1
|
Vo TS, Chit PP, Nguyen VH, Hoang T, Lwin KM, Vo TTBC, Jeon B, Han S, Lee J, Park Y, Kim K. A comprehensive review of chitosan-based functional materials: From history to specific applications. Int J Biol Macromol 2024; 281:136243. [PMID: 39393718 DOI: 10.1016/j.ijbiomac.2024.136243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/08/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
Chitosan (CTS), a natural biopolymer derived from chitin, has garnered significant attention owing to its potential chemical, biological, and physical properties, such as biocompatibility, bioactivity, and biosafety. This comprehensive review traces the historical development of CTS-based materials and delves into their specific applications across various fields. The study highlights the evolution of CTS from its initial discovery to its current state, emphasizing key milestones and technological advancements that have expanded its utility. Despite the extensive research, the synthesis and functionalization of CTS to achieve desired properties for targeted applications remain a challenge. This review addresses current problems such as the scalability of production, consistency in quality, and the environmental impact of extraction and modification processes. Additionally, it explores the novel applications of CTS-based materials in biomedicine, agriculture, environmental protection, and food industry, showcasing innovative solutions and future potentials. By providing a detailed analysis of the current state of CTS research and identifying gaps in knowledge, this review offers a valuable resource for researchers and industry professionals. The novelty of this work lies in its holistic approach, combining historical context with a forward-looking perspective on emerging trends and potential breakthroughs in the field of CTS-based functional materials. Therefore, this review will be helpful for readers by summarizing recent advances and discussing prospects in CTS-based functional materials.
Collapse
Affiliation(s)
- Thi Sinh Vo
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Pyone Pyone Chit
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Vu Hoang Nguyen
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia.
| | - Trung Hoang
- Department of Biophysics, Sungkyunkwan University, Suwon, 16419, South Korea; Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Khin Moe Lwin
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Tran Thi Bich Chau Vo
- Faculty of Industrial Management, College of Engineering, Can Tho University, Can Tho 900000, Viet Nam.
| | - Byounghyun Jeon
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Soobean Han
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jaehan Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Yunjeong Park
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94709, United States.
| | - Kyunghoon Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
2
|
Faizan M, Singh A, Eren A, Sultan H, Sharma M, Djalovic I, Trivan G. Small molecule, big impacts: Nano-nutrients for sustainable agriculture and food security. JOURNAL OF PLANT PHYSIOLOGY 2024; 301:154305. [PMID: 39002339 DOI: 10.1016/j.jplph.2024.154305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
Human existence and the long-term viability of society depend on agriculture. Overuse of synthetic fertilizers results in increased contamination of the land, water, and atmosphere as well as financial constraints. In today's modern agriculture, environmentally friendly technology is becoming more and more significant as a substitute for conventional fertilizers and chemical pesticides. Using nanotechnology, agricultural output can be improved in terms of quality, biological support, financial stability, and environmental safety. There is a lot of promise for the sustainable application of nano-fertilizers in crop productivity and soil fertility, with little or no negative environmental effects. In this context, the present review provided an overview of the benefits of using nanofertilizers, its application and types. Mechanistic approach for increasing soil fertility and yield via nanofertilizers also described in detail. We concluded this article to compare the advantages of nanofertilizers over chemicals and nano-chemicals. Nonetheless, additional investigation is required to comprehend the effects and possible hazards of nanomaterials in the food production chain.
Collapse
Affiliation(s)
- Mohammad Faizan
- Department of Botany, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, India.
| | - Aishwarya Singh
- School of Applied Sciences, Shri Venkateshwara University, Gajraula, 244236, India; Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India; Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi, 110007, India
| | - Abdullah Eren
- Department of Organic Agriculture, Kiziltepe Vocational School, Mardin Artuklu University, Artuklu, Turkey
| | - Haider Sultan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Meenakshi Sharma
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, 21000, Novi Sad, Serbia
| | - Goran Trivan
- Institute for Multidisciplinary Research, University of Belgrade, 11030, Belgrade, Serbia
| |
Collapse
|
3
|
Arora PK, Tripathi S, Omar RA, Chauhan P, Sinhal VK, Singh A, Srivastava A, Garg SK, Singh VP. Next-generation fertilizers: the impact of bionanofertilizers on sustainable agriculture. Microb Cell Fact 2024; 23:254. [PMID: 39304847 DOI: 10.1186/s12934-024-02528-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
Bionanofertilizers are promising eco-friendly alternative to chemical fertilizers, leveraging nanotechnology and biotechnology to enhance nutrient uptake by plants and improve soil health. They consist of nanoscale materials and beneficial microorganisms, offering benefits such as enhanced seed germination, improved soil quality, increased nutrient use efficiency, and pesticide residue degradation, ultimately leading to improved crop productivity. Bionanofertilizers are designed for targeted delivery of nutrients, controlled release, and minimizing environmental pollutants, making them a sustainable option for agriculture. These fertilizers also have the potential to enhance plant growth, provide disease resistance, and contribute to sustainable farming practices. The development of bionanofertilizers addresses the adverse environmental impact of chemical fertilizers, offering a safer and productive means of fertilization for agricultural practices. This review provides substantial evidence supporting the potential of bionanofertilizers in revolutionizing agricultural practices, offering eco-friendly and sustainable solutions for crop management and soil health.
Collapse
Affiliation(s)
- Pankaj Kumar Arora
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India.
| | - Shivam Tripathi
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Rishabh Anand Omar
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Prerna Chauhan
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Vijay Kumar Sinhal
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Amit Singh
- Department of Law, MJP Rohilkhand University, Bareilly, India
| | - Alok Srivastava
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Sanjay Kumar Garg
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Vijay Pal Singh
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| |
Collapse
|
4
|
Meena M, Saharan V, Meena KK, Singh B, Pilania S, Gupta NK, Pal A, Garhwal OP, Sharma YK, Singh U, Bagri R, Sharma MK, Sharma R, Jakhar BL, Chandel P, Prajapati D, Mondal K, Mahala M, Bairwa DK, Meena MB. Synthesis and characterization of novel histidine functionalized chitosan nanoformulations and its bioactivity in tomato plant. Sci Rep 2024; 14:15118. [PMID: 38956171 PMCID: PMC11219782 DOI: 10.1038/s41598-024-64268-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024] Open
Abstract
The use of novel active ingredients for the functional modification of chitosan nanoformulations has attracted global attention. In this study, chitosan has been functionalized via histidine to craft novel chitosan-histidine nanoformulation (C-H NF) using ionic gelation method. C-H NF exhibited elite physico-biochemical properties, influencing physiological and biochemical dynamics in Tomato. These elite properties include homogenous-sized nanoparticles (314.4 nm), lower PDI (0.218), viscosity (1.43 Cps), higher zeta potential (11.2 mV), nanoparticle concentration/ml (3.53 × 108), conductivity (0.046 mS/cm), encapsulation efficiency (53%), loading capacity (24%) and yield (32.17%). FTIR spectroscopy revealed histidine interaction with C-H NF, while SEM and TEM exposed its porous structure. Application of C-H NF to Tomato seedling and potted plants through seed treatment and foliar spray positively impacts growth parameters, antioxidant-defense enzyme activities, reactive oxygen species (ROS) content, and chlorophyll and nitrogen content. We claim that the histidine-functionalized chitosan nanoformulation enhances physico-biochemical properties, highlighting its potential to elevate biochemical and physiological processes of Tomato plant.
Collapse
Affiliation(s)
- Mahendra Meena
- Department of Horticulture, SKNCOA, SKNAU, Jobner, Rajasthan, 303 329, India.
| | - Vinod Saharan
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, MPUAT, Udaipur, Rajasthan, India
| | - K K Meena
- Department of Horticulture, Rajasthan Agricultural Research Institute, SKNAU, Jobner, Rajasthan, India
| | - Balraj Singh
- Department of Horticulture, SKNCOA, SKNAU, Jobner, Rajasthan, 303 329, India
| | - Shalini Pilania
- Department of Horticulture, Rajasthan College of Agriculture, MPUAT, Udaipur, Rajasthan, India
| | - N K Gupta
- Department of Plant Physiology, SKNAU, Jobner, Rajasthan, India
| | - Ajay Pal
- Department of Biochemistry, College of Basic Sciences and Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125 004, India
| | - O P Garhwal
- Department of Horticulture, Rajasthan Agricultural Research Institute, SKNAU, Jobner, Rajasthan, India
| | - Y K Sharma
- Department of Horticulture, Rajasthan Agricultural Research Institute, SKNAU, Jobner, Rajasthan, India
| | - Uadal Singh
- Department of Horticulture, Rajasthan Agricultural Research Institute, SKNAU, Jobner, Rajasthan, India
| | - Rajesh Bagri
- Department of Plant Pathology, Rajasthan Agricultural Research Institute, SKNAU, Jobner, Rajasthan, India
| | - M K Sharma
- Department of Horticulture, SKNCOA, SKNAU, Jobner, Rajasthan, 303 329, India
| | - Rachna Sharma
- Department of Chemistry, Dr B R Ambedkar NIT, Jalandhar, 144 011, India
| | - B L Jakhar
- Department of Entomology, Rajasthan Agricultural Research Institute, SKNAU, Jobner, Rajasthan, India
| | - Piyush Chandel
- Department of Horticulture, Rajasthan College of Agriculture, MPUAT, Udaipur, Rajasthan, India
| | - Damyanti Prajapati
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, MPUAT, Udaipur, Rajasthan, India
| | - Kinjal Mondal
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, MPUAT, Udaipur, Rajasthan, India
| | - Mital Mahala
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, MPUAT, Udaipur, Rajasthan, India
| | - D K Bairwa
- Department of Entomology, SKNCOA, SKNAU, Jobner, Rajasthan, 303 329, India
| | - Madhu Bai Meena
- Department of Plant Pathology, Rajasthan College of Agriculture, MPUAT, Udaipur, Rajasthan, India
| |
Collapse
|
5
|
Mohan N, Pal A, Saharan V, Kumar A, Vashishth R, Prince SE. Development, characterization, and evaluation of Zn-SA-chitosan bionanoconjugates on wheat seed, experiencing chilling stress during germination. Heliyon 2024; 10:e31708. [PMID: 38845942 PMCID: PMC11153175 DOI: 10.1016/j.heliyon.2024.e31708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
This study aimed to develop and characterize the chitosan bionanoconjugates (BNCs) loaded with zinc (Zn) and salicylic acid (SA) and test their efficacy on wheat seed exposed to chilling stress. BNCs developed were spherical (480 ± 6.0 nm), porous, and positively charged (+25.2 ± 2.4 mV) with regulated nutrient release properties. They possessed complexation efficiency of 78.4 and 58.9 % for Zn, and SA respectively. BET analysis further confirmed a surface area of 12.04 m2/g. Release kinetics substantiated the release rates of Zn and SA, as 0.579 and 0.559 % per hour, along with a half-life of 119.7 and 124.0 h, respectively. BNCs positively affected the germination potential of wheat seeds under chilling stress as observed by significantly (p < 0.05) reduced mean emergence time (18 %), and increased germination rate (22 %), compared to the control. Higher activities of reserve mobilizing enzymes (α-amylase- 6.5 folds, protease -10.2 folds) as well as faster reserve mobilization of starch (64.4 %) and protein (63.5 %) molecules were also observed. The application further led to increased levels of the antioxidant enzymes (SOD and CAT) and reduced oxidative damage (MDA and H2O2). Thus, it is inferred that the developed BNCs could help substantially improve the germination and reserve mobilization potential, thereby increasing the crop yield.
Collapse
Affiliation(s)
- Narender Mohan
- Department of Biochemistry, College of Basic Sciences and Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125 004, India
| | - Ajay Pal
- Department of Biochemistry, College of Basic Sciences and Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125 004, India
| | - Vinod Saharan
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, 313 001, India
| | - Anuj Kumar
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Rahul Vashishth
- Department of Biological Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Sabina Evan Prince
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| |
Collapse
|
6
|
Vaidya S, Deng C, Wang Y, Zuverza-Mena N, Dimkpa C, White JC. Nanotechnology in agriculture: A solution to global food insecurity in a changing climate? NANOIMPACT 2024; 34:100502. [PMID: 38508516 DOI: 10.1016/j.impact.2024.100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/28/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Although the Green Revolution dramatically increased food production, it led to non- sustainable conventional agricultural practices, with productivity in general declining over the last few decades. Maintaining food security with a world population exceeding 9 billion in 2050, a changing climate, and declining arable land will be exceptionally challenging. In fact, nothing short of a revolution in how we grow, distribute, store, and consume food is needed. In the last ten years, the field of nanotoxicology in plant systems has largely transitioned to one of sustainable nano-enabled applications, with recent discoveries on the use of this advanced technology in agriculture showing tremendous promise. The range of applications is quite extensive, including direct application of nanoscale nutrients for improved plant health, nutrient biofortification, increased photosynthetic output, and greater rates of nitrogen fixation. Other applications include nano-facilitated delivery of both fertilizers and pesticides; nano-enabled delivery of genetic material for gene silencing against viral pathogens and insect pests; and nanoscale sensors to support precision agriculture. Recent efforts have demonstrated that nanoscale strategies increase tolerance to both abiotic and biotic stressors, offering realistic potential to generate climate resilient crops. Considering the efficiency of nanoscale materials, there is a need to make their production more economical, alongside efficient use of incumbent resources such as water and energy. The hallmark of many of these approaches involves much greater impact with far less input of material. However, demonstrations of efficacy at field scale are still insufficient in the literature, and a thorough understanding of mechanisms of action is both necessary and often not evident. Although nanotechnology holds great promise for combating global food insecurity, there are far more ways to do this poorly than safely and effectively. This review summarizes recent work in this space, calling out existing knowledge gaps and suggesting strategies to alleviate those concerns to advance the field of sustainable nano-enabled agriculture.
Collapse
Affiliation(s)
- Shital Vaidya
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Chaoyi Deng
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Yi Wang
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Nubia Zuverza-Mena
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Christian Dimkpa
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Jason C White
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States.
| |
Collapse
|
7
|
Sathiyabama M, Boomija RV, Muthukumar S, Gandhi M, Salma S, Prinsha TK, Rengasamy B. Green synthesis of chitosan nanoparticles using tea extract and its antimicrobial activity against economically important phytopathogens of rice. Sci Rep 2024; 14:7381. [PMID: 38548964 PMCID: PMC10978976 DOI: 10.1038/s41598-024-58066-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 03/25/2024] [Indexed: 04/01/2024] Open
Abstract
The aim of the present work is to biosynthesize Chitosan nanoparticles (CTNp) using tea (Camellia sinensis) extract, with potent antimicrobial properties towards phytopathogens of rice. Preliminary chemical analysis of the extract showed that they contain carbohydrate as major compound and uronic acid indicating the nature of acidic polysaccharide. The structure of the isolated polysaccharide was analyzed through FTIR and 1H NMR. The CTNp was prepared by the addition of isolated tea polysaccharides to chitosan solution. The structure and size of the CTNp was determined through FTIR and DLS analyses. The surface morphology and size of the CTNp was analysed by SEM and HRTEM. The crystalinity nature of the synthesized nanoparticle was identified by XRD analysis. The CTNp exhibited the antimicrobial properties against the most devastating pathogens of rice viz., Pyricularia grisea, Xanthomonas oryzae under in vitro condition. CTNp also suppressed the blast and blight disease of rice under the detached leaf assay. These results suggest that the biosynthesized CTNp can be used to control the most devastating pathogens of rice.
Collapse
Affiliation(s)
- M Sathiyabama
- Department of Botany, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| | - R V Boomija
- Department of Botany, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - S Muthukumar
- Department of Botany, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - M Gandhi
- Department of Botany, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - S Salma
- Department of Botany, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - T Kokila Prinsha
- Department of Botany, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - B Rengasamy
- Department of Botany, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| |
Collapse
|
8
|
Fang J, Peng Y, Zheng L, He C, Peng S, Huang Y, Wang L, Liu H, Feng G. Chitosan-Se Engineered Nanomaterial Mitigates Salt Stress in Plants by Scavenging Reactive Oxygen Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:176-188. [PMID: 38127834 DOI: 10.1021/acs.jafc.3c06185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Soil salinity seriously hinders the sustainable development of green agriculture. The emergence of engineered nanomaterials has revolutionized agricultural research, providing a new means to overcome the limitations associated with current abiotic stress management and achieve highly productive agriculture. Herein, we synthesized a brand-new engineered nanomaterial (Cs-Se NMs) through the Schiff base reaction of oxidized chitosan with selenocystamine hydrochloride to alleviate salt stress in plants. After the addition of 300 mg/L Cs-Se NMs, the activity of superoxide dismutase, catalase, and peroxidase in rice shoots increased to 3.19, 1.79, and 1.85 times those observed in the NaCl group, respectively. Meanwhile, the MDA levels decreased by 63.9%. Notably, Cs-Se NMs also raised the transcription of genes correlated with the oxidative stress response and MAPK signaling in the transcriptomic analysis. In addition, Cs-Se NMs augmented the abundance and variety of rhizobacteria and remodeled the microbial community structure. These results provide insights into applying engineered nanomaterials in sustainable agriculture.
Collapse
Affiliation(s)
- Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yuxin Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Lijuan Zheng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Chang He
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Shan Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yuewen Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Lixiang Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Huipeng Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Guangfu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
9
|
Wan Y, Wang T, Wang X, Ma L, Yang L, Li Q, Wang X. Antibacterial activity of juglone @ chitosan nanoemulsion against Staphylococcus aureus and its effect on pork shelf life. Int J Biol Macromol 2023; 253:127273. [PMID: 37804897 DOI: 10.1016/j.ijbiomac.2023.127273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Food poisoning caused by Staphylococcus aureus (S. aureus) contaminated meat has received a lot of attention. Although juglone has anti-S. aureus properties, its limited water solubility prevents it from being used in food manufacturing. Juglone @ chitosan nanoemulsion (NJ) was produced for the first time in order to increase its solubility. At the same time, it was applied to the pork model. According to the findings, NJ's particle size was 119.30 nm, its polymer dispersity index (PDI) value was 0.290, and its zeta potential was -57.3 mV. And it's stable over a 7-day storage period. The cell shape and membrane integrity of S. aureus were significantly damaged by NJ. At the same time, NJ showed extreme vigor for biofilm removal. The inclusion of NJ coating significantly reduced S. aureus, total volatile base nitrogen (TVB-N), total viable count (TVC), thiobarbituric acid reactants (TBARS), and pH in the sample when using the pork feeding model. NJ, meantime, halted the sensory evaluation's fall in meat score. Additionally, NJ demonstrated good biocompatibility in mouse acute toxicity tests. The aforementioned findings demonstrate that NJ is anticipated to become an anti-S. aureus and a novel method for coating pork preservation.
Collapse
Affiliation(s)
- Yangli Wan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaowen Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Luyao Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liu Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qianhong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
10
|
Bai Y, Jing Z, Ma R, Wan X, Liu J, Huang W. A critical review of enzymes immobilized on chitosan composites: characterization and applications. Bioprocess Biosyst Eng 2023; 46:1539-1567. [PMID: 37540309 DOI: 10.1007/s00449-023-02914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
Enzymes with industrial significance are typically used in biological processes. However, instability, high sensitivity, and impractical recovery are the major drawbacks of enzymes in practical applications. In recent years, the immobilization technology has attracted wide attention to overcoming these restrictions and improving the efficiency of enzyme applications. Chitosan (CS) is a unique functional substance with biocompatibility, biodegradability, non-toxicity, and antibacterial properties. Chitosan composites are anticipated to be widely used in the near future for a variety of purposes, including as supports for enzyme immobilization, because of their advantages. Therefor this review explores the effects of the chitosan's structure, molecular weight, degree of deacetylation on the enzyme immobilized, effect of key factors, and the enzymes immobilized on chitosan based composites for numerous applications, including the fields of biosensor, biomedical science, food industry, environmental protection, and industrial production. Moreover, this study carefully investigates the advantages and disadvantages of using these composites as well as their potential in the future.
Collapse
Affiliation(s)
- Yuan Bai
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China.
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China.
| | - Zongxian Jing
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Rui Ma
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Xinwen Wan
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Jie Liu
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Weiting Huang
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| |
Collapse
|
11
|
Domżał-Kędzia M, Ostrowska M, Lewińska A, Łukaszewicz M. Recent Developments and Applications of Microbial Levan, A Versatile Polysaccharide-Based Biopolymer. Molecules 2023; 28:5407. [PMID: 37513279 PMCID: PMC10384002 DOI: 10.3390/molecules28145407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Polysaccharides are essential components with diverse functions in living organisms and find widespread applications in various industries. They serve as food additives, stabilizers, thickeners, and fat substitutes in the food industry, while also contributing to dietary fiber for improved digestion and gut health. Plant-based polysaccharides are utilized in paper, textiles, wound dressings, biodegradable packaging, and tissue regeneration. Polysaccharides play a crucial role in medicine, pharmacy, and cosmetology, as well as in the production of biofuels and biomaterials. Among microbial biopolymers, microbial levan, a fructose polysaccharide, holds significant promise due to its high productivity and chemical diversity. Levan exhibits a wide range of properties, including film-forming ability, biodegradability, non-toxicity, self-aggregation, encapsulation, controlled release capacity, water retention, immunomodulatory and prebiotic activity, antimicrobial and anticancer activity, as well as high biocompatibility. These exceptional properties position levan as an attractive candidate for nature-based materials in food production, modern cosmetology, medicine, and pharmacy. Advancing the understanding of microbial polymers and reducing production costs is crucial to the future development of these fields. By further exploring the potential of microbial biopolymers, particularly levan, we can unlock new opportunities for sustainable materials and innovative applications that benefit various industries and contribute to advancements in healthcare, environmental conservation, and biotechnology.
Collapse
Affiliation(s)
- Marta Domżał-Kędzia
- Faculty of Biotechnology, University of Wroclaw, Joliot Curie 14a, 50-383 Wroclaw, Poland
- Research and Development Department InventionBio S.A., Jakóba Hechlińskiego 4, 85-825 Bydgoszcz, Poland
| | - Monika Ostrowska
- Research and Development Department InventionBio S.A., Jakóba Hechlińskiego 4, 85-825 Bydgoszcz, Poland
| | - Agnieszka Lewińska
- Faculty of Chemistry, University of Wroclaw, Joliot Curie 14, 50-383 Wroclaw, Poland
- OnlyBio Life S.A., Jakóba Hechlińskiego 6, 85-825 Bydgoszcz, Poland
| | - Marcin Łukaszewicz
- Faculty of Biotechnology, University of Wroclaw, Joliot Curie 14a, 50-383 Wroclaw, Poland
- Research and Development Department InventionBio S.A., Jakóba Hechlińskiego 4, 85-825 Bydgoszcz, Poland
| |
Collapse
|
12
|
Diedrich C, Zittlau IC, Khalil NM, Leontowich AFG, Freitas RAD, Badea I, Mainardes RM. Optimized Chitosan-Based Nanoemulsion Improves Luteolin Release. Pharmaceutics 2023; 15:1592. [PMID: 37376041 DOI: 10.3390/pharmaceutics15061592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 06/29/2023] Open
Abstract
Luteolin (LUT) is a flavonoid found in several edible and medicinal plants. It is recognized for its biological activities such as antioxidant, anti-inflammatory, neuroprotective, and antitumor effects. However, the limited water solubility of LUT leads to poor absorption after oral administration. Nanoencapsulation may improve the solubility of LUT. Nanoemulsions (NE) were selected for the encapsulation of LUT due to their biodegradability, stability, and ability to control drug release. In this work, chitosan (Ch)-based NE was developed to encapsulate luteolin (NECh-LUT). A 23 factorial design was built to obtain a formulation with optimized amounts of oil, water, and surfactants. NECh-LUT showed a mean diameter of 67.5 nm, polydispersity index 0.174, zeta potential of +12.8 mV, and encapsulation efficiency of 85.49%. Transmission electron microscopy revealed spherical shape and rheological analysis verified the Newtonian behavior of NECh-LUT. SAXS technique confirmed the bimodal characteristic of NECh-LUT, while stability analysis confirmed NECh-LUT stability when stored at room temperature for up to 30 days. Finally, in vitro release studies showed LUT controlled release up to 72 h, indicating the promising potential of NECh-LUT to be used as novel therapeutic option to treat several disorders.
Collapse
Affiliation(s)
- Camila Diedrich
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, Brazil
| | - Isabella C Zittlau
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, Brazil
| | - Najeh M Khalil
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, Brazil
| | | | - Rilton A de Freitas
- Biopol, Chemistry Department, Federal University of Parana, Curitiba 81531-980, Brazil
| | - Ildiko Badea
- Drug Design and Discovery Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Rubiana M Mainardes
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, Brazil
| |
Collapse
|
13
|
Szuplewska A, Sikorski J, Matczuk M, Ruzik L, Keppler BK, Timerbaev AR, Jarosz M. Enhanced edible plant production using nano-manganese and nano-iron fertilizers: Current status, detection methods and risk assessment. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107745. [PMID: 37172402 DOI: 10.1016/j.plaphy.2023.107745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Nanotechnology offers many benefits in the globally important field of food production and human nutrition, particularly by implementing agricultural nanoproducts. Of these, edible plant fertilizers enriched with nanosized forms of essential metals, Mn and Fe, are growing in importance with the advantages of enhanced action on plant roots. SCOPE AND APPROACH This review focuses on the importance of tracking the bioaccumulation and biodistribution of these pertinent nanofertilizers. An emphasis is given to the critical analysis of the state-of-the-art analytical strategies to examine the Mn and Fe nanoparticles in edible plant systems as well as to shedding light on the vast gap in the methodologies dedicated to the speciation, in vitro simulation, and safety testing of these promising nanomaterials. Also provided are guidances for the food chemists and technologists on the lights and shadows of particular analytical approaches as a matter of authors' expertise as analytical chemists. KEY FINDINGS AND CONCLUSIONS While the use of nanotechnology in agriculture seems to be growing increasingly, there is still a lack of analytical methodologies capable of investigating novel Mn- and Fe-based nanomaterials as potential fertilizers. Only the advent of reliable analytical tools in the field could bridge the gaps in our knowledge about processes in which those materials participate in the plant systems and their effects on crop production and quality of the produced food.
Collapse
Affiliation(s)
- Aleksandra Szuplewska
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland.
| | - Jacek Sikorski
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland.
| | - Magdalena Matczuk
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland.
| | - Lena Ruzik
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland.
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Währinger St. 42, 1090, Vienna, Austria.
| | - Andrei R Timerbaev
- Institute of Inorganic Chemistry, University of Vienna, Währinger St. 42, 1090, Vienna, Austria.
| | - Maciej Jarosz
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland.
| |
Collapse
|
14
|
Camparotto NG, Neves TDF, Mastelaro VR, Prediger P. Hydrophobization of aerogels based on chitosan, nanocellulose and tannic acid: Improvements on the aerogel features and the adsorption of contaminants in water. ENVIRONMENTAL RESEARCH 2023; 220:115197. [PMID: 36592805 DOI: 10.1016/j.envres.2022.115197] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Hydrophobic chitosan aerogels are promising adsorbents for immiscible contaminants such as oils and organic solvents. However, few studies have reported the application of hydrophobic aerogels as adsorbent for organic contaminants dissolved in water. Herein, novel highly hydrophobic chitosan (CS) beads containing cellulose nanocrystals (CNC) and hydrophobized tannic acid (HTA) composite were prepared with different CS and CNC-HTA content to achieve an optimized adsorbent to remove emerging contaminants from water in batch and fixed-bed assays. The CS@CNC-HTA beads properties were assessed by FTIR, XRD, SEM, XPS, Micro-CT, WCA, and zeta potential. Supramolecular interactions and physical interlacements between CS and CNC-HTA enabled the formation of CS@CNC-HTA beads with high porosity (98.6%), great volume of open pore space (10.16 mm3) and hydrophobicity (121.8°). The 1:1 CS@CNC-HTA beads showed the best performance for removing the pharmaceutical sildenafil citrate, the basic blue 26 dye, and the surfactant cetylpyridinium chloride, reaching adsorption capacities of 86 (73%), 375 (84%), and 390 (90%) mg.g-1, respectively. The 1:1 CS@CNC-HTA beads efficiently removed sildenafil citrate, basic blue 26 and cetylpyridinium chloride in fixed-bed experiments with exhaustion times of 890, 300, and 470 min, respectively. Theoretical calculations and adsorption assays indicate that the main attractive interactions are pyridinium-π, π-π, electrostatic and hydrophobic.
Collapse
Affiliation(s)
| | | | - Valmor Roberto Mastelaro
- São Carlos Institute of Physics, University of São Paulo - Usp, 13566-590, São Carlos, São Paulo, Brazil
| | - Patrícia Prediger
- School of Technology, University of Campinas - Unicamp, 13484-332, Limeira, São Paulo, Brazil.
| |
Collapse
|
15
|
Wang SY, Herrera-Balandrano DD, Jiang YH, Shi XC, Chen X, Liu FQ, Laborda P. Application of chitosan nanoparticles in quality and preservation of postharvest fruits and vegetables: A review. Compr Rev Food Sci Food Saf 2023; 22:1722-1762. [PMID: 36856034 DOI: 10.1111/1541-4337.13128] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/22/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023]
Abstract
Chitosan is an interesting alternative material for packaging development due to its biodegradability. However, its poor mechanical properties and low permeability limit its actual applications. Chitosan nanoparticles (CHNPs) have emerged as a suitable solution to overcome these intrinsic limitations. In this review, all studies regarding the use of CHNPs to extend the shelf life and improve the quality of postharvest products are covered. The characteristics of CHNPs and their combinations with essential oils and metals, along with their effects on postharvest products, are compared and discussed throughout the manuscript. CHNPs enhanced postharvest antioxidant capacity, extended shelf life, increased nutritional quality, and promoted tolerance to chilling stress. Additionally, the CHNPs reduced the incidence of postharvest phytopathogens. In most instances, smaller CHNPs (<150 nm) conferred higher benefits than larger ones (>150 nm). This was likely a result of the greater plant tissue penetrability and surface area of the smaller CHNPs. The CHNPs were either applied after preparing an emulsion or incorporated into a film, with the latter often exhibiting greater antioxidant and antimicrobial activities. CHNPs were used to encapsulate essential oils, which could be released over time and may enhance the antioxidant and antimicrobial properties of the CHNPs. Even though most applications were performed after harvest, preharvest application had longer lasting effects.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | | | - Yong-Hui Jiang
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin Chen
- School of Life Sciences, Nantong University, Nantong, China
| | - Feng-Quan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
16
|
Chen Y, Liu Y, Dong Q, Xu C, Deng S, Kang Y, Fan M, Li L. Application of functionalized chitosan in food: A review. Int J Biol Macromol 2023; 235:123716. [PMID: 36801297 DOI: 10.1016/j.ijbiomac.2023.123716] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/05/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
Environmental and sustainability issues have received increasing attention in recent years. As a natural biopolymer, chitosan has been developed as a sustainable alternative to traditional chemicals such as food preservation, food processing, food packaging, and food additives due to its abundant functional groups and excellent biological functions. This review analyzes and summarizes the unique properties of chitosan, with a particular focus on the mechanism of action for its antibacterial and antioxidant properties. This provides a lot of information for the preparation and application of chitosan-based antibacterial and antioxidant composites. In addition, chitosan is modified by physical, chemical and biological modifications to obtain a variety of functionalized chitosan-based materials. The modification not only improves the physicochemical properties of chitosan, but also enables it to have different functions and effects, showing promising applications in multifunctional fields such as food processing, food packaging, and food ingredients. In the current review, applications, challenges, and future perspectives of functionalized chitosan in food will be discussed.
Collapse
Affiliation(s)
- Yu Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China
| | - Yong Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qingfeng Dong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Changhua Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shanggui Deng
- Engineering Research Center of Food Thermal Processing Technology, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, Zhejiang, China
| | - Yongfeng Kang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Min Fan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China.
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
17
|
Sukhavattanakul P, Pisitsak P, Ummartyotin S, Narain R. Polysaccharides for Medical Technology: Properties and Applications. Macromol Biosci 2023; 23:e2200372. [PMID: 36353915 DOI: 10.1002/mabi.202200372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/18/2022] [Indexed: 11/12/2022]
Abstract
Over the past decade, the use of polysaccharides has gained tremendous attention in the field of medical technology. They have been applied in various sectors such as tissue engineering, drug delivery system, face mask, and bio-sensing. This review article provides an overview and background of polysaccharides for biomedical uses. Different types of polysaccharides, for example, cellulose and its derivatives, chitin and chitosan, hyaluronic acid, alginate, and pectin are presented. They are fabricated in various forms such as hydrogels, nanoparticles, membranes, and as porous mediums. Successful development and improvement of polysaccharide-based materials will effectively help users to enhance their quality of personal health, decrease cost, and eventually increase the quality of life with respect to sustainability.
Collapse
Affiliation(s)
- Pongpat Sukhavattanakul
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum, Thani, 12120, Thailand
| | - Penwisa Pisitsak
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum, Thani, 12120, Thailand
| | - Sarute Ummartyotin
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum, Thani, 12120, Thailand
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G1H9, Canada
| |
Collapse
|
18
|
Ji H, Wang J, Chen F, Fan N, Wang X, Xiao Z, Wang Z. Meta-analysis of chitosan-mediated effects on plant defense against oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158212. [PMID: 36028025 DOI: 10.1016/j.scitotenv.2022.158212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Chitosan, as a natural non-toxic biomaterial, has been demonstrated to enhance plant defense against oxidative stress. However, the general pattern and mechanism of how chitosan application modifies the amelioration of oxidative stress in plants have not been elucidated yet. Herein, we performed a meta-analysis of 58 published articles up to January 2022 to fill this knowledge gap, and found that chitosan application significantly increased the antioxidant enzyme activity (by 40.6 %), antioxidant metabolites content (by 24.6 %), defense enzyme activity (by 77.9 %), defense-related genes expression (by 103.2 %), phytohormones (by 26.9 %), and osmotic regulators (by 23.2 %) under stress conditions, which in turn notably reduced oxidative stress (by 32.2 %), and increased plant biomass (by 28.1 %) and yield (by 15.7 %). Moreover, chitosan-mediated effects on the amelioration of oxidative stress depended on the properties and application methods of chitosan. Our findings provide a comprehensive understanding of the mechanism of chitosan-alleviated oxidative stress, which would promote the application of chitosan in plant protection in agriculture.
Collapse
Affiliation(s)
- Haihua Ji
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Jinghong Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Ningke Fan
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Xie Wang
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
19
|
Yan L, Zhang C, Xi F. Disposable Amperometric Label-Free Immunosensor on Chitosan-Graphene-Modified Patterned ITO Electrodes for Prostate Specific Antigen. Molecules 2022; 27:molecules27185895. [PMID: 36144631 PMCID: PMC9505937 DOI: 10.3390/molecules27185895] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 12/01/2022] Open
Abstract
A facile and highly sensitive determination of prostate-specific antigen (PSA) is of great significance for the early diagnosis, monitoring and prognosis of prostate cancer. In this work, a disposable and label-free electrochemical immunosensing platform was demonstrated based on chitosan–graphene-modified indium tin oxide (ITO) electrode, which enables sensitive amperometric determination of PSA. Chitosan (CS) modified reduced graphene oxide (rGO) nanocomposite (CS–rGO) was easily synthesized by the chemical reduction of graphene oxide (GO) using CS as a dispersant and biofunctionalizing agent. When CS–rGO was modified on the patterned ITO, CS offered high biocompatibility and reactive groups for the immobilization of recognition antibodies and rGO acted as a transduction element and enhancer to improve the electronic conductivity and stability of the CS–rGO composite film. The affinity-based biosensing interface was constructed by covalent immobilization of a specific polyclonal anti-PSA antibody (Ab) on the amino-enriched electrode surface via a facile glutaraldehyde (GA) cross-linking method, which was followed by the use of bovine serum albumin to block the non-specific sites. The immunosensor allowed the detection of PSA in a wide range from 1 to 5 ng mL−1 with a low limit of detection of 0.8 pg mL−1. This sensor also exhibited high selectivity, reproducibility, and good storage stability. The application of the prepared immunosensor was successfully validated by measuring PSA in spiked human serum samples.
Collapse
Affiliation(s)
- Liang Yan
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence:
| | - Chaoyan Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fengna Xi
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
20
|
Zhang H, Qu H, Cui J, Duan L. A simple electrochemical immunosensor based on a chitosan/reduced graphene oxide nanocomposite for sensitive detection of biomarkers of malignant melanoma. RSC Adv 2022; 12:25844-25851. [PMID: 36199606 PMCID: PMC9465697 DOI: 10.1039/d2ra04208h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
The sensitive and specific detection of tumor biomarkers is crucial for early diagnosis and treatment of malignant melanoma. Immunoassay with a simple sensing interface and high sensitivity is highly desirable. In this work, a simple electrochemical immunosensor based on a chitosan/reduced graphene oxide (CS–rGO) nanocomposite was developed for sensitive determination of an S-100B protein, a tumor marker of malignant melanoma. CS–rGO nanocomposite were prepared by chemical reduction of graphene oxide in the presence of chitosan and modified on glassy carbon electrode (GCE) to provide a biofriendly, conductive, and easily chemically modified matrix for further immobilization of antibodies. Anti-S-100B antibodies were grafted onto the chitosan molecules to fabricate the immunorecognition interface by a simple glutaraldehyde cross-linking method. Electrochemical determination of S-100B was achieved by measuring the decreased current signal of solution phase electrochemical probes, which originated from the increased steric hindrance and insulation caused by the formation of antigen–antibody complexes at the electrode interface. Due to the good conductivity, high surface area, excellent biocompatibility, and good film-forming ability of CS–rGO, the constructed immunosensor exhibited good stability, high selectivity and sensitivity, a wide dynamic range from 10 fg mL−1 to 1 ng mL−1 and a low limit of detection of 1.9 pg mL−1 (S/N = 3). Moreover, the sensor was also applicable for the sensitive detection of S-100B protein in real human serum samples. Simple electrochemical immunosensor is easily fabricated based on chitosan/reduce graphene oxide nanocomposite for sensitive determination of a tumor marker of malignant melanoma.![]()
Collapse
Affiliation(s)
- Huihua Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hui Qu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingbo Cui
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Linxia Duan
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|