of a biopolymer that is biodegradable and friendly to humans and the environment. The rising standard of living and growing environmental awareness are the driving forces for the development of these materials. In this review, we have shown that the field of combining these two extraordinary polysaccharides is an inexhaustible source of ideas and opportunities for the development of advanced functional materials.
Collapse
|
20
|
Zhao Y, Zhou S, Xia X, Tan M, Lv Y, Cheng Y, Tao Y, Lu J, Du J, Wang H. High-performance carboxymethyl cellulose-based hydrogel film for food packaging and preservation system. Int J Biol Macromol 2022; 223:1126-1137. [PMID: 36395928 DOI: 10.1016/j.ijbiomac.2022.11.102] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Most traditional food packaging and preservation films suffer from limited stretchability and relatively simple functionality, which severely restricts their practical application. In this study, a highly stretchable and versatile sodium carboxymethyl cellulose (CMC)/polyvinyl alcohol (PVA)/poly(ethylene imine) (PEI)/tannic acid (TA) hydrogel film was elaborately designed and demonstrated as an efficient food packaging and preservation system. The dynamic reversible non-covalent within three-dimensional (3D) network structures served as sacrificial bonds to dissipate the loaded energy and endowed the hydrogel film with excellent elongation ~400 %, which is much larger than that of conventional food packaging films (<50 %). Furthermore, the optimized CMC/PVA/PEI/TA3 hydrogel film delivers versatile performances, including self-healing, whole UV-blocking (<400 nm), strong adhesive strength (234.08 KPa), antioxidation virtues, oxygen barrier (32.64 cm3*μm/(m2*d*KPa)) and water vapor barrier (642.92 g/(m2*24 h)). Notably, the shelf life of fresh strawberries, mangoes, and cherries was prolonged by at least one week under ambient conditions when the packaging box was covered by the fabricated CMC/PVA/PEI/TA3 film. Thus, our work not only provides a highly stretchable and versatile hydrogel film but also boosts the in-depth comprehension and rational design of robust food packaging and preservation films.
Collapse
Affiliation(s)
- Yali Zhao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Siying Zhou
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Yanna Lv
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Cheng
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yehan Tao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Lu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Du
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
21
|
Marine Collagen-Based Antibacterial Film Reinforced with Graphene and Iron Oxide Nanoparticles. Int J Mol Sci 2022; 24:ijms24010648. [PMID: 36614090 PMCID: PMC9820399 DOI: 10.3390/ijms24010648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
It has become more widely available to use biopolymer-based films as alternatives to conventional plastic-based films due to their non-toxic properties, flexibility, and affordability. However, they are limited in application due to deficiencies in their properties. The marine collagen was the specimen for the present study. Thus, the main objective was to reinforce marine collagen-based films with 1.0% (w/w of the dry polymer weight) of iron oxide nanoparticles (IO-NPs), graphene oxide nanoparticles (GO-NPs), or a combination of both oxides (GO-NPs/IO-NPs) as antibacterial and antioxidant additives to overcome some of the limitations of the film. In this way, the nanoparticles were incorporated into the film-forming solution (2% w/v in acetic acid, 0.05 M) and processed by casting. Thereafter, the films were dried and analyzed for their physicochemical, mechanical, microstructural, and functional properties. The results show that the effective combination of GO-NPs/IO-NPs enhanced the physicochemical properties by increasing the water contact angle (WCA) of the films from 77.2 to 84.4° and their transparency (T) from 0.5 to 5.2. Furthermore, these nanoparticles added antioxidant and antibacterial value to the films, with free radical inhibition of up to 95.8% and 23.8 mm of bacteria growth inhibition (diameter). As a result, both types of nanoparticles are proposed as suitable additives to be incorporated into films and enhance their different properties.
Collapse
|
22
|
Sultan M, Abdelhakim A, Nassar M, Hassan YR. Active packaging of chitosan film modified with basil oil encapsulated in silica nanoparticles as an alternate for plastic packaging materials. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Abdullah JAA, Jiménez-Rosado M, Guerrero A, Romero A. Biopolymer-Based Films Reinforced with Green Synthesized Zinc Oxide Nanoparticles. Polymers (Basel) 2022; 14:polym14235202. [PMID: 36501597 PMCID: PMC9738154 DOI: 10.3390/polym14235202] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
Nowadays, biopolymer-based films are being developed as an alternative to conventional plastic-based films, mainly because they are non-toxic, flexible, inexpensive, and widely available. However, they are restricted in their applications due to several deficiencies in their properties. Accordingly, the reinforcement of these materials with nanoparticles/nanofillers could overcome some of their shortcomings, especially those processed by green methods. Green synthesized zinc oxide nanoparticles (ZnO-NPs) are highly suggested to overcome these deficiencies. Therefore, the main aim of this work was to develop different biopolymer-based films from cellulose acetate (CA), chitosan (CH), and gelatin (GE) reinforced with ZnO-NPs prepared by casting, and to assess their different properties. The results show the improvements produced by the incorporation of ZnO-NPs (1% w/w) into the CA, CH, and GE systems. Thus, the water contact angles (WCAs) increased by about 12, 13, and 14%, while the water vapor permeability (WVP) decreased by about 14, 6, and 29%, the water solubility (WS) decreased by about 23, 6, and 5%, and the transparency (T) increased by about 19, 31, and 20% in the CA, CH, and GE systems, respectively. Furthermore, the mechanical properties were enhanced by increasing the ultimate tensile strength (UTS) (by about 39, 13, and 26%, respectively) and Young's modulus (E) (by about 70, 34, and 63%, respectively), thereby decreasing the elongation at the break (εmax) (by about 56, 23, and 49%, respectively) and the toughness (by about 50, 4, and 30%, respectively). Lastly, the antioxidant properties were enhanced by 34, 49, and 39%, respectively.
Collapse
Affiliation(s)
- Johar Amin Ahmed Abdullah
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain
- Correspondence: (J.A.A.A.); (A.R.); Tel.: +34-954-557-179 (J.A.A.A. & A.R.)
| | - Mercedes Jiménez-Rosado
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain
| | - Antonio Guerrero
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain
| | - Alberto Romero
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
- Correspondence: (J.A.A.A.); (A.R.); Tel.: +34-954-557-179 (J.A.A.A. & A.R.)
| |
Collapse
|
24
|
Wang X, Wang Z, Shen M, Yi C, Yu Q, Chen X, Xie J, Xie M. Acetylated polysaccharides: Synthesis, physicochemical properties, bioactivities, and food applications. Crit Rev Food Sci Nutr 2022; 64:4849-4864. [PMID: 36382653 DOI: 10.1080/10408398.2022.2146046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polysaccharides are biomacromolecular widely applied in the food industry, as gelling agents, thickeners and health supplements. As hydrophobic groups, acetyls provide amphiphilicity to polysaccharides with numerous hydroxyl groups, which greatly expand the presence of polysaccharides in organic organisms and various chemical environments. Acetylation could result in diverseness and promotion of the structure of polysaccharides, which improve the physicochemical properties and biological activities. High efficient and environmentally friendly access to acetylated derivatives of different polysaccharides is being explored. This review discusses and summarizes acetylated polysaccharides in terms of synthetic methods, physicochemical properties and biological activities and emphasizes the structure-effect relationships introduced by acetyl groups to reveal the potential mechanism of acetylated polysaccharides. Acetyls with different contents and substitution sites could change the molecular weight, monosaccharide composition and spatial architecture of polysaccharides, resulting in differences among properties such as water solubility, emulsification and crystallinity. Coupled with acetyls, polysaccharides have increased antioxidant, immunomodulatory, antitumor, and pro-prebiotic capacities. In addition, their possible applications have also been discussed in green food materials, bioactive ingredient carriers and functional food products, indicating that acetylated polysaccharides hold a clear vision in food health and industrial development.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhijun Wang
- Food Quality and Design Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Chen Yi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
25
|
Abdullah JAA, Jiménez-Rosado M, Benítez JJ, Guerrero A, Romero A. Biopolymer-Based Films Reinforced with Fe xO y-Nanoparticles. Polymers (Basel) 2022; 14:polym14214487. [PMID: 36365481 PMCID: PMC9654949 DOI: 10.3390/polym14214487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 12/04/2022] Open
Abstract
Nowadays, natural polymer-based films are considered potentially environmentally friendly alternatives to conventional plastic films, due to many advantageous properties, including their easy processability, high flexibility, non-toxicity, low cost, high availability, and environmental safety. However, they are limited in their application by a number of shortcomings, including their high water solubility and vapor permeability as well as their poor opacity and low mechanical resistance. Thus, nanoparticles, such as green FexOy-NPs, can be used to overcome the drawbacks associated with these materials. Therefore, the aim of this study was to develop three different polymer-based films (gelatin-based, cellulose acetate-based and chitosan-based films) containing green synthesized FexOy-NPs (1.0% w/w of the initial polymer weight) as an additive to improve film properties. This was accomplished by preparing the different films using the casting method and examining their physicochemical, mechanical, microstructural, and functional characteristics. The results show that the incorporation of FexOy-NPs into the different films significantly enhanced their physicochemical, mechanical, and morphological properties as well as their antioxidant characteristics. Consequently, it was possible to produce suitable natural polymer-based films with potential applications across a wide range of industries, including functional packaging for food, antioxidants, and antimicrobial additives for pharmaceutical and biomedical materials as well as pesticides for agriculture.
Collapse
Affiliation(s)
- Johar Amin Ahmed Abdullah
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain
- Correspondence: (J.A.A.A.); (A.R.); Tel.: +34-954557179
| | - Mercedes Jiménez-Rosado
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain
| | - José J. Benítez
- Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Calle Américo Vespucio 49, Isla de la Cartuja, 41092 Sevilla, Spain
| | - Antonio Guerrero
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain
| | - Alberto Romero
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
- Correspondence: (J.A.A.A.); (A.R.); Tel.: +34-954557179
| |
Collapse
|
26
|
Khalid MY, Arif ZU. Novel biopolymer-based sustainable composites for food packaging applications: A narrative review. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100892] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Wang Y, Zhou Z, Han Y. Levan-chitosan blend films: Preparation, structural, physical properties and application in pork packaging. Int J Biol Macromol 2022; 217:624-632. [PMID: 35835307 DOI: 10.1016/j.ijbiomac.2022.07.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/16/2022] [Accepted: 07/07/2022] [Indexed: 11/05/2022]
Abstract
Conventional fossil fuel-based packaging materials often brings of food safety and serious environmental pollution. It is significant to develop an environmentally-friendly packaging material. In this work, a levan-chitosan (LE/CS) blend film was fabricated via the solution casting method. The films were evaluated by Fourier transform infrared spectroscopy and X-ray diffraction, indicating the formation of hydrogen bonds between chitosan and levan. The mechanical properties of LE/CS films demonstrated a mechanical strength higher than CS films, and the best tensile strength appeared at a ratio of LE/CS (1:1) up to 18.78 ± 0.73 MPa. The addition of levan caused a significant increase in absorption of UV light with a reduction in swelling water of the blend films from 29.13 ± 0.53 % of chitosan film to 2.07 ± 0.27 % of LE/CS (1:1) film. A higher contact angle and lower WVP were observed for LE/CS blend films. LE/CS blend films were then used as packaging material for fresh pork and were well maintained the qualities. The study suggested that the new blend film might have a good prospect as a food packaging material.
Collapse
Affiliation(s)
- Yuehui Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
28
|
Ren Y, Han S, Chen J, Li J, Zhou M, He Z, He Z. Polyethylene glycol derivant crosslink and modify chitosan for tympanic membrane repair. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2090939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Yangjing Ren
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Shuying Han
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jia Chen
- The Department of Otolaryngology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Mi Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Zejian He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhen He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
29
|
Arif ZU, Khalid MY, Ahmed W, Arshad H, Ullah S. Recycling of the glass/carbon fibre reinforced polymer composites: A step towards the circular economy. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.2015781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Zia Ullah Arif
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus, Pakistan
| | - Muhammad Yasir Khalid
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus, Pakistan
| | - Waqas Ahmed
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus, Pakistan
| | - Hassan Arshad
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus, Pakistan
| | - Sibghat Ullah
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus, Pakistan
| |
Collapse
|
30
|
Zhang L, Li K, Yu D, Regenstein JM, Dong J, Chen W, Xia W. Chitosan/zein bilayer films with one-way water barrier characteristic: Physical, structural and thermal properties. Int J Biol Macromol 2022; 200:378-387. [PMID: 35026223 DOI: 10.1016/j.ijbiomac.2021.12.199] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/20/2021] [Accepted: 12/31/2021] [Indexed: 12/28/2022]
Abstract
Chitosan (C) and zein (Z) were used to develop bilayer films with a characteristic one-way water barrier using a layer-by-layer (LBL) casting method. The effects of mass ratios (C:Z1:1, C:Z1:2, C:Z1:3, C:Z3:1, C:Z2:1) on the microstructure and physicochemical properties of bilayer films were investigated. Bilayer films had uniform microstructures, and C:Z = 1:3 showed a firmer structure as the Z aggregates were distributed in the continuous phase of C. The intermolecular interactions between the C and Z layers were observed using FTIR and XRD analysis. TGA demonstrated that adding Z layer enhanced the thermal stability of C films. LBL coating gave the C/Z bilayer film an increased elongation and tensile strength, as well as a decreased water vapor and oxygen permeability, especially for C:Z = 1:3 which had better properties. The results suggested that C and Z bilayer films may be a promising material for food packaging with the desired water resistance.
Collapse
Affiliation(s)
- Liming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Kangning Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Joe M Regenstein
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA
| | - Junli Dong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanwen Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
31
|
Recent Advancements in Smart Biogenic Packaging: Reshaping the Future of the Food Packaging Industry. Polymers (Basel) 2022; 14:polym14040829. [PMID: 35215741 PMCID: PMC8878437 DOI: 10.3390/polym14040829] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022] Open
Abstract
Due to their complete non-biodegradability, current food packages have resulted in major environmental issues. Today’s smart consumer is looking for alternatives that are environmentally friendly, durable, recyclable, and naturally rather than synthetically derived. It is a well-established fact that complete replacement with environmentally friendly packaging materials is unattainable, and bio-based plastics should be the future of the food packaging industry. Natural biopolymers and nanotechnological interventions allow the creation of new, high-performance, light-weight, and environmentally friendly composite materials, which can replace non-biodegradable plastic packaging materials. This review summarizes the recent advancements in smart biogenic packaging, focusing on the shift from conventional to natural packaging, properties of various biogenic packaging materials, and the amalgamation of technologies, such as nanotechnology and encapsulation; to develop active and intelligent biogenic systems, such as the use of biosensors in food packaging. Lastly, challenges and opportunities in biogenic packaging are described, for their application in sustainable food packing systems.
Collapse
|