1
|
Perez ÉS, Duran BOS, Zanella BTT, Dal-Pai-Silva M. Review: Understanding fish muscle biology in the indeterminate growth species pacu (Piaractus mesopotamicus). Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111502. [PMID: 37572733 DOI: 10.1016/j.cbpa.2023.111502] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The muscle phenotype of fish is regulated by numerous factors that, although widely explored, still need to be fully understood. In this context, several studies aimed to unravel how internal and external stimuli affect the muscle growth of these vertebrates. The pacu (Piaractus mesopotamicus) is a species of indeterminate muscular growth that quickly reaches high body weight. For this reason, it adds great importance to the productive sector, along with other round fish. In this context, we aimed to compile studies on fish biology and skeletal muscle growth, focusing on studies by our research group that used pacu as an experimental model along with other species. Based on these studies, new muscle phenotype regulators were identified and explored in vivo, in vitro, and in silico studies, which strongly contribute to advances in understanding muscle growth mechanisms with future applications in the productive sector.
Collapse
Affiliation(s)
- Érika Stefani Perez
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Bruno Oliveira Silva Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil.
| | - Bruna Tereza Thomazini Zanella
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| |
Collapse
|
2
|
Perez ÉS, Cury SS, Zanella BTT, Carvalho RF, Duran BOS, Dal-Pai-Silva M. Identification of Novel Genes Associated with Fish Skeletal Muscle Adaptation during Fasting and Refeeding Based on a Meta-Analysis. Genes (Basel) 2022; 13:genes13122378. [PMID: 36553644 PMCID: PMC9778430 DOI: 10.3390/genes13122378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The regulation of the fish phenotype and muscle growth is influenced by fasting and refeeding periods, which occur in nature and are commonly applied in fish farming. However, the regulators associated with the muscle responses to these manipulations of food availability have not been fully characterized. We aimed to identify novel genes associated with fish skeletal muscle adaptation during fasting and refeeding based on a meta-analysis. Genes related to translational and proliferative machinery were investigated in pacus (Piaractus mesopotamicus) subjected to fasting (four and fifteen days) and refeeding (six hours, three and fifteen days). Our results showed that different fasting and refeeding periods modulate the expression of the genes mtor, rps27a, eef1a2, and cdkn1a. These alterations can indicate the possible protection of the muscle phenotype, in addition to adaptive responses that prioritize energy and substrate savings over cell division, a process regulated by ccnd1. Our study reveals the potential of meta-analysis for the identification of muscle growth regulators and provides new information on muscle responses to fasting and refeeding in fish that are of economic importance to aquaculture.
Collapse
Affiliation(s)
- Érika Stefani Perez
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| | - Sarah Santiloni Cury
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| | | | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| | - Bruno Oliveira Silva Duran
- Department of Histology, Embryology and Cell Biology, Federal University of Goias (UFG), Goiania 74690-900, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
- Correspondence: ; Tel.: +55-(14)-3880-0470
| |
Collapse
|
3
|
|
4
|
Zanella BTT, Magiore IC, Duran BOS, Pereira GG, Vicente IST, Carvalho PLPF, Salomão RAS, Mareco EA, Carvalho RF, de Paula TG, Barros MM, Dal-Pai-Silva M. Ascorbic Acid Supplementation Improves Skeletal Muscle Growth in Pacu ( Piaractus mesopotamicus) Juveniles: In Vivo and In Vitro Studies. Int J Mol Sci 2021; 22:2995. [PMID: 33804272 PMCID: PMC7998472 DOI: 10.3390/ijms22062995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
In fish, fasting leads to loss of muscle mass. This condition triggers oxidative stress, and therefore, antioxidants can be an alternative to muscle recovery. We investigated the effects of antioxidant ascorbic acid (AA) on the morphology, antioxidant enzyme activity, and gene expression in the skeletal muscle of pacu (Piaractus mesopotamicus) following fasting, using in vitro and in vivo strategies. Isolated muscle cells of the pacu were subjected to 72 h of nutrient restriction, followed by 24 h of incubation with nutrients or nutrients and AA (200 µM). Fish were fasted for 15 days, followed by 6 h and 15 and 30 days of refeeding with 100, 200, and 400 mg/kg of AA supplementation. AA addition increased cell diameter and the expression of anabolic and cell proliferation genes in vitro. In vivo, 400 mg/kg of AA increased anabolic and proliferative genes expression at 6 h of refeeding, the fiber diameter and the expression of genes related to cell proliferation at 15 days, and the expression of catabolic and oxidative metabolism genes at 30 days. Catalase activity remained low in the higher supplementation group. In conclusion, AA directly affected the isolated muscle cells, and the higher AA supplementation positively influenced muscle growth after fasting.
Collapse
Affiliation(s)
- Bruna Tereza Thomazini Zanella
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, São Paulo, Brazil; (B.T.T.Z.); (I.C.M.); (G.G.P.); (R.F.C.); (T.G.d.P.)
| | - Isabele Cristina Magiore
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, São Paulo, Brazil; (B.T.T.Z.); (I.C.M.); (G.G.P.); (R.F.C.); (T.G.d.P.)
| | - Bruno Oliveira Silva Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-900, Goiás, Brazil;
| | - Guilherme Gutierrez Pereira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, São Paulo, Brazil; (B.T.T.Z.); (I.C.M.); (G.G.P.); (R.F.C.); (T.G.d.P.)
| | - Igor Simões Tiagua Vicente
- Department of Breeding and Animal Nutrition, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu 18618-681, São Paulo, Brazil; (I.S.T.V.); (P.L.P.F.C.); (M.M.B.)
| | - Pedro Luiz Pucci Figueiredo Carvalho
- Department of Breeding and Animal Nutrition, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu 18618-681, São Paulo, Brazil; (I.S.T.V.); (P.L.P.F.C.); (M.M.B.)
| | - Rondinelle Artur Simões Salomão
- Environment and Regional Development Graduate Program, University of Western São Paulo, Presidente Prudente 19050-680, São Paulo, Brazil; (R.A.S.S.); (E.A.M.)
| | - Edson Assunção Mareco
- Environment and Regional Development Graduate Program, University of Western São Paulo, Presidente Prudente 19050-680, São Paulo, Brazil; (R.A.S.S.); (E.A.M.)
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, São Paulo, Brazil; (B.T.T.Z.); (I.C.M.); (G.G.P.); (R.F.C.); (T.G.d.P.)
| | - Tassiana Gutierrez de Paula
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, São Paulo, Brazil; (B.T.T.Z.); (I.C.M.); (G.G.P.); (R.F.C.); (T.G.d.P.)
| | - Margarida Maria Barros
- Department of Breeding and Animal Nutrition, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu 18618-681, São Paulo, Brazil; (I.S.T.V.); (P.L.P.F.C.); (M.M.B.)
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu 18618-689, São Paulo, Brazil; (B.T.T.Z.); (I.C.M.); (G.G.P.); (R.F.C.); (T.G.d.P.)
| |
Collapse
|
5
|
Santos SAA, Camargo ACL, Constantino FB, Colombelli KT, Portela LMF, Fioretto MN, Vieira JCS, Padilha PM, de Oliveira MB, Felisbino SL, Carvalho RF, Justulin LA. Identification of potential molecular pathways involved in prostate carcinogenesis in offspring exposed to maternal malnutrition. Aging (Albany NY) 2020; 12:19954-19978. [PMID: 33049715 PMCID: PMC7655221 DOI: 10.18632/aging.104093] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/05/2020] [Indexed: 12/12/2022]
Abstract
The developmental origins of health and disease concept links adult diseases with early-life exposure to inappropriate environmental conditions. Intrauterine and postnatal malnutrition may lead to an increased incidence of type 2 diabetes, obesity, and cardiovascular diseases. Maternal malnutrition (MM) has also been associated with prostate carcinogenesis. However, the molecular mechanisms associated with this condition remain poorly understood. Using a proteomic analysis, we demonstrated that MM changed the levels of proteins associated with growth factors, estrogen signaling, detoxification, and energy metabolism in the prostate of both young and old rats. These animals also showed increased levels of molecular markers of endoplasmic reticulum function and histones. We further performed an in silico analysis that identified commonly deregulated proteins in the ventral prostate of old rats submitted to MM with a mouse model and patients with prostate cancer. In conclusion, our results demonstrated that estrogenic signaling pathways, endoplasmic reticulum functions, energy metabolism, and molecular sensors of protein folding and Ca2+ homeostasis, besides histone, and RAS-GTPase family appear to be involved in this process. Knowledge of these factors may raise discussions regarding the role of maternal dietary intervention as a public policy for the lifelong prevention of chronic diseases.
Collapse
Affiliation(s)
- Sérgio Alexandre Alcantara Santos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil
| | - Ana Carolina Lima Camargo
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil
| | - Flávia Bessi Constantino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil
| | - Ketlin Thassiani Colombelli
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil
| | - Luiz Marcos Frediani Portela
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil
| | - Matheus Naia Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil
| | - José Cavalcante Souza Vieira
- Department of Chemical and Biological Sciences, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil
| | - Pedro Magalhães Padilha
- Department of Chemical and Biological Sciences, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil
| | - Mateus Betta de Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil
| | - Sergio Luis Felisbino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil
| | - Luis Antonio Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil
| |
Collapse
|
6
|
da Silva-Gomes RN, Gabriel Kuniyoshi ML, Oliveira da Silva Duran B, Thomazini Zanella BT, Paccielli Freire P, Gutierrez de Paula T, de Almeida Fantinatti BE, Simões Salomão RA, Carvalho RF, Delazari Santos L, Dal-Pai-Silva M. Prolonged fasting followed by refeeding modifies proteome profile and parvalbumin expression in the fast-twitch muscle of pacu (Piaractus mesopotamicus). PLoS One 2019; 14:e0225864. [PMID: 31856193 PMCID: PMC6922423 DOI: 10.1371/journal.pone.0225864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023] Open
Abstract
Here, we analyzed the fast-twitch muscle of juvenile Piaractus mesopotamicus (pacu) submitted to prolonged fasting (30d) and refeeding (6h, 24h, 48h and 30d). We measured the relative rate of weight and length increase (RRIlength and RRIweight), performed shotgun proteomic analysis and did Western blotting for PVALB after 30d of fasting and 30d of refeeding. We assessed the gene expression of igf-1, mafbx and pvalb after 30d of fasting and after 6h, 24h, 48h and 30d of refeeding. We performed a bioinformatic analysis to predict miRNAs that possibly control parvalbumin expression. After fasting, RRIlength, RRIweight and igf-1 expression decreased, while the mafbx expression increased, which suggest that prolonged fasting caused muscle atrophy. After 6h and 24h of refeeding, mafbx was not changed and igf-1 was downregulated, while after 48h of refeeding mafbx was downregulated and igf-1 was not changed. After 30d of refeeding, RRIlength and RRIweight were increased and igf-1 and mafbx expression were not changed. Proteomic analysis identified 99 proteins after 30d of fasting and 71 proteins after 30d of refeeding, of which 23 and 17, respectively, were differentially expressed. Most of these differentially expressed proteins were related to cytoskeleton, muscle contraction, and metabolism. Among these, parvalbumin (PVALB) was selected for further validation. The analysis showed that pvalb mRNA was downregulated after 6h and 24h of refeeding, but was not changed after 30d of fasting or 48h and 30d of refeeding. The Western blotting confirmed that PVALB protein was downregulated after 30d of fasting and 30d of refeeding. The downregulation of the protein and the unchanged expression of the mRNA after 30d of fasting and 30d of refeeding suggest a post-transcriptional regulation of PVALB. Our miRNA analysis predicted 444 unique miRNAs that may target pvalb. In conclusion, muscle atrophy and partial compensatory growth caused by prolonged fasting followed by refeeding affected the muscle proteome and PVALB expression.
Collapse
Affiliation(s)
- Rafaela Nunes da Silva-Gomes
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Maria Laura Gabriel Kuniyoshi
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Bruno Oliveira da Silva Duran
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Bruna Tereza Thomazini Zanella
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Paula Paccielli Freire
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Tassiana Gutierrez de Paula
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | | | - Robson Francisco Carvalho
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Lucilene Delazari Santos
- Center for the Studies of Venoms and Venomous Animals (CEVAP)/ Graduate Program in Tropical Diseases (FMB), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
7
|
Yang Y, Zhou H, Hou L, Xing K, Shu H. Transcriptional profiling of skeletal muscle reveals starvation response and compensatory growth in Spinibarbus hollandi. BMC Genomics 2019; 20:938. [PMID: 31805873 PMCID: PMC6896686 DOI: 10.1186/s12864-019-6345-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Spinibarbus hollandi is an economically important fish species in southern China. This fish is known to have nutritional and medicinal properties; however, its farming is limited by its slow growth rate. In the present study, we observed that a compensatory growth phenomenon could be induced by adequate refeeding following 7 days of fasting in S. hollandi. To understand the starvation response and compensatory growth mechanisms in this fish, the muscle transcriptomes of S. hollandi under control, fasting, and refeeding conditions were profiled using next-generation sequencing (NGS) techniques. RESULTS More than 4.45 × 108 quality-filtered 150-base-pair Illumina reads were obtained from all nine muscle samples. De novo assemblies yielded a total of 156,735 unigenes, among which 142,918 (91.18%) could be annotated in at least one available database. After 7 days of fasting, 2422 differentially expressed genes were detected, including 1510 up-regulated genes and 912 down-regulated genes. Genes involved in fat, protein, and carbohydrate metabolism were significantly up-regulated, and genes associated with the cell cycle, DNA replication, and immune and cellular structures were inhibited during fasting. After refeeding, 84 up-regulated genes and 16 down-regulated genes were identified. Many genes encoding the components of myofibers were significantly up-regulated. Histological analysis of muscle verified the important role of muscle hypertrophy in compensatory growth. CONCLUSION In the present work, we reported the transcriptome profiles of S. hollandi muscle under different conditions. During fasting, the genes involved in the mobilization of stored energy were up-regulated, while the genes associated with growth were down-regulated. After refeeding, muscle hypertrophy contributed to the recovery of growth. The results of this study may help to elucidate the mechanisms underlying the starvation response and compensatory growth.
Collapse
Affiliation(s)
- Yang Yang
- School of Life Science, Guangzhou University, Guangzhou, 510006 China
| | - Huiqiang Zhou
- School of Life Science, Guangzhou University, Guangzhou, 510006 China
| | - Liping Hou
- School of Life Science, Guangzhou University, Guangzhou, 510006 China
| | - Ke Xing
- School of Life Science, Guangzhou University, Guangzhou, 510006 China
| | - Hu Shu
- School of Life Science, Guangzhou University, Guangzhou, 510006 China
| |
Collapse
|