1
|
Castaño JD, El Khoury IV, Goering J, Evans JE, Zhang J. Unlocking the distinctive enzymatic functions of the early plant biomass deconstructive genes in a brown rot fungus by cell-free protein expression. Appl Environ Microbiol 2024; 90:e0012224. [PMID: 38567954 PMCID: PMC11205865 DOI: 10.1128/aem.00122-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/10/2024] [Indexed: 05/22/2024] Open
Abstract
Saprotrophic fungi that cause brown rot of woody biomass evolved a distinctive mechanism that relies on reactive oxygen species (ROS) to kick-start lignocellulosic polymers' deconstruction. These ROS agents are generated at incipient decay stages through a series of redox relays that shuttle electrons from fungus's central metabolism to extracellular Fenton chemistry. A list of genes has been suggested encoding the enzyme catalysts of the redox processes involved in ROS's function. However, navigating the functions of the encoded enzymes has been challenging due to the lack of a rapid method for protein synthesis. Here, we employed cell-free expression system to synthesize four redox or degradative enzymes, which were identified, by transcriptomic data, as conserved players of the ROS oxidation phase across brown rot fungal species. All four enzymes were successfully expressed and showed activities that enable confident assignment of function, namely, benzoquinone reductase (BQR), ferric reductase, α-L-arabinofuranosidase (ABF), and heme-thiolate peroxidase (HTP). Detailed analysis of their catalytic features within the context of brown rot environments allowed us to interpret their roles during ROS-driven wood decomposition. Specifically, we validated the functions of BQR as the driver redox enzyme of Fenton cycles and reconstructed its interactions with the co-occurring HTP or laccase and ABF. Taken together, this research demonstrated that the cell-free expression platform is adequate for synthesizing functional fungal enzymes and provided an alternative route for the rapid characterization of fungal proteins, escalating our understanding of the distinctive biocatalyst system for plant biomass conversion.IMPORTANCEBrown rot fungi are efficient wood decomposers in nature, and their unique degradative systems harbor untapped catalysts pursued by the biorefinery and bioremediation industries. While the use of "omics" platforms has recently uncovered the key "oxidative-hydrolytic" mechanisms that allow these fungi to attack lignocellulose, individual protein characterization is lagging behind due to the lack of a robust method for rapid synthesis of crucial fungal enzymes. This work delves into the studies of biochemical functions of brown rot enzymes using a rapid, cell-free expression platform, which allowed the successful depictions of enzymes' catalytic features, their interactions with Fenton chemistry, and their roles played during the incipient stage of brown rot when fungus sets off the reactive oxygen species for oxidative degradation. We expect this research could illuminate cell-free protein expression system's use to fulfill the increasing need for functional studies of fungal enzymes, advancing the discoveries of novel biomass-converting catalysts.
Collapse
Affiliation(s)
- Jesus D. Castaño
- Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota, USA
| | - Irina V. El Khoury
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Joshua Goering
- Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota, USA
| | - James E. Evans
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Jiwei Zhang
- Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
2
|
Dadwal A, Sharma S, Satyanarayana T. Biochemical characteristics of Myceliophthora thermophila recombinant β-glucosidase (MtBgl3c) applicable in cellulose bioconversion. Prep Biochem Biotechnol 2023; 53:1187-1198. [PMID: 36799667 DOI: 10.1080/10826068.2023.2177869] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The GH3 β-glucosidase gene of Myceliophthora thermophila (MtBgl3c) has been cloned and heterologously expressed in E. coli for the first time. This study highlights the important characteristics of recombinant MtBgl3c (rMtBgl3c) which make it a promising candidate in industrial applications. Optimization of the production of rMtBgl3c led to 28,000 U L-1. On purification, it has a molecular mass of ∼100 kDa. It is a broad substrate specific thermostable enzyme that exhibits pH and temperature optima at 5.0 and 55 °C, respectively. The amino acid residues Asp287 and Glu514 act as nucleophile and catalytic acid/base, respectively in the enzyme catalysis. Its low Km value (1.28 mM) indicates a high substrate affinity as compared to those previously reported. The rMtBgl3c displays a synergistic action with the commercial enzyme cocktail in the saccharification of sugarcane bagasse suggesting its utility in the cellulose bioconversion. Tolerance to solvents, detergents as well as glucose make this enzyme applicable in wine, detergent, paper and textile industries too.
Collapse
Affiliation(s)
- Anica Dadwal
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Azad Hind Fauj Marg, Dwarka, New Delhi, India
| | - Shilpa Sharma
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Azad Hind Fauj Marg, Dwarka, New Delhi, India
| | - Tulasi Satyanarayana
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Azad Hind Fauj Marg, Dwarka, New Delhi, India
| |
Collapse
|
3
|
Lagunes-Reyes M, Sánchez JE, Andrade-Gallegos RH, Gutiérrez-Hernández RF, Camacho-Morales RL. Biodegradation of agave Comiteco bagasse by Pleurotus spp.: a source of cellulases useful in hydrolytic treatment to produce reducing sugars. 3 Biotech 2023; 13:356. [PMID: 37814639 PMCID: PMC10560175 DOI: 10.1007/s13205-023-03783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023] Open
Abstract
This study aimed to determine the production parameters of five strains of Pleurotus spp. during their cultivation on agave Comiteco bagasse, as well as the feasibility of using cellulolytic extracts to produce reducing sugars in the same bagasse. After cultivation, the basidiome production parameters varied between 41.2 and 65.7% (biological efficiency), 0.17 and 0.30 (yield), 0.60 and 0.90% (production rate), 16.4 and 41.1% (Bioconversion) and 9.4 and 21.3 g (mean mushroom weight). At day 15 of growth, P. djamor showed the highest β-glucosidase activity (43.95 ± 4.5 IU/g); on day 33. The same strain had the highest endoglucanase activity (21.12 ± 0.5 IU/ml). Both extracts were partially purified, and the kinetic parameters Vmax and Km were estimated (20.83 µmole/ml sec and 232.01 µmole/ml for β-glucosidase and 685.01 µmole/ml sec and 1,240.34 µmole/ml for endoglucanase). In the enzymatic hydrolysis assay, the highest concentration of reducing sugars (43.13 ± 1.09 g/L; 0.21 g/g bagasse) was obtained by a mixture of the two partially purified extracts acting synergistically after 48 h and with a pH adjustment. The results suggest that the use of agave Comiteco bagasse for cultivating edible mushrooms while obtaining cellulolytic extracts is an alternative treatment for waste reduction and valorization of agro-industrial by-products.
Collapse
Affiliation(s)
- Miriam Lagunes-Reyes
- El Colegio de la Frontera Sur, Carr. Antiguo Aeropuerto km 2.5, 30700 Tapachula, Chiapas Mexico
| | - José E Sánchez
- El Colegio de la Frontera Sur, Carr. Antiguo Aeropuerto km 2.5, 30700 Tapachula, Chiapas Mexico
| | | | - Rubén F. Gutiérrez-Hernández
- Departamento de Ingeniería Química y Bioquímica, Instituto Tecnológico de Tapachula, Tecnológico Nacional de México, 30700 Tapachula, Chiapas Mexico
| | - Reyna L. Camacho-Morales
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Álvaro Obregón s/n, Nueva, 21100 Mexicali, BC Mexico
| |
Collapse
|
4
|
Kannan P, Shafreen M M, Achudhan AB, Gupta A, Saleena LM. A review on applications of β-glucosidase in food, brewery, pharmaceutical and cosmetic industries. Carbohydr Res 2023; 530:108855. [PMID: 37263146 DOI: 10.1016/j.carres.2023.108855] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/19/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
β-glucosidases hydrolyse glycosidic bonds to release non-reducing terminal glucosyl residues from glycosides and oligosaccharides via catalytic mechanisms. It is very well known that the β-glucosidase enzyme is used in biorefineries for cellulose degradation, where β-glucosidases is the rate-limiting enzyme for the final glucose production from cellobiose. The β-glucosidase enzyme is used as a catalyst in other industrial sectors, including pharmaceuticals, breweries, dairy, and food processing. With the aid of β-glucosidase enzymes, cyanogenic glycosides and plant glycosides are transformed into sugar moiety and aglycones. These aglycone compounds are employed as aromatic compounds in the food processing and brewing industries. They are also used as medications and dietary supplements based on their pharmacological qualities. Applications of aglycones and the microbiological sources of β-glucosidase in aglycone production have been discussed in this review.
Collapse
Affiliation(s)
- Priya Kannan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Mohiraa Shafreen M
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Arunmozhi Bharathi Achudhan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Annapurna Gupta
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Lilly M Saleena
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.
| |
Collapse
|
5
|
Enzymatic Characterization of Purified β-Glucosidase from Non-Saccharomyces Yeasts and Application on Chardonnay Aging. Foods 2022; 11:foods11060852. [PMID: 35327274 PMCID: PMC8950599 DOI: 10.3390/foods11060852] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
The application of β-glucosidase from non-Saccharomyces yeasts to improve wine aroma has been widely explored. However, few enzymes are active under the severe conditions of wine aging (high ethanol concentration, low temperature, and low pH). Therefore, the application of β-glucosidase in wine aging needs further research. In this study, the β-glucosidases Mg-βgl and Hu-βgl extracted from Meyerozyma guilliermondii NM218 and Hanseniaspora uvarum BF345 were purified and used in young Chardonnay wines aged for 50 days. The enzyme activity of the two enzymes was measured. The effects of the two enzymes and a commercial β-glucosidase (An-βgl) on the volatile composition and sensory quality of the wine were also determined. The results showed that Mg-βgl and Hu-βgl had high specific activity of 1.95 U/mg and 2.11 U/mg, respectively, maintaining the activity of 70–80% at 20 °C, pH of 3.0–4.0, and 15% ethanol, corresponding to wine aging conditions. Analysis of volatiles with GC-MS showed a 65–70% increase in total terpenoids and new detection of C13-norisoprenoids when the wines were treated with the three β-glucosidases. In addition, wines treated with Mg-βgl and Hu-βgl had more hexanol, phenylethanol, ethyl octanoate, ethyl heptanoate, and ethyl caprate than wines treated without and with An-βgl. In sensory analysis, the judges showed a greater preference for Hu-βgl-treated wines, to which they attributed pleasant sweet, floral, honey, pomelo, and banana aromas. The results of this study not only offer a way to improve flavor complexity in wine but also provide a reference for the use of other edible sources of β-glucosidase in wine aging.
Collapse
|
6
|
Li XJ, Li Q, Zhan XX, Zhang YJ, Xiong GL, Zheng JY. Expression and characterization of a thermostable lipase from Thermomyces dupontii. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Zada NS, Belduz AO, Güler HI, Sahinkaya M, Khan SI, Saba M, Bektas KI, Kara Y, Kolaylı S, Badshah M, Shah AA, Khan S. Cloning, biochemical characterization and molecular docking of novel thermostable β-glucosidase BglA9 from Anoxybacillus ayderensis A9 and its application in de-glycosylation of Polydatin. Int J Biol Macromol 2021; 193:1898-1909. [PMID: 34793813 DOI: 10.1016/j.ijbiomac.2021.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/21/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022]
Abstract
This study reports a novel BglA9 gene of 1345 bp encoding β-glucosidase from Anoxybacillus ayderensis A9, which was amplified and expressed in E. coli BL21 (DE3): pLysS cells, purified with Ni-NTA column having molecular weight of 52.6 kDa and was used in the bioconversion of polydatin to resveratrol. The kinetic parameters values using pNPG as substrate were Km (0.28 mM), Vmax (43.8 μmol/min/mg), kcat (38.43 s-1) and kcat/Km (135.5 s-1 mM-1). The BglA9 was active in a broad pH range and had an activity half-life around 24 h at 50 °C. The de-glycosylation efficiency of BglA9 for polydatin was determined by estimating the amount of glucose released after enzymatic reaction by a dinitrosalicylic acid (DNS) assay. The kinetic parameters of BglA9 for polydatin were 5.5 mM, 20.84 μmol/min/mg, 18.28 s-1and 3.27 s-1 mM-1 for Km, Vmax, kcat, and kcat/Km values, respectively. The Ki value for glucose was determined to be 1.7 M. The residues Gln19, His120, Glu355, Glu409, Glu178, Asn222 may play a crucial role in the deglycosylation as revealed by the 3D structure of enzyme docked with polydatin.
Collapse
Affiliation(s)
- Numan Saleh Zada
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Ali Osman Belduz
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Halil Ibrahim Güler
- Department of Molecular Biology and Genetics, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Miray Sahinkaya
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Sanam Islam Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey.
| | - Marium Saba
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Kadriye Inan Bektas
- Department of Molecular Biology and Genetics, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Yakup Kara
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Sevgi Kolaylı
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Malik Badshah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Aamer Ali Shah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Samiullah Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
8
|
Castaño JD, Zhou M, Schilling J. Towards an Understanding of Oxidative Damage in an α-L-Arabinofuranosidase of Trichoderma reesei: a Molecular Dynamics Approach. Appl Biochem Biotechnol 2021; 193:3287-3300. [PMID: 34125378 DOI: 10.1007/s12010-021-03594-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Trichoderma reesei is a "workhorse" fungus that produces glycosyl hydrolases (e.g., cellulases) at high titers for use in industrial bioprocessing. In this study, we focused on α-L-arabinofuranosidase, an enzyme important for the treatment of lignocellulosic biomass, but susceptible to oxidative damage that can occur during industrial processing. The molecular details that render this enzyme inactive have not yet been identified. To approach this issue, we used proteomics to identify amino acid residues that were oxidized after a relevant oxidative treatment (Fenton reaction). These oxidative modifications were included in the 3D protein structures, and using molecular dynamics simulations, we then studied the behaviors of non-modified and oxidized enzymes. These simulations showed significant alterations of the conformational stability of the protein when oxidized, as evidenced by changes in root mean square deviation (RMSD) and principal component analyses (PCA) trajectories. Likewise, enzyme-ligand interactions such as hydrogen bonds were greatly reduced in quantity and quality in the oxidized protein. Finally, free energy landscape plots showed that there was a more rugged energy surface in the oxidized protein, implying a less favorable reaction pathway. These results reveal the basis for loss of function in this carbohydrate active enzyme (CAZY) in the commercially relevant fungus T. reesei.
Collapse
Affiliation(s)
- Jesus D Castaño
- Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN, 55108, USA
- Marine and Coastal Research Institute, INVEMAR, Santa Marta, Colombia, 470006
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jonathan Schilling
- Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA.
| |
Collapse
|
9
|
Abstract
Brown rot fungi release massive amounts of carbon from forest deadwood, particularly at high latitudes. These fungi degrade wood by generating small reactive oxygen species (ROS) to loosen lignocellulose, to then selectively remove carbohydrates. The ROS mechanism has long been considered the key adaptation defining brown rot wood decomposition, but recently, we found preliminary evidence that fungal glycoside hydrolases (GHs) implicated in early cell wall loosening might have been adapted to tolerate ROS stress and to synergize with ROS to loosen woody lignocellulose. In the current study, we found more specifically that side chain hemicellulases that help in the early deconstruction of the lignocellulosic complex are significantly more tolerant of ROS in the brown rot fungus Rhodonia placenta than in a white rot fungus (Trametes versicolor) and a soft rot fungus (Trichoderma reesei). Using proteomics to understand the extent of tolerance, we found that significant oxidation of secreted R. placenta proteins exposed to ROS was less than half of the oxidation observed for T. versicolor or T. reesei. The principal oxidative modifications observed in all cases were monooxidation and dioxidation/trioxidation (mainly in methionine and tryptophan residues), some of which were critical for enzyme activity. At the peptide level, we found that GHs in R. placenta were the least ROS affected among our tested fungi. These results confirm and describe underlying mechanisms of tolerance in early-secreted brown rot fungal hemicellulases. These enzymatic adaptations may have been as important as nonenzymatic ROS pathway adaptations in brown rot fungal evolution.
Collapse
|
10
|
Improvement of Fucosylated Oligosaccharides Synthesis by α-L-Fucosidase from Thermotoga maritima in Water-Organic Cosolvent Reaction System. Appl Biochem Biotechnol 2021; 193:3553-3569. [PMID: 34312785 DOI: 10.1007/s12010-021-03628-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/12/2021] [Indexed: 01/18/2023]
Abstract
The effects of water activity (aw), pH, and temperature on transglycosylation activity of α-L-fucosidase from Thermotoga maritima in the synthesis of fucosylated oligosaccharides were evaluated using different water-organic cosolvent reaction systems. The optimum conditions of transglycosylation reaction were the pH range between 7 and 10 and temperature 90-95 °C. The addition of organic cosolvent decreased α-L-fucosidase transglycosylation activity in the following order: acetone > dimethyl sulfoxide (DMSO) > acetonitrile (0.51 > 0.42 > 0.18 mM/h). However, the presence of DMSO and acetone enhanced enzyme-catalyzed transglycosylation over hydrolysis as demonstrated by the obtained transglycosylation/hydrolysis rate (rT/H) values of 1.21 and 1.43, respectively. The lowest rT/H was calculated for acetonitrile (0.59), though all cosolvents tested improved the transglycosylation rate in comparison to a control assay (0.39). Overall, the study allowed the production of fucosylated oligosaccharides in water-organic cosolvent reaction media using α-L-fucosidase from T. maritima as biocatalyst.
Collapse
|
11
|
Lu Z, He B, Chen J, Wu LJ, Chen XB, Ye SQ, Yang WH, Shao ZY, Jin EG, Wang SJ, Zhou HB, Cao JY. Optimisation of the Conversion and Extraction of Arctigenin From Fructus arctii Into Arctiin Using Fungi. Front Microbiol 2021; 12:663116. [PMID: 34135874 PMCID: PMC8200475 DOI: 10.3389/fmicb.2021.663116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Fructus arctii is commonly used in Chinese medicine, and arctiin and arctigenin are its main active ingredients. Arctiin has low bioavailability in the human body and needs to be converted into arctigenin by intestinal microbes before it can be absorbed into the blood. Arctigenin has antiviral, anti-inflammatory, and anti-tumour effects and its development has important value. In this study, we used external microbial fermentation with Aspergillus awamori and Trichoderma reesei to process and convert arctiin from F. arctii powder into arctigenin, hence increasing its bioavailability. We developed a fermentation process by optimising the carbon and nitrogen source/ratio, fermentation time, pH, liquid volume, inoculation volume, and substrate solid-liquid ratio. This allowed for an arctiin conversion rate of 99.84%, and the dissolution rate of the final product was 95.74%, with a loss rate as low as 4.26%. After the fermentation of F. arctii powder, the average yield of arctigenin is 19.51 mg/g. Crude fermented F. arctii extract was purified by silica gel column chromatography, and we observed an arctigenin purity of 99.33%. Our technique effectively converts arctiin and extracts arctigenin from F. arctii and provides a solid basis for further development and industrialisation.
Collapse
Affiliation(s)
- Zheng Lu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling, China
| | - Bin He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Jie Chen
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Li-Jun Wu
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Xia-Bing Chen
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Sheng-Qiang Ye
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Wen-Hai Yang
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Zhi-Yong Shao
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Er-Guang Jin
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Si-Jiu Wang
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Hong-Bo Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ji-Yue Cao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Barbosa FC, Martins M, Brenelli LB, Ferrari FA, Forte MBS, Rabelo SC, Franco TT, Goldbeck R. Screening of potential endoglucanases, hydrolysis conditions and different sugarcane straws pretreatments for cello-oligosaccharides production. BIORESOURCE TECHNOLOGY 2020; 316:123918. [PMID: 32763802 DOI: 10.1016/j.biortech.2020.123918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Cello-oligosaccharides (COS) are oligomers with 2 to 6 β-1,4-linked glucose units, with potential applications in the food/feed and bioenergy industrial sectors. In this study, the combination of five heterologous expressed endoglucanases varying the temperature and pH conditions were evaluated by design of experiments for COS production. Afterwards, the best combination was tested to produce COS from different pretreated sugarcane straws: ionic liquid, diluted acid, hydrothermal and steam-explosion. The results showed that steam explosion pretreated sugarcane straw treated with CtCel9R enzyme at 50 °C and pH 5.0 yielded 13.4 mg COS g biomass-1, 5-18-fold higher compared to the other pretreated straws. Under the conditions evaluated, the removal of hemicellulose and decrease in the cellulose crystallinity can benefits the enzymatic hydrolysis. This is the first study that combined the evaluation of different enzymes, conditions, and sugarcane straw pretreatments to optimize COS production in a single step without glucose formation.
Collapse
Affiliation(s)
- Fernando César Barbosa
- Bioprocess and Metabolic Engineering Laboratory (LEMEB), School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Manoela Martins
- Bioprocess and Metabolic Engineering Laboratory (LEMEB), School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Lívia Beatriz Brenelli
- Interdisciplinary Center of Energy Planning, University of Campinas, Campinas, São Paulo, Brazil; Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, Brazil
| | - Felipe Augusto Ferrari
- Bioprocess and Metabolic Engineering Laboratory (LEMEB), School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Marcus Bruno Soares Forte
- Bioprocess and Metabolic Engineering Laboratory (LEMEB), School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Sarita Cândida Rabelo
- Department of Bioprocess and Biotechnology, College of Agricultural Sciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Telma Teixeira Franco
- Interdisciplinary Center of Energy Planning, University of Campinas, Campinas, São Paulo, Brazil; Laboratory of Biochemical Engineering, Biorefining and Products of Renewable Origin (LEBBPOR), Faculty of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rosana Goldbeck
- Bioprocess and Metabolic Engineering Laboratory (LEMEB), School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
13
|
Production of β-glucosidase from okara fermentation using Kluyveromyces marxianus. Journal of Food Science and Technology 2020; 58:366-376. [PMID: 33505081 DOI: 10.1007/s13197-020-04550-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/16/2020] [Accepted: 05/26/2020] [Indexed: 01/22/2023]
Abstract
The effective utilization of okara (soybean residue) has become a considerable challenge in recent years. In this paper, the potential advantages of β-glucosidase production from okara fermented by Kluyveromyces marxianus were evaluated and the properties of the β-glucosidase were also characterized. The results showed that okara can significantly induce the production of β-glucosidase from K. marxianus. The β-glucosidase activity was up to 4.5 U/mg under optimized fermentation conditions. The optimal parameters were as follows: fermentation temperature 35 °C, cultivation time 98 h, inoculum concentration 10%, and 30 g/L of okara. After two steps of purification using ammonium sulfate precipitation and Sephadex G-75 column chromatography, the activity of β-glucosidase was 71.4 U/mg. The native enzyme was an approximately 66 kDa dimer consisting of two different subunits (22 and 44 kDa). The kinetic parameters of the K. marxianus β-glucosidase, using pNPG as substrate, were V max 8.34 μmol min-1 mg-1 and K m 7.42 mM. The β-glucosidase showed high thermostability and acid-alkali tolerance as well as low inhibition by DMSO (10-50%). In conclusion, this study supports the notion that okara fermentation by K. marxianus could be a useful process to produce β-glucosidase.
Collapse
|
14
|
Mariano D, Pantuza N, Santos LH, Rocha REO, de Lima LHF, Bleicher L, de Melo-Minardi RC. Glutantβase: a database for improving the rational design of glucose-tolerant β-glucosidases. BMC Mol Cell Biol 2020; 21:50. [PMID: 32611314 PMCID: PMC7329481 DOI: 10.1186/s12860-020-00293-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/22/2020] [Indexed: 11/22/2022] Open
Abstract
Β-glucosidases are key enzymes used in second-generation biofuel production. They act in the last step of the lignocellulose saccharification, converting cellobiose in glucose. However, most of the β-glucosidases are inhibited by high glucose concentrations, which turns it a limiting step for industrial production. Thus, β-glucosidases have been targeted by several studies aiming to understand the mechanism of glucose tolerance, pH and thermal resistance for constructing more efficient enzymes. In this paper, we present a database of β-glucosidase structures, called Glutantβase. Our database includes 3842 GH1 β-glucosidase sequences collected from UniProt. We modeled the sequences by comparison and predicted important features in the 3D-structure of each enzyme. Glutantβase provides information about catalytic and conserved amino acids, residues of the coevolution network, protein secondary structure, and residues located in the channel that guides to the active site. We also analyzed the impact of beneficial mutations reported in the literature, predicted in analogous positions, for similar enzymes. We suggested these mutations based on six previously described mutants that showed high catalytic activity, glucose tolerance, or thermostability (A404V, E96K, H184F, H228T, L441F, and V174C). Then, we used molecular docking to verify the impact of the suggested mutations in the affinity of protein and ligands (substrate and product). Our results suggest that only mutations based on the H228T mutant can reduce the affinity for glucose (product) and increase affinity for cellobiose (substrate), which indicates an increment in the resistance to product inhibition and agrees with computational and experimental results previously reported in the literature. More resistant β-glucosidases are essential to saccharification in industrial applications. However, thermostable and glucose-tolerant β-glucosidases are rare, and their glucose tolerance mechanisms appear to be related to multiple and complex factors. We gather here, a set of information, and made predictions aiming to provide a tool for supporting the rational design of more efficient β-glucosidases. We hope that Glutantβase can help improve second-generation biofuel production. Glutantβase is available at http://bioinfo.dcc.ufmg.br/glutantbase .
Collapse
Affiliation(s)
- Diego Mariano
- Laboratory of Bioinformatics and Systems. Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| | - Naiara Pantuza
- Laboratory of Bioinformatics and Systems. Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Lucianna H Santos
- Laboratory of Bioinformatics and Systems. Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Rafael E O Rocha
- Laboratory of Bioinformatics and Systems. Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Leonardo H F de Lima
- Laboratory of Molecular Modelling and Bioinformatics (LAMMB), Department of Physical and Biological Sciences, Universidade Federal de São João Del-Rei, Campus Sete Lagoas, Sete Lagoas, 35701-970, Brazil
| | - Lucas Bleicher
- Protein Computational Biology Laboratory, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Raquel Cardoso de Melo-Minardi
- Laboratory of Bioinformatics and Systems. Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| |
Collapse
|
15
|
Abstract
The development of biorefinery processes to platform chemicals for most lignocellulosic substrates, results in side processes to intermediates such as oligosaccharides. Agrofood wastes are most amenable to produce such intermediates, in particular, cellooligo-saccharides (COS), pectooligosaccharides (POS), xylooligosaccharides (XOS) and other less abundant oligomers containing mannose, arabinose, galactose and several sugar acids. These compounds show a remarkable bioactivity as prebiotics, elicitors in plants, food complements, healthy coadyuvants in certain therapies and more. They are medium to high added-value compounds with an increasing impact in the pharmaceutical, nutraceutical, cosmetic and food industries. This review is focused on the main production processes: autohydrolysis, acid and basic catalysis and enzymatic saccharification. Autohydrolysis of food residues at 160–190 °C leads to oligomer yields in the 0.06–0.3 g/g dry solid range, while acid hydrolysis of pectin (80–120 °C) or cellulose (45–180 °C) yields up to 0.7 g/g dry polymer. Enzymatic hydrolysis at 40–50 °C of pure polysaccharides results in 0.06–0.35 g/g dry solid (DS), with values in the range 0.08–0.2 g/g DS for original food residues.
Collapse
|
16
|
Zhong C, Nidetzky B. Three-Enzyme Phosphorylase Cascade for Integrated Production of Short-Chain Cellodextrins. Biotechnol J 2019; 15:e1900349. [PMID: 31677345 DOI: 10.1002/biot.201900349] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/26/2019] [Indexed: 01/28/2023]
Abstract
Cellodextrins are linear β-1,4-gluco-oligosaccharides that are soluble in water up to a degree of polymerization (DP) of ≈6. Soluble cellodextrins have promising applications as nutritional ingredients. A DP-controlled, bottom-up synthesis from expedient substrates is desired for their bulk production. Here, a three-enzyme glycoside phosphorylase cascade is developed for the conversion of sucrose and glucose into short-chain (soluble) cellodextrins (DP range 3-6). The cascade reaction involves iterative β-1,4-glucosylation of glucose from α-glucose 1-phosphate (αGlc1-P) donor that is formed in situ from sucrose and phosphate. With final concentration and yield of the soluble cellodextrins set as targets for biocatalytic synthesis, three major factors of reaction efficiency are identified and partly optimized: the ratio of enzyme activity, the ratio of sucrose and glucose, and the phosphate concentration used. The efficient use of the phosphate/αGlc1-P shuttle for cellodextrin production is demonstrated and the soluble product at 40 g L-1 is obtained under near-complete utilization of the donor substrate offered (88 mol% from 200 mm sucrose). The productivity is 16 g (L h)-1 . Through a simple two-step route, the soluble cellodextrins are recovered from the reaction mixture in ≥95% purity and ≈92% yield. Overall, this study provides the basis for their integrated production.
Collapse
Affiliation(s)
- Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, NAWI Graz, 8010, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, NAWI Graz, 8010, Graz, Austria.,Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria
| |
Collapse
|
17
|
Srivastava N, Rathour R, Jha S, Pandey K, Srivastava M, Thakur VK, Sengar RS, Gupta VK, Mazumder PB, Khan AF, Mishra PK. Microbial Beta Glucosidase Enzymes: Recent Advances in Biomass Conversation for Biofuels Application. Biomolecules 2019; 9:E220. [PMID: 31174354 PMCID: PMC6627771 DOI: 10.3390/biom9060220] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 01/10/2023] Open
Abstract
The biomass to biofuels production process is green, sustainable, and an advanced technique to resolve the current environmental issues generated from fossil fuels. The production of biofuels from biomass is an enzyme mediated process, wherein β-glucosidase (BGL) enzymes play a key role in biomass hydrolysis by producing monomeric sugars from cellulose-based oligosaccharides. However, the production and availability of these enzymes realize their major role to increase the overall production cost of biomass to biofuels production technology. Therefore, the present review is focused on evaluating the production and efficiency of β-glucosidase enzymes in the bioconversion of cellulosic biomass for biofuel production at an industrial scale, providing its mechanism and classification. The application of BGL enzymes in the biomass conversion process has been discussed along with the recent developments and existing issues. Moreover, the production and development of microbial BGL enzymes have been explained in detail, along with the recent advancements made in the field. Finally, current hurdles and future suggestions have been provided for the future developments. This review is likely to set a benchmark in the area of cost effective BGL enzyme production, specifically in the biorefinery area.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
| | - Rishabh Rathour
- Department of Bioengineering, Integral University, Lucknow 226026, India.
| | - Sonam Jha
- Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| | - Karan Pandey
- Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
| | - Manish Srivastava
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India.
| | - Vijay Kumar Thakur
- Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK.
| | - Rakesh Singh Sengar
- Department of Agriculture Biotechnology, College of Agriculture, Sardar Vallabhbhai Patel, University of Agriculture and Technology, Meerut 250110, U.P., India.
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia.
| | | | - Ahamad Faiz Khan
- Department of Bioengineering, Integral University, Lucknow 226026, India.
| | - Pradeep Kumar Mishra
- Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
| |
Collapse
|
18
|
Takahashi S, Osugi K, Shimekake Y, Shinbo A, Abe K, Kera Y. Characterization and improvement of substrate-binding affinity of D-aspartate oxidase of the thermophilic fungus Thermomyces dupontii. Appl Microbiol Biotechnol 2019; 103:4053-4064. [PMID: 30937498 DOI: 10.1007/s00253-019-09787-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/05/2019] [Accepted: 03/19/2019] [Indexed: 12/23/2022]
Abstract
D-Aspartate oxidase (DDO) is a valuable enzyme that can be utilized in the determination of acidic D-amino acids and the optical resolution of a racemic mixture of acidic amino acids, which require its higher stability, higher catalytic activity, and higher substrate-binding affinity. In the present study, we identified DDO gene (TdDDO) of a thermophilic fungus, Thermomyces dupontii, and characterized the recombinant enzyme expressed in Escherichia coli. In addition, we generated a variant that has a higher substrate-binding affinity. The recombinant TdDDO expressed in E. coli exhibited oxidase activity toward acidic D-amino acids and a neutral D-amino acid, D-Gln, with the highest activity toward D-Glu. The Km and kcat values for D-Glu were 2.16 mM and 217 s-1, respectively. The enzyme had an optimum pH and temperature 8.0 and 60 °C, respectively, and was stable between pH 5.0 and 10.0, with a T50 of ca. 51 °C, which was much higher than that in DDOs from other origins. Enzyme stability decreased following a decrease in protein concentration, and externally added FAD could not repress the destabilization. The mutation of Phe248, potentially located in the active site of TdDDO, to Tyr residue, conserved in DDOs and D-amino acid oxidases, markedly increased substrate-binding affinity. The results showed the great potential of TdDDO and the variant for practical applications.
Collapse
Affiliation(s)
- Shouji Takahashi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan.
| | - Kohei Osugi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Yuya Shimekake
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Akira Shinbo
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Katsumasa Abe
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Yoshio Kera
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| |
Collapse
|
19
|
Wang YC, Zhao N, Ma JW, Liu J, Yan QJ, Jiang ZQ. High-level expression of a novel α-amylase from Thermomyces dupontii in Pichia pastoris and its application in maltose syrup production. Int J Biol Macromol 2019; 127:683-692. [DOI: 10.1016/j.ijbiomac.2019.01.162] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
|
20
|
Castaño JD, Zhang J, Anderson CE, Schilling JS. Oxidative Damage Control during Decay of Wood by Brown Rot Fungus Using Oxygen Radicals. Appl Environ Microbiol 2018; 84:e01937-18. [PMID: 30194102 PMCID: PMC6210117 DOI: 10.1128/aem.01937-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/04/2018] [Indexed: 02/07/2023] Open
Abstract
Brown rot wood-degrading fungi deploy reactive oxygen species (ROS) to loosen plant cell walls and enable selective polysaccharide extraction. These ROS, including Fenton-generated hydroxyl radicals (HO˙), react with little specificity and risk damaging hyphae and secreted enzymes. Recently, it was shown that brown rot fungi reduce this risk, in part, by differentially expressing genes involved in HO˙ generation ahead of those coding carbohydrate-active enzymes (CAZYs). However, there are notable exceptions to this pattern, and we hypothesized that brown rot fungi would require additional extracellular mechanisms to limit ROS damage. To assess this, we grew Postia placenta directionally on wood wafers to spatially segregate early from later decay stages. Extracellular HO˙ production (avoidance) and quenching (suppression) capacities among the stages were analyzed, along with the ability of secreted CAZYs to maintain activity postoxidation (tolerance). First, we found that H2O2 and Fe2+ concentrations in the extracellular environment were conducive to HO˙ production in early (H2O2:Fe2+ ratio 2:1) but not later (ratio 1:131) stages of decay. Second, we found that ABTS radical cation quenching (antioxidant capacity) was higher in later decay stages, coincident with higher fungal phenolic concentrations. Third, by surveying enzyme activities before/after exposure to Fenton-generated HO˙, we found that CAZYs secreted early, amid HO˙, were more tolerant of oxidative stress than those expressed later and were more tolerant than homologs in the model CAZY producer Trichoderma reesei Collectively, this indicates that P. placenta uses avoidance, suppression, and tolerance mechanisms, extracellularly, to complement intracellular differential expression, enabling this brown rot fungus to use ROS to degrade wood.IMPORTANCE Wood is one of the largest pools of carbon on Earth, and its decomposition is dominated in most systems by fungi. Wood-degrading fungi specialize in extracting sugars bound within lignin, either by removing lignin first (white rot) or by using Fenton-generated reactive oxygen species (ROS) to "loosen" wood cell walls, enabling selective sugar extraction (brown rot). Although white rot lignin-degrading pathways are well characterized, there are many uncertainties in brown rot fungal mechanisms. Our study addressed a key uncertainty in how brown rot fungi deploy ROS without damaging themselves or the enzymes they secrete. In addition to revealing differentially expressed genes to promote ROS generation only in early decay, our study revealed three spatial control mechanisms to avoid/tolerate ROS: (i) constraining Fenton reactant concentrations (H2O2, Fe2+), (ii) quenching ROS via antioxidants, and (iii) secreting ROS-tolerant enzymes. These results not only offer insight into natural decomposition pathways but also generate targets for biotechnological development.
Collapse
Affiliation(s)
- Jesus D Castaño
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota, USA
| | - Jiwei Zhang
- Department of Plant & Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| | - Claire E Anderson
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota, USA
| | - Jonathan S Schilling
- Department of Plant & Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
21
|
Salgado JCS, Meleiro LP, Carli S, Ward RJ. Glucose tolerant and glucose stimulated β-glucosidases - A review. BIORESOURCE TECHNOLOGY 2018; 267:704-713. [PMID: 30093225 DOI: 10.1016/j.biortech.2018.07.137] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 05/22/2023]
Abstract
The β-glucosidases (β-D-glucoside glucohydrolase, EC 3.2.1.21) hydrolyze glycosidic bonds of alkyl-, amino-, or aryl-β-D-glucosides, cyanogenic glucosides, disaccharides and short oligosaccharides and can also catalyze the synthesis of glycosyl-bonds between different molecules via transglycosylation. Due to their ubiquitous phylogenetic distribution, substrate diversity and ability to both hydrolyze and synthesize glycosidic bonds, the catalysis and regulation of β-glucosidases have been extensively studied. Many β-glucosidases are inhibited by the reaction product glucose, and reduced catalytic activity may limit the biotechnological and industrial applications of these enzymes and this has stimulated the search for β-glucosidases that maintain their activity at high glucose concentrations. Studies of many glucose tolerant enzymes have been reported and due to the ongoing interest in these enzymes, here it has been reviewed this accumulated body of knowledge which provides valuable insights as to the kinetics, structure, regulation and evolution of glucose tolerant and glucose stimulated β-glucosidases.
Collapse
Affiliation(s)
- José Carlos Santos Salgado
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luana Parras Meleiro
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Sibeli Carli
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Richard John Ward
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
22
|
Li X, Xia W, Bai Y, Ma R, Yang H, Luo H, Shi P. A Novel Thermostable GH3 β-Glucosidase from Talaromyce leycettanus with Broad Substrate Specificity and Significant Soybean Isoflavone Glycosides-Hydrolyzing Capability. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4794690. [PMID: 30426008 PMCID: PMC6218797 DOI: 10.1155/2018/4794690] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/17/2018] [Indexed: 12/19/2022]
Abstract
A novel β-glucosidase gene (Bgl3B) of glycoside hydrolase (GH) family 3 was cloned from the thermophilic fungus Talaromyce leycettanus JM12802 and successfully expressed in Pichia pastoris. The deduced Bgl3B contains 860 amino acid residues with a calculated molecular mass of 91.2 kDa. The purified recombinant Bgl3B exhibited maximum activities at pH 4.5 and 65°C and remained stable at temperatures up to 60°C and pH 3.0-9.0, respectively. The enzyme exhibited broad substrate specificities, showing β-glucosidase, glucanase, cellobiase, xylanase, and isoflavone glycoside hydrolase activities, and its activities were stimulated by short-chain alcohols. The catalytic efficiencies of Bgl3B were 693 and 104/mM/s towards pNPG and cellobiose, respectively. Moreover, Bgl3B was highly effective in converting isoflavone glycosides to aglycones at 37°C within 10 min, with the hydrolysis rates of 95.1%, 76.0%, and 75.3% for daidzin, genistin, and glycitin, respectively. These superior properties make Bgl3B potential for applications in the food, animal feed, and biofuel industries.
Collapse
Affiliation(s)
- Xinxin Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Xia
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yingguo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rui Ma
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hong Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pengjun Shi
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
23
|
Oelmüller R. Sensing environmental and developmental signals via cellooligomers. JOURNAL OF PLANT PHYSIOLOGY 2018; 229:1-6. [PMID: 30005268 DOI: 10.1016/j.jplph.2018.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Roots respond to a cocktail of chemicals from microbes in the rhizosphere. Infochemicals in nmol concentrations activate receptor-mediated signal pathways, which reprogram the plant responses to environmental changes. The microbial signals have to pass the cell wall to activate pattern recognition receptors at the surface of the plant plasma membrane. The structure of the cell wall is not only a barrier for the signaling molecules, but also changes permanently during growth and development, as well as in response to microbial attacks or abiotic stress. Recently, cellooligomers (COMs) were identified as novel chemical mediators in Arabidopsis thaliana, which inform the cell about the alterations in and around the cell wall. They can be of microbial and plant origin and represent novel invasion patterns (Cook et al., 2015). COMs initiate Ca2+-dependent signaling events that reprogram the cell and adjust the expression and metabolite profiles as well as innate immunity in response to changes in their rhizosphere environment and the state of the cell wall. COMs operate synergistically with other signals or their recognition machineries and activates local and systemic responses in the entire plant. They also adjust the performance of the areal parts of the plant to signals perceived by the roots. Here, I summarize our current knowledge about COMs and propose strategies for future investigations.
Collapse
Affiliation(s)
- Ralf Oelmüller
- Matthias-Schleiden-Institute, Plant Physiology, Friedrich-Schiller-University Jena, Dornburgerstr. 159, D-07743, Jena, Germany.
| |
Collapse
|
24
|
Fusco FA, Fiorentino G, Pedone E, Contursi P, Bartolucci S, Limauro D. Biochemical characterization of a novel thermostable β-glucosidase from Dictyoglomus turgidum. Int J Biol Macromol 2018. [DOI: 10.1016/j.ijbiomac.2018.03.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
25
|
Yadav SK. Technological advances and applications of hydrolytic enzymes for valorization of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2017; 245:1727-1739. [PMID: 28552567 DOI: 10.1016/j.biortech.2017.05.066] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
Hydrolytic enzymes are indispensable tools in the production of various foodstuffs, drugs, and consumables owing to their applications in almost every industrial process nowadays. One of the foremost areas of interest involving the use of hydrolytic enzymes is in the transformation of lignocellulosic biomass into value added products. However, limitations of the processes due to inadequate enzyme activity and stability with a narrow range of pH and temperature optima often limit their effective usage. The innovative technologies, involving manipulation of enzyme activity and stability through mutagenesis, genetic engineering and metagenomics lead to a major leap in all the fields using hydrolytic enzymes. This article provides recent advancement towards the isolation and use of microbes for lignocellulosic biomass utilisation, microbes producing the hydrolytic enzymes, the modern age technologies used to manipulate and enhance the hydrolytic enzyme activity and the applications of such enzymes in value added products development from lignocellulosic biomass.
Collapse
Affiliation(s)
- Sudesh Kumar Yadav
- Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector-81, Mohali, India.
| |
Collapse
|
26
|
Chen Z, Meng T, Li Z, Liu P, Wang Y, He N, Liang D. Characterization of a beta-glucosidase from Bacillus licheniformis and its effect on bioflocculant degradation. AMB Express 2017; 7:197. [PMID: 29110104 PMCID: PMC5673865 DOI: 10.1186/s13568-017-0501-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/29/2017] [Indexed: 11/10/2022] Open
Abstract
Bacillus licheniformis CGMCC 2876, an aerobic spore-forming bacterium, produces a polysaccharide bioflocculant that is biodegradable and harmless. The present study determined that β-glucosidase played a negative role in bioflocculant synthesis. The gene encoding β-glucosidase was cloned and expressed in Escherichia coli BL21. This gene consists of 1437 bp and encodes 478 amino acid residues. The recombinant β-glucosidase (Bgl.bli1) was purified and showed a molecular mass of 53.4 kDa by SDS-PAGE. The expression and reaction conditions of Bgl.bli1 were optimized; the activity of β-glucosidase reached a maximum at 45.44 U/mL. Glucose clearly inhibited the activity of β-glucosidase. The purified recombinant Bgl.bli1 hydrolysed polysaccharide bioflocculant in vitro and synergised with other cellulases. The ability of Bgl.bli1 to hydrolyse polysaccharide bioflocculant was the reason for the decrease in flocculating activity and indicated the utility of this enzyme for diverse industrial processes.
Collapse
|
27
|
Boudabbous M, Ben Hmad I, Saibi W, Mssawra M, Belghith H, Gargouri A. Trans-glycosylation capacity of a highly glycosylated multi-specific β-glucosidase from Fusarium solani. Bioprocess Biosyst Eng 2016; 40:559-571. [DOI: 10.1007/s00449-016-1721-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/05/2016] [Indexed: 01/20/2023]
|
28
|
Peng X, Su H, Mi S, Han Y. A multifunctional thermophilic glycoside hydrolase from Caldicellulosiruptor owensensis with potential applications in production of biofuels and biochemicals. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:98. [PMID: 27141233 PMCID: PMC4852416 DOI: 10.1186/s13068-016-0509-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/14/2016] [Indexed: 05/16/2023]
Abstract
BACKGROUND Thermophilic enzymes have attracted much attention for their advantages of high reaction velocity, exceptional thermostability, and decreased risk of contamination. Exploring efficient thermophilic glycoside hydrolases will accelerate the industrialization of biofuels and biochemicals. RESULTS A multifunctional glycoside hydrolase (GH) CoGH1A, belonging to GH1 family with high activities of β-d-glucosidase, exoglucanase, β-d-xylosidase, β-d-galactosidase, and transgalactosylation, was cloned and expressed from the extremely thermophilic bacterium Caldicellulosiruptor owensensis. The enzyme exerts excellent thermostability by retaining 100 % activity after 12-h incubation at 75 °C. The catalytic coefficients (k cat/K m) of the enzyme against pNP-β-D-galactopyranoside, pNP-β-D-glucopyranoside, pNP-β-D-cellobioside, pNP-β-D-xylopyranoside, and cellobiose were, respectively, 7450.0, 2467.5, 1085.4, 90.9, and 137.3 mM(-1) s(-1). When CoGH1A was supplemented at the dosage of 20 Ucellobiose g(-1) biomass for hydrolysis of the pretreated corn stover, comparing with the control, the glucose and xylose yields were, respectively, increased 37.9 and 42.1 %, indicating that the enzyme contributed not only for glucose but also for xylose release. The efficiencies of lactose decomposition and synthesis of galactooligosaccharides (GalOS) by CoGH1A were investigated at low (40 g L(-1)) and high (500 g L(-1)) initial lactose concentrations. At low lactose concentration, the time for decomposition of 83 % lactose was 10 min, which is much shorter than the reported 2-10 h for reaching such a decomposition rate. At high lactose concentration, after 50-min catalysis, the GalOS concentration reached 221 g L(-1) with a productivity of 265.2 g L(-1) h(-1). This productivity is at least 12-fold higher than those reported in literature. CONCLUSIONS The multifunctional glycoside hydrolase CoGH1A has high capabilities in saccharification of lignocellulosic biomass, decomposition of lactose, and synthesis of galactooligosaccharides. It is a promising enzyme to be used for bioconversion of carbohydrates in industrial scale. In addition, the results of this study indicate that the extremely thermophilic bacteria are potential resources for screening highly efficient glycoside hydrolases for the production of biofuels and biochemicals.
Collapse
Affiliation(s)
- Xiaowei Peng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Hong Su
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Shuofu Mi
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Xia W, Xu X, Qian L, Shi P, Bai Y, Luo H, Ma R, Yao B. Engineering a highly active thermophilic β-glucosidase to enhance its pH stability and saccharification performance. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:147. [PMID: 27446236 PMCID: PMC4955127 DOI: 10.1186/s13068-016-0560-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/11/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND β-Glucosidase is an important member of the biomass-degrading enzyme system, and plays vital roles in enzymatic saccharification for biofuels production. Candidates with high activity and great stability over high temperature and varied pHs are always preferred in industrial practice. To achieve cost-effective biomass conversion, exploring natural enzymes, developing high level expression systems and engineering superior mutants are effective approaches commonly used. RESULTS A newly identified β-glucosidase of GH3, Bgl3A, from Talaromyces leycettanus JCM12802, was overexpressed in yeast strain Pichia pastoris GS115, yielding a crude enzyme activity of 6000 U/ml in a 3 L fermentation tank. The purified enzyme exhibited outstanding enzymatic properties, including favorable temperature and pH optima (75 °C and pH 4.5), good thermostability (maintaining stable at 60 °C), and high catalytic performance (with a specific activity and catalytic efficiency of 905 U/mg and 9096/s/mM on pNPG, respectively). However, the narrow stability of Bgl3A at pH 4.0-5.0 would limit its industrial applications. Further site-directed mutagenesis indicated the role of excessive O-glycosylation in pH liability. By removing the potential O-glycosylation sites, two mutants showed improved pH stability over a broader pH range (3.0-10.0). Besides, with better stability under pH 5.0 and 50 °C compared with wild type Bgl3A, saccharification efficiency of mutant M1 was improved substantially cooperating with cellulase Celluclast 1.5L. And mutant M1 reached approximately equivalent saccharification performance to commercial β-glucosidase Novozyme 188 with identical β-glucosidase activity, suggesting its great prospect in biofuels production. CONCLUSIONS In this study, we overexpressed a novel β-glucosidase Bgl3A with high specific activity and high catalytic efficiency in P. pastoris. We further proved the negative effect of excessive O-glycosylation on the pH stability of Bgl3A, and enhanced the pH stability by reducing the O-glycosylation. And the enhanced mutants showed much better application prospect with substantially improved saccharification efficiency on cellulosic materials.
Collapse
Affiliation(s)
- Wei Xia
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
- />College of Animal Science, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Xinxin Xu
- />Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 People’s Republic of China
| | - Lichun Qian
- />College of Animal Science, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Pengjun Shi
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Yingguo Bai
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Huiying Luo
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Rui Ma
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Bin Yao
- />Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| |
Collapse
|