1
|
Czornobil R, Abou-Assali O, Remily-Wood E, Lynch DR, Noujaim SF, Chidipi B. The Cardiac Calcium Handling Machinery is Remodeled in Friedreich's Ataxia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566141. [PMID: 38014032 PMCID: PMC10680642 DOI: 10.1101/2023.11.09.566141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background Friedreich's ataxia (FA) is an inherited neurodegenerative disorder that causes progressive nervous system damage resulting in impaired muscle coordination. FA is the most common autosomal recessive form of ataxia and is caused by an expansion of the DNA triplet guanine-adenine-adenine (GAA) in the first intron of the Frataxin gene (FXN), located on chromosome 9q13. In the unaffected population, the number of GAA repeats ranges from 6 to 27 repetitions. In FA patients, GAA repeat expansions range from 44 to 1,700 repeats which decreases frataxin protein expression. Frataxin is a mitochondrial protein essential for various cellular functions, including iron metabolism. Reduced frataxin expression is thought to negatively affect mitochondrial iron metabolism, leading to increased oxidative damage. Although FA is considered a neurodegenerative disorder, FA patients display heart disease that includes hypertrophy, heart failure, arrhythmias, conduction abnormalities, and cardiac fibrosis. Objective In this work, we investigated whether abnormal Ca 2+ handling machinery is the molecular mechanism that perpetuates cardiac dysfunction in FA. Methods We used the frataxin knock-out (FXN-KO) mouse model of FA as well as human heart samples from donors with FA and from unaffected donors. ECG and echocardiography were used to assess cardiac function in the mice. Expression of calcium handling machinery proteins was assessed with proteomics and western blot. In left ventricular myocytes from FXN-KO and FXN-WT mice, the IonOptix system was used for calcium imaging, the seahorse assay was utilized to measure oxygen consumption rate (OCR), and confocal imaging was used to quantify the mitochondrial membrane potential (Δψm) and reactive oxygen species (ROS). Results We found that major contractile proteins, including SERCA2a and Ryr2, were downregulated in human left ventricular samples from deceased donors with FA compared to unaffected donors, similar to the downregulation of these proteins in the left ventricular tissue from FXN-KO compared to FXN-WT. On the ECG, the RR, PR, QRS, and QTc were significantly longer in the FXN-KO mice compared to FXN-WT. The ejection fraction and fractional shortening were significantly decreased and left ventricular wall thickness and diameter were significantly increased in the FXN-KO mice versus FXN-WT. The mitochondrial membrane potential Δψm was depolarized, ROS levels were elevated, and OCR was decreased in ventricular myocytes from FXN-KO versus FXN-WT. Conclusion The development of left ventricular contractile dysfunction in FA is associated with reduced expression of calcium handling proteins and mitochondrial dysfunction.
Collapse
|
2
|
Mangner N, Winzer EB, Linke A, Adams V. Locomotor and respiratory muscle abnormalities in HFrEF and HFpEF. Front Cardiovasc Med 2023; 10:1149065. [PMID: 37965088 PMCID: PMC10641491 DOI: 10.3389/fcvm.2023.1149065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
Heart failure (HF) is a chronic and progressive syndrome affecting worldwide billions of patients. Exercise intolerance and early fatigue are hallmarks of HF patients either with a reduced (HFrEF) or a preserved (HFpEF) ejection fraction. Alterations of the skeletal muscle contribute to exercise intolerance in HF. This review will provide a contemporary summary of the clinical and molecular alterations currently known to occur in the skeletal muscles of both HFrEF and HFpEF, and thereby differentiate the effects on locomotor and respiratory muscles, in particular the diaphragm. Moreover, current and future therapeutic options to address skeletal muscle weakness will be discussed focusing mainly on the effects of exercise training.
Collapse
Affiliation(s)
- Norman Mangner
- Department of Internal Medicine and Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
| | - Ephraim B. Winzer
- Department of Internal Medicine and Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
| | - Axel Linke
- Department of Internal Medicine and Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
| | - Volker Adams
- Laboratory of Molecular and Experimental Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
- Dresden Cardiovascular Research Institute and Core Laboratories GmbH, Dresden, Germany
| |
Collapse
|
3
|
Gallagher H, Hendrickse PW, Pereira MG, Bowen TS. Skeletal muscle atrophy, regeneration, and dysfunction in heart failure: Impact of exercise training. JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:557-567. [PMID: 37040849 PMCID: PMC10466197 DOI: 10.1016/j.jshs.2023.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/30/2022] [Accepted: 02/20/2023] [Indexed: 05/31/2023]
Abstract
This review highlights some established and some more contemporary mechanisms responsible for heart failure (HF)-induced skeletal muscle wasting and weakness. We first describe the effects of HF on the relationship between protein synthesis and degradation rates, which determine muscle mass, the involvement of the satellite cells for continual muscle regeneration, and changes in myofiber calcium homeostasis linked to contractile dysfunction. We then highlight key mechanistic effects of both aerobic and resistance exercise training on skeletal muscle in HF and outline its application as a beneficial treatment. Overall, HF causes multiple impairments related to autophagy, anabolic-catabolic signaling, satellite cell proliferation, and calcium homeostasis, which together promote fiber atrophy, contractile dysfunction, and impaired regeneration. Although both wasting and weakness are partly rescued by aerobic and resistance exercise training in HF, the effects of satellite cell dynamics remain poorly explored.
Collapse
Affiliation(s)
- Harrison Gallagher
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Paul W Hendrickse
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Marcelo G Pereira
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - T Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
4
|
Chen Y, Wang X, Ye D, Yang Z, Shen Q, Liu X, Chen C, Chen X. Research progress of sophoridine's pharmacological activities and its molecular mechanism: an updated review. Front Pharmacol 2023; 14:1126636. [PMID: 37397472 PMCID: PMC10311568 DOI: 10.3389/fphar.2023.1126636] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
Background: Sophoridine, the major active constituent of Sophora alopecuroides and its roots, is a bioactive alkaloid with a wide range of pharmacological effects, including antitumor, anti-inflammatory, antiviral, antibacterial, analgesic, cardioprotective, and immunoprotective activities. Sophora flavescens Aiton is a traditional Chinese medicine that is bitter and cold. Additionally, it also exhibits the effects of clearing heat, eliminating dampness, and expelling insects. Aims of the study: To summarize the pharmacological research and associated mechanisms of sophoridine, we compiled this review by combining a huge body of relevant literature. Materials and methods: The information related to this article was systematically collected from the scientific literature databases including PubMed, Google Scholar, Web of Science, Science Direct, Springer, China National Knowledge Infrastructure, published books, PhD and MS dissertations. Results: Its antitumor activity is particularly remarkable, as it can inhibit cancer cell proliferation, invasion, and metastasis while inducing cell cycle arrest and apoptosis. Additionally, sophoridine also holds therapeutic potential for myocardial ischemia, osteoporosis, arrhythmias, and neurological disorders, primarily through the suppression of related inflammatory factors and cell apoptosis. However, sophoridine has also exhibited adverse effects such as hepatotoxicity and neurotoxicity. The antidisease effect and mechanism of sophoridine are diverse, so it has high research value. Conclusion: As an important traditional Chinese medicine alkaloid, modern pharmacological studies have demonstrated that sophoridine has prominent bioactivities, especially on anti-tumor anti-inflammation activities, and cardiovascular system protection. These activities provide prospects for novel drug development for cancer and some chronic diseases. Nevertheless, the understanding of the multitarget network pharmacology, long-term in vivo toxicity, and clinical efficacy of sophoridine require further detailed research.
Collapse
Affiliation(s)
- Yiwei Chen
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| | - Xiang Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dongmei Ye
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| | - Zhousheng Yang
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| | - Qingrong Shen
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| | - Xiaoxia Liu
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| | - Chunxia Chen
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| | - Xiaoyu Chen
- Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang Autonomous, Nanning, China
| |
Collapse
|
5
|
Valentim M, Brahmbhatt A, Tupling A. Skeletal and cardiac muscle calcium transport regulation in health and disease. Biosci Rep 2022; 42:BSR20211997. [PMID: 36413081 PMCID: PMC9744722 DOI: 10.1042/bsr20211997] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022] Open
Abstract
In healthy muscle, the rapid release of calcium ions (Ca2+) with excitation-contraction (E-C) coupling, results in elevations in Ca2+ concentrations which can exceed 10-fold that of resting values. The sizable transient changes in Ca2+ concentrations are necessary for the activation of signaling pathways, which rely on Ca2+ as a second messenger, including those involved with force generation, fiber type distribution and hypertrophy. However, prolonged elevations in intracellular Ca2+ can result in the unwanted activation of Ca2+ signaling pathways that cause muscle damage, dysfunction, and disease. Muscle employs several calcium handling and calcium transport proteins that function to rapidly return Ca2+ concentrations back to resting levels following contraction. This review will detail our current understanding of calcium handling during the decay phase of intracellular calcium transients in healthy skeletal and cardiac muscle. We will also discuss how impairments in Ca2+ transport can occur and how mishandling of Ca2+ can lead to the pathogenesis and/or progression of skeletal muscle myopathies and cardiomyopathies.
Collapse
Affiliation(s)
- Mark A. Valentim
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Aditya N. Brahmbhatt
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - A. Russell Tupling
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
6
|
Voorrips SN, Saucedo-Orozco H, Sánchez-Aguilera PI, De Boer RA, Van der Meer P, Westenbrink BD. Could SGLT2 Inhibitors Improve Exercise Intolerance in Chronic Heart Failure? Int J Mol Sci 2022; 23:8631. [PMID: 35955784 PMCID: PMC9369142 DOI: 10.3390/ijms23158631] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Despite the constant improvement of therapeutical options, heart failure (HF) remains associated with high mortality and morbidity. While new developments in guideline-recommended therapies can prolong survival and postpone HF hospitalizations, impaired exercise capacity remains one of the most debilitating symptoms of HF. Exercise intolerance in HF is multifactorial in origin, as the underlying cardiovascular pathology and reactive changes in skeletal muscle composition and metabolism both contribute. Recently, sodium-related glucose transporter 2 (SGLT2) inhibitors were found to improve cardiovascular outcomes significantly. Whilst much effort has been devoted to untangling the mechanisms responsible for these cardiovascular benefits of SGLT2 inhibitors, little is known about the effect of SGLT2 inhibitors on exercise performance in HF. This review provides an overview of the pathophysiological mechanisms that are responsible for exercise intolerance in HF, elaborates on the potential SGLT2-inhibitor-mediated effects on these phenomena, and provides an up-to-date overview of existing studies on the effect of SGLT2 inhibitors on clinical outcome parameters that are relevant to the assessment of exercise capacity. Finally, current gaps in the evidence and potential future perspectives on the effects of SGLT2 inhibitors on exercise intolerance in chronic HF are discussed.
Collapse
Affiliation(s)
- Suzanne N. Voorrips
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (H.S.-O.); (P.I.S.-A.); (R.A.D.B.); (P.V.d.M.)
| | | | | | | | | | - B. Daan Westenbrink
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (H.S.-O.); (P.I.S.-A.); (R.A.D.B.); (P.V.d.M.)
| |
Collapse
|
7
|
Park LK, Coggan AR, Peterson LR. Skeletal Muscle Contractile Function in Heart Failure With Reduced Ejection Fraction-A Focus on Nitric Oxide. Front Physiol 2022; 13:872719. [PMID: 35721565 PMCID: PMC9198547 DOI: 10.3389/fphys.2022.872719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Despite advances over the past few decades, heart failure with reduced ejection fraction (HFrEF) remains not only a mortal but a disabling disease. Indeed, the New York Heart Association classification of HFrEF severity is based on how much exercise a patient can perform. Moreover, exercise capacity-both aerobic exercise performance and muscle power-are intimately linked with survival in patients with HFrEF. This review will highlight the pathologic changes in skeletal muscle in HFrEF that are related to impaired exercise performance. Next, it will discuss the key role that impaired nitric oxide (NO) bioavailability plays in HFrEF skeletal muscle pathology. Lastly, it will discuss intriguing new data suggesting that the inorganic nitrate 'enterosalivary pathway' may be leveraged to increase NO bioavailability via ingestion of inorganic nitrate. This ingestion of inorganic nitrate has several advantages over organic nitrate (e.g., nitroglycerin) and the endogenous nitric oxide synthase pathway. Moreover, inorganic nitrate has been shown to improve exercise performance: both muscle power and aerobic capacity, in some recent small but well-controlled, cross-over studies in patients with HFrEF. Given the critical importance of better exercise performance for the amelioration of disability as well as its links with improved outcomes in patients with HFrEF, further studies of inorganic nitrate as a potential novel treatment is critical.
Collapse
Affiliation(s)
- Lauren K. Park
- Department of Medicine, Cardiology Division, Washington University School of Medicine, Saint Louis, MO, United States
| | - Andrew R. Coggan
- Department of Kinesiology, Indiana University Purdue University, Indianapolis, IN, United States
| | - Linda R. Peterson
- Department of Medicine, Cardiology Division, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
8
|
Tang Q, Liu Y, Peng X, Wang B, Luan F, Zeng N. Research Progress in the Pharmacological Activities, Toxicities, and Pharmacokinetics of Sophoridine and Its Derivatives. Drug Des Devel Ther 2022; 16:191-212. [PMID: 35082485 PMCID: PMC8784973 DOI: 10.2147/dddt.s339555] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
Sophoridine is a natural quinolizidine alkaloid and a bioactive ingredient that can be isolated and identified from certain herbs, including Sophora flavescens Alt, Sophora alopecuroides L, and Sophora viciifolia Hance. In recent years, this quinolizidine alkaloid has gained widespread attention because of its unique structure and minimal side effects. Modern pharmacological investigations have uncovered sophoridine's multiple wide range biological activities, such as anti-cancer, anti-inflammatory, anti-viral, anti-arrhythmia, and analgesic functions, among others. These pharmacological activities and beneficial effects point to sophoridine as a strong potential therapeutic candidate for the treatment of various diseases, including several cancer types, hepatitis B virus, enterovirus 71, coxsackievirus B3, cerebral edema, cancer pain, heart failure, acute myocardial ischemia, arrhythmia, inflammation, acute lung injury, and osteoporosis. The data showed that sophoridine had adverse reactions, including hepatotoxicity and neurotoxicity. Additionally, analyses of sophoridine's safety, bioavailability, and pharmacokinetic parameters in animal models of research have been limited, especially in the clinic, as have been investigations on its structure-activity relationship. In this article, we comprehensively summarize the biological activities, toxicity, and pharmacokinetic characteristics of sophoridine and its derivatives, as currently reported in publications, as we attempt to provide an overall perspective on sophoridine analogs and the prospects of its application clinically.
Collapse
Affiliation(s)
- Qiong Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Yao Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.,School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, 610083, People's Republic of China
| | - Xi Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Baojun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Fei Luan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| |
Collapse
|
9
|
Hamstra SI, Kurgan N, Baranowski RW, Qiu L, Watson CJF, Messner HN, MacPherson REK, MacNeil AJ, Roy BD, Fajardo VA. Low-dose lithium feeding increases the SERCA2a-to-phospholamban ratio, improving SERCA function in murine left ventricles. Exp Physiol 2020; 105:666-675. [PMID: 32087034 DOI: 10.1113/ep088061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/21/2020] [Indexed: 12/24/2022]
Abstract
NEW FINDINGS What is the central question of this study? Inhibition of glycogen synthase kinase-3 (GSK3) has been shown to improve cardiac SERCA2a function. Lithium can inhibit GSK3, but therapeutic doses used in treating bipolar disorder can have toxic effects. It has not been determined whether subtherapeutic doses of lithium can improve cardiac SERCA function. What is the main finding and its importance? Using left ventricles from wild-type mice, we found that subtherapeutic lithium feeding for 6 weeks decreased GSK3 activity and increased cardiac SERCA function compared with control-fed mice. These findings warrant the investigation of low-dose lithium feeding in preclinical models of cardiomyopathy and heart failure to determine the therapeutic benefit of GSK3 inhibition. ABSTRACT The sarco(endo)plasmic reticulum Ca2+ -ATPase (SERCA) pump is responsible for regulating calcium (Ca2+ ) within myocytes, with SERCA2a being the dominant isoform in cardiomyocytes. Its inhibitor, phospholamban (PLN), acts by decreasing the affinity of SERCA for Ca2+ . Changes in the SERCA2a:PLN ratio can cause Ca2+ dysregulation often seen in patients with dilated cardiomyopathy and heart failure. The enzyme glycogen synthase kinase-3 (GSK3) is known to downregulate SERCA function by decreasing the SERCA2a:PLN ratio. In this study, we sought to determine whether feeding mice low-dose lithium, a natural GSK3 inhibitor, would improve left ventricular SERCA function by altering the SERCA2a:PLN ratio. To this end, male wild-type C57BL/6J mice were fed low-dose lithium via drinking water (10 mg kg-1 day-1 LiCl for 6 weeks) and left ventricles were harvested. GSK3 activity was significantly reduced in LiCl-fed versus control-fed mice. The apparent affinity of SERCA for Ca2+ was also increased (pCa50 ; control, 6.09 ± 0.03 versus LiCl, 6.26 ± 0.04, P < 0.0001) along with a 2.0-fold increase in SERCA2a:PLN ratio in LiCl-fed versus control-fed mice. These findings suggest that low-dose lithium supplementation can improve SERCA function by increasing the SERCA2a:PLN ratio. Future studies in murine preclinical models will determine whether GSK3 inhibition via low-dose lithium could be a potential therapeutic strategy for dilated cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Sophie I Hamstra
- Department of Kinesiology, Brock University, St. Catharines, ON, L2S 3A1, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Nigel Kurgan
- Department of Kinesiology, Brock University, St. Catharines, ON, L2S 3A1, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Ryan W Baranowski
- Department of Kinesiology, Brock University, St. Catharines, ON, L2S 3A1, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Liqun Qiu
- Department of Chemistry, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Colton J F Watson
- Department of Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Holt N Messner
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | | | - Adam J MacNeil
- Department of Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Brian D Roy
- Department of Kinesiology, Brock University, St. Catharines, ON, L2S 3A1, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Val A Fajardo
- Department of Kinesiology, Brock University, St. Catharines, ON, L2S 3A1, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, L2S 3A1, Canada
| |
Collapse
|
10
|
Mulkareddy V, Racette SB, Coggan AR, Peterson LR. Dietary nitrate's effects on exercise performance in heart failure with reduced ejection fraction (HFrEF). Biochim Biophys Acta Mol Basis Dis 2019; 1865:735-740. [PMID: 30261290 PMCID: PMC6401215 DOI: 10.1016/j.bbadis.2018.09.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 01/09/2023]
Abstract
Heart failure with reduced ejection fraction (HFrEF) is a deadly and disabling disease. A key derangement contributing to impaired exercise performance in HFrEF is decreased nitric oxide (NO) bioavailability. Scientists recently discovered the inorganic nitrate pathway for increasing NO. This has advantages over organic nitrates and NO synthase production of NO. Small studies using beetroot juice as a source of inorganic nitrate demonstrate its power to improve exercise performance in HFrEF. A larger-scale trial is now underway to determine if inorganic nitrate may be a new arrow for physicians' quiver of HFrEF treatments.
Collapse
Affiliation(s)
- Vinaya Mulkareddy
- The Department of Medicine, 4960 Children's Place, Campus Box 8066, St. Louis, MO 63110, USA.
| | - Susan B Racette
- The Department of Medicine, 4960 Children's Place, Campus Box 8066, St. Louis, MO 63110, USA; Program in Physical Therapy, Washington University School of Medicine, Campus Box 8502, 4444 Forest Park Ave., St. Louis, MO 63108-2212, USA.
| | - Andrew R Coggan
- Department of Kinesiology, Indiana University Purdue University Indianapolis, 901 West New York Street, Indianapolis, IN 46202, USA; Department of Cellular and Integrative Physiology, Indiana University Purdue University Indianapolis, 901 West New York Street, Indianapolis, IN 46202, USA.
| | - Linda R Peterson
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
11
|
Iliopoulos F, Mazis N. Exercise training in heart failure patients: effects on skeletal muscle abnormalities and sympathetic nervous activity—a literature review. SPORT SCIENCES FOR HEALTH 2018. [DOI: 10.1007/s11332-018-0442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Ichige MHA, Pereira MG, Brum PC, Michelini LC. Experimental Evidences Supporting the Benefits of Exercise Training in Heart Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:181-206. [PMID: 29022264 DOI: 10.1007/978-981-10-4307-9_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heart Failure (HF), a common end point for many cardiovascular diseases, is a syndrome with a very poor prognosis. Although clinical trials in HF have achieved important outcomes in reducing mortality, little is known about functional mechanisms conditioning health improvement in HF patients. In parallel with clinical studies, basic science has been providing important discoveries to understand the mechanisms underlying the pathophysiology of HF, as well as to identify potential targets for the treatment of this syndrome. In spite of being the end-point of cardiovascular derangements caused by different etiologies, autonomic dysfunction, sympathetic hyperactivity, oxidative stress, inflammation and hormonal activation are common factors involved in the progression of this syndrome. Together these causal factors create a closed link between three important organs: brain, heart and the skeletal muscle. In the past few years, we and other groups have studied the beneficial effects of aerobic exercise training as a safe therapy to avoid the progression of HF. As summarized in this chapter, exercise training, a non-pharmacological tool without side effects, corrects most of the HF-induced neurohormonal and local dysfunctions within the brain, heart and skeletal muscles. These adaptive responses reverse oxidative stress, reduce inflammation, ameliorate neurohormonal control and improve both cardiovascular and skeletal muscle function, thus increasing the quality of life and reducing patients' morbimortality.
Collapse
Affiliation(s)
- Marcelo H A Ichige
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Marcelo G Pereira
- Department of Biodynamics of Human Body Movement, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Patrícia C Brum
- Department of Biodynamics of Human Body Movement, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil. .,National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq - Niterói (RJ), Rio de Janeiro, Brazil.
| | - Lisete C Michelini
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.,National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq - Niterói (RJ), Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Nobre TS, Antunes-Correa LM, Groehs RV, Alves MJNN, Sarmento AO, Bacurau AV, Urias U, Alves GB, Rondon MUPB, Brum PC, Martinelli M, Middlekauff HR, Negrao CE. Exercise training improves neurovascular control and calcium cycling gene expression in patients with heart failure with cardiac resynchronization therapy. Am J Physiol Heart Circ Physiol 2016; 311:H1180-H1188. [PMID: 27591218 PMCID: PMC6347073 DOI: 10.1152/ajpheart.00275.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/31/2016] [Indexed: 01/06/2023]
Abstract
Heart failure (HF) is characterized by decreased exercise capacity, attributable to neurocirculatory and skeletal muscle factors. Cardiac resynchronization therapy (CRT) and exercise training have each been shown to decrease muscle sympathetic nerve activity (MSNA) and increase exercise capacity in patients with HF. We hypothesized that exercise training in the setting of CRT would further reduce MSNA and vasoconstriction and would increase Ca2+-handling gene expression in skeletal muscle in patients with chronic systolic HF. Thirty patients with HF, ejection fraction <35% and CRT for 1 mo, were randomized into two groups: exercise-trained (ET, n = 14) and untrained (NoET, n = 16) groups. The following parameters were compared at baseline and after 4 mo in each group: V̇o2 peak, MSNA (microneurography), forearm blood flow, and Ca2+-handling gene expression in vastus lateralis muscle. After 4 mo, exercise duration and V̇o2 peak were significantly increased in the ET group (P = 0.04 and P = 0.01, respectively), but not in the NoET group. MSNA was significantly reduced in the ET (P = 0.001), but not in NoET, group. Similarly, forearm vascular conductance significantly increased in the ET (P = 0.0004), but not in the NoET, group. The expression of the Na+/Ca2+ exchanger (P = 0.01) was increased, and ryanodine receptor expression was preserved in ET compared with NoET. In conclusion, the exercise training in the setting of CRT improves exercise tolerance and neurovascular control and alters Ca2+-handling gene expression in the skeletal muscle of patients with systolic HF. These findings highlight the importance of including exercise training in the treatment of patients with HF even following CRT.
Collapse
Affiliation(s)
- Thais S Nobre
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | | | - Raphaela V Groehs
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | | | - Adriana O Sarmento
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Aline V Bacurau
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Ursula Urias
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Guilherme B Alves
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | | | - Patrícia C Brum
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Martino Martinelli
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Holly R Middlekauff
- Department of Medicine (Cardiology) and Physiology, Geffen School of Medicine at UCLA, University of California, Los Angeles, California
| | - Carlos E Negrao
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil;
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Abstract
Heart failure (HF) patients suffer from exercise intolerance that diminishes their ability to perform normal activities of daily living and hence compromises their quality of life. This is due largely to detrimental changes in skeletal muscle mass, structure, metabolism, and function. This includes an impairment of muscle contractile performance, i.e., a decline in the maximal force, speed, and power of muscle shortening. Although numerous mechanisms underlie this reduction in contractility, one contributing factor may be a decrease in nitric oxide (NO) bioavailability. Consistent with this, recent data demonstrate that acute ingestion of NO3 (-)-rich beetroot juice, a source of NO via the NO synthase-independent enterosalivary pathway, markedly increases maximal muscle speed and power in HF patients. This review discusses the role of muscle contractile dysfunction in the exercise intolerance characteristic of HF, and the evidence that dietary NO3 (-) supplementation may represent a novel and simple therapy for this currently underappreciated problem.
Collapse
Affiliation(s)
- Andrew R Coggan
- Cardiovascular Imaging Laboratory, Mallinckrodt Institute of Radiology, Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd. - Campus Box 8225, St. Louis, MO, 63110, USA.
| | - Linda R Peterson
- Cardiovascular Imaging Laboratory, Mallinckrodt Institute of Radiology, Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd. - Campus Box 8225, St. Louis, MO, 63110, USA
- Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Ave. - Campus Box 8086, St. Louis, MO, 63110, USA
| |
Collapse
|
15
|
Aerobic Exercise and Pharmacological Therapies for Skeletal Myopathy in Heart Failure: Similarities and Differences. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4374671. [PMID: 26904163 PMCID: PMC4745416 DOI: 10.1155/2016/4374671] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/29/2015] [Indexed: 12/20/2022]
Abstract
Skeletal myopathy has been identified as a major comorbidity of heart failure (HF) affecting up to 20% of ambulatory patients leading to shortness of breath, early fatigue, and exercise intolerance. Neurohumoral blockade, through the inhibition of renin angiotensin aldosterone system (RAS) and β-adrenergic receptor blockade (β-blockers), is a mandatory pharmacological therapy of HF since it reduces symptoms, mortality, and sudden death. However, the effect of these drugs on skeletal myopathy needs to be clarified, since exercise intolerance remains in HF patients optimized with β-blockers and inhibitors of RAS. Aerobic exercise training (AET) is efficient in counteracting skeletal myopathy and in improving functional capacity and quality of life. Indeed, AET has beneficial effects on failing heart itself despite being of less magnitude compared with neurohumoral blockade. In this way, AET should be implemented in the care standards, together with pharmacological therapies. Since both neurohumoral inhibition and AET have a direct and/or indirect impact on skeletal muscle, this review aims to provide an overview of the isolated effects of these therapeutic approaches in counteracting skeletal myopathy in HF. The similarities and dissimilarities of neurohumoral inhibition and AET therapies are also discussed to identify potential advantageous effects of these combined therapies for treating HF.
Collapse
|
16
|
Hu ST, Shen YF, Gong JM, Yang YJ. Effect of sophoridine on Ca²⁺ induced Ca²⁺ release during heart failure. Physiol Res 2015; 65:43-52. [PMID: 26596316 DOI: 10.33549/physiolres.933052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sophoridine is a type of alkaloid extract derived from the Chinese herb Sophora flavescens Ait (kushen) and possess a variety of pharmacological effects including anti-inflammation, anti-anaphylaxis, anti-cancer, anti-arrhythmic and so on. However, the effect of sophoridine on heart failure has not been known yet. In this study, the effect of sophoridine on heart failure was investigated using Sprague-Dawley (SD) rat model of chronic heart failure. Morphological results showed that in medium and high dose group, myofilaments were arranged orderly and closely, intermyofibrillar lysis disappeared and mitochondria contained tightly packed cristae compared with heart failure group. We investigated the Ca(2+) induced Ca(2+) transients and assessed the expression of ryanodine receptor (RyR2) and L-type Ca(2+) channel (dihydropyridine receptor, DHPR). We found that the cytosolic Ca(2+) transients were markedly increased in amplitude in medium (deltaF/F(0)=43.33+/-1.92) and high dose groups (deltaF/F(0)=47.21+/-1.25) compared with heart failure group (deltaF/F(0)=16.7+/-1.29, P<0.01), Moreover, we demonstrated that the expression of cardiac DHPR was significantly increased in medium- and high dose-group compared with heart failure rats. Our results suggest that sophoridine could improve heart failure by ameliorating cardiac Ca(2+) induced Ca(2+) transients, and that this amelioration is associated with upregulation of DHPR.
Collapse
Affiliation(s)
- S-T Hu
- Department of Physiology, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China, Department of Biophysics, Second Military Medical University, Shanghai, People's Republic of China.
| | | | | | | |
Collapse
|
17
|
Coggan AR, Leibowitz JL, Spearie CA, Kadkhodayan A, Thomas DP, Ramamurthy S, Mahmood K, Park S, Waller S, Farmer M, Peterson LR. Acute Dietary Nitrate Intake Improves Muscle Contractile Function in Patients With Heart Failure: A Double-Blind, Placebo-Controlled, Randomized Trial. Circ Heart Fail 2015; 8:914-20. [PMID: 26179185 DOI: 10.1161/circheartfailure.115.002141] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 07/02/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Skeletal muscle strength, velocity, and power are markedly reduced in patients with heart failure, which contributes to their impaired exercise capacity and lower quality of life. This muscle dysfunction may be partially because of decreased nitric oxide (NO) bioavailability. We therefore sought to determine whether ingestion of inorganic nitrate (NO3 (-)) would increase NO production and improve muscle function in patients with heart failure because of systolic dysfunction. METHODS AND RESULTS Using a double-blind, placebo-controlled, randomized crossover design, we determined the effects of dietary NO3 (-) in 9 patients with heart failure. After fasting overnight, subjects drank beetroot juice containing or devoid of 11.2 mmol of NO3 (-). Two hours later, muscle function was assessed using isokinetic dynamometry. Dietary NO3 (-) increased (P<0.05-0.001) breath NO by 35% to 50%. This was accompanied by 9% (P=0.07) and 11% (P<0.05) increases in peak knee extensor power at the 2 highest movement velocities tested (ie, 4.71 and 6.28 rad/s). Maximal power (calculated by fitting peak power data with a parabola) was therefore greater (ie, 4.74±0.41 versus 4.20±0.33 W/kg; P<0.05) after dietary NO3 (-) intake. Calculated maximal velocity of knee extension was also higher after NO3 (-) ingestion (ie, 12.48±0.95 versus 11.11±0.53 rad/s; P<0.05). Blood pressure was unchanged, and no adverse clinical events occurred. CONCLUSIONS In this pilot study, acute dietary NO3 (-) intake was well tolerated and enhanced NO bioavailability and muscle power in patients with systolic heart failure. Larger-scale studies should be conducted to determine whether the latter translates into an improved quality of life in this population. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01682356.
Collapse
Affiliation(s)
- Andrew R Coggan
- From the Cardiovascular Imaging Laboratory, Division of Radiological Sciences, Department of Radiology (A.R.C., J.L.L., L.R.P.), Cardiovascular Division, Department of Medicine (J.L.L., A.K., D.P.T., S.R., K.M., S.P., M.F., L.R.P.), and Center for Applied Research Sciences (C.A.S.), Washington University School of Medicine, St. Louis, MO.
| | - Joshua L Leibowitz
- From the Cardiovascular Imaging Laboratory, Division of Radiological Sciences, Department of Radiology (A.R.C., J.L.L., L.R.P.), Cardiovascular Division, Department of Medicine (J.L.L., A.K., D.P.T., S.R., K.M., S.P., M.F., L.R.P.), and Center for Applied Research Sciences (C.A.S.), Washington University School of Medicine, St. Louis, MO
| | - Catherine Anderson Spearie
- From the Cardiovascular Imaging Laboratory, Division of Radiological Sciences, Department of Radiology (A.R.C., J.L.L., L.R.P.), Cardiovascular Division, Department of Medicine (J.L.L., A.K., D.P.T., S.R., K.M., S.P., M.F., L.R.P.), and Center for Applied Research Sciences (C.A.S.), Washington University School of Medicine, St. Louis, MO
| | - Ana Kadkhodayan
- From the Cardiovascular Imaging Laboratory, Division of Radiological Sciences, Department of Radiology (A.R.C., J.L.L., L.R.P.), Cardiovascular Division, Department of Medicine (J.L.L., A.K., D.P.T., S.R., K.M., S.P., M.F., L.R.P.), and Center for Applied Research Sciences (C.A.S.), Washington University School of Medicine, St. Louis, MO
| | - Deepak P Thomas
- From the Cardiovascular Imaging Laboratory, Division of Radiological Sciences, Department of Radiology (A.R.C., J.L.L., L.R.P.), Cardiovascular Division, Department of Medicine (J.L.L., A.K., D.P.T., S.R., K.M., S.P., M.F., L.R.P.), and Center for Applied Research Sciences (C.A.S.), Washington University School of Medicine, St. Louis, MO
| | - Sujata Ramamurthy
- From the Cardiovascular Imaging Laboratory, Division of Radiological Sciences, Department of Radiology (A.R.C., J.L.L., L.R.P.), Cardiovascular Division, Department of Medicine (J.L.L., A.K., D.P.T., S.R., K.M., S.P., M.F., L.R.P.), and Center for Applied Research Sciences (C.A.S.), Washington University School of Medicine, St. Louis, MO
| | - Kiran Mahmood
- From the Cardiovascular Imaging Laboratory, Division of Radiological Sciences, Department of Radiology (A.R.C., J.L.L., L.R.P.), Cardiovascular Division, Department of Medicine (J.L.L., A.K., D.P.T., S.R., K.M., S.P., M.F., L.R.P.), and Center for Applied Research Sciences (C.A.S.), Washington University School of Medicine, St. Louis, MO
| | - Soo Park
- From the Cardiovascular Imaging Laboratory, Division of Radiological Sciences, Department of Radiology (A.R.C., J.L.L., L.R.P.), Cardiovascular Division, Department of Medicine (J.L.L., A.K., D.P.T., S.R., K.M., S.P., M.F., L.R.P.), and Center for Applied Research Sciences (C.A.S.), Washington University School of Medicine, St. Louis, MO
| | - Suzanne Waller
- From the Cardiovascular Imaging Laboratory, Division of Radiological Sciences, Department of Radiology (A.R.C., J.L.L., L.R.P.), Cardiovascular Division, Department of Medicine (J.L.L., A.K., D.P.T., S.R., K.M., S.P., M.F., L.R.P.), and Center for Applied Research Sciences (C.A.S.), Washington University School of Medicine, St. Louis, MO
| | - Marsha Farmer
- From the Cardiovascular Imaging Laboratory, Division of Radiological Sciences, Department of Radiology (A.R.C., J.L.L., L.R.P.), Cardiovascular Division, Department of Medicine (J.L.L., A.K., D.P.T., S.R., K.M., S.P., M.F., L.R.P.), and Center for Applied Research Sciences (C.A.S.), Washington University School of Medicine, St. Louis, MO
| | - Linda R Peterson
- From the Cardiovascular Imaging Laboratory, Division of Radiological Sciences, Department of Radiology (A.R.C., J.L.L., L.R.P.), Cardiovascular Division, Department of Medicine (J.L.L., A.K., D.P.T., S.R., K.M., S.P., M.F., L.R.P.), and Center for Applied Research Sciences (C.A.S.), Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
18
|
Negrao CE, Middlekauff HR, Gomes-Santos IL, Antunes-Correa LM. Effects of exercise training on neurovascular control and skeletal myopathy in systolic heart failure. Am J Physiol Heart Circ Physiol 2015; 308:H792-802. [PMID: 25681428 DOI: 10.1152/ajpheart.00830.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/09/2015] [Indexed: 12/14/2022]
Abstract
Neurohormonal excitation and dyspnea are the hallmarks of heart failure (HF) and have long been associated with poor prognosis in HF patients. Sympathetic nerve activity (SNA) and ventilatory equivalent of carbon dioxide (VE/VO2) are elevated in moderate HF patients and increased even further in severe HF patients. The increase in SNA in HF patients is present regardless of age, sex, and etiology of systolic dysfunction. Neurohormonal activation is the major mediator of the peripheral vasoconstriction characteristic of HF patients. In addition, reduction in peripheral blood flow increases muscle inflammation, oxidative stress, and protein degradation, which is the essence of the skeletal myopathy and exercise intolerance in HF. Here we discuss the beneficial effects of exercise training on resting SNA in patients with systolic HF and its central and peripheral mechanisms of control. Furthermore, we discuss the exercise-mediated improvement in peripheral vasoconstriction in patients with HF. We will also focus on the effects of exercise training on ventilatory responses. Finally, we review the effects of exercise training on features of the skeletal myopathy in HF. In summary, exercise training plays an important role in HF, working synergistically with pharmacological therapies to ameliorate these abnormalities in clinical practice.
Collapse
Affiliation(s)
- Carlos E Negrao
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil; School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil; and
| | - Holly R Middlekauff
- Departament of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California
| | - Igor L Gomes-Santos
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | | |
Collapse
|
19
|
Hwee DT, Kennedy AR, Hartman JJ, Ryans J, Durham N, Malik FI, Jasper JR. The small-molecule fast skeletal troponin activator, CK-2127107, improves exercise tolerance in a rat model of heart failure. J Pharmacol Exp Ther 2015; 353:159-68. [PMID: 25678535 DOI: 10.1124/jpet.114.222224] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Heart failure-mediated skeletal myopathy, which is characterized by muscle atrophy and muscle metabolism dysfunction, often manifests as dyspnea and limb muscle fatigue. We have previously demonstrated that increasing Ca(2+) sensitivity of the sarcomere by a small-molecule fast skeletal troponin activator improves skeletal muscle force and exercise performance in healthy rats and models of neuromuscular disease. The objective of this study was to investigate the effect of a novel fast skeletal troponin activator, CK-2127107 (2-aminoalkyl-5-N-heteroarylpyrimidine), on skeletal muscle function and exercise performance in rats exhibiting heart failure-mediated skeletal myopathy. Rats underwent a left anterior descending coronary artery ligation, resulting in myocardial infarction and a progressive decline in cardiac function [left anterior descending coronary artery heart failure (LAD-HF)]. Compared with sham-operated control rats, LAD-HF rat hindlimb and diaphragm muscles exhibited significant muscle atrophy. Fatigability was increased during repeated in situ isokinetic plantar flexor muscle contractions. CK-2127107 produced a leftward shift in the force-Ca(2+) relationship of skinned, single diaphragm, and extensor digitorum longus fibers. Exercise performance, which was assessed by rotarod running, was lower in vehicle-treated LAD-HF rats than in sham controls (116 ± 22 versus 193 ± 31 seconds, respectively; mean ± S.E.M.; P = 0.04). In the LAD-HF rats, a single oral dose of CK-2127107 (10 mg/kg p.o.) increased running time compared with vehicle treatment (283 ± 47 versus 116 ± 22 seconds; P = 0.0004). In summary, CK-2127107 substantially increases exercise performance in this heart failure model, suggesting that modulation of skeletal muscle function by a fast skeletal troponin activator may be a useful therapeutic in heart failure-associated exercise intolerance.
Collapse
Affiliation(s)
| | | | | | - Julie Ryans
- Cytokinetics Inc., South San Francisco, California
| | | | - Fady I Malik
- Cytokinetics Inc., South San Francisco, California
| | | |
Collapse
|
20
|
Regulation of SERCA pumps expression in diabetes. Cell Calcium 2014; 56:302-10. [DOI: 10.1016/j.ceca.2014.09.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 11/22/2022]
|
21
|
Action potential-evoked calcium release is impaired in single skeletal muscle fibers from heart failure patients. PLoS One 2014; 9:e109309. [PMID: 25310188 PMCID: PMC4195605 DOI: 10.1371/journal.pone.0109309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 09/08/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Exercise intolerance in chronic heart failure (HF) has been attributed to abnormalities of the skeletal muscles. Muscle function depends on intact excitation-contraction coupling (ECC), but ECC studies in HF models have been inconclusive, due to deficiencies in the animal models and tools used to measure calcium (Ca2+) release, mandating investigations in skeletal muscle from HF patients. The purpose of this study was to test the hypothesis that Ca2+ release is significantly impaired in the skeletal muscle of HF patients in whom exercise capacity is severely diminished compared to age-matched healthy volunteers. METHODS AND FINDINGS Using state-of-the-art electrophysiological and optical techniques in single muscle fibers from biopsies of the locomotive vastus lateralis muscle, we measured the action potential (AP)-evoked Ca2+ release in 4 HF patients and 4 age-matched healthy controls. The mean peak Ca2+ release flux in fibers obtained from HF patients (10±1.2 µM/ms) was markedly (2.6-fold) and significantly (p<0.05) smaller than in fibers from healthy volunteers (28±3.3 µM/ms). This impairment in AP-evoked Ca2+ release was ubiquitous and was not explained by differences in the excitability mechanisms since single APs were indistinguishable between HF patients and healthy volunteers. CONCLUSIONS These findings prove the feasibility of performing electrophysiological experiments in single fibers from human skeletal muscle, and offer a new approach for investigations of myopathies due to HF and other diseases. Importantly, we have demonstrated that one step in the ECC process, AP-evoked Ca2+ release, is impaired in single muscle fibers in HF patients.
Collapse
|
22
|
Antunes-Correa LM, Nobre TS, Groehs RV, Alves MJNN, Fernandes T, Couto GK, Rondon MUPB, Oliveira P, Lima M, Mathias W, Brum PC, Mady C, Almeida DR, Rossoni LV, Oliveira EM, Middlekauff HR, Negrao CE. Molecular basis for the improvement in muscle metaboreflex and mechanoreflex control in exercise-trained humans with chronic heart failure. Am J Physiol Heart Circ Physiol 2014; 307:H1655-66. [PMID: 25305179 DOI: 10.1152/ajpheart.00136.2014] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Previous studies have demonstrated that muscle mechanoreflex and metaboreflex controls are altered in heart failure (HF), which seems to be due to changes in cyclooxygenase (COX) pathway and changes in receptors on afferent neurons, including transient receptor potential vanilloid type-1 (TRPV1) and cannabinoid receptor type-1 (CB1). The purpose of the present study was to test the hypotheses: 1) exercise training (ET) alters the muscle metaboreflex and mechanoreflex control of muscle sympathetic nerve activity (MSNA) in HF patients. 2) The alteration in metaboreflex control is accompanied by increased expression of TRPV1 and CB1 receptors in skeletal muscle. 3) The alteration in mechanoreflex control is accompanied by COX-2 pathway in skeletal muscle. Thirty-four consecutive HF patients with ejection fractions <40% were randomized to untrained (n = 17; 54 ± 2 yr) or exercise-trained (n = 17; 56 ± 2 yr) groups. MSNA was recorded by microneurography. Mechanoreceptors were activated by passive exercise and metaboreceptors by postexercise circulatory arrest (PECA). COX-2 pathway, TRPV1, and CB1 receptors were measured in muscle biopsies. Following ET, resting MSNA was decreased compared with untrained group. During PECA (metaboreflex), MSNA responses were increased, which was accompanied by the expression of TRPV1 and CB1 receptors. During passive exercise (mechanoreflex), MSNA responses were decreased, which was accompanied by decreased expression of COX-2, prostaglandin-E2 receptor-4, and thromboxane-A2 receptor and by decreased in muscle inflammation, as indicated by increased miRNA-146 levels and the stable NF-κB/IκB-α ratio. In conclusion, ET alters muscle metaboreflex and mechanoreflex control of MSNA in HF patients. This alteration with ET is accompanied by alteration in TRPV1 and CB1 expression and COX-2 pathway and inflammation in skeletal muscle.
Collapse
Affiliation(s)
| | - Thais S Nobre
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Raphaela V Groehs
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | | | - Tiago Fernandes
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Gisele K Couto
- Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Patricia Oliveira
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Marta Lima
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Wilson Mathias
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Patricia C Brum
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Charles Mady
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Dirceu R Almeida
- Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil; and
| | - Luciana V Rossoni
- Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Edilamar M Oliveira
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Holly R Middlekauff
- Departament of Medicine (Cardiology) and Physiology, Geffen School of Medicine at University of California, Los Angeles, California
| | - Carlos E Negrao
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil; School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil;
| |
Collapse
|
23
|
Jain SS, Paglialunga S, Vigna C, Ludzki A, Herbst EA, Lally JS, Schrauwen P, Hoeks J, Tupling AR, Bonen A, Holloway GP. High-fat diet-induced mitochondrial biogenesis is regulated by mitochondrial-derived reactive oxygen species activation of CaMKII. Diabetes 2014; 63:1907-13. [PMID: 24520120 DOI: 10.2337/db13-0816] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Calcium/calmodulin-dependent protein kinase (CaMK) activation induces mitochondrial biogenesis in response to increasing cytosolic calcium concentrations. Calcium leak from the ryanodine receptor (RyR) is regulated by reactive oxygen species (ROS), which is increased with high-fat feeding. We examined whether ROS-induced CaMKII-mediated signaling induced skeletal muscle mitochondrial biogenesis in selected models of lipid oversupply. In obese Zucker rats and high-fat-fed rodents, in which muscle mitochondrial content was upregulated, CaMKII phosphorylation was increased independent of changes in calcium uptake because sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) protein expression or activity was not altered, implicating altered sarcoplasmic reticulum (SR) calcium leak in the activation of CaMKII. In support of this, we found that high-fat feeding increased mitochondrial ROS emission and S-nitrosylation of the RyR, whereas hydrogen peroxide induced SR calcium leak from the RyR and activation of CaMKII. Moreover, administration of a mitochondrial-specific antioxidant, SkQ, prevented high-fat diet-induced phosphorylation of CaMKII and the induction of mitochondrial biogenesis. Altogether, these data suggest that increased mitochondrial ROS emission is required for the induction of SR calcium leak, activation of CaMKII, and induction of mitochondrial biogenesis in response to excess lipid availability.
Collapse
Affiliation(s)
- Swati S Jain
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Sabina Paglialunga
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Chris Vigna
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Alison Ludzki
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Eric A Herbst
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - James S Lally
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Patrick Schrauwen
- Department of Human Biology, Maastricht University, Maastricht, the Netherlands
| | - Joris Hoeks
- Department of Human Biology, Maastricht University, Maastricht, the Netherlands
| | - A Russ Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Arend Bonen
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Graham P Holloway
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
24
|
Nogueira L, Shiah AA, Gandra PG, Hogan MC. Ca²⁺-pumping impairment during repetitive fatiguing contractions in single myofibers: role of cross-bridge cycling. Am J Physiol Regul Integr Comp Physiol 2013; 305:R118-25. [PMID: 23678027 DOI: 10.1152/ajpregu.00178.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The energy cost of contractions in skeletal muscle involves activation of both actomyosin and sarcoplasmic reticulum (SR) Ca²⁺-pump (SERCA) ATPases, which together determine the overall ATP demand. During repetitive contractions leading to fatigue, the relaxation rate and Ca²⁺ pumping become slowed, possibly because of intracellular metabolite accumulation. The role of the energy cost of cross-bridge cycling during contractile activity on Ca²⁺-pumping properties has not been investigated. Therefore, we inhibited cross-bridge cycling by incubating isolated Xenopus single fibers with N-benzyl-p-toluene sulfonamide (BTS) to study the mechanisms by which SR Ca²⁺ pumping is impaired during fatiguing contractions. Fibers were stimulated in the absence (control) and presence of BTS and cytosolic calcium ([Ca²⁺]c) transients or intracellular pH (pHi) changes were measured. BTS treatment allowed normal [Ca²⁺]c transients during stimulation without cross-bridge activation. At the time point that tension was reduced to 50% in the control condition, the fall in the peak [Ca²⁺]c and the increase in basal [Ca²⁺]c did not occur with BTS incubation. The progressively slower Ca²⁺ pumping rate and the fall in pHi during repetitive contractions were reduced during BTS conditions. However, when mitochondrial ATP supply was blocked during contractions with BTS present (BTS + cyanide), there was no further slowing in SR Ca²⁺ pumping during contractions compared with the BTS-alone condition. Furthermore, the fall in pHi was significantly less during the BTS + cyanide condition than in the control conditions. These results demonstrate that factors related to the energetic cost of cross-bridge cycling, possibly the accumulation of metabolites, inhibit the Ca²⁺ pumping rate during fatiguing contractions.
Collapse
Affiliation(s)
- Leonardo Nogueira
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | |
Collapse
|
25
|
Intact skeletal muscle mitochondrial enzyme activity but diminished exercise capacity in advanced heart failure patients on optimal medical and device therapy. Clin Res Cardiol 2013; 102:547-54. [PMID: 23575739 DOI: 10.1007/s00392-013-0564-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/03/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND A skeletal myopathy, perhaps attributable to neuro-endocrine excitation or disuse, has been described in heart failure (HF) patients, and is thought to contribute to their exercise limitation. Our purpose was to assess biochemical and morphometric characteristics of skeletal muscles of HF patients on optimal HF therapy. A secondary purpose was to explore the effects of clonidine, which interrupts the neuro-endocrine excitation, on these same muscle characteristics. METHODS AND RESULTS Eleven HF patients (50.8 ± 3.4 years, peak VO2 11.6 ± 2.5 ml/kg/min) underwent two vastus lateralis biopsies (pre/post clonidine). Baseline values were compared to biopsies in 11 age-matched, healthy controls. Scatter plots of individual values for each mitochondrial enzyme revealed almost complete overlap between HF and control groups; mean values, although tending to be greater in controls versus HF patients, were not significantly different. The proportion of type 1 fibers was diminished in 10 of 11 patients. There was no difference in any of the variables after 3 months clonidine versus placebo. CONCLUSION In HF patients treated with optimal medical and device therapy, characteristic abnormalities of mitochondrial enzyme activity are not found, but muscle fiber type shifts are present. The remaining severe impairment in exercise capacity cannot be attributed to mitochondrial abnormalities.
Collapse
|