1
|
Wang Y, Wu C, Yang W, Gong Y, Zhang X, Li J, Wu D. Dual cross-linking with tannic acid and transglutaminase improves microcapsule stability and encapsulates lemon essential oil for food preservation. Food Chem 2025; 465:142173. [PMID: 39581080 DOI: 10.1016/j.foodchem.2024.142173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
The microencapsulation of essential oils by complex coacervation technology has attracted considerable attention. This paper deals with the preparation of gelatin-chitosan microcapsules through dual cross-linking using transglutaminase (TGase) and tannic acid (TA). Lemon essential oil (LEO) was successfully encapsulated with 82.5 % encapsulation efficiency. Compared to single cross-linking microcapsules (TG), dual cross-linking microcapsules (TG-TA) exhibit superior thermal stability and swell stability. In vitro release studies demonstrated that TG-TA exhibited better controlled-release behavior with a longer duration of action. Meanwhile, the lipid oxidation of TG-TA was 1.45 mg MDA/kg that of control group was 2.23 mg MDA/kg which showed their excellent antioxidant effects. Moreover TG-TA have higher antibacterial rate, more inhibition zone diameters and better effect for preventing the growth of total viable count than TG and LEO. This study has theoretical implications for the use of TG-TA ideal carriers for protecting various active substances, thus facilitating their applications in food preservation.
Collapse
Affiliation(s)
- Yansong Wang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Chao Wu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Wei Yang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Yuxi Gong
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Xiangyu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, PR China.
| | - Jinlian Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, PR China.
| | - Dongmei Wu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, PR China.
| |
Collapse
|
2
|
Rayat Pisheh H, Sabzevari A, Ansari M, Kabiri K. Development of HEMA-Succinic Acid-PEG Bio-Based Monomers for High-Performance Hydrogels in Regenerative Medicine. Biopolymers 2025; 116:e23631. [PMID: 39382443 DOI: 10.1002/bip.23631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
In recent years, hydrogels have found a special place in regenerative medicine for tissue repair, rehabilitation, and drug delivery. To be used in regenerative medicine, hydrogels must have desirable physical, chemical, and biological properties. In this study, a new biomonomer based on hydroxyethyl methacrylate-succinic acid-polyethylene glycol 200 (HEMA-Suc-PEG) was synthesized and characterized. Then, using the synthesized monomers and different ratios of polyethylene glycol diacrylate (PEGDA) as a crosslinker, biocompatible hydrogels were synthesized through thermal and UV curing methods. The mechanical, physical, chemical, and biological properties of the hydrogels and the behavior of endothelial cells, an essential component of the cardiovascular system, were evaluated. The results showed that the hydrogel synthesized with 0.2 g of PEGDA (UV curing) has desirable mechanical and physical properties. Biological tests showed that these hydrogels are not only nontoxic to cells but also enhance cell adhesion. Therefore, the hydrogel containing the synthesized monomer HEMA-Suc-PEG and 0.2 g of PEGDA has the potential to be used in the cardiovascular system.
Collapse
Affiliation(s)
| | | | - Mojtaba Ansari
- Biomedical Engineering Department, Meybod University, Meybod, Iran
| | - Kourosh Kabiri
- Adhesive and Resin Department, Iran Polymer and Petrochemical Institute, Tehran, Iran
| |
Collapse
|
3
|
Sun X, Chen X, Wang S, Gu H, Bao H, Ning Z, Feng X, Chen Y. Oxygenous and biofilm-targeted nanosonosensitizer anchored with Pt nanozyme and antimicrobial peptide in the gelatin/sodium alginate hydrogel for infected diabetic wound healing. Int J Biol Macromol 2024; 293:139356. [PMID: 39743100 DOI: 10.1016/j.ijbiomac.2024.139356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/08/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Sonodynamic therapy is an emerging therapeutic approach for combating bacterial infections. However, the characteristics of hypoxia, high H2O2 microenvironment, and the formation of persistent biofilms in diabetic wound sites limit its efficacy in this field. To address these issues, we developed a multifunctional antibacterial hydrogel dressing PPCN@Pt-AMPs/HGel with the cross-linked gelatin and sodium alginate as the matrix, where the nanosonosensitizer PCN-224 was decorated with the oxygen-generating Pt nanoenzyme and further coupled with a biofilm-targeting antimicrobial peptide via an interacting polydopamine layer. This nano-composite hydrogel displayed improved mechanical properties as well as good biocompatibility and biodegradability. The catalase-like activity of the nanoparticles facilitated the ultrasound-induced generation of the singlet oxygen due to the catalytic decomposition of the H2O2 into O2. In vitro results showed that the hydrogel dressing exhibited excellent antimicrobial ability under low-intensity ultrasound stimulation, which could effectively inhibit the newly formed biofilm and eliminate the full-grown biofilms. In the infected diabetic wound of rats, PPCN@Pt-AMPs/HGel significantly enhanced the wound healing rate under low-intensity ultrasound stimulation and improved the regeneration outcomes by promoting granulation tissue formation, angiogenesis, and type III collagen deposition. In conclusion, our study provides a novel and effective antibacterial hydrogel dressing for sonodynamic treatment of diabetic wounds.
Collapse
Affiliation(s)
- Xinxing Sun
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Xinzhao Chen
- Department of Histology and Embryology, College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Sihui Wang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Hongchun Gu
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Hongyang Bao
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Zixun Ning
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Xun Feng
- Department of Sanitary Chemistry, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang 110034, China.
| | - Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| |
Collapse
|
4
|
Wang H, Yang L, Yang Y. A review of sodium alginate-based hydrogels: Structure, mechanisms, applications, and perspectives. Int J Biol Macromol 2024; 292:139151. [PMID: 39725117 DOI: 10.1016/j.ijbiomac.2024.139151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
With the global emphasis on green and sustainable development, sodium alginate-based hydrogels (SAHs), as a renewable and biocompatible environmental material, have garnered widespread attention for their research and application. This review summarizes the latest advancements in the study of SAHs, thoroughly discussing their structural characteristics, formation mechanisms, and current applications in various fields, as well as prospects for future development. Initially, the chemical structure of SA and the network structure of hydrogels are introduced, and the impact of factors such as molecular weight, crosslinking density, and environmental conditions on the hydrogel structure is explored. Subsequently, the formation mechanisms of SAHs, including physical and chemical crosslinking, are detailed. Furthermore, a systematic review of the applications of SAHs in tissue engineering, drug delivery, medical dressings, wastewater treatment, strain sensor, and food science is provided. Finally, future research directions for SAHs are outlined. This work not only offers researchers a comprehensive framework for the study of SAHs but also provides significant theoretical and experimental foundations for the development of new hydrogel materials.
Collapse
Affiliation(s)
- Hong Wang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China
| | - Liang Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China.
| | - Yanning Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China
| |
Collapse
|
5
|
Liu S, Zhang M, Liu J, Lei Y, Kaya MGA, Tang K. Long-term antioxidant and ultraviolet light shielding gelatin films for the preservation of leather artifacts. Int J Biol Macromol 2024; 291:138981. [PMID: 39706414 DOI: 10.1016/j.ijbiomac.2024.138981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
In this study, CA-Gel complexes were prepared by crosslinking gelatin with chlorogenic acid (CA) by EDC/NHS chemistry, and incorporated into gelatin to produce CA-Gel/Gel films for leather artifact preservation. The synthesized CA-Gel complex had a total phenolic content of 139.62 ± 1.8 mg/g. The moisture content of CA-Gel/Gel film is 37.84 % lower than that of Gel film. The addition of CA-Gel complexes enhanced the hydrophobic and antibacterial properties of Gel films. CA-Gel/Gel films showed excellent antioxidant properties, as evidenced by the increase in the DPPH radical scavenging rate from 0 to 98.18 %. Additionally, CA-Gel/Gel films effectively shield UV light, preventing almost the transmission of ultraviolet rays. Notably, CA-Gel/Gel films maintain their antioxidant properties and UV light shielding after one month at ambient temperature. Therefore, their long-term antioxidant and UV light shielding properties were indicated. In addition, the UV light aging tests were carried out on leathers with and without CA-Gel/Gel film coverage. The results showed that CA-Gel/Gel films effectively preserved the original color of leathers, with no changes in their random coil structure before and after UV light irradiation. This work emphasizes the potential use of CA-Gel/Gel films as an innovative protective packaging solution for long-term preservation of leather artifacts.
Collapse
Affiliation(s)
- Suchi Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Mingrui Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jie Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China; Archeology Innovation Center, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yong Lei
- Department of Conservation Science, Palace Museum, Beijing 100009, PR China
| | - Mǎdǎlina Georgiana Albu Kaya
- Collagen Department, INCDTP-Leather and Footwear Research Institute, 93 Ion Minulescu, Bucharest 031215, Romania
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China; Archeology Innovation Center, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
6
|
Wang H, Li D, Meng Q, Li X, Guo K, Zou Z, Peng J, Sun Y, Sun T. POM-Based Hydrogels for Efficient Synergistic Chemodynamic/Low-Temperature Photothermal Antibacterial Therapy. Macromol Rapid Commun 2024; 45:e2400415. [PMID: 39401291 DOI: 10.1002/marc.202400415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/22/2024] [Indexed: 12/11/2024]
Abstract
Bacterial infection of wound surfaces has posed a significant threat to human health and represents a formidable challenge in the clinical treatment. In this study, a novel antimicrobial hydrogel utilizing POM is synthesized as the primary component, with gelatin and sodium alginate as the structural framework. The resultant hydrogel demonstrates exceptional mechanical properties and viscoelasticity attributed to the hydrogen-bonded cross-linking between POM and gelatin, as well as the ionic cross-linking between sodium alginate and Ca2+. In addition, the integration of CuS nanoparticles conferred photothermal properties to the hydrogel system. To address the concerns regarding the potential thermal damage to the surrounding normal cells, this study employs a LT-PTT combined with CDT approach to achieve the enhanced antimicrobial efficacy while minimizing the inadvertent harm to the healthy cells. The findings suggested that POM-based hydrogels, serving as an inorganic-organic hybrid material, will represent a promising antimicrobial solution and offer valuable insights for the development of the non-antibiotic materials.
Collapse
Affiliation(s)
- Haozhe Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Dan Li
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, 150076, China
| | - Qingyao Meng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Xue Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Kangle Guo
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Zehua Zou
- The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Jinsong Peng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, 150076, China
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
7
|
Zhang Q, Shi X, Gao T, Xing Y, Jin H, Hao J, Liu X, Liu X, Liu P. Precision management of Fusarium fujikuroi in rice through seed coating with an enhanced nanopesticide using a tannic acid-Zn II formulation. J Nanobiotechnology 2024; 22:717. [PMID: 39550576 PMCID: PMC11568670 DOI: 10.1186/s12951-024-02938-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/19/2024] [Indexed: 11/18/2024] Open
Abstract
Seed coating with fungicides is a common practice in controlling seed-borne diseases, but conventional methods often result in high toxicity to plants and soil. In this study, a nanoparticle formulation was successfully developed using the metal-organic framework UiO-66 as a carrier of the fungicide ipconazole (IPC), with a tannic acid (TA)-ZnII coating serving as a protective layer. The IPC@UiO-66-TA-ZnII nanoparticles provided a controlled release, triggered and regulated by environmental factors such as pH and temperature. This formulation efficiently controlled the proliferation of Fusarium fujikuroi spores, with high penetration into both rice roots and fungal mycelia. The product exhibited high antifungal activity, achieving control efficacy rates of 84.09% to 93.10%, low biotoxicity, and promoted rice growth. Compared to the IPC flowable suspension formula, IPC@UiO-66-TA-ZnII improved the physicochemical properties and enzymatic activities in soil. Importantly, it showed potential for mitigating damage to beneficial soil bacteria. This study provides a promising approach for managing plant diseases using nanoscale fungicides in seed treatment.
Collapse
Affiliation(s)
- Qizhen Zhang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xin Shi
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Tuqiang Gao
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yaochun Xing
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Haisheng Jin
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, ME, 04469, USA
| | - Xiaofang Liu
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xili Liu
- College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Pengfei Liu
- College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Basu T, Goswami D, Majumdar S. Fabrication of crosslinker free hydrogels with diverse properties: An interplay of multiscale physical forces within polymer matrix. iScience 2024; 27:111227. [PMID: 39563896 PMCID: PMC11574810 DOI: 10.1016/j.isci.2024.111227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/20/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024] Open
Abstract
Physical/chemical crosslinking and surface-modifications of hydrogels have been extensively endorsed to enhance their biomaterial functionalities. The latter approaches involve using toxic crosslinkers or chemical modifications of the biopolymers, limiting the clinical translation of hydrogels beyond short-term promising results. The current study aims to tailor the polymer's structure to obtain customized applications using the same FDA-approved ingredients. PEGs of different molecular weights have been used to tune the van der Waal's forces, NaCl has been used to alter the electrostatic interactions of the charged polymers, and glycerol has been used to tweak the H-bonding. Same crosslinker-free sodium alginate/gelatin hydrogel formulation unfolds multiple properties: controlled-release, self-healing, mesh size, storage modulus, degradation rate. The hydrogels, lacking in one aspect, displayed superior performance in another. This study, including experiments and molecular simulations, illustrates that developing new materials may not always be necessary, as the same polymeric matrix can generate immense variations in different aspects.
Collapse
Affiliation(s)
- Tithi Basu
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad 502285, Telangana, India
| | - Debasish Goswami
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad 502285, Telangana, India
| | - Saptarshi Majumdar
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad 502285, Telangana, India
| |
Collapse
|
9
|
Huang Y, Lapanje A, Parakhonskiy B, Skirtach AG. Versatile and durable polyvinyl alcohol/alginate/gelatin/quaternary ammonium chitosan/Fe 3O 4 particles hybrid hydrogel beads: adsorption capabilities for cleaning pollutants. Int J Biol Macromol 2024; 280:135729. [PMID: 39293615 DOI: 10.1016/j.ijbiomac.2024.135729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/07/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
A novel hybrid hydrogel bead (HHBFe) composed of polyvinyl alcohol/sodium alginate/gelatin/quaternary ammonium chitosan (PVA/GA/SA/QCS) and Fe3O4 magnetic nanoparticles was developed through green cross-linking of Ca2+ and tannic acid (TA) combined freeze-thaw method. HHBFe exhibited a good spherical shape, porosity, magnetic properties, and excellent mechanical properties and durability. The adsorption capacity of HHB and HHBFe towards methyl orange (MO), tetracycline (Tc), and Cr (VI) was systematically studied and compared. Results revealed similar adsorption capacities for MO and Cr (VI) between HHB and HHBFe, while the presence of Fe3O4 significantly enhanced Tc adsorption, indicating the versatile adsorption functions of HHBFe. Adsorption kinetic followed the pseudo-second-order model, with external diffusion and intra-particle diffusion controlling process. The adsorption data were consistent with the Langmuir isothermal adsorption model, indicating predominantly monolayer adsorption of pollutants by beads. Notably, the beads exhibited easily regenerated, maintaining 60 % of initial adsorption capacity after 5 cycles, particularly for Tc and Cr (VI). The good adsorption performance of HHBFe can be attributed to the strong interaction between their multi-functional groups including phenolic hydroxyl groups, carboxyl groups, amino groups, etc., and pollutant molecules. The multifunctional HHBFe beads prepared in this study and the results obtained with three completely different types of pollutants provide reliability support for their use in different wastewater treatment fields and even in the field of drug carriers.
Collapse
Affiliation(s)
- Yanqi Huang
- Nano-Biotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Ales Lapanje
- Department of Environmental Sciences, Institut "Jožef Stefan", Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Bogdan Parakhonskiy
- Nano-Biotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Andre G Skirtach
- Nano-Biotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
10
|
Dong Y, Gao Z, Mi Q, Tian Y, Zou F, Pan C, Tang D, Yu HY. Highly sensitive and structure stable polyvinyl alcohol hydrogel sensor with tailored free water fraction and multiple networks by reinforcement of conductive nanocellulose. Int J Biol Macromol 2024; 281:136128. [PMID: 39443176 DOI: 10.1016/j.ijbiomac.2024.136128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024]
Abstract
The wearable composite hydrogel sensors with high stretchability have attracted much attention in recent years, while the traditional hydrogels have weak molecular (chain) interaction and contain a lot of free water, leading to poor mechanical properties, unstable environmental tolerance and sensing ability. Herein, a novel ice crystal extrusion-crosslinking strategy is used to obtain polyvinyl alcohol (PVA) hydrogel with conductive nanocellulose-poly (3,4-ethylenedioxythiophene) (CNC-PEDOT) as skeleton network, sodium alginate (SA) and Ca2+ as tough segment of multi-bonding network. This strategy synergistically enhanced the interaction of hydrogen bonds and calcium (Ca2+) ion chelation within the hydrogel, building highly sensitive and stable multiple tough-elastic networks. Therefore, the optimal hydrogel sensor (PVA/SA-CP45) shows good structural stability, robust mechanical performance, excellent compress (Sensitivity = 68.7), stretching sensitivity (Gauge factor = 4.16), ultra-wide application range (-105-60 °C), fast response/relaxation time and outstanding dynamic durability with 6000 stretching-releasing cycles. Especially, it can give good sensing performance for omnidirectional monitoring of human motion and weak signals. Moreover, it was also designed into multifunctional sensing systems for gait guidance of model training and real-time monitoring ammonia gas for food preservation and public environmental safety, demonstrating great potential in flexible sensors devices for health monitoring.
Collapse
Affiliation(s)
- Yanjuan Dong
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Key Laboratory of Silk Culture Inheriting and Products Design Digital Technology, Ministry of Culture and Tourism, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No. 928, Hangzhou 310018, China
| | - Zhiying Gao
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Key Laboratory of Silk Culture Inheriting and Products Design Digital Technology, Ministry of Culture and Tourism, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No. 928, Hangzhou 310018, China
| | - Qingling Mi
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Key Laboratory of Silk Culture Inheriting and Products Design Digital Technology, Ministry of Culture and Tourism, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No. 928, Hangzhou 310018, China
| | - Yonghao Tian
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Key Laboratory of Silk Culture Inheriting and Products Design Digital Technology, Ministry of Culture and Tourism, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No. 928, Hangzhou 310018, China
| | - Fengyuan Zou
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Key Laboratory of Silk Culture Inheriting and Products Design Digital Technology, Ministry of Culture and Tourism, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No. 928, Hangzhou 310018, China
| | - Chundi Pan
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Key Laboratory of Silk Culture Inheriting and Products Design Digital Technology, Ministry of Culture and Tourism, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No. 928, Hangzhou 310018, China
| | - Dongping Tang
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Key Laboratory of Silk Culture Inheriting and Products Design Digital Technology, Ministry of Culture and Tourism, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No. 928, Hangzhou 310018, China
| | - Hou-Yong Yu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Key Laboratory of Silk Culture Inheriting and Products Design Digital Technology, Ministry of Culture and Tourism, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No. 928, Hangzhou 310018, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China; Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, Ontario, Canada.
| |
Collapse
|
11
|
Wang XX, Wang CY, Yin M, Chen KZ, Qiao SL. Tannic Acid-Enabled Antioxidant and Stretchable MXene/Silk Strain Sensors for Diving Training Healthcare. ACS Sens 2024; 9:5156-5166. [PMID: 39316657 DOI: 10.1021/acssensors.4c01091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
MXene-based conductive hydrogels hold significant promise as epidermal sensors, yet their susceptibility to oxidation represents a formidable limitation. This study addresses this challenge by incorporating MXene into a tannic acid (TA) cross-linked silk fibroin matrix. The resulting conductive hydrogel (denoted as e-dive) exhibits favorable characteristics such as adjustable mechanical properties, self-healing capabilities (both mechanically and electrically), and strong underwater adhesion. The existence of a percolation network of MXene within the nanocomposites guarantees good electrical conductivity. Importantly, the surface interaction of MXene nanosheets with the hydrophobic moiety from TA substantially reduced moisture and oxygen interactions with MXene, thereby effectively mitigating MXene oxidation within hydrogel matrices. This preservation of the electrical characteristics ensures prolonged functional stability. Furthermore, the e-dive demonstrates inherent antibacterial properties, making it suitable for use in underwater environments where bacterial contamination is a concern. The utilization of this advanced e-dive system extends to the correction of diving postures and the facilitation of underwater healthcare and security alerts. Our study presents a robust methodology for enhancing the stability of MXene-based conductive hydrogel electronics, thereby expanding their scope of potential applications.
Collapse
Affiliation(s)
- Xiao-Xue Wang
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao 266042, P. R. China
| | - Chen-Yu Wang
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao 266042, P. R. China
| | - Meng Yin
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao 266042, P. R. China
| | - Ke-Zheng Chen
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao 266042, P. R. China
| | - Sheng-Lin Qiao
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao 266042, P. R. China
| |
Collapse
|
12
|
Tao Y, Huang Y, Shi J, Li K, Bo R, Liu M, Li J. Chitosan-coated PLGA microemulsion loaded with tannic acid against Escherichia coli in vitro and in vivo. Poult Sci 2024; 103:104121. [PMID: 39121643 PMCID: PMC11363829 DOI: 10.1016/j.psj.2024.104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The overuse of antibiotics has resulted in a surge of drug-resistant bacteria, making the pursuit of natural antimicrobials an urgent and significant trend. Encapsulation and nanoparticulation are effective ways to enhance the antibacterial properties of natural drugs. In this study, we encapsulated tannic acid (TA) with chitosan (CS) and poly (lactide-co-glycolide) (PLGA) using the emulsion-solvent evaporation method to enhance the antimicrobial effect of TA. We prepared a bilayer membrane spherical nanoemulsion of TA-PLGA-CS (TPC) with uniform size of 559.87 ± 1.16 nm, and zeta potential of 59.53 ± 1.07 mV. TPC could be stably stored for 90 days at 4°C without affecting the properties of the emulsion, and the minimum bactericidal concentration against four strains of Escherichia coli (E. coli) remained unchanged for 60 d. The results indicated that TPC enhanced the inhibitory effect of TA against E. coli. Scanning electron microscope images revealed that TPC treatment caused damage to the bacterial cell membrane. In addition, in vivo experiments indicated that TPC exhibited a superior therapeutic effect on artificial colibacillosis in chickens infested with Avian pathogenic Escherichia coli, as evidenced by the changes in body weight and a reduction bacterial load in heart. Furthermore, TPC reversed the down-regulation of catalase, glutathione peroxidase1 (GPX1), and GPX7 gene expression levels in intestinal tissues. Compared to the model group, TPC treatment elevated serum glutathione peroxidase activities and lowered myeloperoxidase and lactate dehydrogenase levels, offering antioxidant protection that was slightly better than that of doxycycline hydrochlorid group. In summary, we prepared a novel TA antimicrobial preparation with significant antioxidant potential and inhibitory effect against E. coli both in vitro and in vivo.
Collapse
Affiliation(s)
- Ya Tao
- School of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - YinMo Huang
- School of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - JieYu Shi
- School of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - KaiYuan Li
- School of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - RuoNan Bo
- School of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - MingJiang Liu
- School of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - JinGui Li
- School of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
13
|
Zuo T, Lyu B, Gao D, Ma J, Zhang Y. Reinforcing and protecting leather-based relics using gelatin/tannic acid composites. Int J Biol Macromol 2024; 277:134184. [PMID: 39069037 DOI: 10.1016/j.ijbiomac.2024.134184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/07/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Subject to environmental influences such as temperature, humidity, light, and microorganisms, leather-based relics are easily be deteriorated, which will damage their historical value. In this work, gelatin/tannic acid composites (Gel/TA) was prepared and characterized to investigate their potential as a novel approach for reinforcing and protecting leather-based relics. According to the characterization, it was found that hydrogen bonds was formed between gelatin and TA, and Gel/TA presented increases in the antioxidant capacity(82.12 %), compared to the gelatin. After reinforcing the aged leather with Gel/TA, the cross-linking between leather collagen fibers is more closely interconnected. The mechanical properties and antibacterial activity of leather-based relics are significantly improved. The oxidation resistance of leather-based relics increased from 20.72 % to 63.03 %. Under the condition of accelerated simulated aging, the time to reduce the mechanical properties of reinforced leather by 50 % was extended from 7.6 days to 10 days. At the same time, the color of leather-based relics changed slightly. This result suggested that the Gel/TA composites play an important role in the filling and reinforcement protection of leather artifacts. This work will put forward a feasible way to producing sustainable multifunctional materials for leather-based relics.
Collapse
Affiliation(s)
- Tong Zuo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Key Laboratory of Leather Cleaner Production, China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Bin Lyu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Key Laboratory of Leather Cleaner Production, China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Dangge Gao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Key Laboratory of Leather Cleaner Production, China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Key Laboratory of Leather Cleaner Production, China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yang Zhang
- School of History and Culture, Hubei University, Wuhan 430062, China; Jingzhou Conservation Center, Jingzhou 434020, China.
| |
Collapse
|
14
|
Cao L, Lu Y, Chen H, Su Y, Cheng Y, Xu J, Sun H, Song K. A 3D bioprinted antibacterial hydrogel dressing of gelatin/sodium alginate loaded with ciprofloxacin hydrochloride. Biotechnol J 2024; 19:e2400209. [PMID: 39212214 DOI: 10.1002/biot.202400209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Skin plays a crucial role in human physiological functions, however, it was vulnerable to bacterial infection which delayed wound healing. Nowadays, designing an individual wound dressing with good biocompatibility and sustaining anti-infection capability for healing of chronic wounds are still challenging. In this study, various concentrations of the ciprofloxacin (CIP) were mixed with gelatine (Gel)/sodium alginate (SA) solution to prepare Gel/SA/CIP (GAC) bioinks, following the fabrication of GAC scaffold by an extrusion 3D bioprinting technology. The results showed that the GAC bioinks had good printability and the printed GAC scaffolds double-crosslinked by EDC/NHS and CaCl2 had rich porous structure with appropriate pore size, which were conducive to drug release and cell growth. It demonstrated that the CIP could be rapidly released by 70% in 5 min, which endowed the GAC composite scaffolds with an excellent antibacterial ability. Especially, the antibacterial activities of GAC7.5 against Escherichia coli and Staphylococcus aureus within 24 h were even close to 100%, and the inhibition zones were still maintained 14.78 ± 0.40 mm and 14.78 ± 0.40 mm, respectively, after 24 h. Meanwhile, GAC7.5 also demonstrated impressive biocompatibility which can promote the growth and migration of L929 and accelerate wound healing. Overall, the GAC7.5 3D bioprinting scaffold could be used as a potential skin dressing for susceptible wounds with excellent antibacterial activity and good biocompatibility to meet urgent clinical needs.
Collapse
Affiliation(s)
- Liuyuan Cao
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Yueqi Lu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Hezhi Chen
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Ya Su
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - YuneYee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Broadway, NSW, Australia
| | - Jie Xu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Huanwei Sun
- Department of Hand and Foot Microsurgery, Dalian Municipal Central Hospital Affiliated of Dalian University of Technology, Dalian, China
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
15
|
Ma S, Chen M, Wang Y, Wang J, Hao Y, Wang X, Zhang H, Wei Y, Liang Z, Hu Y, Lian X, Huang D. Gelatin‑sodium alginate composite hydrogel doped with black phosphorus@ZnO heterojunction for cutaneous wound healing with antibacterial, immunomodulatory, and angiogenic properties. Int J Biol Macromol 2024; 274:133456. [PMID: 38945324 DOI: 10.1016/j.ijbiomac.2024.133456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/25/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Hydrogels with novel antimicrobial properties and accelerated wound healing are of great interest in the field of wound dressings because they not only prevent bacterial infections but also fulfill the essential needs of wound healing. In this study, multifunctional hydrogel dressings consisting of black phosphorus nanosheets(BPNS) surface-modified Zinc oxide (BP@ZnO heterojunction) based on gelatin (Gel), sodium alginate (SA), glutamine transferase (mTG), and calcium ions with a three-dimensional crosslinked network were prepared. The BP@ZnO-Gel/SA hydrogel has excellent mechanical properties, hemocompatibility (hemolysis rate: 3.29 %), swelling rate(832.8 ± 19.2 %), cytocompatibility, photothermal and photodynamic antibacterial properties(Sterilization rate: 96.4 ± 3.3 %). In addition, the hydrogel accelerates wound healing by promoting cell migration, immune regulation and angiogenesis. Thus, this hydrogel achieves the triple effect of antimicrobial, immunomodulation and angiogenesis, and is a tissue engineering strategy with great potential.
Collapse
Affiliation(s)
- Shilong Ma
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Mengjin Chen
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yuhui Wang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Jiapu Wang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yanchao Hao
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xin Wang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Hao Zhang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China.
| | - Ziwei Liang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China.
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xiaojie Lian
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China.
| |
Collapse
|
16
|
Xing Y, Lu L, Li J, Xu J, Zhang F. Rosin-based self-healing functionalized composites with two-dimensional polyamide for antimicrobial and anticorrosion coatings. Int J Biol Macromol 2024; 273:133152. [PMID: 38878928 DOI: 10.1016/j.ijbiomac.2024.133152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
The design of polymer-based composites possessing good mechanical and self-healing properties remains a challenge in the development of high-performance self-healing materials. In this study, we used two-dimensional polyamide (2DPA), biomass rosin ester, and a dynamic crosslinking agent poly (urethane-urea) as raw materials, and prepared biomass rosin-based composites via in situ polymerization. The composites with 1 wt% 2DPA exhibited excellent self-healing properties (self-healing efficiency of 94 % after 24 h at 80 °C) and mechanical properties (tensile strength = 7.8 MPa). Moreover, the composites were applied to anticorrosion and antimicrobial coatings, which possessed excellent anticorrosion and antimicrobial properties. This study provides a new strategy for developing high-performance bio-based self-healing composites.
Collapse
Affiliation(s)
- Yuedong Xing
- College of Materials Science and Engineering, Guilin University of Technology, Guilin, China
| | - Liwei Lu
- College of Materials Science and Engineering, Guilin University of Technology, Guilin, China
| | - Jiongchao Li
- College of Materials Science and Engineering, Guilin University of Technology, Guilin, China
| | - Jianben Xu
- College of Materials Science and Engineering, Guilin University of Technology, Guilin, China; College of Chemistry and Bioengineering, Guangxi Minzu Normal University, Chongzuo, China.
| | - Faai Zhang
- College of Materials Science and Engineering, Guilin University of Technology, Guilin, China; Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guilin, China.
| |
Collapse
|
17
|
Feng Q, Fan B, He YC. Antibacterial, antioxidant, Cr(VI) adsorption and dye adsorption effects of biochar-based silver nanoparticles‑sodium alginate-tannic acid composite gel beads. Int J Biol Macromol 2024; 271:132453. [PMID: 38772472 DOI: 10.1016/j.ijbiomac.2024.132453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/02/2024] [Accepted: 05/12/2024] [Indexed: 05/23/2024]
Abstract
Ultrasonic extraction of Osmanthus fragrans was used for reducing Ag+ to prepare AgNPs, which were further loaded on barley distiller's grains shell biochar. By supplementary of sodium alginate and tannic acid, composite gel beads were prepared. The physical properties of biochar-based AgNPs‑sodium alginate-tannic acid composite gel beads (C-Ag/SA/TA) were characterized. SEM, FTIR, and XRD showed that biochar-based AgNPs were compatible with sodium alginate-tannic acid. CAg greatly improved the dissolution, swelling, and expansion of gel beads. Through the analysis by the agar diffusion method, C-Ag/SA/TA gel beads had high antibacterial activity (inhibition zone: 22 mm against Escherichia coli and 20 mm against Staphylococcus aureus). It was observed that C-Ag/SA/TA composite gel beads had high antioxidant capacity and the free radical scavenging rate reached 89.0 %. The dye adsorption performance of gel beads was studied by establishing a kinetic model. The maximum adsorption capacities of C-Ag/SA/TA gel beads for methylene blue and Congo red were 166.57 and 318.06 mg/g, respectively. The removal rate of Cr(VI) reached 96.4 %. These results indicated that the prepared composite gel beads had a high adsorption capacity for dyes and metal ions. Overall, C-Ag/SA/TA composite gel beads were biocompatible and had potential applications in environmental pollution treatment.
Collapse
Affiliation(s)
- Qian Feng
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 530004, China
| | - Bo Fan
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 530004, China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 530004, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
18
|
Nazir A, Abbas M, Kainat F, Iqbal DN, Aslam F, Kamal A, Mohammed OA, Zafar K, Alrashidi AA, Alshawwa SZ, Iqbal M. Efficient drug delivery potential and antimicrobial activity of biocompatible hydrogels of dextrin/Na-alginate/PVA. Heliyon 2024; 10:e29854. [PMID: 38707453 PMCID: PMC11066320 DOI: 10.1016/j.heliyon.2024.e29854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Ceftriaxone sodium belongs to the third-generation cephalosporin group and is used intramuscular and intravenous route as a broad-spectrum antibiotic. This research aims to prepare biocompatible hydrogels for targeted delivery of ceftriaxone sodium by parental route. Different proportions of polymers (natural and synthetic) in the presence of cross-linker were synthesized by solvent casting method. Ceftriaxone sodium was loaded in hydrogels in different concentrations and its drug release behavior was evaluated along with swelling and biodegradation analysis. The characterization of hydrogel was done by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) to analyze surface morphology and functional groups involved in the formation of dextrin/Na-alginate/PVA hydrogels loaded with the drug. Thermogravimetric analysis (TGA) was confirmed by thermal stability and degradation pattern of loaded and unloaded hydrogels. The drug-loaded samples presented promising antimicrobial activity against S. aureus and P. multocida and their cytotoxic nature was also studied. Drug release analysis using simulated intestinal fluid (SIF) and phosphate buffer saline(PBS) for the circulatory system shows the consistent release of the drug. The findings unveiled the development of a biocompatible and innovative hydrogel, which has potential advantages for biomedical application, particularly in enhancing the therapeutic efficacy of ceftriaxone sodium drug.
Collapse
Affiliation(s)
- Arif Nazir
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Mazhar Abbas
- Department of Basic Sciences, University of Veterinary and Animal Sciences, Lahore, (Jhang-Campus), Pakistan
| | - Faiza Kainat
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Dure Najaf Iqbal
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Farheen Aslam
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Abida Kamal
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Kinza Zafar
- Medical Unit#2, Lahore General Hospital, 54000, Lahore, Pakistan
| | - Amal Abdullah Alrashidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Samar Z Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| |
Collapse
|
19
|
Hassanisaadi M, Kennedy JF, Rabiei A, Riseh RS, Taheri A. Nature's coatings: Sodium alginate as a novel coating in safeguarding plants from frost damages. Int J Biol Macromol 2024; 267:131203. [PMID: 38554900 DOI: 10.1016/j.ijbiomac.2024.131203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/16/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Frost damage remains a significant challenge for agricultural practices worldwide, leading to substantial economic losses and food insecurity. Practically, traditional methods for frost management have proven ineffective and come with several drawbacks, such as energy consumption and limited efficacy. Hence, proposing an anti-freezing coating can be an innovative idea. The potential of sodium alginate (SA) to construct anti-freezing hydrogels has been explored in several sciences. SA hydrogels can form protective films around plants as a barrier against freezing temperatures and ice crystals on the plant's surface. Sodium alginate exhibits excellent water retention, enhancing plant hydration during freezing conditions. This coating can provide insulation, effectively shielding the plant from frost damage. The advantages of SA as a coating material, such as its biocompatibility, biodegradability, and non-toxic nature, are highlighted. Therefore, the proposed use of SA as an innovative coating material holds promise for safeguarding plants from frost damage. Following SA potential and frost's huge damage, the present review provides a comprehensive overview of the recent developments in SA-based anti-freezing hydrogels, their applications, and their potential in agriculture as anti-freezing coatings. However, further research and field trials are necessary to optimize the application methods and understand the long-term effects on productivity.
Collapse
Affiliation(s)
- Mohadeseh Hassanisaadi
- Departement of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran
| | - John F Kennedy
- Chembiotech Laboratory Ltd, WR15 8FF Tenbury Walls, United Kingdom.
| | - Ali Rabiei
- Department of Civil Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Roohallah Saberi Riseh
- Departement of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran; Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran 771751735.
| | - Abdolhossein Taheri
- Department of plant protection, faculty of plant production, Gorgan university of Agricultural sciences and natural resources, Iran.
| |
Collapse
|
20
|
Lan M, Zhang J, Zhou J, Gu H. CQDs-Cross-Linked Conductive Collagen/PAA-Based Nanocomposite Organohydrogel Coupling Flexibility with Multifunctionality for Dual-Modal Sensing of Human Motions. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38676634 DOI: 10.1021/acsami.4c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Conductive hydrogels are ideal materials for intelligent medical devices, human-machine interfaces, and flexible bioelectrodes due to their adjustable mechanical properties and electrical responsiveness, whereas it is still a great challenge to achieve the integration of excellent flexibility and biocompatibility into one hydrogel sensor while also incorporating self-healing, self-adhesion, environmental tolerance, and antimicrobial properties. Here, a nanocomposite conductive organohydrogel was constructed by using collagen (Col), alginate-derived carbon quantum dots (OSA-CQDs), poly(acrylic acid) (PAA), ethylene glycol reduced AgNPs, and Fe3+ ions. Depending on OSA-CQDs with multiple chemical binding sites and high specific surface area as cross-linkers, while coupling highly biologically active Col chains and PAA chains are serving as an energy dissipation module, the resulting organohydrogel exhibited excellent flexibility (795% of strain, 193 kPa of strength), high cell compatibility (>95% survival rate), self-healing efficiency (HE = 79.5%), antifreezing (-20 °C), moisturizing (>120 h), repeatable adhesion (strength >20 kPa, times >10), inhibitory activity against Escherichia coli and Staphylococcus aureus (9 and 21.5 cm2), conductivity, and strain sensitivity (σ = 1.34 S/m, gauge factor (GF) = 11.63). Based on the all-in-one integration of multifunction, the organohydrogel can collaboratively adapt to the multimode of strain sensing and electrophysiological sensing to realize wireless real-time monitoring of human activities and physiological health. Therefore, this work provides a new and common platform for the design and sensing of next-generation hydrogel-based smart wearable sensors.
Collapse
Affiliation(s)
- Maohua Lan
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, Sichuan, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, Sichuan, China
| | - Jinwei Zhang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, Sichuan, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, Sichuan, China
| | - Jin Zhou
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, Sichuan, China
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, Sichuan, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
21
|
Liu Q, Dong X, Qi H, Zhang H, Li T, Zhao Y, Li G, Zhai W. 3D printable strong and tough composite organo-hydrogels inspired by natural hierarchical composite design principles. Nat Commun 2024; 15:3237. [PMID: 38622154 PMCID: PMC11018840 DOI: 10.1038/s41467-024-47597-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Fabrication of composite hydrogels can effectively enhance the mechanical and functional properties of conventional hydrogels. While ceramic reinforcement is common in many hard biological tissues, ceramic-reinforced hydrogels lack a similar natural prototype for bioinspiration. This raises a key question: How can we still attain bioinspired mechanical mechanisms in composite hydrogels without mimicking a specific composition and structure? Abstracting the hierarchical composite design principles of natural materials, this study proposes a hierarchical fabrication strategy for ceramic-reinforced organo-hydrogels, featuring (1) aligned ceramic platelets through direct-ink-write printing, (2) poly(vinyl alcohol) organo-hydrogel matrix reinforced by solution substitution, and (3) silane-treated platelet-matrix interfaces. Unit filaments are further printed into a selection of bioinspired macro-architectures, leading to high stiffness, strength, and toughness (fracture energy up to 31.1 kJ/m2), achieved through synergistic multi-scale energy dissipation. The materials also exhibit wide operation tolerance and electrical conductivity for flexible electronics in mechanically demanding conditions. Hence, this study demonstrates a model strategy that extends the fundamental design principles of natural materials to fabricate composite hydrogels with synergistic mechanical and functional enhancement.
Collapse
Affiliation(s)
- Quyang Liu
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore
| | - Xinyu Dong
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore
| | - Haobo Qi
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore
| | - Haoqi Zhang
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore
| | - Tian Li
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore
| | - Yijing Zhao
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore
| | - Guanjin Li
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore
| | - Wei Zhai
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore.
| |
Collapse
|
22
|
Zhang J, Zhang S, Liu C, Lu Z, Li M, Hurren C, Wang D. Photopolymerized multifunctional sodium alginate-based hydrogel for antibacterial and coagulation dressings. Int J Biol Macromol 2024; 260:129428. [PMID: 38232887 DOI: 10.1016/j.ijbiomac.2024.129428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Trauma caused by tissue damage in clinical applications has posed a serious threat to public safety. Dressings with a single function cannot meet the needs of wound healing, but multifunctional dressings are difficult to achieve and obtain. To address this issue, this research designed a facile one-pot photo-crosslinking method to prepare multifunctional sodium alginate-based hydrogel dressings for effective wound healing. According to irregular wounds, sodium alginate-based hydrogel dressings can be quickly prepared anytime and anywhere. The structure and physicochemical properties of hydrogels are regulated by modulating the proportion of main components sodium alginate and acrylamide. The results showed the sodium alginate-based composite hydrogel as a candidate multifunctional dressing that exhibits excellent stretchability and compressibility, viscoelasticity, and suitable tissue-like adhesion. In vitro drug release and antibacterial experiments indicated that the hydrogel has effective antibacterial properties against S. aureus and P. aeruginosa. Furthermore, the haemostatic behaviour of the hydrogel was demonstrated using the coagulation activation test, whole blood-clotting test, and blood cell and platelet adhesion experiments. All these results demonstrated that the sodium alginate-based hydrogel had high application potential as a multifunctional medical dressing for wound healing.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University) Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China; Deakin University, Institute for Frontier Materials, Geelong 3216, Australia
| | - Siwei Zhang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University) Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Chao Liu
- Deakin University, Institute for Frontier Materials, Geelong 3216, Australia
| | - Zhentan Lu
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University) Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
| | - Mufang Li
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University) Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.
| | - Christopher Hurren
- Deakin University, Institute for Frontier Materials, Geelong 3216, Australia.
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University) Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
23
|
Li Q, Ai R, Fan J, Fu X, Zhu L, Zhou Q, Chen L, Ma W, Li Y, Liu L. AgNPs-loaded chitosan/sodium alginate hydrogel film by in-situ green reduction with tannins for enhancing antibacterial activity. MATERIALS TODAY COMMUNICATIONS 2024; 38:107927. [DOI: 10.1016/j.mtcomm.2023.107927] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
24
|
Raj V, Raorane CJ, Shastri D, Kim SC, Lee S. Engineering a self-healing grafted chitosan-sodium alginate based hydrogel with potential keratinocyte cell migration property and inhibitory effect against fluconazole resistance Candida albicans biofilm. Int J Biol Macromol 2024; 261:129774. [PMID: 38286383 DOI: 10.1016/j.ijbiomac.2024.129774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/08/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
Biofilms developed by microorganisms cause an extremely severe clinical problem that leads to drug failure. Bioactive polymeric hydrogels display potential for controlling the formation of microorganism-based biofilms, but their rapid biodegradability in these biofilm sites is still a major challenge. To overcome this, chitosan (CS), a natural functional biomaterial, has been used because of its effective penetrability in the cell wall of microorganisms; however, its fast biodegradability has restricted its further use. Hence, in this study, to improve the stability of CS and increase its penetration retention inside a biofilm, grafted CS was prepared and then crosslinked with sodium alginate (SA) to synthesize CS-poly(MA-co-AA)SA hydrogel via a free radical grafting method, therefore enhancing its antibiofilm efficiency against biofilms. The prepared hydrogel demonstrated excellent effectiveness against (≥90 % inhibition) biofilms of Candida albicans. Additionally, in vitro and in vivo safety assays established that the prepared hydrogel can be used in a biofilm microenvironment and might reduce drug resistance burden owing to its long-term antibiofilm effect and improved CS stability at the biofilm site. Furthermore, in vitro wound healing outcomes of hydrogel indicated its potential application for chronic wound treatment. This research opens a new advanced strategy for biofilm-associated infection treatment, including wound treatment.
Collapse
Affiliation(s)
- Vinit Raj
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
| | | | - Divya Shastri
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea; College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu, 42601, Republic of Korea
| | - Seong Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Chen K, Gu L, Zhang Q, Luo Q, Guo S, Wang B, Gong Q, Luo K. Injectable alginate hydrogel promotes antitumor immunity through glucose oxidase and Fe 3+ amplified RSL3-induced ferroptosis. Carbohydr Polym 2024; 326:121643. [PMID: 38142082 DOI: 10.1016/j.carbpol.2023.121643] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/25/2023]
Abstract
Ferroptosis induced by RAS-selective lethal small molecule 3 (RSL3) can trigger anti-tumor immune responses by reversing the immunosuppressive tumor microenvironment (TME). However, it is challenging to achieve sufficient ferroptosis in the tumor via RSL3 alone. Because of the excellent reactive oxygen species (ROS) production capacity of glucose oxidase (GOx) and Fe3+, we hypothesized that GOx and Fe3+ could increase intracellular lipid peroxidation (LPO) accumulation, and strengthen RSL3-induced ferroptosis in tumor cells. Herein we designed an in-situ gelation strategy based on sodium alginate (SA) to realize localized transport and specific retention of GOx, RSL3, and Fe3+ in tumor tissues. We loaded hydrophobic RSL3 with the tannic acid (TA)/Fe3+ complexes to form nanoparticles (RTF NPs). GOx diluted in the SA solution was blended with RTF NPs to obtain a homogeneous solution. The solution could form hydrogels in the tumor site (RTFG@SA) upon injection. The retained GOx and Fe3+ amplified the induction of ferroptosis by RSL3, augmented immunogenic cell death (ICD) and promoted antitumor immunity. The RTFG@SA hydrogel presented a significant restraint of tumor growth and metastasis in the 4T1 tumor model. This hydrogel could offer an effective means of co-delivery of hydrophilic drugs, hydrophobic drugs, and metal ions.
Collapse
Affiliation(s)
- Kai Chen
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), West China Biopharmaceutical Research Institute, Laboratory of Stem Cell Biology, Cancer Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Gu
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), West China Biopharmaceutical Research Institute, Laboratory of Stem Cell Biology, Cancer Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qianfeng Zhang
- School of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang, Sichuan Province 621000, China
| | - Qiang Luo
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), West China Biopharmaceutical Research Institute, Laboratory of Stem Cell Biology, Cancer Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiwei Guo
- Department of Pharmacy of the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Bing Wang
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), West China Biopharmaceutical Research Institute, Laboratory of Stem Cell Biology, Cancer Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), West China Biopharmaceutical Research Institute, Laboratory of Stem Cell Biology, Cancer Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, China
| | - Kui Luo
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), West China Biopharmaceutical Research Institute, Laboratory of Stem Cell Biology, Cancer Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China.
| |
Collapse
|
26
|
Yue D, Shi S, Chen H, Bai L, Wang W, Yang H, Yang L, Wei D. Fabrication of anti-freezing and self-healing nanocomposite hydrogels based on phytic acid and cellulose nanocrystals for high strain sensing applications. J Mater Chem B 2024; 12:762-771. [PMID: 38167689 DOI: 10.1039/d3tb02482b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
For hydrogel-based flexible sensors, it is a challenge to enhance the stability at sub-zero temperatures while maintaining good self-healing properties. Herein, an anti-freezing nanocomposite hydrogel with self-healing properties and conductivity was designed by introducing cellulose nanocrystals (CNCs) and phytic acid (PA). The CNCs were grafted with polypyrrole (PPy) by chemical oxidation, which were used as the nanoparticle reinforcement phase to reinforce the mechanical strength of hydrogels (851.8%). PA as a biomass material could form strong hydrogen bond interactions with H2O molecules, endowing hydrogels with prominent anti-freezing properties. Based on the non-covalent interactions, the self-healing rate of the hydrogels reached 92.9% at -15 °C as the content of PA was 40.0 wt%. Hydrogel-based strain sensors displayed high sensitivity (GF = 0.75), rapid response time (350 ms), good conductivity (3.1 S m-1) and stability at -15 °C. Various human movements could be detected by using them, including small (smile and frown) and large changes (elbow and knee bending). This work provides a promising method for the development of flexible wearable sensors that work stably in frigid environments.
Collapse
Affiliation(s)
- Dongqi Yue
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Shaoning Shi
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Hou Chen
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Huawei Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Lixia Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Donglei Wei
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| |
Collapse
|
27
|
Patel DK, Jung E, Priya S, Won SY, Han SS. Recent advances in biopolymer-based hydrogels and their potential biomedical applications. Carbohydr Polym 2024; 323:121408. [PMID: 37940291 DOI: 10.1016/j.carbpol.2023.121408] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 11/10/2023]
Abstract
Hydrogels are three-dimensional networks of polymer chains containing large amounts of water in their structure. Hydrogels have received significant attention in biomedical applications owing to their attractive physicochemical properties, including flexibility, softness, biodegradability, and biocompatibility. Different natural and synthetic polymers have been intensely explored in developing hydrogels for the desired applications. Biopolymers-based hydrogels have advantages over synthetic polymers regarding improved cellular activity and weak immune response. These properties can be further improved by grafting with other polymers or adding nanomaterials, and they structurally mimic the living tissue environments, which opens their broad applicability. The hydrogels can be physically or chemically cross-linked depending on the structure. The use of different biopolymers-based hydrogels in biomedical applications has been reviewed and discussed earlier. However, no report is still available to comprehensively introduce the synthesis, advantages, disadvantages, and biomedical applications of biopolymers-based hydrogels from the material point of view. Herein, we systematically overview different synthesis methods of hydrogels and provide a holistic approach to biopolymers-based hydrogels for biomedical applications, especially in bone regeneration, wound healing, drug delivery, bioimaging, and therapy. The current challenges and prospects of biopolymers-based hydrogels are highlighted rationally, giving an insight into the progress of these hydrogels and their practical applications.
Collapse
Affiliation(s)
- Dinesh K Patel
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Eunseo Jung
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sahariya Priya
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - So-Yeon Won
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
28
|
Mao S, Ren Y, Chen S, Liu D, Ye X, Tian J. Development and characterization of pH responsive sodium alginate hydrogel containing metal-phenolic network for anthocyanin delivery. Carbohydr Polym 2023; 320:121234. [PMID: 37659819 DOI: 10.1016/j.carbpol.2023.121234] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 09/04/2023]
Abstract
Favorable hydrogels can be used as a material to deliver bioactive molecules and improve the stability of bioactive substances, while their safety needs to be improved. In this study, protocatechuic acid (PCA) and Fe3+ were rapidly self-assembled to form a metal-phenolic network under different pH conditions, and then sodium alginate (SA) was added to prepare the SA/PCA/Fe hydrogel without adding other chemical reagents. The structural characteristic of SA/PCA/Fe hydrogel was characterized by infrared spectroscopy, X-ray diffraction analysis and scanning electron microscopy. The results showed that the structures of SA/PCA/Fe hydrogels prepared at different pH values were significantly different. The texture analysis, water-holding measurement and rheological analysis indicated that the SA/PCA/Fe hydrogel showed higher gel strength, water holding capacity and storage modulus. Thermogravimetric analysis illuminated that the SA/PCA/Fe hydrogel enhanced the thermal stability of free anthocyanins through encapsulating anthocyanins. Moreover, in vitro simulated digestion experiment revealed that SA/PCA/Fe hydrogel could control the release of anthocyanins in the simulated gastrointestinal tract. To sum up, this present study might provide a safer and feasible way for the delivery of bioactive substances.
Collapse
Affiliation(s)
- Shuifang Mao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Yanming Ren
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; The Rural Development Academy, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Hangzhou 315100, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; The Rural Development Academy, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Hangzhou 315100, China.
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; The Rural Development Academy, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Hangzhou 315100, China.
| |
Collapse
|
29
|
Yang J, Fei T, Zhang W, Cong X. Tannic Acid and Ca 2+ Double-Crosslinked Alginate Films for Passion Fruit Preservation. Foods 2023; 12:3936. [PMID: 37959055 PMCID: PMC10650026 DOI: 10.3390/foods12213936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
In this study, the interaction of different concentrations of tannic acid (TA) (10%, 20%, and 30% w/w) and Ca2+ with alginate (SA) was utilized to create double-crosslinked SA films. The resulting films were evaluated for their optical, mechanical, water resistance, and barrier properties, and their microstructure and intermolecular interactions were also characterized. The SA films containing 20% TA showed the best mechanical properties, with an observed increase in tensile strength of 22.54%. In terms of water vapor permeability, the SA film containing 30% TA exhibited the highest barrier property, which was 25.36% higher than that of the pure SA film. Moreover, TA demonstrated a strong UV absorption ability, resulting in a nearly 0% UV transmittance of the SA film at 280 nm. It can be seen that SA films containing 20% TA have excellent barrier and mechanical properties, and the development of such films will be applied to the storage and packaging of fresh food. It is worth noting that this work also investigated the effect of SA coatings containing different concentrations of TA on the preservation of passion fruits for 7 days. The results revealed that passion fruits treated with SA coatings containing a 30% TA concentration maintained a better appearance on the 7th day and had the lowest weight loss and crumpling indices of approximately 8.98% and 2.17, respectively, compared to the other treatment groups. Therefore, based on the overall results, the addition of 30% TA to SA coatings proved to be more effective and can be considered a promising approach for delaying fruit senescence and decay.
Collapse
Affiliation(s)
- Jun Yang
- School of Life Sciences, Hainan University, Haikou 570228, China;
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (T.F.); (W.Z.)
| | - Tao Fei
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (T.F.); (W.Z.)
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (T.F.); (W.Z.)
| | - Xinli Cong
- School of Life Sciences, Hainan University, Haikou 570228, China;
| |
Collapse
|
30
|
Shen J, Jiao W, Chen Z, Wang C, Song X, Ma L, Tang Z, Yan W, Xie H, Yuan B, Wang C, Dai J, Sun Y, Du L, Jin Y. Injectable multifunctional chitosan/dextran-based hydrogel accelerates wound healing in combined radiation and burn injury. Carbohydr Polym 2023; 316:121024. [PMID: 37321722 DOI: 10.1016/j.carbpol.2023.121024] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023]
Abstract
Clinical wound management of combined radiation and burn injury (CRBI) remains a huge challenge due to serious injuries induced by redundant reactive oxygen species (ROS), the accompanying hematopoietic, immunologic suppression and stem cell reduction. Herein, the injectable multifunctional Schiff base cross-linked with gallic acid modified chitosan (CSGA)/oxidized dextran (ODex) hydrogels were rationally designed to accelerate wound healing through elimination of ROS in CRBI. CSGA/ODex hydrogels, fabricated by mixing solutions of CSGA and Odex, displayed good self-healing ability, excellent injectability, strong antioxidant activity, and favorable biocompatibility. More importantly, CSGA/ODex hydrogels exhibited excellent antibacterial properties, which is facilitated for wound healing. Furthermore, CSGA/ODex hydrogels significantly suppressed the oxidative damage of L929 cells in an H2O2-induced ROS microenvironment. The recovery of mice with CRBI in mice demonstrated that CSGA/ODex hydrogels significantly reduced the hyperplasia of epithelial cells and the expression of proinflammatory cytokine, and accelerated wound healing which was superior to the treatment with commercial triethanolamine ointment. In conclusion, the CSGA/ODex hydrogels as a wound dressing could accelerate the wound healing and tissue regeneration of CRBI, which provides great potential in clinical treatment of CRBI.
Collapse
Affiliation(s)
- Jintao Shen
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wencheng Jiao
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Hebei University, Baoding 071002, China
| | - Ziyuan Chen
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chunqing Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xingshuang Song
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lei Ma
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ziyan Tang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wenrui Yan
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hua Xie
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Bochuan Yuan
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chenyun Wang
- The Fourth Clinical Center Affiliated to Chinese PLA General Hospital, Beijing 100048, China
| | - Jing Dai
- Information Department, General Hospital of Western War Zone, Chengdu 610083, China
| | - Yunbo Sun
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Hebei University, Baoding 071002, China.
| | - Lina Du
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Hebei University, Baoding 071002, China; Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yiguang Jin
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
31
|
Cao Y, Wang L, Zhang X, Lu Y, Wei Y, Liang Z, Hu Y, Huang D. Double-crosslinked PNIPAM-based hydrogel dressings with adjustable adhesion and contractility. Regen Biomater 2023; 10:rbad081. [PMID: 37840848 PMCID: PMC10570987 DOI: 10.1093/rb/rbad081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/19/2023] [Accepted: 08/31/2023] [Indexed: 10/17/2023] Open
Abstract
Rapid post-wound closure is necessary to avoid wound infection and promote scar-free healing when skin trauma occurs. In this study, new types of hydrogel dressings with adjustable contractility were fabricated based on N-isopropyl acrylamide/sodium alginate/graphene oxide (P/SA/GO). Then, the chitosan (CS) solution was used as a bridging polymer to achieve tissue adhesion to the hydrogel. The results show that the hydrogel based on poly(N-isopropyl acrylamide) (PNIPAM) not only has the ability to self-shrink but also can adjust the rate of shrinkage through near-infrared thermal stimulation. At the same time, high adhesion strength (7.86 ± 1.22 kPa) between the tissue and the dressing is achieved through the introduction of bridging polymers (CS), and the coating area of the bridging polymer can be adjusted to achieve regional adhesion. The mouse total skin defects experiments have shown that sutures-free wound closure in the early stages of wound healing could be obtained by adjusting the material temperature. Besides, the dressings can promote scar-free wound healing by reducing inflammatory cell infiltration and collagen deposition. These results indicate that double-crosslinked PNIPAM-based hydrogel dressings with adjustable adhesion and contractility proposed in this study provide a candidate material for achieving trackless wound healing.
Collapse
Affiliation(s)
- Yu Cao
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Longfei Wang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Xiumei Zhang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yi Lu
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Ziwei Liang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| |
Collapse
|
32
|
Hu L, Jiang J, Liu ZT, Liu ZW, Li G. Fabricating 3D Moisture- and NIR Light-Responsive Actuators by a One-Step Gradient Stress-Relaxation Process. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40991-40999. [PMID: 37596968 DOI: 10.1021/acsami.3c08849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Polymeric materials that can actuate under the stimulation of environmental signals have attracted considerable attention in fields including artificial muscles, soft robotics, implantable devices, etc. To date, the improvement of shape-changing flexibility is mainly limited by their unchangeable shapes and structural and compositional distributions. In this work, we report a one-step treatment process to convert 2D poly(ethylene oxide)/sodium alginate/tannic acid thin films into 3D-shaped moisture- and NIR light-responsive actuators. Spatial surface wetting of the film leads to the release of residual stress generated in film formation in a gradient manner, which drives the wetted regions to bidirectionally bend. By controlling the position and bending amplitude of the wetted regions, designated 3D shapes can be obtained. Moreover, Fe3+ ions in the aqueous solution used for surface wetting can coordinate with carboxylate groups in sodium alginate chains to form a gradient cross-linking network. This gradient network can not only stabilize the resulting 3D shape but also render the film with moisture-responsive morphing behaviors. Fe3+ ions can also self-assemble with tannic acid molecules to form photothermal aggregates, making the film responsive to NIR light. We further show that films with versatile 3D shapes and different modes of deformation can be fabricated by a one-step treatment process. This strategy is convenient and extendable to develop 3D-shaped polymer actuators with flexible shape-changing behaviors.
Collapse
Affiliation(s)
- Ling Hu
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, China
| | - Jinqiang Jiang
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, China
| | - Zhao-Tie Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, China
| | - Zhong-Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, China
| | - Guo Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, China
| |
Collapse
|
33
|
Stan D, Codrici E, Enciu AM, Olewnik-Kruszkowska E, Gavril G, Ruta LL, Moldovan C, Brincoveanu O, Bocancia-Mateescu LA, Mirica AC, Stan D, Tanase C. Exploring the Impact of Alginate-PVA Ratio and the Addition of Bioactive Substances on the Performance of Hybrid Hydrogel Membranes as Potential Wound Dressings. Gels 2023; 9:476. [PMID: 37367146 DOI: 10.3390/gels9060476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Healthcare professionals face an ongoing challenge in managing both acute and chronic wounds, given the potential impact on patients' quality of life and the limited availability of expensive treatment options. Hydrogel wound dressings offer a promising solution for effective wound care due to their affordability, ease of use, and ability to incorporate bioactive substances that enhance the wound healing process. Our study aimed to develop and evaluate hybrid hydrogel membranes enriched with bioactive components such as collagen and hyaluronic acid. We utilized both natural and synthetic polymers and employed a scalable, non-toxic, and environmentally friendly production process. We conducted extensive testing, including an in vitro assessment of moisture content, moisture uptake, swelling rate, gel fraction, biodegradation, water vapor transmission rate, protein denaturation, and protein adsorption. We evaluated the biocompatibility of the hydrogel membranes through cellular assays and performed instrumental tests using scanning electron microscopy and rheological analysis. Our findings demonstrate that the biohybrid hydrogel membranes exhibit cumulative properties with a favorable swelling ratio, optimal permeation properties, and good biocompatibility, all achieved with minimal concentrations of bioactive agents.
Collapse
Affiliation(s)
- Diana Stan
- DDS Diagnostic, 031427 Bucharest, Romania
- Doctoral School of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Elena Codrici
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ewa Olewnik-Kruszkowska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Georgiana Gavril
- Department of Bioinformatics, National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | | | - Carmen Moldovan
- National Institute for R&D in Microtechnology, 077190 Bucharest, Romania
| | - Oana Brincoveanu
- National Institute for R&D in Microtechnology, 077190 Bucharest, Romania
- Research Institute of the University of Bucharest, 060102 Bucharest, Romania
| | | | | | - Dana Stan
- DDS Diagnostic, 031427 Bucharest, Romania
| | - Cristiana Tanase
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Department of Cell Biology and Clinical Biochemistry, Faculty of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania
| |
Collapse
|