1
|
Lehmann E, van Dalen R, Gritsch L, Slavetinsky C, Korn N, Rohmer C, Krause D, Peschel A, Weidenmaier C, Wolz C. The Capsular Polysaccharide Obstructs Wall Teichoic Acid Functions in Staphylococcus aureus. J Infect Dis 2024; 230:1253-1261. [PMID: 38743812 DOI: 10.1093/infdis/jiae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND The cell envelope of Staphylococcus aureus contains 2 major secondary cell wall glycopolymers: capsular polysaccharide (CP) and wall teichoic acid (WTA). Both CP and WTA are attached to the cell wall and play distinct roles in S. aureus colonization, pathogenesis, and bacterial evasion of host immune defenses. We aimed to investigate whether CP interferes with WTA-mediated properties. METHODS Strains with natural heterogeneous expression of CP, strains with homogeneous high CP expression, and CP-deficient strains were compared regarding WTA-dependent phage binding, cell adhesion, IgG deposition, and virulence in vivo. RESULTS WTA-mediated phage adsorption, specific antibody deposition, and cell adhesion were negatively correlated with CP expression. WTA, but not CP, enhanced the bacterial burden in a mouse abscess model, while CP overexpression resulted in intermediate virulence in vivo. CONCLUSIONS CP protects the bacteria from WTA-dependent opsonization and phage binding. This protection comes at the cost of diminished adhesion to host cells. The highly complex regulation and mostly heterogeneous expression of CP has probably evolved to ensure the survival and optimal physiological adaptation of the bacterial population as a whole.
Collapse
Affiliation(s)
- Esther Lehmann
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Rob van Dalen
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Lisa Gritsch
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Christoph Slavetinsky
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
- Pediatric Surgery and Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Natalya Korn
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Carina Rohmer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Daniela Krause
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Christopher Weidenmaier
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Banjara R, Thapa P, Kela SH, Wu F, Zhu J. Synthesis of 2,3-diazido-2,3-dideoxy-β-d-mannosides and 2,3-diazido-2,3-dideoxy-β-d-mannuronic acid via stereoselective anomeric O-alkylation. Carbohydr Res 2024; 545:109279. [PMID: 39326206 DOI: 10.1016/j.carres.2024.109279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Stereoselective synthesis of 2,3-diazido-2,3-dideoxy-β-d-mannosides has been accomplished via Cs2CO3-mediated anomeric O-alkylation of 2,3-diazido-2,3-dideoxy-β-d-mannoses with primary electrophiles. Selective oxidation of the C6 primary alcohol of the 2,3-diazido-2,3-dideoxy-β-d-mannoside successfully produced corresponding 2,3-diazido-2,3-dideoxy-β-d-mannuronic acid.
Collapse
Affiliation(s)
- Rama Banjara
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, OH, 43606, United States
| | - Prakash Thapa
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, OH, 43606, United States
| | - Shailja Hitesh Kela
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, OH, 43606, United States
| | - Fenglang Wu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, OH, 43606, United States
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, OH, 43606, United States.
| |
Collapse
|
3
|
Crouch LI, Rodrigues CS, Bakshani CR, Tavares-Gomes L, Gaifem J, Pinho SS. The role of glycans in health and disease: Regulators of the interaction between gut microbiota and host immune system. Semin Immunol 2024; 73:101891. [PMID: 39388764 DOI: 10.1016/j.smim.2024.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
The human gut microbiota is home to a diverse collection of microorganisms that has co-evolved with the host immune system in which host-microbiota interactions are essential to preserve health and homeostasis. Evidence suggests that the perturbation of this symbiotic host-microbiome relationship contributes to the onset of major diseases such as chronic inflammatory diseases including Inflammatory Bowel Disease. The host glycocalyx (repertoire of glycans/sugar-chains at the surface of gut mucosa) constitutes a major biological and physical interface between the intestinal mucosa and microorganisms, as well as with the host immune system. Glycans are an essential niche for microbiota colonization and thus an important modulator of host-microorganism interactions both in homeostasis and in disease. In this review, we discuss the role of gut mucosa glycome as an instrumental pathway that regulates host-microbiome interactions in homeostasis but also in health to inflammation transition. We also discuss the power of mucosa glycosylation remodelling as an attractive preventive and therapeutic strategy to preserve gut homeostasis.
Collapse
Affiliation(s)
- Lucy I Crouch
- Department of Microbes, Infection and Microbiomes, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK.
| | - Cláudia S Rodrigues
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Cassie R Bakshani
- Department of Microbes, Infection and Microbiomes, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Leticia Tavares-Gomes
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Joana Gaifem
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Salomé S Pinho
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
4
|
Gao S, Jin W, Quan Y, Li Y, Shen Y, Yuan S, Yi L, Wang Y, Wang Y. Bacterial capsules: Occurrence, mechanism, and function. NPJ Biofilms Microbiomes 2024; 10:21. [PMID: 38480745 PMCID: PMC10937973 DOI: 10.1038/s41522-024-00497-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
In environments characterized by extended multi-stress conditions, pathogens develop a variety of immune escape mechanisms to enhance their ability to infect the host. The capsules, polymers that bacteria secrete near their cell wall, participates in numerous bacterial life processes and plays a crucial role in resisting host immune attacks and adapting to their niche. Here, we discuss the relationship between capsules and bacterial virulence, summarizing the molecular mechanisms of capsular regulation and pathogenesis to provide new insights into the research on the pathogenesis of pathogenic bacteria.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yue Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
- College of Life Science, Luoyang Normal University, Luoyang, 471934, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
5
|
Tian G, Qin C, Hu J, Zou X, Yin J. Effect of Side-Chain Functional Groups in the Immunogenicity of Bacterial Surface Glycans. Molecules 2023; 28:7112. [PMID: 37894591 PMCID: PMC10609480 DOI: 10.3390/molecules28207112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Glycans on the surface of bacteria have diverse and essential biological functions and have widely been employed for treating various bacterial infectious diseases. Furthermore, these glycans comprise various functional groups, such as O-, N-, and carboxyl-modified, which significantly increase the diversity of glycan structures. These functional groups are not only crucial for glycans' structural identity but are also essential for their biological functions. Therefore, a clear understanding of the biological functions of these modified groups in corresponding bacterial glycans is crucial for their medical applications. Thus far, the activities of functional groups in some biomedical active carbohydrates have been elucidated. It has been shown that some functional groups are key constituents of biologically active bacterial glycans, while others are actually not essential and may even mask the functions of the glycans. This paper reviews the structures of naturally occurring side-chain functional groups in glycans located on the bacterial surface and their roles in immunological responses.
Collapse
Affiliation(s)
- Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (G.T.); (C.Q.); (X.Z.)
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (G.T.); (C.Q.); (X.Z.)
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China;
| | - Xiaopeng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (G.T.); (C.Q.); (X.Z.)
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (G.T.); (C.Q.); (X.Z.)
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Bhetuwal BR, Wu F, Acharya PP, Thapa P, Zhu J. Synthesis of 2-Amino-2-deoxy-β-d-mannosides via Stereoselective Anomeric O-Alkylation of 2 N,3 O-Oxazolidinone-Protected d-Mannosamine: Synthesis of the Trisaccharide Repeating Unit of Streptococcus pneumoniae 19F Polysaccharide. Org Lett 2023; 25:4214-4218. [PMID: 37257021 PMCID: PMC10330879 DOI: 10.1021/acs.orglett.3c01564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Cesium carbonate-mediated stereoselective anomeric O-alkylation of a 2N,3O-oxazolidinone-protected d-mannosamine with sugar-derived primary or secondary alkyl triflates afforded the corresponding 2-amino-2-deoxy-β-d-mannosides in moderate to good yields and excellent stereoselectivity. The oxazolidinone ring can be opened with aqueous alkali hydroxide to liberate the amine functionality. This method has been successfully applied to the synthesis of the trisaccharide repeating unit of Streptococcus pneumoniae 19F polysaccharide.
Collapse
Affiliation(s)
- Bishwa Raj Bhetuwal
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Fenglang Wu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Padam Prasad Acharya
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Prakash Thapa
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
7
|
Rai D, Kulkarni SS. Total Synthesis of Trisaccharide Repeating Unit of Staphylococcus aureus Type 8 (CP8) Capsular Polysaccharide. Org Lett 2023; 25:1509-1513. [PMID: 36852946 DOI: 10.1021/acs.orglett.3c00290] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Herein, we report a highly efficient total synthesis of Staphylococcus aureus type 8 trisaccharide repeating unit in a lesser number of steps and high stereoselectivity. The complex trisaccharide contains rare amino sugars, viz., d-fucosamine, l-fucosamine, and 2-acetamido d-mannuronic acid. The installation of consecutive sterically hindered 1,2-cis glycosidic linkages, especially β-mannosylation, is the key challenge in this synthesis. The total synthesis of target molecule was completed via a longest linear sequence of 18 steps in 7.1% overall yield.
Collapse
Affiliation(s)
- Diksha Rai
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
8
|
Luong P, Ghosh A, Moulton KD, Kulkarni SS, Dube DH. Synthesis and Application of Rare Deoxy Amino l-Sugar Analogues to Probe Glycans in Pathogenic Bacteria. ACS Infect Dis 2022; 8:889-900. [PMID: 35302355 PMCID: PMC9445936 DOI: 10.1021/acsinfecdis.2c00060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacterial cell envelope glycans are compelling antibiotic targets as they are critical for strain fitness and pathogenesis yet are virtually absent from human cells. However, systematic study and perturbation of bacterial glycans remains challenging due to their utilization of rare deoxy amino l-sugars, which impede traditional glycan analysis and are not readily available from natural sources. The development of chemical tools to study bacterial glycans is a crucial step toward understanding and altering these biomolecules. Here we report an expedient methodology to access azide-containing analogues of a variety of unusual deoxy amino l-sugars starting from readily available l-rhamnose and l-fucose. Azide-containing l-sugar analogues facilitated metabolic profiling of bacterial glycans in a range of Gram-negative bacteria and revealed differential utilization of l-sugars in symbiotic versus pathogenic bacteria. Further application of these probes will refine our knowledge of the glycan repertoire in diverse bacteria and aid in the design of novel antibiotics.
Collapse
Affiliation(s)
- Phuong Luong
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, United States
| | - Antara Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400-076, India
| | - Karen D. Moulton
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, United States
| | - Suvarn S. Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400-076, India
| | - Danielle H. Dube
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, United States
| |
Collapse
|
9
|
Synthetic carbohydrate-based cell wall components from Staphylococcus aureus. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 38:35-43. [PMID: 34895639 DOI: 10.1016/j.ddtec.2021.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/17/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Glycopolymers are found surrounding the outer layer of many bacterial species. The first uses as immunogenic component in vaccines are reported since the beginning of the XX century, but it is only in the last decades that glycoconjugate based vaccines have been effectively applied for controlling and preventing several infectious diseases, such as H. influenzae type b (Hib), N. meningitidis, S. pneumoniae or group B Streptococcus. Methicillin resistant S. aureus (MRSA) strains has been appointed by the WHO as one of those pathogens, for which new treatments are urgently needed. Herein we present an overview of the carbohydrate-based cell wall polymers associated with different S. aureus strains and the related affords to deliver well-defined fragments through synthetic chemistry.
Collapse
|
10
|
Morelli L, Legnani L, Ronchi S, Confalonieri L, Imperio D, Toma L, Compostella F. 2,3-Carbamate mannosamine glycosyl donors in glycosylation reactions of diacetone-d-glucose. An experimental and theoretical study. Carbohydr Res 2021; 509:108421. [PMID: 34450528 DOI: 10.1016/j.carres.2021.108421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/05/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022]
Abstract
The role of the cyclic 2,3-N,O-carbamate protecting group in directing the selectivity of mannosylation reactions of diacetone-d-glucose, promoted by BSP/Tf2O via α-triflate intermediates, has been investigated through a combined computational and experimental approach. DFT calculations were used to locate the transition states leading to the α or β anomers. These data indicate the preferential formation of the β-adduct with mannosyl donors either equipped with the 4,6-O-benzylidene protection or without it. The synthetic results confirmed this preference, showing in both cases an α/β selectivity of 4:6. This highlights a role for the 2,3-N,O-carbamate in sharp contrast with what described in the case of 2,3-O-carbonate mannosyl donors.
Collapse
Affiliation(s)
- Laura Morelli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy
| | - Laura Legnani
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Silvia Ronchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy
| | - Laura Confalonieri
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, L.go Donegani 2, 28100 Novara, Italy
| | - Daniela Imperio
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, L.go Donegani 2, 28100 Novara, Italy
| | - Lucio Toma
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy.
| | - Federica Compostella
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy.
| |
Collapse
|
11
|
Abstract
Several monosaccharides constitute naturally occurring glycans, but it is uncertain whether they constitute a universal set like the alphabets of proteins and DNA. Based on the available experimental observations, it is hypothesized herein that the glycan alphabet is not universal. Data on the presence/absence of pathways for the biosynthesis of 55 monosaccharides in 12 939 completely sequenced archaeal and bacterial genomes are presented in support of this hypothesis. Pathways were identified by searching for homologues of biosynthesis pathway enzymes. Substantial variations were observed in the set of monosaccharides used by organisms belonging to the same phylum, genera and even species. Monosaccharides were grouped as common, less common and rare based on their prevalence in Archaea and Bacteria. It was observed that fewer enzymes are sufficient to biosynthesize monosaccharides in the common group. It appears that the common group originated before the formation of the three domains of life. In contrast, the rare group is confined to a few species in a few phyla, suggesting that these monosaccharides evolved much later. Fold conservation, as observed in aminotransferases and SDR (short-chain dehydrogenase reductase) superfamily members involved in monosaccharide biosynthesis, suggests neo- and sub-functionalization of genes led to the formation of the rare group monosaccharides. The non-universality of the glycan alphabet begets questions about the role of different monosaccharides in determining an organism’s fitness.
Collapse
Affiliation(s)
- Jaya Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - P Sunthar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Petety V Balaji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
12
|
Natural and synthetic carbohydrate-based vaccine adjuvants and their mechanisms of action. Nat Rev Chem 2021; 5:197-216. [PMID: 37117529 PMCID: PMC7829660 DOI: 10.1038/s41570-020-00244-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2020] [Indexed: 01/31/2023]
Abstract
Modern subunit vaccines based on homogeneous antigens offer more precise targeting and improved safety compared with traditional whole-pathogen vaccines. However, they are also less immunogenic and require an adjuvant to increase the immunogenicity of the antigen and potentiate the immune response. Unfortunately, few adjuvants have sufficient potency and low enough toxicity for clinical use, highlighting the urgent need for new, potent and safe adjuvants. Notably, a number of natural and synthetic carbohydrate structures have been used as adjuvants in clinical trials, and two have recently been approved in human vaccines. However, naturally derived carbohydrate adjuvants are heterogeneous, difficult to obtain and, in some cases, unstable. In addition, their molecular mechanisms of action are generally not fully understood, partly owing to the lack of tools to elucidate their immune-potentiating effects, thus hampering the rational development of optimized adjuvants. To address these challenges, modification of the natural product structure using synthetic chemistry emerges as an attractive approach to develop well-defined, improved carbohydrate-containing adjuvants and chemical probes for mechanistic investigation. This Review describes selected examples of natural and synthetic carbohydrate-based adjuvants and their application in synthetic self-adjuvanting vaccines, while also discussing current understanding of their molecular mechanisms of action.
Collapse
|
13
|
Qin C, Liu Z, Ding M, Cai J, Fu J, Hu J, Seeberger PH, Yin J. Chemical synthesis of the Pseudomonas aeruginosa O11 O-antigen trisaccharide based on neighboring electron-donating effect. J Carbohydr Chem 2020. [DOI: 10.1080/07328303.2020.1839479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhonghua Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Meiru Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Juntao Cai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Department of Biomolecular Systems, Max-Plank Institute of Colloids and Interfaces, Potsdam, Germany
| | - Junjie Fu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jing Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max-Plank Institute of Colloids and Interfaces, Potsdam, Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
14
|
Visansirikul S, Kolodziej SA, Demchenko AV. Synthesis of oligosaccharide fragments of capsular polysaccharide Staphylococcus aureus type 8. J Carbohydr Chem 2020. [DOI: 10.1080/07328303.2020.1821042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Satsawat Visansirikul
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis, St. Louis, MO, USA
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Stephen A. Kolodziej
- Bioprocess R&D, Biotherapeutics Pharmaceutical Sciences, Pfizer, Inc, Chesterfield, MO, USA
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry, University of Missouri – St. Louis, St. Louis, MO, USA
| |
Collapse
|
15
|
Feng Y, Zhang J, Wen C, Sedem Dzah C, Chidimma Juliet I, Duan Y, Zhang H. Recent advances in Agaricus bisporus polysaccharides: Extraction, purification, physicochemical characterization and bioactivities. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Zhao M, Qin C, Li L, Xie H, Ma B, Zhou Z, Yin J, Hu J. Conjugation of Synthetic Trisaccharide of Staphylococcus aureus Type 8 Capsular Polysaccharide Elicits Antibodies Recognizing Intact Bacterium. Front Chem 2020; 8:258. [PMID: 32411658 PMCID: PMC7199654 DOI: 10.3389/fchem.2020.00258] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus aureus causes a wide range of life-threatening diseases. One of the powerful approaches for prevention and treatment is to develop an efficient vaccine as antibiotic resistance greatly increases. S. aureus type 8 capsular polysaccharide (CP8) has shown great potential in vaccine development. An understanding of the immunogenicity of CP8 trisaccharide repeating unit is valuable for epitope-focused vaccine design and cost-efficient vaccine production. We report the chemical synthesis of conjugation-ready CP8 trisaccharide 1 bearing an amine linker, which effectively served for immunological evaluation. The trisaccharide 1-CRM197 conjugate elicited a robust immunoglobulin G (IgG) immune response in mice. Both serum antibodies and prepared monoclonal antibodies recognized S. aureus strain, demonstrating that synthetic trisaccharide 1 can be an efficient antigen for vaccine development.
Collapse
Affiliation(s)
- Ming Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Lingxin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Haotian Xie
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Beining Ma
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ziru Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
17
|
Giannelli C, Raso MM, Palmieri E, De Felice A, Pippi F, Micoli F. Development of a Specific and Sensitive HPAEC-PAD Method for Quantification of Vi Polysaccharide Applicable to other Polysaccharides Containing Amino Uronic Acids. Anal Chem 2020; 92:6304-6311. [PMID: 32330386 DOI: 10.1021/acs.analchem.9b05107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Typhoid fever is a major cause of morbidity and mortality in developing countries. Vaccines based on the Vi capsular polysaccharide are licensed or in development against typhoid fever. Vi content is a critical quality attribute for vaccines release, to monitor their stability and to ensure appropriate immune response. Vi polysaccharide is a homopolymer of α-1,4-N-acetylgalactosaminouronic acid, O-acetylated at the C-3 position, resistant to the commonly used acid hydrolysis for sugar chain depolymerization before monomer quantification. We previously developed a quantification method based on strong alkaline hydrolysis followed by High Performance Anion Exchange Chromatography-Pulsed Amperometric Detection analysis, but with low sensitivity and use for quantification of an unknown product coming from polysaccharide depolymerization. Here we describe the development of a method for Vi polysaccharide quantification based on acid hydrolysis with concomitant use of trifluoroacetic and hydrochloric acids. A Design of Experiment approach was used for the identification of the optimal hydrolysis conditions. The method is 100-fold more sensitive than the previous one, and specifically, resulting in the formation of a known product, confirmed to be the Vi monomer both de-O- and de-N-acetylated by mono- and bidimensional Nuclear Magnetic Resonance spectroscopy and mass spectrometry. Accuracy and precision were determined, and chromatographic conditions were improved to result in reduced time of analysis. This method will facilitate characterization of Vi-based vaccines. Furthermore, a similar approach has the potential to be extended to other polysaccharides containing 2-amino uronic acids, as already verified here for Shigella sonnei O-antigen, Streptococcus pneumoniae serotype 12F, and Staphylococcus aureus types 5 and 8 capsular polysaccharides.
Collapse
Affiliation(s)
- Carlo Giannelli
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | | | - Elena Palmieri
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | - Antonia De Felice
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | - Federico Pippi
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
18
|
Visansirikul S, Kolodziej SA, Demchenko AV. Staphylococcus aureuscapsular polysaccharides: a structural and synthetic perspective. Org Biomol Chem 2020; 18:783-798. [DOI: 10.1039/c9ob02546d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review surveys known structures of staphylococcal polysaccharides and summarizes all synthetic efforts to obtain these sequences.
Collapse
Affiliation(s)
- Satsawat Visansirikul
- Department of Chemistry and Biochemistry
- University of Missouri – St Louis
- One University Boulevard
- St Louis
- USA
| | | | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry
- University of Missouri – St Louis
- One University Boulevard
- St Louis
- USA
| |
Collapse
|
19
|
Behera A, Rai D, Kulkarni SS. Total Syntheses of Conjugation-Ready Trisaccharide Repeating Units of Pseudomonas aeruginosa O11 and Staphylococcus aureus Type 5 Capsular Polysaccharide for Vaccine Development. J Am Chem Soc 2019; 142:456-467. [DOI: 10.1021/jacs.9b11309] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Archanamayee Behera
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Diksha Rai
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Suvarn S. Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
20
|
Keinhörster D, George SE, Weidenmaier C, Wolz C. Function and regulation of Staphylococcus aureus wall teichoic acids and capsular polysaccharides. Int J Med Microbiol 2019; 309:151333. [DOI: 10.1016/j.ijmm.2019.151333] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/09/2019] [Accepted: 07/17/2019] [Indexed: 01/05/2023] Open
|
21
|
Coordination of capsule assembly and cell wall biosynthesis in Staphylococcus aureus. Nat Commun 2019; 10:1404. [PMID: 30926919 PMCID: PMC6441080 DOI: 10.1038/s41467-019-09356-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 02/28/2019] [Indexed: 11/08/2022] Open
Abstract
The Gram-positive cell wall consists of peptidoglycan functionalized with anionic glycopolymers, such as wall teichoic acid and capsular polysaccharide (CP). How the different cell wall polymers are assembled in a coordinated fashion is not fully understood. Here, we reconstitute Staphylococcus aureus CP biosynthesis and elucidate its interplay with the cell wall biosynthetic machinery. We show that the CapAB tyrosine kinase complex controls multiple enzymatic checkpoints through reversible phosphorylation to modulate the consumption of essential precursors that are also used in peptidoglycan biosynthesis. In addition, the CapA1 activator protein interacts with and cleaves lipid-linked CP precursors, releasing the essential lipid carrier undecaprenyl-phosphate. We further provide biochemical evidence that the subsequent attachment of CP is achieved by LcpC, a member of the LytR-CpsA-Psr protein family, using the peptidoglycan precursor native lipid II as acceptor substrate. The Ser/Thr kinase PknB, which can sense cellular lipid II levels, negatively controls CP synthesis. Our work sheds light on the integration of CP biosynthesis into the multi-component Gram-positive cell wall.
Collapse
|
22
|
Mohamed N, Timofeyeva Y, Jamrozy D, Rojas E, Hao L, Silmon de Monerri NC, Hawkins J, Singh G, Cai B, Liberator P, Sebastian S, Donald RGK, Scully IL, Jones CH, Creech CB, Thomsen I, Parkhill J, Peacock SJ, Jansen KU, Holden MTG, Anderson AS. Molecular epidemiology and expression of capsular polysaccharides in Staphylococcus aureus clinical isolates in the United States. PLoS One 2019; 14:e0208356. [PMID: 30641545 PMCID: PMC6331205 DOI: 10.1371/journal.pone.0208356] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus capsular polysaccharides (CP) are important virulence factors under evaluation as vaccine antigens. Clinical S. aureus isolates have the biosynthetic capability to express either CP5 or CP8 and an understanding of the relationship between CP genotype/phenotype and S. aureus epidemiology is valuable. Using whole genome sequencing, the clonal relatedness and CP genotype were evaluated for disease-associated S. aureus isolates selected from the Tigecycline Evaluation and Surveillance Trial (T.E.S.T) to represent different geographic regions in the United States (US) during 2004 and 2009–10. Thirteen prominent clonal complexes (CC) were identified, with CC5, 8, 30 and 45 representing >80% of disease isolates. CC5 and CC8 isolates were CP type 5 and, CC30 and CC45 isolates were CP type 8. Representative isolates from prevalent CC were susceptible to in vitro opsonophagocytic killing elicited by anti-CP antibodies, demonstrating that susceptibility to opsonic killing is not linked to the genetic lineage. However, as not all S. aureus isolates may express CP, isolates representing the diversity of disease isolates were assessed for CP production. While approximately 35% of isolates (primarily CC8) did not express CP in vitro, CP expression could be clearly demonstrated in vivo for 77% of a subset of these isolates (n = 20) despite the presence of mutations within the capsule operon. CP expression in vivo was also confirmed indirectly by measuring an increase in CP specific antibodies in mice infected with CP5 or CP8 isolates. Detection of antigen expression in vivo in relevant disease states is important to support the inclusion of these antigens in vaccines. Our findings confirm the validity of CP as vaccine targets and the potential of CP-based vaccines to contribute to S. aureus disease prevention.
Collapse
Affiliation(s)
- Naglaa Mohamed
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - Yekaterina Timofeyeva
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - Dorota Jamrozy
- The Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Eduardo Rojas
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - Li Hao
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | | | - Julio Hawkins
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - Guy Singh
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - Bing Cai
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - Paul Liberator
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - Shite Sebastian
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - Robert G. K. Donald
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - Ingrid L. Scully
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - C. Hal Jones
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | - C. Buddy Creech
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Isaac Thomsen
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Julian Parkhill
- The Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Sharon J. Peacock
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kathrin U. Jansen
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
| | | | - Annaliesa S. Anderson
- Pfizer Vaccine Research and Development, Pearl River, New York, United States of America
- * E-mail:
| |
Collapse
|
23
|
Bhat AH, Maity S, Giri K, Ambatipudi K. Protein glycosylation: Sweet or bitter for bacterial pathogens? Crit Rev Microbiol 2019; 45:82-102. [PMID: 30632429 DOI: 10.1080/1040841x.2018.1547681] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein glycosylation systems in many bacteria are often associated with crucial biological processes like pathogenicity, immune evasion and host-pathogen interactions, implying the significance of protein-glycan linkage. Similarly, host protein glycosylation has been implicated in antimicrobial activity as well as in promoting growth of beneficial strains. In fact, few pathogens notably modulate host glycosylation machineries to facilitate their survival. To date, diverse chemical and biological strategies have been developed for conjugate vaccine production for disease control. Bioconjugate vaccines, largely being produced by glycoengineering using PglB (the N-oligosaccharyltransferase from Campylobacter jejuni) in suitable bacterial hosts, have been highly promising with respect to their effectiveness in providing protective immunity and ease of production. Recently, a novel method of glycoconjugate vaccine production involving an O-oligosaccharyltransferase, PglL from Neisseria meningitidis, has been optimized. Nevertheless, many questions on defining antigenic determinants, glycosylation markers, species-specific differences in glycosylation machineries, etc. still remain unanswered, necessitating further exploration of the glycosylation systems of important pathogens. Hence, in this review, we will discuss the impact of bacterial protein glycosylation on its pathogenesis and the interaction of pathogens with host protein glycosylation, followed by a discussion on strategies used for bioconjugate vaccine development.
Collapse
Affiliation(s)
- Aadil Hussain Bhat
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Sudipa Maity
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Kuldeep Giri
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Kiran Ambatipudi
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| |
Collapse
|
24
|
Visansirikul S, Kolodziej SA, Demchenko AV. Synthesis of D-FucNAc-D-ManNAcA Disaccharides Based On the Capsular Polysaccharides Staphylococcus aureus Type 5 and 8. J Org Chem 2018; 84:216-227. [DOI: 10.1021/acs.joc.8b02612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Satsawat Visansirikul
- Department of Chemistry and Biochemistry, University of Missouri−St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuddhaya Road, Rajathevee, Bangkok 10400, Thailand
| | - Stephen A. Kolodziej
- Bioprocess R&D, Biotherapeutics Pharmaceutical Sciences, Pfizer, Inc., 875 Chesterfield Parkway W, Chesterfield, Missouri 63017, United States
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry, University of Missouri−St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| |
Collapse
|
25
|
Micoli F, Costantino P, Adamo R. Potential targets for next generation antimicrobial glycoconjugate vaccines. FEMS Microbiol Rev 2018; 42:388-423. [PMID: 29547971 PMCID: PMC5995208 DOI: 10.1093/femsre/fuy011] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
Cell surface carbohydrates have been proven optimal targets for vaccine development. Conjugation of polysaccharides to a carrier protein triggers a T-cell-dependent immune response to the glycan moiety. Licensed glycoconjugate vaccines are produced by chemical conjugation of capsular polysaccharides to prevent meningitis caused by meningococcus, pneumococcus and Haemophilus influenzae type b. However, other classes of carbohydrates (O-antigens, exopolysaccharides, wall/teichoic acids) represent attractive targets for developing vaccines. Recent analysis from WHO/CHO underpins alarming concern toward antibiotic-resistant bacteria, such as the so called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) and additional pathogens such as Clostridium difficile and Group A Streptococcus. Fungal infections are also becoming increasingly invasive for immunocompromised patients or hospitalized individuals. Other emergencies could derive from bacteria which spread during environmental calamities (Vibrio cholerae) or with potential as bioterrorism weapons (Burkholderia pseudomallei and mallei, Francisella tularensis). Vaccination could aid reducing the use of broad-spectrum antibiotics and provide protection by herd immunity also to individuals who are not vaccinated. This review analyzes structural and functional differences of the polysaccharides exposed on the surface of emerging pathogenic bacteria, combined with medical need and technological feasibility of corresponding glycoconjugate vaccines.
Collapse
Affiliation(s)
- Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena
| | | | | |
Collapse
|
26
|
Novais Â, Freitas AR, Rodrigues C, Peixe L. Fourier transform infrared spectroscopy: unlocking fundamentals and prospects for bacterial strain typing. Eur J Clin Microbiol Infect Dis 2018; 38:427-448. [DOI: 10.1007/s10096-018-3431-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/11/2018] [Indexed: 01/25/2023]
|
27
|
Behera A, Kulkarni SS. Chemical Synthesis of Rare, Deoxy-Amino Sugars Containing Bacterial Glycoconjugates as Potential Vaccine Candidates. Molecules 2018; 23:molecules23081997. [PMID: 30103434 PMCID: PMC6222762 DOI: 10.3390/molecules23081997] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/04/2018] [Accepted: 08/08/2018] [Indexed: 12/30/2022] Open
Abstract
Bacteria often contain rare deoxy amino sugars which are absent in the host cells. This structural difference can be harnessed for the development of vaccines. Over the last fifteen years, remarkable progress has been made toward the development of novel and efficient protocols for obtaining the rare sugar building blocks and their stereoselective assembly to construct conjugation ready bacterial glycans. In this review, we discuss the total synthesis of a variety of rare sugar containing bacterial glycoconjugates which are potential vaccine candidates.
Collapse
Affiliation(s)
- Archanamayee Behera
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
28
|
Role of O-Acetylation in the Immunogenicity of Bacterial Polysaccharide Vaccines. Molecules 2018; 23:molecules23061340. [PMID: 29865239 PMCID: PMC6100563 DOI: 10.3390/molecules23061340] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/21/2018] [Accepted: 05/30/2018] [Indexed: 12/26/2022] Open
Abstract
The incidence of infectious diseases caused by several bacterial pathogens such as Haemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis, has been dramatically reduced over the last 25 years through the use of glycoconjugate vaccines. The structures of the bacterial capsular polysaccharide (CPS) antigens, extracted and purified from microbial cultures and obtained with very high purity, show that many of them are decorated by O-acetyl groups. While these groups are often considered important for the structural identity of the polysaccharides, they play a major role in the functional immune response to some vaccines such as meningococcal serogroup A and Salmonella typhi Vi, but do not seem to be important for many others, such as meningococcal serogroups C, W, Y, and type III Group B Streptococcus. This review discusses the O-acetylation status of CPSs and its role in the immunological responses of these antigens.
Collapse
|
29
|
Desvaux M, Candela T, Serror P. Surfaceome and Proteosurfaceome in Parietal Monoderm Bacteria: Focus on Protein Cell-Surface Display. Front Microbiol 2018; 9:100. [PMID: 29491848 PMCID: PMC5817068 DOI: 10.3389/fmicb.2018.00100] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
The cell envelope of parietal monoderm bacteria (archetypal Gram-positive bacteria) is formed of a cytoplasmic membrane (CM) and a cell wall (CW). While the CM is composed of phospholipids, the CW is composed at least of peptidoglycan (PG) covalently linked to other biopolymers, such as teichoic acids, polysaccharides, and/or polyglutamate. Considering the CW is a porous structure with low selective permeability contrary to the CM, the bacterial cell surface hugs the molecular figure of the CW components as a well of the external side of the CM. While the surfaceome corresponds to the totality of the molecules found at the bacterial cell surface, the proteinaceous complement of the surfaceome is the proteosurfaceome. Once translocated across the CM, secreted proteins can either be released in the extracellular milieu or exposed at the cell surface by associating to the CM or the CW. Following the gene ontology (GO) for cellular components, cell-surface proteins at the CM can either be integral (GO: 0031226), i.e., the integral membrane proteins, or anchored to the membrane (GO: 0046658), i.e., the lipoproteins. At the CW (GO: 0009275), cell-surface proteins can be covalently bound, i.e., the LPXTG-proteins, or bound through weak interactions to the PG or wall polysaccharides, i.e., the cell wall binding proteins. Besides monopolypeptides, some proteins can associate to each other to form supramolecular protein structures of high molecular weight, namely the S-layer, pili, flagella, and cellulosomes. After reviewing the cell envelope components and the different molecular mechanisms involved in protein attachment to the cell envelope, perspectives in investigating the proteosurfaceome in parietal monoderm bacteria are further discussed.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRA, UMR454 MEDiS, Clermont-Ferrand, France
| | - Thomas Candela
- EA4043 Unité Bactéries Pathogènes et Santé, Châtenay-Malabry, France
| | - Pascale Serror
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
30
|
Hennessey JP, Costantino P, Talaga P, Beurret M, Ravenscroft N, Alderson MR, Zablackis E, Prasad AK, Frasch C. Lessons Learned and Future Challenges in the Design and Manufacture of Glycoconjugate Vaccines. CARBOHYDRATE-BASED VACCINES: FROM CONCEPT TO CLINIC 2018. [DOI: 10.1021/bk-2018-1290.ch013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
| | | | - Philippe Talaga
- Department of Analytical Research and Development, Sanofi Pasteur, Marcy l’Etoile 69280, France
| | - Michel Beurret
- Janssen Vaccines & Prevention B.V., Leiden, 2301 CA, The Netherlands
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | | | - Earl Zablackis
- Analytical Process Technology, Sanofi Pasteur, Swiftwater, Pennsylvania 18370, United States
| | - A. Krishna Prasad
- Pfizer Vaccines Research and Development, Pearl River, New York 10965, United States
| | - Carl Frasch
- Consultant, Martinsburg, West Virginia 25402, United States
| |
Collapse
|
31
|
Scully IL, Pavliak V, Timofeyeva Y, Liu Y, Singer C, Anderson AS. O-Acetylation is essential for functional antibody generation against Staphylococcus aureus capsular polysaccharide. Hum Vaccin Immunother 2017; 14:81-84. [PMID: 29182428 PMCID: PMC5791590 DOI: 10.1080/21645515.2017.1386360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Staphylococcus aureus produces an antiphagocytic polysaccharide capsule to evade neutrophil-mediated killing. Many vaccines against encapsulated bacterial pathogens require generation of functional anti-capsular antibodies to mediate protection against infection and disease. Here it is shown that the generation of such antibody responses to S. aureus in vivo and in vitro requires the presence of O-acetyl modifications on the capsular polysaccharides. O-acetylation of S. aureus capsular polysaccharide therefore should be monitored carefully during vaccine development and production. This finding may provide additional insight into the previous failure of a S. aureus capsular polysaccharide conjugate vaccine.
Collapse
Affiliation(s)
| | | | | | - Yongdong Liu
- a Pfizer Vaccine Research , Pearl River , NY , USA
| | | | | |
Collapse
|
32
|
A novel recombinant vaccine candidate comprising PBP2a and autolysin against Methicillin Resistant Staphylococcus aureus confers protection in the experimental mice. Mol Immunol 2017; 91:1-7. [DOI: 10.1016/j.molimm.2017.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/01/2017] [Accepted: 08/14/2017] [Indexed: 11/18/2022]
|
33
|
Zhang Q, Overkleeft HS, van der Marel GA, Codée JDC. Synthetic zwitterionic polysaccharides. Curr Opin Chem Biol 2017; 40:95-101. [DOI: 10.1016/j.cbpa.2017.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/27/2017] [Accepted: 07/20/2017] [Indexed: 10/18/2022]
|
34
|
Khatun F, Stephenson RJ, Toth I. An Overview of Structural Features of Antibacterial Glycoconjugate Vaccines That Influence Their Immunogenicity. Chemistry 2017; 23:4233-4254. [PMID: 28097690 DOI: 10.1002/chem.201603599] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Indexed: 12/13/2022]
Abstract
Bacterial cell-surface-derived or mimicked carbohydrate moieties that act as protective antigens are used in the development of antibacterial glycoconjugate vaccines. The carbohydrate antigen must have a minimum length or size to maintain the conformational structure of the antigenic epitope(s). The presence or absence of O-acetate, phosphate, glycerol phosphate and pyruvate ketal plays a vital role in defining the immunogenicity of the carbohydrate antigen. The nature of the carrier protein, spacer and conjugation pattern used to develop the glycoconjugate vaccine also defines its overall spatial orientation which in turn affects its avidity and selectivity of interaction with the desired target(s). In addition, the ratio of carbohydrate to protein in glycoconjugate vaccines also makes an important contribution in determining the optimum immunological response. This Review article presents the importance of these variables in the development of antibacterial glycoconjugate vaccines and their effects on immune efficacy.
Collapse
Affiliation(s)
- Farjana Khatun
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.,School of Pharmacy, Woolloongabba, The University of Queensland, QLD, Australia.,Institute for Molecular Bioscience, St. Lucia, The University of Queensland, QLD, Australia
| |
Collapse
|
35
|
Hagen B, Ali S, Overkleeft HS, van der Marel GA, Codée JDC. Mapping the Reactivity and Selectivity of 2-Azidofucosyl Donors for the Assembly of N-Acetylfucosamine-Containing Bacterial Oligosaccharides. J Org Chem 2017; 82:848-868. [PMID: 28051314 PMCID: PMC5332126 DOI: 10.1021/acs.joc.6b02593] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthesis of complex oligosaccharides is often hindered by a lack of knowledge on the reactivity and selectivity of their constituent building blocks. We investigated the reactivity and selectivity of 2-azidofucosyl (FucN3) donors, valuable synthons in the synthesis of 2-acetamido-2-deoxyfucose (FucNAc) containing oligosaccharides. Six FucN3 donors, bearing benzyl, benzoyl, or tert-butyldimethylsilyl protecting groups at the C3-O and C4-O positions, were synthesized, and their reactivity was assessed in a series of glycosylations using acceptors of varying nucleophilicity and size. It was found that more reactive nucleophiles and electron-withdrawing benzoyl groups on the donor favor the formation of β-glycosides, while poorly reactive nucleophiles and electron-donating protecting groups on the donor favor α-glycosidic bond formation. Low-temperature NMR activation studies of Bn- and Bz-protected donors revealed the formation of covalent FucN3 triflates and oxosulfonium triflates. From these results, a mechanistic explanation is offered in which more reactive acceptors preferentially react via an SN2-like pathway, while less reactive acceptors react via an SN1-like pathway. The knowledge obtained in this reactivity study was then applied in the construction of α-FucN3 linkages relevant to bacterial saccharides. Finally, a modular synthesis of the Staphylococcus aureus type 5 capsular polysaccharide repeating unit, a trisaccharide consisting of two FucNAc units, is described.
Collapse
Affiliation(s)
- Bas Hagen
- Leiden Institute of Chemistry, Universiteit Leiden , Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Sara Ali
- Leiden Institute of Chemistry, Universiteit Leiden , Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Universiteit Leiden , Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Gijsbert A van der Marel
- Leiden Institute of Chemistry, Universiteit Leiden , Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Universiteit Leiden , Einsteinweg 55, 2333CC Leiden, The Netherlands
| |
Collapse
|
36
|
Liu B, Park S, Thompson CD, Li X, Lee JC. Antibodies to Staphylococcus aureus capsular polysaccharides 5 and 8 perform similarly in vitro but are functionally distinct in vivo. Virulence 2016; 8:859-874. [PMID: 27936346 DOI: 10.1080/21505594.2016.1270494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The capsular polysaccharide (CP) produced by Staphylococcus aureus is a virulence factor that allows the organism to evade uptake and killing by host neutrophils. Polyclonal antibodies to the serotype 5 (CP5) and type 8 (CP8) capsular polysaccharides are opsonic and protect mice against experimental bacteremia provoked by encapsulated staphylococci. Thus, passive immunotherapy using CP antibodies has been considered for the prevention or treatment of invasive antibiotic-resistant S. aureus infections. In this report, we generated monoclonal antibodies (mAbs) against S. aureus CP5 or CP8. Backbone specific mAbs reacted with native and O-deacetylated CPs, whereas O-acetyl specific mAbs reacted only with native CPs. Reference strains of S. aureus and a selection of clinical isolates reacted by colony immunoblot with the CP5 and CP8 mAbs in a serotype-specific manner. The mAbs mediated in vitro CP type-specific opsonophagocytic killing of S. aureus strains, and mice passively immunized with CP5 mAbs were protected against S. aureus bacteremia. Neither CP8-specific mAbs or polyclonal antibodies protected mice against bacteremia provoked by serotype 8 S. aureus clinical isolates, although these same antibodies did protect against a serotype 5 S. aureus strain genetically engineered to produce CP8. We detected soluble CP8 in culture supernatants of serotype 8 clinical isolates and in the plasma of infected animals. Serotype 5 S. aureus released significantly less soluble CP5 in vitro and in vivo. The release of soluble CP8 by S. aureus may contribute to the inability of CP8 vaccines or antibodies to protect against serotype 8 staphylococcal infections.
Collapse
Affiliation(s)
- Bo Liu
- a Division of Infectious Diseases , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA
| | - Saeyoung Park
- a Division of Infectious Diseases , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA
| | - Christopher D Thompson
- a Division of Infectious Diseases , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA
| | - Xue Li
- a Division of Infectious Diseases , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA.,b Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Jean C Lee
- a Division of Infectious Diseases , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA
| |
Collapse
|
37
|
Sletten ET, Ramadugu SK, Nguyen HM. Utilization of bench-stable and readily available nickel(II) triflate for access to 1,2-cis-2-aminoglycosides. Carbohydr Res 2016; 435:195-207. [PMID: 27816838 DOI: 10.1016/j.carres.2016.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/10/2016] [Accepted: 10/20/2016] [Indexed: 10/20/2022]
Abstract
The utilization of substoichiometric amounts of commercially available nickel(II) triflate as an activator in the reagent-controlled glycosylation reaction for the stereoselective construction of biologically relevant targets containing 1,2-cis-2-amino glycosidic linkages is reported. This straightforward and accessible methodology is mild, operationally simple and safe through catalytic activation by readily available Ni(OTf)2 in comparison to systems employing our previously in-house prepared Ni(4-F-PhCN)4(OTf)2. We anticipate that the bench-stable and inexpensive Ni(OTf)2, coupled with little to no extra laboratory training to set up the glycosylation reaction and no requirement of specialized equipment, should make this methodology be readily adopted by non-carbohydrate specialists. This report further highlights the efficacy of Ni(OTf)2 to prepare several bioactive motifs, such as blood type A-type V and VI antigens, heparin sulfate disaccharide repeating unit, aminooxy glycosides, and α-GalNAc-Serine conjugate, which cannot be achieved in high yield and α-selectivity utilizing in-house prepared Ni(4-F-PhCN)4(OTf)2 catalyst. The newly-developed protocol eliminates the need for the synthesis of Ni(4-F-PhCN)4(OTf)2 and is scalable and reproducible. Furthermore, computational simulations in combination with 1H NMR studies analyzed the effects of various solvents on the intramolecular hydrogen bonding network of tumor-associated mucin Fmoc-protected GalNAc-threonine amino acid antigen derivative, verifying discrepancies found that were previously unreported.
Collapse
Affiliation(s)
- Eric T Sletten
- Department of Chemistry, University of Iowa, Iowa City, 52242, USA
| | | | - Hien M Nguyen
- Department of Chemistry, University of Iowa, Iowa City, 52242, USA.
| |
Collapse
|
38
|
Yasomanee JP, Visansirikul S, Pornsuriyasak P, Thompson M, Kolodziej SA, Demchenko AV. Synthesis of the Repeating Unit of Capsular Polysaccharide Staphylococcus aureus Type 5 To Study Chemical Activation and Conjugation of Native CP5. J Org Chem 2016; 81:5981-7. [DOI: 10.1021/acs.joc.6b00910] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jagodige P. Yasomanee
- Department
of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Satsawat Visansirikul
- Department
of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Papapida Pornsuriyasak
- Department
of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Melissa Thompson
- Analytical R&D, Biotherapeutics Pharmaceutical Sciences, Pfizer, Inc., 700 Chesterfield Parkway W, Chesterfield, Missouri 63017, United States
| | - Stephen A. Kolodziej
- Bioprocess R&D, Biotherapeutics Pharmaceutical Sciences, Pfizer, Inc., 700 Chesterfield Parkway W, Chesterfield, Missouri 63017, United States
| | - Alexei V. Demchenko
- Department
of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| |
Collapse
|
39
|
Entirely Carbohydrate-Based Vaccines: An Emerging Field for Specific and Selective Immune Responses. Vaccines (Basel) 2016; 4:vaccines4020019. [PMID: 27213458 PMCID: PMC4931636 DOI: 10.3390/vaccines4020019] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022] Open
Abstract
Carbohydrates are regarded as promising targets for vaccine development against infectious disease because cell surface glycans on many infectious agents are attributed to playing an important role in pathogenesis. In addition, oncogenic transformation of normal cells, in many cases, is associated with aberrant glycosylation of the cell surface glycan generating tumor associated carbohydrate antigens (TACAs). Technological advances in glycobiology have added a new dimension to immunotherapy when considering carbohydrates as key targets in developing safe and effective vaccines to combat cancer, bacterial infections, viral infections, etc. Many consider effective vaccines induce T-cell dependent immunity with satisfactory levels of immunological memory that preclude recurrence. Unfortunately, carbohydrates alone are poorly immunogenic as they do not bind strongly to the MHCII complex and thus fail to elicit T-cell immunity. To increase immunogenicity, carbohydrates have been conjugated to carrier proteins, which sometimes can impede carbohydrate specific immunity as peptide-based immune responses can negate antibodies directed at the targeted carbohydrate antigens. To overcome many challenges in using carbohydrate-based vaccine design and development approaches targeting cancer and other diseases, zwitterionic polysaccharides (ZPSs), isolated from the capsule of commensal anaerobic bacteria, will be discussed as promising carriers of carbohydrate antigens to achieve desired immunological responses.
Collapse
|
40
|
Kuipers A, Stapels DAC, Weerwind LT, Ko YP, Ruyken M, Lee JC, van Kessel KPM, Rooijakkers SHM. The Staphylococcus aureus polysaccharide capsule and Efb-dependent fibrinogen shield act in concert to protect against phagocytosis. MICROBIOLOGY-SGM 2016; 162:1185-1194. [PMID: 27112346 DOI: 10.1099/mic.0.000293] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Staphylococcus aureus has developed many mechanisms to escape from human immune responses. To resist phagocytic clearance, S. aureus expresses a polysaccharide capsule, which effectively masks the bacterial surface and surface-associated proteins, such as opsonins, from recognition by phagocytic cells. Additionally, secretion of the extracellular fibrinogen binding protein (Efb) potently blocks phagocytic uptake of the pathogen. Efb creates a fibrinogen shield surrounding the bacteria by simultaneously binding complement C3b and fibrinogen at the bacterial surface. By means of neutrophil phagocytosis assays with fluorescently labelled encapsulated serotype 5 (CP5) and serotype 8 (CP8) strains we compare the immune-modulating function of these shielding mechanisms. The data indicate that, in highly encapsulated S. aureus strains, the polysaccharide capsule is able to prevent phagocytic uptake at plasma concentrations <10 %, but loses its protective ability at higher concentrations of plasma. Interestingly, Efb shows a strong inhibitory effect on both capsule-negative and encapsulated strains at all tested plasma concentrations. Furthermore, the results suggest that both shielding mechanisms can exist simultaneously and collaborate to provide optimal protection against phagocytosis at a broad range of plasma concentrations. As opsonizing antibodies will be shielded from recognition by either mechanism, incorporating both capsular polysaccharides and Efb in future vaccines could be of great importance.
Collapse
Affiliation(s)
- Annemarie Kuipers
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Daphne A C Stapels
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Lleroy T Weerwind
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Ya-Ping Ko
- Center for Infectious and Inflammatory Disease, Institute of Bioscience and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Maartje Ruyken
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jean C Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kok P M van Kessel
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Suzan H M Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
41
|
Sanapala SR, Kulkarni SS. Expedient Route To Access Rare Deoxy Amino l-Sugar Building Blocks for the Assembly of Bacterial Glycoconjugates. J Am Chem Soc 2016; 138:4938-47. [DOI: 10.1021/jacs.6b01823] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Someswara Rao Sanapala
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Suvarn S. Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
42
|
Nigudkar SS, Demchenko AV. Stereocontrolled 1,2- cis glycosylation as the driving force of progress in synthetic carbohydrate chemistry. Chem Sci 2015; 6:2687-2704. [PMID: 26078847 PMCID: PMC4465199 DOI: 10.1039/c5sc00280j] [Citation(s) in RCA: 317] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/05/2015] [Indexed: 01/21/2023] Open
Abstract
Recent developments in stereoselective 1,2-cis glycosylation that have emerged during the past decade are surveyed herein. Recent developments in stereoselective 1,2-cis glycosylation that have emerged during the past decade are surveyed herein. For detailed coverage of the previous achievements in the field the reader is referred to our earlier reviews: A. V. Demchenko, Curr. Org. Chem. , 2003, 7 , 35–79 and Synlett , 2003, 1225–1240.
Collapse
Affiliation(s)
- Swati S. Nigudkar
- Department of Chemistry and Biochemistry , University of Missouri – St. Louis , One University Blvd , St. Louis , MO 63121 , USA .
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry , University of Missouri – St. Louis , One University Blvd , St. Louis , MO 63121 , USA .
| |
Collapse
|
43
|
Visansirikul S, Yasomanee JP, Pornsuriyasak P, Kamat MN, Podvalnyy NM, Gobble CP, Thompson M, Kolodziej SA, Demchenko AV. A Concise Synthesis of the Repeating Unit of Capsular Polysaccharide Staphylococcus aureus Type 8. Org Lett 2015; 17:2382-4. [DOI: 10.1021/acs.orglett.5b00899] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Satsawat Visansirikul
- Department
of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Jagodige P. Yasomanee
- Department
of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Papapida Pornsuriyasak
- Department
of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Medha N. Kamat
- Department
of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Nikita M. Podvalnyy
- Department
of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Chase P. Gobble
- Department
of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Melissa Thompson
- Analytical R&D, Biotherapeutics Pharmaceutical Sciences, Pfizer, Inc., 700 Chesterfield Parkway West, Chesterfield, Missouri 63017, United States
| | - Stephen A. Kolodziej
- Bioprocess R&D, Biotherapeutics Pharmaceutical Sciences, Pfizer, Inc., 700 Chesterfield Parkway West, Chesterfield, Missouri 63017, United States
| | - Alexei V. Demchenko
- Department
of Chemistry and Biochemistry, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| |
Collapse
|
44
|
Gagarinov IA, Fang T, Liu L, Srivastava AD, Boons GJ. Synthesis of Staphylococcus aureus Type 5 trisaccharide repeating unit: solving the problem of lactamization. Org Lett 2015; 17:928-31. [PMID: 25658811 PMCID: PMC4507426 DOI: 10.1021/acs.orglett.5b00031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The chemical synthesis of an orthogonally protected trisaccharide derived from the polysaccharide of Staphylococcus aureus Type 5, which is an attractive candidate for the development of immunotherapies, is described. The challenging α-fucosylation and β-mannosylation are addressed through the careful choice of protecting groups. Lactamization of a β-D-ManpNAcA moiety during deprotection was avoided by a late stage oxidation approach. Versatility of the trisaccharide was demonstrated by its transformation into a spacer-containing repeating unit suitable for immunological investigations.
Collapse
Affiliation(s)
- Ivan A. Gagarinov
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602, United States
| | - Tao Fang
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602, United States
| | - Lin Liu
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Apoorva D. Srivastava
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602, United States
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
45
|
Weidenmaier C, Lee JC. Structure and Function of Surface Polysaccharides of Staphylococcus aureus. Curr Top Microbiol Immunol 2015; 409:57-93. [PMID: 26728067 DOI: 10.1007/82_2015_5018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The major surface polysaccharides of Staphylococcus aureus include the capsular polysaccharide (CP), cell wall teichoic acid (WTA), and polysaccharide intercellular adhesin/poly-β(1-6)-N-acetylglucosamine (PIA/PNAG). These glycopolymers are important components of the staphylococcal cell envelope, but none of them is essential to S. aureus viability and growth in vitro. The overall biosynthetic pathways of CP, WTA, and PIA/PNAG have been elucidated, and the functions of most of the biosynthetic enzymes have been demonstrated. Because S. aureus CP and WTA (but not PIA/PNAG) utilize a common cell membrane lipid carrier (undecaprenyl-phosphate) that is shared by the peptidoglycan biosynthesis pathway, there is evidence that these processes are highly integrated and temporally regulated. Regulatory elements that control glycopolymer biosynthesis have been described, but the cross talk that orchestrates the biosynthetic pathways of these three polysaccharides remains largely elusive. CP, WTA, and PIA/PNAG each play distinct roles in S. aureus colonization and the pathogenesis of staphylococcal infection. However, they each promote bacterial evasion of the host immune defences, and WTA is being explored as a target for antimicrobial therapeutics. All the three glycopolymers are viable targets for immunotherapy, and each (conjugated to a carrier protein) is under evaluation for inclusion in a multivalent S. aureus vaccine. Future research findings that increase our understanding of these surface polysaccharides, how the bacterial cell regulates their expression, and their biological functions will likely reveal new approaches to controlling this important bacterial pathogen.
Collapse
Affiliation(s)
- Christopher Weidenmaier
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen and German Center for Infection Research, Tübingen, Germany
| | - Jean C Lee
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
46
|
LytR-CpsA-Psr enzymes as determinants of Bacillus anthracis secondary cell wall polysaccharide assembly. J Bacteriol 2014; 197:343-53. [PMID: 25384480 DOI: 10.1128/jb.02364-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, replicates as chains of vegetative cells by regulating the separation of septal peptidoglycan. Surface (S)-layer proteins and associated proteins (BSLs) function as chain length determinants and bind to the secondary cell wall polysaccharide (SCWP). In this study, we identified the B. anthracis lcpD mutant, which displays increased chain length and S-layer assembly defects due to diminished SCWP attachment to peptidoglycan. In contrast, the B. anthracis lcpB3 variant displayed reduced cell size and chain length, which could be attributed to increased deposition of BSLs. In other bacteria, LytR-CpsA-Psr (LCP) proteins attach wall teichoic acid (WTA) and polysaccharide capsule to peptidoglycan. B. anthracis does not synthesize these polymers, yet its genome encodes six LCP homologues, which, when expressed in S. aureus, promote WTA attachment. We propose a model whereby B. anthracis LCPs promote attachment of SCWP precursors to discrete locations in the peptidoglycan, enabling BSL assembly and regulated separation of septal peptidoglycan.
Collapse
|
47
|
Analysis of the Staphylococcus aureus capsule biosynthesis pathway in vitro: Characterization of the UDP-GlcNAc C6 dehydratases CapD and CapE and identification of enzyme inhibitors. Int J Med Microbiol 2014; 304:958-69. [DOI: 10.1016/j.ijmm.2014.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/30/2014] [Accepted: 06/01/2014] [Indexed: 12/25/2022] Open
|
48
|
Antibodies to Staphylococcus aureus serotype 8 capsular polysaccharide react with and protect against serotype 5 and 8 isolates. Infect Immun 2014; 82:5049-55. [PMID: 25245803 DOI: 10.1128/iai.02373-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Most Staphylococcus aureus isolates produce either a serotype 5 (CP5) or 8 (CP8) capsular polysaccharide, and the CP antigens are targets for vaccine development. Since CP5 and CP8 have similar trisaccharide repeating units, it is important to identify an epitope shared by both CP5 and CP8. To characterize cross-reactivity between CP5 and CP8, the immunogenicity of CP5 and CP8 conjugate vaccines in mice and rabbits was evaluated by serological assays. Immune sera were also tested for functional activity by in vitro opsonophagocytic-killing assays and a murine bacteremia model. Antibodies to the CP5-cross-reactive material 197 (CRM197) conjugate vaccine bound only to purified CP5. In contrast, antibodies to the CP8-CRM conjugate vaccine reacted with CP8 and (to a lesser extent) CP5. De-O-acetylation of CP5 increased its reactivity with CP8 antibodies. Moreover, CP8 antibodies bound to Pseudomonas aeruginosa O11 lipopolysaccharide, which has a trisaccharide repeating unit similar to that of the S. aureus CPs. CP8-CRM antibodies mediated in vitro opsonophagocytic killing of S. aureus expressing CP5 or CP8, whereas CP5-CRM antibodies were serotype specific. Passive immunization with antiserum to CP5-CRM or CP8-CRM protected mice against bacteremia induced by a serotype 5 S. aureus isolate, suggesting that CP8-CRM elicits antibodies cross-reactive to CP5. The identification of epitopes shared by CP5 and CP8 may inform the rational design of a vaccine to protect against infections caused by CP5- or CP8-producing strains of S. aureus.
Collapse
|
49
|
Chan YGY, Kim HK, Schneewind O, Missiakas D. The capsular polysaccharide of Staphylococcus aureus is attached to peptidoglycan by the LytR-CpsA-Psr (LCP) family of enzymes. J Biol Chem 2014; 289:15680-90. [PMID: 24753256 DOI: 10.1074/jbc.m114.567669] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Envelope biogenesis in bacteria involves synthesis of intermediates that are tethered to the lipid carrier undecaprenol-phosphate. LytR-CpsA-Psr (LCP) enzymes have been proposed to catalyze the transfer of undecaprenol-linked intermediates onto the C6-hydroxyl of MurNAc in peptidoglycan, thereby promoting attachment of wall teichoic acid (WTA) in bacilli and staphylococci and capsular polysaccharides (CPS) in streptococci. S. aureus encodes three lcp enzymes, and a variant lacking all three genes (Δlcp) releases WTA from the bacterial envelope and displays a growth defect. Here, we report that the type 5 capsular polysaccharide (CP5) of Staphylococcus aureus Newman is covalently attached to the glycan strands of peptidoglycan. Cell wall attachment of CP5 is abrogated in the Δlcp variant, a defect that is best complemented via expression of lcpC in trans. CP5 synthesis and peptidoglycan attachment are not impaired in the tagO mutant, suggesting that CP5 synthesis does not involve the GlcNAc-ManNAc linkage unit of WTA and may instead utilize another Wzy-type ligase to assemble undecaprenyl-phosphate intermediates. Thus, LCP enzymes of S. aureus are promiscuous enzymes that attach secondary cell wall polymers with discrete linkage units to peptidoglycan.
Collapse
Affiliation(s)
- Yvonne Gar-Yun Chan
- From the Department of Microbiology, University of Chicago, Chicago, Illinois 60637 and
| | - Hwan Keun Kim
- From the Department of Microbiology, University of Chicago, Chicago, Illinois 60637 and
| | - Olaf Schneewind
- From the Department of Microbiology, University of Chicago, Chicago, Illinois 60637 and the Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Argonne, Illinois 60439
| | - Dominique Missiakas
- From the Department of Microbiology, University of Chicago, Chicago, Illinois 60637 and the Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Argonne, Illinois 60439
| |
Collapse
|
50
|
Kothari S, Kim JA, Kothari N, Jones C, Choe WS, Carbis R. Purification of O-specific polysaccharide from lipopolysaccharide produced by Salmonella enterica serovar Paratyphi A. Vaccine 2014; 32:2457-62. [PMID: 24631090 DOI: 10.1016/j.vaccine.2014.02.090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/07/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
Abstract
The O specific polysaccharide (OSP) of the lipopolysaccharide (LPS) of Salmonella enterica serovar Paratyphi A is a protective antigen and the target for vaccine development. LPS is the major constituent of the outer membrane of S. Paratyphi A with the OSP exposed on the surface, in addition to the cell associated LPS a large amount of free LPS was present in the fermentation broth. A purification method was developed to take advantage of both sources of LPS and to maximize recovery of OSP. After fermentation the bacterial cells were concentrated and washed, the permeate containing the free LPS was processed separately from the cells. The free LPS was concentrated and washed on a 100kD ultrafiltration membrane to remove low molecular weight impurities. The LPS was then detoxified by separation of the lipid A from the OSP using acid hydrolysis at 100°C, the precipitated lipid A was removed by 0.2μm membrane filtration. Contaminants were then removed by acid precipitation in the presence of sodium deoxycholate. The OSP was concentrated and washed with 1M NaCl then water using a 10kD ultrafiltration membrane then sterile filtered through a 0.2μm membrane filter. The cells were treated by acid hydrolysis at 100°C, the remaining cells, cell debris and precipitate was removed by centrifugation. The filtrate was then treated in the same way as described above for the free LPS. The combined yield of purified OSP from free LPS plus the cells was greater than 880mg/L of culture broth. The method developed yields large amounts of OSP, is scalable and compatible with cGMP so would be readily transferrable to developing country vaccine manufacturers for low cost production of vaccine against S. Paratyphi A.
Collapse
Affiliation(s)
- Sudeep Kothari
- Vaccine Development Section, International Vaccine Institute, SNU Research Park, San 4-8, Nakseongdae-dong, Gwanak-gu, 151-919 Seoul, Republic of Korea; School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jeong-Ah Kim
- Vaccine Development Section, International Vaccine Institute, SNU Research Park, San 4-8, Nakseongdae-dong, Gwanak-gu, 151-919 Seoul, Republic of Korea
| | - Neha Kothari
- Vaccine Development Section, International Vaccine Institute, SNU Research Park, San 4-8, Nakseongdae-dong, Gwanak-gu, 151-919 Seoul, Republic of Korea
| | - Christopher Jones
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar EN6 3QG, Hertfordshire, UK
| | - Woo Seok Choe
- School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Rodney Carbis
- Vaccine Development Section, International Vaccine Institute, SNU Research Park, San 4-8, Nakseongdae-dong, Gwanak-gu, 151-919 Seoul, Republic of Korea.
| |
Collapse
|