1
|
Maiti S, Maji B, Yadav H. Progress on green crosslinking of polysaccharide hydrogels for drug delivery and tissue engineering applications. Carbohydr Polym 2024; 326:121584. [PMID: 38142088 DOI: 10.1016/j.carbpol.2023.121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/25/2023]
Abstract
Natural polysaccharides are being studied for their biocompatibility, biodegradability, low toxicity, and low cost in the fabrication of various hydrogel devices. However, due to their insufficient physicochemical and mechanical qualities, polysaccharide hydrogels alone are not acceptable for biological applications. Various synthetic crosslinkers have been tested to overcome the drawbacks of standalone polysaccharide hydrogels; however, the presence of toxic residual crosslinkers, the generation of toxic by-products following biodegradation, and the requirement of toxic organic solvents for processing pose challenges in achieving the desired non-toxic biomaterials. Natural crosslinkers such as citric acid, tannic acid, vanillin, gallic acid, ferulic acid, proanthocyanidins, phytic acid, squaric acid, and epigallocatechin have been used to generate polysaccharide-based hydrogels in recent years. Various polysaccharides, including cellulose, alginate, pectin, hyaluronic acid, and chitosan, have been hydrogelized and investigated for their potential in drug delivery and tissue engineering applications using natural crosslinkers. We attempted to provide an overview of the synthesis of polysaccharide-based hydrogel systems (films, complex nanoparticles, microspheres, and porous scaffolds) based on green crosslinkers, as well as a description of the mechanism of crosslinking and properties with a special emphasis on drug delivery, and tissue engineering applications.
Collapse
Affiliation(s)
- Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh-484887, India.
| | - Biswajit Maji
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Harsh Yadav
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh-484887, India
| |
Collapse
|
2
|
Chen X, Fazel Anvari-Yazdi A, Duan X, Zimmerling A, Gharraei R, Sharma N, Sweilem S, Ning L. Biomaterials / bioinks and extrusion bioprinting. Bioact Mater 2023; 28:511-536. [PMID: 37435177 PMCID: PMC10331419 DOI: 10.1016/j.bioactmat.2023.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/19/2023] [Accepted: 06/08/2023] [Indexed: 07/13/2023] Open
Abstract
Bioinks are formulations of biomaterials and living cells, sometimes with growth factors or other biomolecules, while extrusion bioprinting is an emerging technique to apply or deposit these bioinks or biomaterial solutions to create three-dimensional (3D) constructs with architectures and mechanical/biological properties that mimic those of native human tissue or organs. Printed constructs have found wide applications in tissue engineering for repairing or treating tissue/organ injuries, as well as in vitro tissue modelling for testing or validating newly developed therapeutics and vaccines prior to their use in humans. Successful printing of constructs and their subsequent applications rely on the properties of the formulated bioinks, including the rheological, mechanical, and biological properties, as well as the printing process. This article critically reviews the latest developments in bioinks and biomaterial solutions for extrusion bioprinting, focusing on bioink synthesis and characterization, as well as the influence of bioink properties on the printing process. Key issues and challenges are also discussed along with recommendations for future research.
Collapse
Affiliation(s)
- X.B. Chen
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Dr, S7K 5A9, Saskatoon, Canada
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - A. Fazel Anvari-Yazdi
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - X. Duan
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - A. Zimmerling
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - R. Gharraei
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - N.K. Sharma
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Dr, S7K 5A9, Saskatoon, Canada
| | - S. Sweilem
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| | - L. Ning
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| |
Collapse
|
3
|
Zając A, Sąsiadek W, Dymińska L, Ropuszyńska-Robak P, Hanuza J, Ptak M, Smółka S, Lisiecki R, Skrzypczak K. Chitosan and Its Carboxymethyl-Based Membranes Produced by Crosslinking with Magnesium Phytate. Molecules 2023; 28:5987. [PMID: 37630242 PMCID: PMC10459599 DOI: 10.3390/molecules28165987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Membranes produced by crosslinking chitosan with magnesium phytate were prepared using highly deacetylated chitosan and its N-carboxymethyl, O-carboxymethyl and N,O-carboxymethyl derivatives. The conditions of the membrane production were described. IR, Raman, electron absorption and emission spectra were measured and analyzed for all the substrates. It was found that O-carboxymethyl chitosan derivative is the most effectively crosslinked by magnesium phytate, and the films formed on this substrate exhibit good mechanical parameters of strength, resistance and stability. Strong O-H···O hydrogen bonds proved to be responsible for an effective crosslinking process. Newly discovered membrane types produced from chitosan and magnesium phytate were characterized as morphologically homogenous and uniform by scanning electron microscopy (SEM) and IR measurements. Due to their good covering properties, they do not have pores or channels and are proposed as packaging materials.
Collapse
Affiliation(s)
- Adam Zając
- Department of Bioorganic Chemistry, Faculty of Production Engineering, Wroclaw University of Economics and Business, 118-120 Komandorska Str., 53-345 Wrocław, Poland
| | - Wojciech Sąsiadek
- Department of Bioorganic Chemistry, Faculty of Production Engineering, Wroclaw University of Economics and Business, 118-120 Komandorska Str., 53-345 Wrocław, Poland
| | - Lucyna Dymińska
- Department of Bioorganic Chemistry, Faculty of Production Engineering, Wroclaw University of Economics and Business, 118-120 Komandorska Str., 53-345 Wrocław, Poland
| | - Paulina Ropuszyńska-Robak
- Department of Bioorganic Chemistry, Faculty of Production Engineering, Wroclaw University of Economics and Business, 118-120 Komandorska Str., 53-345 Wrocław, Poland
| | - Jerzy Hanuza
- Institute of Low Temperature and Structure Research, 2 Okólna Str., 50-422 Wrocław, Poland
| | - Maciej Ptak
- Institute of Low Temperature and Structure Research, 2 Okólna Str., 50-422 Wrocław, Poland
| | - Szymon Smółka
- Institute of Low Temperature and Structure Research, 2 Okólna Str., 50-422 Wrocław, Poland
| | - Radosław Lisiecki
- Institute of Low Temperature and Structure Research, 2 Okólna Str., 50-422 Wrocław, Poland
| | - Katarzyna Skrzypczak
- Faculty of Chemistry, Wrocław University of Science and Technology, 27 Wybrzeże Wyspiańskiego Str., 50-370 Wrocław, Poland
| |
Collapse
|
4
|
Bai X, Luan J, Song T, Sun H, Dai Y, Yu J, Tian H. Chitosan-Grafted Carbon Oxynitride Nanoparticles: Investigation of Photocatalytic Degradation and Antibacterial Activity. Polymers (Basel) 2023; 15:1688. [PMID: 37050302 PMCID: PMC10096967 DOI: 10.3390/polym15071688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
In this work, a series of chitosan (CS)-grafted carbon oxynitride (OCN) nanoparticles (denoted as CS-OCN) were successfully synthesized for the first time by thermal polycondensation and subsequent esterification. The structure and photocatalytic performance of CS-OCN nanoparticles were investigated. The XPS spectra of CS-OCN-3 showed the presence of amino bonds. The optimal photocatalytic degradation efficiency of the synthesized CS-OCN-3 could reach 94.3% within 390 min, while the photocurrent response intensity was about 150% more than that of pure OCN. The improved photocatalytic performance may be mainly attributed to the enhanced photogenerated carrier's separation and transportation and stronger visible light response after CS grafting. In addition, the inhibition diameter of CS-OCN-3 reached 23 mm against E. coli within 24 h under visible light irradiation, exhibiting excellent photocatalytic bactericidal ability. The results of bacterial inhibition were supported by absorbance measurements (OD600) studies of E. coli. In a word, this work provided a rational design of an efficient novel metal-free photocatalyst to remove bacterial contamination and accelerate the degradation of organic dyes.
Collapse
Affiliation(s)
- Xuemei Bai
- School of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Jingmin Luan
- School of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Tingting Song
- School of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Haifeng Sun
- School of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Yuhua Dai
- School of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Jianxiang Yu
- School of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Huafeng Tian
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
5
|
Chevallier P, Wiggers HJ, Copes F, Zorzi Bueno C, Mantovani D. Prolonged Antibacterial Activity in Tannic Acid-Iron Complexed Chitosan Films for Medical Device Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:484. [PMID: 36770445 PMCID: PMC9919247 DOI: 10.3390/nano13030484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Healthcare-associated infections (HAIs) represent a global burden, leading to significant mortality and generating financial costs. One important cause of HAIs is the microbiological contamination of implantable medical devices. In this context, a novel antimicrobial drug-eluting system, based on chitosan and loaded with gentamicin, a broad-spectrum antibiotic, was developed. The effects of the addition of tannic acid and different FeSO4 concentrations on the loaded antibiotic release were evaluated. The properties of the films were assessed in terms of thickness, swelling, mass loss and wettability. The films' surface composition was characterized by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. The antibiotic release in phosphate buffer saline was quantified by high-performance liquid chromatography-mass spectrometry, and the antibacterial activity was evaluated. Hemolysis and cytotoxicity were also assessed. The results showed that the addition of tannic acid and iron decreased the swelling degree and degradation due to strong interactions between the different components, thus impacting gentamicin release for up to 35 days. In conclusion, this study presents a novel strategy to produce low-cost and biocompatible antimicrobial drug-eluting systems with sustained and prolonged antibacterial activity over more than a month.
Collapse
Affiliation(s)
- Pascale Chevallier
- Laboratory for Biomaterials and Bioengineering (LBB-UL), Canada Research Chair Tier I, Department of Min-Met-Materials Engineering & CHU de Quebec Research Center, Division Regenerative Medicine, Laval University, Quebec City, QC G1V0A6, Canada
| | - Helton José Wiggers
- Laboratory for Biomaterials and Bioengineering (LBB-BPK), Associação de Ensino, Pesquisa e Extensão BIOPARK, Max Planck Avenue, 3797, Building Charles Darwin, Toledo 85919-899, PR, Brazil
| | - Francesco Copes
- Laboratory for Biomaterials and Bioengineering (LBB-UL), Canada Research Chair Tier I, Department of Min-Met-Materials Engineering & CHU de Quebec Research Center, Division Regenerative Medicine, Laval University, Quebec City, QC G1V0A6, Canada
| | - Cecilia Zorzi Bueno
- Laboratory for Biomaterials and Bioengineering (LBB-BPK), Associação de Ensino, Pesquisa e Extensão BIOPARK, Max Planck Avenue, 3797, Building Charles Darwin, Toledo 85919-899, PR, Brazil
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering (LBB-UL), Canada Research Chair Tier I, Department of Min-Met-Materials Engineering & CHU de Quebec Research Center, Division Regenerative Medicine, Laval University, Quebec City, QC G1V0A6, Canada
- Laboratory for Biomaterials and Bioengineering (LBB-BPK), Associação de Ensino, Pesquisa e Extensão BIOPARK, Max Planck Avenue, 3797, Building Charles Darwin, Toledo 85919-899, PR, Brazil
| |
Collapse
|
6
|
Muñana-González S, Veloso-Fernández A, Ruiz-Rubio L, Pérez-Álvarez L, Vilas-Vilela JL. Covalent Cross-Linking as a Strategy to Prepare Water-Dispersible Chitosan Nanogels. Polymers (Basel) 2023; 15:polym15020434. [PMID: 36679313 PMCID: PMC9863238 DOI: 10.3390/polym15020434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Due to the environmental problems generated by petroleum derivative polymers as mentioned in Agenda 2030, the use of natural polymers is increasing. Among them, cellulose and chitin are the most widespread biopolymers available in nature. Chitosan, obtained from chitin, is a really good candidate to develop nanocarriers due to its polyelectrolyte nature and ease of chemical modification. However, chitosan presents a solubility drawback in an aqueous medium at physiological pH (pH = 7.4), which restricts its applicability in biomedicine. In this work, nanogels were successfully synthesized from chitosan systems with different water solubilities (chitosan, oligosaccharide chitosan, and quaternized chitosan) using the reverse microemulsion method and polyethylene glycol diacid (PEGBCOOH) as a covalent cross-linking agent. Cross-linking with PEGBCOOH was analyzed by proton nuclear magnetic resonance (1H-NMR), which allowed for nanogels to be prepared whose size and swelling were comparatively studied by transmission electron microscopy (TEM) and dynamic light scattering (DLS) and zeta potential, respectively. The particle size of the swollen nanogels showed a different pH-responsive behavior that decreased for chitosan, increased for oligosaccharide chitosan, and remained constant for quaternized chitosan. Nevertheless, a drastic reduction was observed in all cases in the culture medium. Along the same line, the dispersibility of the synthesized nanogels in different media was comparatively evaluated, showing similar values for the nanogels prepared from soluble chitosans than for water insoluble chitosan as a consequence of the cross-linking with PEGBCOOH. After 6 months of storage of the dried nanogels, the water dispersibility values remained constant in all cases, demonstrating the stabilizing effect of the employed cross-linking agent and the potential use of synthesized nanogels as substrates for drug delivery.
Collapse
Affiliation(s)
- Sara Muñana-González
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain
| | - Antonio Veloso-Fernández
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain
| | - Leire Ruiz-Rubio
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Leyre Pérez-Álvarez
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Correspondence: ; Tel.: +34-946-01-2709
| | - José Luis Vilas-Vilela
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
7
|
Filippi M, Buchner T, Yasa O, Weirich S, Katzschmann RK. Microfluidic Tissue Engineering and Bio-Actuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108427. [PMID: 35194852 DOI: 10.1002/adma.202108427] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Bio-hybrid technologies aim to replicate the unique capabilities of biological systems that could surpass advanced artificial technologies. Soft bio-hybrid robots consist of synthetic and living materials and have the potential to self-assemble, regenerate, work autonomously, and interact safely with other species and the environment. Cells require a sufficient exchange of nutrients and gases, which is guaranteed by convection and diffusive transport through liquid media. The functional development and long-term survival of biological tissues in vitro can be improved by dynamic flow culture, but only microfluidic flow control can develop tissue with fine structuring and regulation at the microscale. Full control of tissue growth at the microscale will eventually lead to functional macroscale constructs, which are needed as the biological component of soft bio-hybrid technologies. This review summarizes recent progress in microfluidic techniques to engineer biological tissues, focusing on the use of muscle cells for robotic bio-actuation. Moreover, the instances in which bio-actuation technologies greatly benefit from fusion with microfluidics are highlighted, which include: the microfabrication of matrices, biomimicry of cell microenvironments, tissue maturation, perfusion, and vascularization.
Collapse
Affiliation(s)
- Miriam Filippi
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Thomas Buchner
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Oncay Yasa
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Stefan Weirich
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Robert K Katzschmann
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
8
|
Development and In Vitro Cytotoxicity of Citrus sinensis Oil-Loaded Chitosan Electrostatic Complexes. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Electrostatic complexes based on chitosan, lecithin, and sodium tripolyphosphate were produced and evaluated with respect to their encapsulation capacity and cytotoxicity. Physical chemical properties were determined by zeta potential values and size distributions. For encapsulation assays, the emulsification method was followed, and Citrus senensis peel oil was utilized as volatile compound model. Morphology of complexes with oil incorporated was observed by scanning electron microscopy. The cytotoxicity of complexes was related to cell viability of zebrafish hepatocytes. The complexes produced presented positive Zeta potential values and size distributions dependent on the mass ratio between compounds. Higher concentrations of sodium tripolyphosphate promote significant changes (p < 0.05) in zeta values, which did not occur at smaller concentrations of the crosslinking agent. These complexes were able to encapsulate Citrus sinensis peel oil, with encapsulation efficiency higher than 50%. Cytotoxicity profiles showed that in a range of concentrations (0.1–100 μg/mL) studied, they did not promote cellular damage in zebrafish liver cells, being potential materials for food and pharmaceutical applications.
Collapse
|
9
|
Punarvasu TP, Prashanth KVH. Self-assembled chitosan derived microparticles inhibit tumor angiogenesis and induce apoptosis in Ehrlich-ascites-tumor bearing mice. Carbohydr Polym 2022; 278:118941. [PMID: 34973759 DOI: 10.1016/j.carbpol.2021.118941] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 01/05/2023]
Abstract
Self-assembled microparticles from chitosan (SAMC) was prepared by depolymerization induced by potassium persulfate. Particle size distribution data showed averaged around 5 μm size and SEM indicated the sequential formation of "RBC" shaped particles. Soluble SAMC consists of 'deacetylated' residues as revealed by 13C NMR. SAMC showed antitumor efficacy in human breast cancer cell lines through mitigation in cell proliferation, colony formation and cell migration. Anti-tumor and anti-angiogenic properties of SAMC was found in vivo Ehrlich ascites tumor (EAT) bearing mice model resulting in tumor growth inhibition (EAT control, 17.4 ml; SAMC treated, 6.8 ml) and improved survival potency (15 days). Moreover, the decrease in ascites VEGF secretion (EAT control, 1354 ng; SAMC treated, 351 ng) accompanied with reduction in neovessel formation. Apoptosis induction by SAMC was confirmed by DNA fragmentation, caspase activities and fluorescence staining methods respectively. SAMC may be a safe candidate for anti-tumor dietary supplement production in food industry.
Collapse
Affiliation(s)
- T P Punarvasu
- Functional Biopolymer Lab, Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka State, India
| | - K V Harish Prashanth
- Functional Biopolymer Lab, Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka State, India.
| |
Collapse
|
10
|
Balachandran GB, David PW, Alexander AB, Athikesavan MM, Chellam PVP, Kumar KKS, Palanichamy V, Kabeel AE, Sathyamurthy R, Marquez FPG. A relative study on energy and exergy analysis between conventional single slope and novel stepped absorbable plate solar stills. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57602-57618. [PMID: 34089448 DOI: 10.1007/s11356-021-14640-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
The innovation of novel absorbing materials using composite materials and nanotechnology is of new trends for many researches. Here, the present study is concerning to enhance the distilled water productivity of a proposed solar still (PSS) using novel absorbing materials. The absorbing material is composed of chitosan (obtained from waste shrimp shells), ethylene diamine tetraacetic acid (EDTA), and Chrysopogon zizaniodes (Vetiver). The combination of these materials is coined as CHEDZ, and it acts as a super absorbent polymer that is coated on the stepped solar still. Evaporation rate increases due to this absorbent, which further increases the yield of the still. In this present study, the PSS is compared with the conventional solar still (CSS) for the use of assessing the yield of freshwater in the same atmospheric circumstance. The experimental setup was performed through the period from December to February 2020 in the Indian climatic condition. The freshwater productivity was improved to 3.05 L/day while the yield of the CSS is 2.47 L/day. The increase in efficiency obtained from a PSS is 39.71% more than the productivity attained from the CSS. The energy efficiency of the PSS is 18.34% and the exergy efficiency is 0.45%.
Collapse
Affiliation(s)
- Gurukarthik Babu Balachandran
- Department of Electrical and Electronics Engineering, Kamaraj College of Engineering and Technology, Madurai, Tamil Nadu, 625 701, India.
| | - Prince Winston David
- Department of Electrical and Electronics Engineering, Kamaraj College of Engineering and Technology, Madurai, Tamil Nadu, 625 701, India
| | - Anandha Balaji Alexander
- Department of Electrical and Electronics Engineering, Kamaraj College of Engineering and Technology, Madurai, Tamil Nadu, 625 701, India
| | - Muthu Manokar Athikesavan
- Department of Mechanical Engineering, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600 048, India
| | | | - Krishna Kumar Sasi Kumar
- Department of Electrical and Electronics Engineering, Kamaraj College of Engineering and Technology, Madurai, Tamil Nadu, 625 701, India
| | - Vinothkumar Palanichamy
- Department of Electrical and Electronics Engineering, Kamaraj College of Engineering and Technology, Madurai, Tamil Nadu, 625 701, India
| | - Abd Elnaby Kabeel
- Mechanical Power Engineering Department, Faculty of Engineering, Tanta University, Tanta, Egypt
| | - Ravishankar Sathyamurthy
- Department of Mechanical Engineering KPR Institute of Engineering and Technology, Arasur, Tamil Nadu, Coimbatore, India
| | | |
Collapse
|
11
|
Low cost highly efficient natural polymer-based radiation grafted adsorbent-I: Synthesis and characterization. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Han Lyn F, Tan CP, Zawawi RM, Nur Hanani ZA. Enhancing the mechanical and barrier properties of chitosan/graphene oxide composite films using trisodium citrate and sodium tripolyphosphate crosslinkers. J Appl Polym Sci 2021. [DOI: 10.1002/app.50618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Foong Han Lyn
- Department of Food Technology, Faculty of Food Science and Technology Universiti Putra Malaysia Seri Kembangan Malaysia
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology Universiti Putra Malaysia Seri Kembangan Malaysia
| | - Ruzniza Mohd Zawawi
- Department of Chemistry, Faculty of Science Universiti Putra Malaysia Seri Kembangan Malaysia
| | - Zainal Abedin Nur Hanani
- Department of Food Technology, Faculty of Food Science and Technology Universiti Putra Malaysia Seri Kembangan Malaysia
- Halal Products Research Institute Universiti Putra Malaysia Seri Kembangan Malaysia
| |
Collapse
|
13
|
Tannic-Acid-Cross-Linked and TiO 2-Nanoparticle-Reinforced Chitosan-Based Nanocomposite Film. Polymers (Basel) 2021; 13:polym13020228. [PMID: 33440770 PMCID: PMC7826602 DOI: 10.3390/polym13020228] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
A chitosan-based nanocomposite film with tannic acid (TA) as a cross-linker and titanium dioxide nanoparticles (TiO2) as a reinforcing agent was developed with a solution casting technique. TA and TiO2 are biocompatible with chitosan, and this paper studied the synergistic effect of the cross-linker and the reinforcing agent. The addition of TA enhanced the ultraviolet blocking and mechanical properties of the chitosan-based nanocomposite film. The reinforcement of TiO2 in chitosan/TA further improved the nanocomposite film's mechanical properties compared to the neat chitosan or chitosan/TA film. The thermal stability of the chitosan-based nanocomposite film was slightly enhanced, whereas the swelling ratio decreased. Interestingly, its water vapor barrier property was also significantly increased. The developed chitosan-based nanocomposite film showed potent antioxidant activity, and it is promising for active food packaging.
Collapse
|
14
|
Advances in chitosan-based hydrogels: Evolution from covalently crosslinked systems to ionotropically crosslinked superabsorbents. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104517] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Castro-Muñoz R, González-Valdez J, Ahmad MZ. High-performance pervaporation chitosan-based membranes: new insights and perspectives. REV CHEM ENG 2020. [DOI: 10.1515/revce-2019-0051] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
Today, the need of replacing synthetic polymers in the membrane preparation for diverse pervaporation (PV) applications has been recognized collectively and scientifically. Chitosan (CS), a bio-polymer, has been studied and proposed to achieve this goal especially in specific azeotropic water-organic, organic-water, and organic-organic separations, as well as in assisting specific processes (e.g. seawater desalination and chemical reactions). Different concepts of CS-based membranes have been developed, which include material blending and composite and mixed matrix membranes which have been tested for different separations. Hereby, the goal of this review is to provide a critical overview of the ongoing CS-based membrane developments, paying a special attention to the most relevant findings and results in the field. Furthermore, future trends of CS-based membranes in PV technology are presented, as well as concluding remarks and suggested strategies for the new scientist in the field.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas , 2000 San Antonio Buenavista , 50110 Toluca de Lerdo , Mexico
| | - José González-Valdez
- Tecnologico de Monterrey, School of Engineering and Science , Av. Eugenio Garza Sada 2501 , Monterrey, N.L. 64849 , Mexico
| | - M. Zamidi Ahmad
- Organic Materials Innovation Center (OMIC) , University of Manchester , Oxford Road , Manchester M13 9PL , UK
| |
Collapse
|
16
|
Abilova G, Abilkаrіm A, Irmukhametova G. Preparation and characterization of thermally crosslinked films based on chitosan and poly(2-ethyl-2-oxasoline). CHEMICAL BULLETIN OF KAZAKH NATIONAL UNIVERSITY 2019. [DOI: 10.15328/cb1085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Сrosslinked films based on chitosan (СHI) and poly(2-ethyl-2-oxazoline) (POZ) were prepared by thermal crosslinking. The optimal synthesis conditions and the composition of the film compositions were determined. The highest yield of the gel fraction was observed for CHI:POZ (80:20) films with a crosslinking time of 4 h at a temperature of 100°С. The main physicochemical properties of films based on pure CHI and CHI:POZ have been studied. The film swelling ability was reduced with the increase of poly(2-ethyl-2-oxazolin) content. The formation of crosslinks between N,N’-methylene-bis-acrylamide and functional amine groups of chitosan was proposed based on IR-spectroscopy data.
Collapse
|
17
|
Crosslinking Biopolymers for Advanced Drug Delivery and Tissue Engineering Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:213-231. [DOI: 10.1007/978-981-13-0950-2_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
|
19
|
Conzatti G, Chamary S, De Geyter N, Cavalie S, Morent R, Tourrette A. Surface functionalization of plasticized chitosan films through PNIPAM grafting via UV and plasma graft polymerization. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.06.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Mochalova AE, Smirnova LA. State of the Art in the Targeted Modification of Chitosan. POLYMER SCIENCE SERIES B 2018. [DOI: 10.1134/s1560090418020045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Shailender J, Ravi PR, Reddy Sirukuri M, Dalvi A, Keerthi Priya O. Chitosan nanoparticles for the oral delivery of tenofovir disoproxil fumarate: formulation optimization, characterization and ex vivo and in vivo evaluation for uptake mechanism in rats. Drug Dev Ind Pharm 2018; 44:1109-1119. [DOI: 10.1080/03639045.2018.1438459] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Joseph Shailender
- Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Jawaharnagar, India
| | - Punna Rao Ravi
- Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Jawaharnagar, India
| | | | - Avantika Dalvi
- Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Jawaharnagar, India
| | | |
Collapse
|
22
|
Giteru SG, Oey I, Ali MA. Feasibility of using pulsed electric fields to modify biomacromolecules: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.12.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Zhao C, Yan Q, Wang S, Dong P, Zhang L. Regenerable g-C3N4–chitosan beads with enhanced photocatalytic activity and stability. RSC Adv 2018; 8:27516-27524. [PMID: 35540016 PMCID: PMC9083882 DOI: 10.1039/c8ra04293d] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 07/25/2018] [Indexed: 01/19/2023] Open
Abstract
In this study, a series of regenerable graphitic carbon nitride–chitosan (g-C3N4–CS) beads were successfully synthesized via the blend crosslinking method. The prepared beads were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The structural characterization results indicate that the g-C3N4 granules were uniformly distributed on the surface of the chitosan matrix, and the structures of g-C3N4 and CS are maintained. In addition, the prepared g-C3N4–CS beads exhibited efficient MB degradation and stability. The optimum photocatalytic activity of our synthesized g-C3N4–CS beads was higher than that of the bulk g-C3N4 by a factor of 1.78 for MB. The improved photocatalytic activity was predominantly attributed to the synergistic effect between in situ adsorption and photocatalytic degradation. In addition, the reacted g-C3N4–CS beads can be regenerated by merely adding sodium hydroxide and hydrogen peroxide. Additionally, the regenerated g-C3N4–CS beads exhibit excellent stability after four runs, while the mass loss is less than 10%. This work might provide guidance for the design and fabrication of easily regenerated g-C3N4-based photocatalysts for environmental purification. In this study, a series of regenerable graphitic carbon nitride–chitosan (g-C3N4–CS) beads were successfully synthesized via the blend crosslinking method.![]()
Collapse
Affiliation(s)
- Chaocheng Zhao
- State Key Laboratory of Petroleum Pollution Control
- China University of Petroleum (East China)
- Qingdao
- PR China
| | - Qingyun Yan
- State Key Laboratory of Petroleum Pollution Control
- China University of Petroleum (East China)
- Qingdao
- PR China
| | - Shuaijun Wang
- State Key Laboratory of Petroleum Pollution Control
- China University of Petroleum (East China)
- Qingdao
- PR China
| | - Pei Dong
- State Key Laboratory of Petroleum Pollution Control
- China University of Petroleum (East China)
- Qingdao
- PR China
| | - Liang Zhang
- State Key Laboratory of Petroleum Pollution Control
- China University of Petroleum (East China)
- Qingdao
- PR China
| |
Collapse
|
24
|
Kil’deeva NR, Kasatkina MA, Mikhailov SN. Peculiarities of obtaining biocompatible films based on chitosan cross linked by genipin. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s1995421217020095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Zou Q, Li J, Niu L, Zuo Y, Li J, Li Y. Modified n-HA/PA66 scaffolds with chitosan coating for bone tissue engineering: cell stimulation and drug release. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1271-1285. [PMID: 28402219 DOI: 10.1080/09205063.2017.1318029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The dipping-drying procedure and cross-linking method were used to make drug-loaded chitosan (CS) coating on nano-hydroxyapatite/polyamide66 (nHA/PA66) composite porous scaffold, endowing the scaffold controlled drug release functionality. The prefabricated scaffold was immersed into an aqueous drug/CS solution in a vacuum condition and then crosslinked by vanillin. The structure, porosity, composition, compressive strength, swelling ratio, drug release and cytocompatibility of the pristine and coating scaffolds were investigated. After coating, the scaffold porosity and pore interconnection were slightly decreased. Cytocompatibility performance was observed through an in vitro experiment based on cell attachment and the MTT assay by MG63 cells which revealed positive cell viability and increasing proliferation over the 11-day period in vitro. The drug could effectively release from the coated scaffold in a controlled fashion and the release rate was sustained for a long period and highly dependent on coating swelling, suggesting the possibility of a controlled drug release. Our results demonstrate that the scaffold with drug-loaded crosslinked CS coating can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to be a promising high performance biomaterial in bone tissue engineering.
Collapse
Affiliation(s)
- Qin Zou
- a Research Center for Nano-Biomaterials, Analytical & Testing Center , Sichuan University , Chengdu , China
| | - Junfeng Li
- b Department of Materials Science & Engineering , Chengdu University of Technology , Chengdu , China
| | - Lulu Niu
- a Research Center for Nano-Biomaterials, Analytical & Testing Center , Sichuan University , Chengdu , China
| | - Yi Zuo
- a Research Center for Nano-Biomaterials, Analytical & Testing Center , Sichuan University , Chengdu , China
| | - Jidong Li
- a Research Center for Nano-Biomaterials, Analytical & Testing Center , Sichuan University , Chengdu , China
| | - Yubao Li
- a Research Center for Nano-Biomaterials, Analytical & Testing Center , Sichuan University , Chengdu , China
| |
Collapse
|
26
|
Chokradjaroen C, Rujiravanit R, Watthanaphanit A, Theeramunkong S, Saito N, Yamashita K, Arakawa R. Enhanced degradation of chitosan by applying plasma treatment in combination with oxidizing agents for potential use as an anticancer agent. Carbohydr Polym 2017; 167:1-11. [PMID: 28433142 DOI: 10.1016/j.carbpol.2017.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 11/28/2022]
Abstract
Solution plasma (SP) treatment in combination with oxidizing agents, i.e., hydrogen peroxide (H2O2), potassium persulfate (K2S2O8) and sodium nitrite (NaNO2) were adopted to chitosan degradation in order to achieve fast degradation rate, low chemicals used and high yield of low-molecular-weight chitosan and chitooligosaccharide (COS). Among the studied oxidizing agents, H2O2 was found to be the best choice in terms of appreciable molecular weight reduction without major change in chemical structure of the degraded products of chitosan. By the combination with SP treatment, dilute solution of H2O2 (4-60mM) was required for effective degradation of chitosan. The combination of SP treatment and dilute solution of H2O2 (60mM) resulted in the great reduction of molecular weight of chitosan and water-soluble chitosan was obtained as a major product. The resulting water-soluble chitosan was precipitated to obtain COS. An inhibitory effect against cervical cancer cell line (HeLa cells) of COS was also examined.
Collapse
Affiliation(s)
| | - Ratana Rujiravanit
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand; NU-PPC Plasma Chemical Technology Laboratory, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Anyarat Watthanaphanit
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | - Nagahiro Saito
- Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Kazuko Yamashita
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan
| | - Ryuichi Arakawa
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan
| |
Collapse
|
27
|
Kil’deeva NR, Kasatkina MA, Drozdova MG, Demina TS, Uspenskii SA, Mikhailov SN, Markvicheva EA. Biodegradablescaffolds based on chitosan: Preparation, properties, and use for the cultivation of animal cells. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816050094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Rafique A, Mahmood Zia K, Zuber M, Tabasum S, Rehman S. Chitosan functionalized poly(vinyl alcohol) for prospects biomedical and industrial applications: A review. Int J Biol Macromol 2016; 87:141-54. [DOI: 10.1016/j.ijbiomac.2016.02.035] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/03/2016] [Accepted: 02/11/2016] [Indexed: 01/27/2023]
|
29
|
Yang L, Jiang L, Hu D, Yan Q, Wang Z, Li S, Chen C, Xue Q. Swelling induced regeneration of TiO 2 -impregnated chitosan adsorbents under visible light. Carbohydr Polym 2016; 140:433-41. [DOI: 10.1016/j.carbpol.2015.12.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/28/2015] [Accepted: 12/30/2015] [Indexed: 11/30/2022]
|
30
|
Patra S, Bal DK, Ganguly S. Diffusion in and around alginate and chitosan films with embedded sub-millimeter voids. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 59:61-69. [PMID: 26652349 DOI: 10.1016/j.msec.2015.09.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 09/10/2015] [Accepted: 09/22/2015] [Indexed: 11/25/2022]
Abstract
Hydrogel scaffolds from biopolymers have potential use in the controlled release of drugs, and as 3-D structure for the formation of tissue matrix. This article describes the solute release behavior of alginate and chitosan films with embedded voids of sub-millimeter dimensions. Nitrogen gas was bubbled in a fluidic arrangement to generate bubbles, prior to the crosslinking. The crosslinked gel was dried in a vacuum oven, and subsequently, soaked in Vitamin B-12 solution. The dimensions of the voids immediately after the cross-linking of gel, and also after complete drying were obtained using a digital microscope and scanning electron microscope respectively. The porosity of the gel was measured gravimetrically. The release of Vitamin B-12 in PBS buffer on a shaker was studied. The release experiments were repeated at an elevated temperature of 37°C in the presence of lysozyme. The diffusion coefficient within the gel layer and the mass transfer coefficient at the interface with the bulk-liquid were estimated using a mathematical model. For comparison, the experiment was repeated with a film that does not have any embedded void. The enhancement in diffusion coefficient due to the presence of voids is discussed in this article.
Collapse
Affiliation(s)
- Subhajit Patra
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Dharmendra Kumar Bal
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Somenath Ganguly
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302, India.
| |
Collapse
|
31
|
Zou Q, Li J, Li Y. Preparation and characterization of vanillin-crosslinked chitosan therapeutic bioactive microcarriers. Int J Biol Macromol 2015; 79:736-47. [PMID: 26051343 DOI: 10.1016/j.ijbiomac.2015.05.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 05/14/2015] [Accepted: 05/21/2015] [Indexed: 02/05/2023]
Abstract
Chitosan microspheres with diameter of 14.3-48.5 μm were prepared by emulsion method and using natural vanillin as cross-linking agent. The surface morphology and microstructure of the microspheres were characterized by scanning electron microscopy, X-ray diffraction and Fourier-transform infrared spectroscopy, etc. The hollow microspheres showed a well-defined spherical shape with median diameter of 30.3 μm and possessed a uniform surface with micro-wrinkles, which is in favor of the drug release. Interpenetrating network cross-linking mechanism might result from the Schiff base reaction and the acetalization of hydroxyl and carbonyl between chitosan and vanillin. Berberine, as a model drug, was loaded in the microspheres and released in a sustainable manner. The drug loading ratio could change from 9.16% to 29.70% corresponding to the entrapment efficiency of 91.61% to 74.25%. In vitro cell culture study using MG63 cells and in vivo implantation clearly showed that the microspheres could provide favorable cell attachment and biocompatibility. The results confirm that the drug-loaded vanillin-crosslinked chitosan microspheres could be a worthy candidate either as carriers of drugs and cells, or as therapeutic matrix for bone repair and regeneration.
Collapse
Affiliation(s)
- Qin Zou
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Junfeng Li
- Department of Materials Science & Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
32
|
Jagadeesh A, Chaudhari GG, Bal DK, Patra S, Ganguly S. Enhancement of Solute Release From Chitosan Scaffold With Embedded Submillimeter Voids. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2014.909424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Ghasemzadeh H, Ghanaat F. Antimicrobial alginate/PVA silver nanocomposite hydrogel, synthesis and characterization. JOURNAL OF POLYMER RESEARCH 2014. [DOI: 10.1007/s10965-014-0355-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Illy N, Robitzer M, Auvergne R, Caillol S, David G, Boutevin B. Synthesis of water-soluble allyl-functionalized oligochitosan and its modification by thiol-ene addition in water. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26967] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nicolas Illy
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM2-ENSCM-UM1; Equipe Ingénierie et Architectures Macromoléculaires, ENSCM, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5 France
| | - Mike Robitzer
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM2-ENSCM-UM1; Equipe Matériaux Avancés pour la Catalyse et la Santé, ENSCM, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5 France
| | - Rémi Auvergne
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM2-ENSCM-UM1; Equipe Ingénierie et Architectures Macromoléculaires, ENSCM, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5 France
| | - Sylvain Caillol
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM2-ENSCM-UM1; Equipe Ingénierie et Architectures Macromoléculaires, ENSCM, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5 France
| | - Ghislain David
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM2-ENSCM-UM1; Equipe Ingénierie et Architectures Macromoléculaires, ENSCM, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5 France
| | - Bernard Boutevin
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM2-ENSCM-UM1; Equipe Ingénierie et Architectures Macromoléculaires, ENSCM, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5 France
| |
Collapse
|
35
|
Mirzaei B. E, Ramazani S. A. A, Shafiee M, Alemzadeh I, Ebrahimi H. Modeling and Comparison of Different Simulations for Release of Amoxicillin from Chitosan Hydrogels. POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING 2013; 52:1147-1153. [DOI: 10.1080/03602559.2013.798816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
|
36
|
Mirzaei B. E, Ramazani S. A. A, Shafiee M, Danaei M. Studies on Glutaraldehyde Crosslinked Chitosan Hydrogel Properties for Drug Delivery Systems. INT J POLYM MATER PO 2013. [DOI: 10.1080/00914037.2013.769165] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Spizzirri UG, Iemma F, Cirillo G, Altimari I, Puoci F, Picci N. Temperature-sensitive hydrogels by graft polymerization of chitosan and N-isopropylacrylamide for drug release. Pharm Dev Technol 2011; 18:1026-34. [PMID: 22200242 DOI: 10.3109/10837450.2011.644298] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Thermo-responsive polysaccharidic hydrogels were designed and synthesized by a free radical induced grafting procedure. Chitosan was chosen as biopolymer to impart biocompatibility and biodegradability to the macromolecular systems, while N-isopropylacrylamide (NIPAAm) was selected as co-monomer responsive for the thermo-sensitive properties. Ammonium persulfate was the initiator system and different polymeric networks have been synthesized by modulating the amount of NIPAAm in the polymerization feed. The resulting hydrogels were proposed as drug delivery devices and their performance was evaluated by using Diclofenac sodium salt as a model drug. Hydrogels were carefully characterized by FT-IR spectrophotometry, calorimetric analyses and swelling behavior in a temperature range of 15-45°C. Finally, to verify the suitability of these hydrogels as thermo-responsive devices, the drug release profiles were studied performing in vitro experiments around the swelling-shrinking transition temperatures of the macromolecular systems.
Collapse
Affiliation(s)
- Umile Gianfranco Spizzirri
- Department of Pharmaceutical Sciences, University of Calabria, Edificio Polifunzionale, Rende (CS), Italy
| | | | | | | | | | | |
Collapse
|
38
|
Mourya VK, Inamdar NN, Choudhari YM. Chitooligosaccharides: Synthesis, characterization and applications. POLYMER SCIENCE SERIES A 2011. [DOI: 10.1134/s0965545x11070066] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Kumirska J, Czerwicka M, Kaczyński Z, Bychowska A, Brzozowski K, Thöming J, Stepnowski P. Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar Drugs 2010; 8:1567-636. [PMID: 20559489 PMCID: PMC2885081 DOI: 10.3390/md8051567] [Citation(s) in RCA: 539] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 03/30/2010] [Accepted: 04/27/2010] [Indexed: 12/22/2022] Open
Abstract
Chitin, the second most important natural polymer in the world, and its N-deacetylated derivative chitosan, have been identified as versatile biopolymers for a broad range of applications in medicine, agriculture and the food industry. Two of the main reasons for this are firstly the unique chemical, physicochemical and biological properties of chitin and chitosan, and secondly the unlimited supply of raw materials for their production. These polymers exhibit widely differing physicochemical properties depending on the chitin source and the conditions of chitosan production. The presence of reactive functional groups as well as the polysaccharide nature of these biopolymers enables them to undergo diverse chemical modifications. A complete chemical and physicochemical characterization of chitin, chitosan and their derivatives is not possible without using spectroscopic techniques. This review focuses on the application of spectroscopic methods for the structural analysis of these compounds.
Collapse
Affiliation(s)
- Jolanta Kumirska
- Faculty of Chemistry, University of Gdansk, Sobieskiego 18/19, PL-80-952 Gdansk, Poland; E-Mails:
(M.C.);
(Z.K.);
(A.B.);
(K.B.);
(P.S.)
| | - Małgorzata Czerwicka
- Faculty of Chemistry, University of Gdansk, Sobieskiego 18/19, PL-80-952 Gdansk, Poland; E-Mails:
(M.C.);
(Z.K.);
(A.B.);
(K.B.);
(P.S.)
| | - Zbigniew Kaczyński
- Faculty of Chemistry, University of Gdansk, Sobieskiego 18/19, PL-80-952 Gdansk, Poland; E-Mails:
(M.C.);
(Z.K.);
(A.B.);
(K.B.);
(P.S.)
| | - Anna Bychowska
- Faculty of Chemistry, University of Gdansk, Sobieskiego 18/19, PL-80-952 Gdansk, Poland; E-Mails:
(M.C.);
(Z.K.);
(A.B.);
(K.B.);
(P.S.)
| | - Krzysztof Brzozowski
- Faculty of Chemistry, University of Gdansk, Sobieskiego 18/19, PL-80-952 Gdansk, Poland; E-Mails:
(M.C.);
(Z.K.);
(A.B.);
(K.B.);
(P.S.)
| | - Jorg Thöming
- UFT-Centre for Environmental Research and Sustainable Technology, University of Bremen, Leobener Straße UFT, D-28359 Bremen, Germany; E-Mail:
(J.T.)
| | - Piotr Stepnowski
- Faculty of Chemistry, University of Gdansk, Sobieskiego 18/19, PL-80-952 Gdansk, Poland; E-Mails:
(M.C.);
(Z.K.);
(A.B.);
(K.B.);
(P.S.)
| |
Collapse
|
40
|
Pourjavadi A, Ghasemzadeh H, Mojahedi F. Swelling properties of CMC-g-poly (AAm-co-AMPS) superabsorbent hydrogel. J Appl Polym Sci 2009. [DOI: 10.1002/app.30094] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Lipatova IM, Kornilova NA. Effect of hydroacoustic treatment on the rate of hydrolytic degradation of chitosan in acetic acid solutions. RUSS J APPL CHEM+ 2008. [DOI: 10.1134/s1070427208050170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Harish Prashanth K, Tharanathan R. Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends Food Sci Technol 2007. [DOI: 10.1016/j.tifs.2006.10.022] [Citation(s) in RCA: 532] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Hong PZ, Li SD, Ou CY, Li CP, Yang L, Zhang CH. Thermogravimetric analysis of chitosan. J Appl Polym Sci 2007. [DOI: 10.1002/app.25920] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Harish Prashanth KV, Dharmesh SM, Jagannatha Rao KS, Tharanathan RN. Free radical-induced chitosan depolymerized products protect calf thymus DNA from oxidative damage. Carbohydr Res 2006; 342:190-5. [PMID: 17150199 DOI: 10.1016/j.carres.2006.11.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 10/20/2006] [Accepted: 11/09/2006] [Indexed: 11/27/2022]
Abstract
Low molecular weight chitosan (LMWC) and chitooligosaccharides (COs), obtained by persulfate-induced depolymerization of chitosan showed scavenging of OH. and O2.- radicals and offered protection against calf thymus DNA damage. Over 85% inhibition of free radicals and DNA protection were observed. LMWC (0.05 micromol) showed a strong inhibitory activity compared to COs (3.6 micromol). Further, LMWC showed calf thymus DNA condensation reversibly giving stability, as evident from CD, TEM and melting curves (Tm). A fluorescence study suggests the binding of LMWC in the minor groove, forming H-bonds to the backbone phosphates without distorting the double helix structure.
Collapse
Affiliation(s)
- Keelara V Harish Prashanth
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute, Mysore 570 020, India
| | | | | | | |
Collapse
|
45
|
Ignatova M, Starbova K, Markova N, Manolova N, Rashkov I. Electrospun nano-fibre mats with antibacterial properties from quaternised chitosan and poly(vinyl alcohol). Carbohydr Res 2006; 341:2098-107. [PMID: 16750180 DOI: 10.1016/j.carres.2006.05.006] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 04/19/2006] [Accepted: 05/08/2006] [Indexed: 11/27/2022]
Abstract
Nano-fibres containing quaternised chitosan (QCh) have been successfully prepared by electrospinning of QCh solutions mixed with poly(vinyl alcohol) (PVA). The average fibre diameter is in the range of 60-200 nm. UV irradiation of the composite electrospun nano-fibrous mats containing triethylene glycol diacrylate as cross-linking agent has resulted in stabilising of the nano-fibres against disintegration in water or water vapours. Microbiological screening has demonstrated the antibacterial activity of the photo-cross-linked electrospun mats against Staphylococcus aureus and Escherichia coli. The obtained nano-fibrous electrospun mats are promising for wound-healing applications.
Collapse
Affiliation(s)
- Milena Ignatova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | | | | | | |
Collapse
|