1
|
Ploypetch S, Luo X, Zhao S, Roytrakul S, Li L, Suriyaphol G. Salivary metabolomic identification of biomarker candidates for oral melanoma and oral squamous cell carcinoma in dogs. J Vet Intern Med 2024; 38:2293-2304. [PMID: 38703129 PMCID: PMC11256132 DOI: 10.1111/jvim.17092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/18/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Oral melanoma (OM) and oral squamous cell carcinoma (OSCC) are frequently diagnosed in dogs, presenting a challenge in distinguishing them from benign oral tumors (BN). Salivary metabolomic biomarkers offer a practical solution because of saliva's direct contact with tumors and the noninvasive nature of collection. OBJECTIVE Assess the diversity and abundance of the salivary metabolome in dogs with BN, OM, and OSCC using amine/phenol submetabolome analysis and high-performance chemical isotope labeling liquid chromatography-mass spectrometry (CIL LC-MS). ANIMALS Study included 11 BN, 24 OM, 10 OSCC, and 20 healthy control dogs. METHODS Case-control cross-sectional study was conducted to assess salivary submetabolic profiles in dogs with BN, OM, and OSCC and healthy dogs. Samples were labeled with 12C-dansyl chloride and analyzed using CIL LC-MS targeted to amine- and phenol-containing metabolites for amine/phenol submetabolome analysis. RESULTS Distinct clusters and significant differences in metabolite concentrations were observed among the oral cancer, BN, and control groups. A total of 154 and 66 metabolites showed significantly altered concentrations, particularly in OM and OSCC, respectively, when compared with BN (Padj < .05). Potential metabolic biomarkers were identified for each cancer, including decreased concentrations of seryl-arginine and sarcosine in OSCC. Moreover, high-confidence putative metabolites were identified, including an increase in tryptophyl-threonine and a decrease in 1,2-dihydroxynapthalene-6-sulfonic acid and hydroxyprolyl-hydroxyproline for OM. CONCLUSIONS AND CLINICAL IMPORTANCE We identified high coverage of the amine/phenol submetabolome, including seryl-arginine, and sarcosine, in OSCC. Our findings emphasize the potential of these biomarkers for distinguishing between oral OSCC and BN in dogs.
Collapse
Affiliation(s)
- Sekkarin Ploypetch
- Department of Clinical Sciences and Public Health, Faculty of Veterinary ScienceMahidol UniversityNakhon PathomThailand
| | - Xian Luo
- The Metabolomics Innovation CentreUniversity of AlbertaEdmontonAlbertaCanada
| | - Shuang Zhao
- The Metabolomics Innovation CentreUniversity of AlbertaEdmontonAlbertaCanada
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and BiotechnologyNational Science and Technology Development AgencyPathum ThaniThailand
| | - Liang Li
- The Metabolomics Innovation CentreUniversity of AlbertaEdmontonAlbertaCanada
- Department of ChemistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Gunnaporn Suriyaphol
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
- Center of Excellence for Companion Animal Cancer, Faculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
| |
Collapse
|
2
|
Jing M, Han G, Wan J, Zong W, Liu R. Differential eco-toxicological responses toward Eisenia fetida exposed to soil contaminated with naphthalene and typical metabolites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44800-44814. [PMID: 38954347 DOI: 10.1007/s11356-024-34149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Naphthalene (NAP) was frequently detected in polycyclic aromatic hydrocarbons (PAHs)-contaminated soil, and its residues may pose an eco-toxicological threat to soil organisms. The toxic effects of NAP were closely tied to phenolic and quinone metabolites in biological metabolism. However, the present knowledge concerning the eco-toxicological impacts of NAP metabolites at the animal level is scanty. Here, we assessed the differences in the eco-toxicological responses of Eisenia fetida (E. fetida) in NAP, 1-naphthol (1-NAO) or 1,4-naphthoquinone (1,4-NQ) contaminated soils. NAP, 1-NAO, and 1,4-NQ exposure triggered the onset of oxidative stress as evidenced by the destruction of the antioxidant enzyme system. The lipid peroxidation and DNA oxidative damage levels induced by 1-NAO and 1,4-NQ were higher than those of NAP. The elevation of DNA damage varied considerably depending on differences in oxidative stress and the direct mode of action of NAP or its metabolites with DNA. All three toxicants induced different degrees of physiological damage to the body wall, but only 1, 4-NQ caused the shedding of intestinal epithelial cells. The integrated biomarker response for different exposure times illustrated that the comprehensive toxicity at the animal level was 1,4-NQ > 1-NAO > NAP, and the time-dependent trends of oxidative stress responses induced by the three toxicants were similar. At the initial stage, the antioxidant system of E. fetida responded positively to the provocation, but the ability of E. fetida to resist stimulation decreased with the prolongation of time resulting in provocation oxidative damage. This study would provide new insights into the toxicological effects and biohazard of PAHs on soil animals.
Collapse
Affiliation(s)
- Mingyang Jing
- Shandong Urban Construction Vocational College, 4657# Tourism Road, Jinan, Shandong, 250100, P.R. China
| | - Guangye Han
- Shandong Academy of Environmental Sciences Co., Ltd, Licheng, 12777# Zhenyuan Road, Jinan, Shandong, 250100, P.R. China
| | - Jingqiang Wan
- School of Environmental Science and Engineering, America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, P.R. China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, 250014, Shandong, China
| | - Rutao Liu
- School of Environmental Science and Engineering, America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, P.R. China.
| |
Collapse
|
3
|
Clergé A, Le Goff J, Brotin E, Abeillard E, Vaudorne I, Denoyelle C, Le Hegarat L, Delépée R. In vitro genotoxicity potential investigation of 7 oxy-PAHs. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:176-186. [PMID: 36757094 DOI: 10.1002/em.22531] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 05/03/2023]
Abstract
Air pollutants include many compounds among them oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs). As they are suspected to generate DNA damage and mutagenicity, an understanding of their mode of action could highlight a carcinogenic potential risk in exposed population. In this article, a prospective study on seven oxy-PAHs selected in terms of occurrence in the environment was conducted on mutagenicity, genotoxicity, and cytotoxicity potentials using in vitro assays including Ames test on five strains, kinetic analysis of cytotoxicity and apoptosis, phosphorylation of histone H2AX, and p53 induction assays on human lung cell line BEAS-2B. Ames test demonstrated that mutagenicity pattern depended on the oxy-PAH tested. Except for BAQ, all oxy-PAHs tested gave mutagenic effect, in the absence and/or in the presence of metabolic activation (S9 fraction). At 24 h of exposure, the majority of oxy-PAHs induced γ-H2AX in BEAS-2B cells and/or phosphorylation of p53 at serine 15 and cell death at highest tested concentrations. Although 9,10-AQ and B[b]FO were mutagenic in bacteria, they failed to induce any of the other genotoxicity biomarkers. In comparison with the benzo[a]pyrene, all oxy-PAHs were less potent in terms of genotoxic potential at the same concentration. These results highlighted the genotoxic and mutagenic potential of these oxy-PAHs and provide preliminary information concerning their possible mechanism of action for toxicity, contributing to a better evaluation of the real associated health risks for human and environment.
Collapse
Affiliation(s)
| | - Jérémie Le Goff
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), Caen, France
| | - Emilie Brotin
- Normandie Univ, UNICAEN, PLATON Service Unit, ImpedanCELL, Caen, France
| | - Edwige Abeillard
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), Caen, France
- Normandie Univ, UNICAEN, PLATON Service Unit, ImpedanCELL, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Isabelle Vaudorne
- Normandie Univ, UNICAEN, PRISMM Platform, PLATON Service Unit, Caen, France
| | - Christophe Denoyelle
- INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), Caen, France
- Normandie Univ, UNICAEN, PLATON Service Unit, ImpedanCELL, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Ludovic Le Hegarat
- Anses, French Agency for Food, Environmental and Occupational Health and Safety, Fougeres Laboratory, Toxicology of Contaminant Unit, Fougères, France
| | - Raphaël Delépée
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
- Normandie Univ, UNICAEN, PRISMM Platform, PLATON Service Unit, Caen, France
| |
Collapse
|
4
|
Shinkai Y, Onose Y, Akiyama M, Hirose R, Kumagai Y. Capture of Electrophilic Quinones in the Extracellular Space: Evidence for a Phase Zero Reaction. Chem Res Toxicol 2023; 36:23-31. [PMID: 36525601 DOI: 10.1021/acs.chemrestox.2c00223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Electrophilic quinones are produced during the combustion of gasoline in the atmosphere. Although these reactive species covalently bind to protein-based nucleophiles in cells, resulting in the formation of protein adducts involved in the modulation of redox signaling pathways and cytotoxicity, the extracellular regulation of quinones is not understood. In this study, incubation of 1,2-naphthoquinone (1,2-NQ) with the low-molecular-weight fraction of mouse plasma resulted in the consumption of cysteine (CysSH) in the plasma in a concentration-dependent manner. Covalent modification of albumin was markedly repressed by the addition of either the low-molecular-weight fraction of mouse plasma or CysSH, suggesting that CysSH protects by forming a conjugate with 1,2-NQ. Similar phenomena also occurred for other atmospheric quinones 1,4-NQ and 1,4-benzoquinone (1,4-BQ). The addition of cystine to a culture medium without amino acids enhanced the release of CysSH from A431 cells and blocked 1,2-NQ-mediated arylation of intracellular proteins, suggesting that 1,2-NQ interacts with extracellular CysSH. Liquid chromatography-tandem mass spectrometry analysis revealed that 1,2-NQ and 1,4-BQ undergoes nucleophilic attack by CysSH, yielding a 1,2-NQH2-SCys adduct and 1,4-BQH2-SCys adduct, respectively. Unlike 1,2-NQ and 1,4-BQ, the authentic 1,2-NQH2-SCys adduct and 1,4-BQH2-SCys adduct had little effect on the covalent modification of cellular proteins and viability of A431 cells. These results suggest that electrophilic quinones are readily trapped by CysSH released from A431 cells, forming less-toxic CysSH adducts and thereby repressing covalent modification of cellular proteins. These findings provide evidence for the existence of a "phase zero" reaction of electrophiles prior to their uptake by cells.
Collapse
Affiliation(s)
- Yasuhiro Shinkai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Yusuke Onose
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Masahiro Akiyama
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan.,Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo 105-8512, Japan
| | - Reiko Hirose
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
5
|
Sleight TW, Sexton CN, Mpourmpakis G, Gilbertson LM, Ng CA. A Classification Model to Identify Direct-Acting Mutagenic Polycyclic Aromatic Hydrocarbon Transformation Products. Chem Res Toxicol 2021; 34:2273-2286. [PMID: 34662518 DOI: 10.1021/acs.chemrestox.1c00187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a complex group of environmental contaminants, many having long environmental half-lives. As these compounds degrade, the changes in their structure can result in a substantial increase in mutagenicity compared to the parent compound. Over time, each individual PAH can potentially degrade into several thousand unique transformation products, creating a complex, constantly evolving set of intermediates. Microbial degradation is the primary mechanism of their transformation and ultimate removal from the environment, and this process can result in mutagenic activation similar to the metabolic activation that can occur in multicellular organisms. The diversity of the potential intermediate structures in PAH-contaminated environments renders hazard assessment difficult for both remediation professionals and regulators. A mixture of structural and energetic descriptors has proven effective in existing studies for classifying which PAH transformation products will be mutagenic. However, most existing studies of environmental PAH mutagens primarily focus on nitrogenated derivatives, which are prevalent in the atmosphere and not as relevant in soil. Additionally, PAH products commonly found in the environment can range from as large as five rings to as small as a single ring, requiring a broadly inclusive methodology to comprehensively evaluate mutagenic potential. We developed a combination of supervised and unsupervised machine learning methods to predict environmentally induced PAH mutagenicity with improved performance over currently available tools. K-means clustering with principal component analysis allows us to identify molecular clusters that we hypothesize to have similar mechanisms of action. Recursive feature elimination identifies the most influential descriptors. The cluster-specific regression outperforms available classifiers in predicting direct-acting mutagens resulting from the microbial biodegradation of PAHs and provides direction for future studies evaluating the environmental hazards resulting from PAH biodegradation.
Collapse
Affiliation(s)
- Trevor W Sleight
- Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Caitlin N Sexton
- Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Giannis Mpourmpakis
- Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Leanne M Gilbertson
- Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Carla A Ng
- Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
6
|
Clergé A, Le Goff J, Lopez-Piffet C, Meier S, Lagadu S, Vaudorne I, Babin V, Cailly T, Delépée R. Investigation by mass spectrometry and 32P post-labelling of DNA adducts formation from 1,2-naphthoquinone, an oxydated metabolite of naphthalene. CHEMOSPHERE 2021; 263:128079. [PMID: 33297078 DOI: 10.1016/j.chemosphere.2020.128079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/08/2020] [Accepted: 08/19/2020] [Indexed: 06/12/2023]
Abstract
Naphthalene is the simplest representative of polycyclic aromatic hydrocarbons (PAHs). It is detected as major pollutant in the different compartments of the environment. This compound is considered by the international agency for research on cancer (IARC), the specialized cancer agency of the World Health Organisation (WHO), as a possible carcinogenic (group 2B) since 2002, mainly based on studies on chronic inhalation in rodent by the national toxicology program of the U.S. department of health and human services. In humans, its main metabolites correspond to derivatives substituted in position and 1 and 2 as 1,2-naphthoquinone (1,2-NphQ). Based on previous studies, 1,2-NphQ is supposed to react with DNA to form mostly depurinating adducts, a possible initiating step of carcinogenicity. To confirm this potentiality, adducts were synthetized by the reaction of 1,2-NphQ with 2'-deoxyguanosine (2'-dG) in N,N-dimethylformamide (DMF), water and calf thymus DNA. 2'-dG adducts were analyzed by 32P post-labelling, HPLC with ultra-violet detection and ultra-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). We found stable DNA adducts detected in DNA. We proposed a formation mechanism by a 1,4-Michael addition with 2'-dG. Adducts with 2'-deoxyxanthosine are formed after a spontaneous deamination of 2'-dG. These adducts are good candidates as biomarkers allowing evaluation of exposure to naphthalene and its derivatives in the development of pathologies such as cancer.
Collapse
Affiliation(s)
- Adeline Clergé
- Normandy University, UNICAEN, UNIROUEN, ABTE, Caen, France.
| | | | - Claire Lopez-Piffet
- Normandy University, UNICAEN, UNIROUEN, ABTE, Caen, France; Normandy University, UNICAEN, PRISMM Platform ICORE, Caen, France
| | | | - Stéphanie Lagadu
- Normandy University, UNICAEN, UNIROUEN, ABTE, Caen, France; Normandy University, UNICAEN, PRISMM Platform ICORE, Caen, France; Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Isabelle Vaudorne
- Normandy University, UNICAEN, UNIROUEN, ABTE, Caen, France; Normandy University, UNICAEN, PRISMM Platform ICORE, Caen, France; Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Victor Babin
- Normandy University, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000, Caen, France
| | - Thomas Cailly
- Normandy University, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000, Caen, France; Normandy University, UNICAEN, IMOGERE, Caen, France; Department of Nuclear Medicine, CHU Côte de Nacre, Caen, France
| | - Raphaël Delépée
- Normandy University, UNICAEN, UNIROUEN, ABTE, Caen, France; Normandy University, UNICAEN, PRISMM Platform ICORE, Caen, France; Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France.
| |
Collapse
|
7
|
Imbalances in the disposition of estrogen and naphthalene in breast cancer patients: a potential biomarker of breast cancer risk. Sci Rep 2020; 10:11773. [PMID: 32678225 PMCID: PMC7366907 DOI: 10.1038/s41598-020-68814-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
Elevation of naphthoquinones and estrogen quinones, which are reactive metabolites of naphthalene and estrogen, is thought to be an important indicator of naphthalene- and estrogen-induced carcinogenesis. We compared background levels of naphthalene and estrogen quinone-derived adducts in serum albumin (Alb) from 143 women with breast cancer and 119 healthy controls. Cysteinyl adducts of naphthoquinones, including 1,2-naphthoquinone (1,2-NPQ) and 1,4-naphthoquinone (1,4-NPQ), and estrogen quinones, including estrogen-2,3-quinones (E2-2,3-Q) and estrogen-3,4-quinones (E2-3,4-Q), were characterized after adduct cleavage. Levels of estrogen quinones and naphthoquinones were positively correlated in healthy controls, but not in breast cancer patients (p < 0.05). Compared with controls, levels of 1,2-NPQ and E2-3,4-Q were elevated by two- to ten-fold in cancer patients (p < 0.001). To explore the correlation between estrogen- and naphthalene-derived quinone adducts and disease status, we performed linear discriminant analysis of the ratio of 1,2-NPQ-Alb to (1,2-NPQ-Alb plus 1,4-NPQ-Alb) versus the ratio of E2-3,4-Q-2-S-Alb to (E2-2,3-Q-4-S-Alb plus E2-3,4-Q-2-S-Alb) in patients and controls. These two groups were separable using albumin adducts of estrogen quinones and naphthoquinones, with 99.6% overall correct classification rate (overall accuracy). The findings of this study suggest that differences in the disposition of estrogen and naphthalene, and the subsequent elevation of cumulative E2-3,4-Q and 1,2-NPQ may serve as biomarkers of breast cancer risk.
Collapse
|
8
|
Nemcakova I, Jirka I, Doubkova M, Bacakova L. Heat treatment dependent cytotoxicity of silicalite-1 films deposited on Ti-6Al-4V alloy evaluated by bone-derived cells. Sci Rep 2020; 10:9456. [PMID: 32528137 PMCID: PMC7289882 DOI: 10.1038/s41598-020-66228-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/18/2020] [Indexed: 11/24/2022] Open
Abstract
A silicalite-1 film (SF) deposited on Ti-6Al-4V alloy was investigated in this study as a promising coating for metallic implants. Two forms of SFs were prepared: as-synthesized SFs (SF-RT), and SFs heated up to 500 °C (SF-500) to remove the excess of template species from the SF surface. The SFs were characterized in detail by X-ray photoelectron spectroscopy (XPS), by Fourier transform infrared spectroscopy (FTIR), by scanning electron microscopy (SEM) and water contact angle measurements (WCA). Two types of bone-derived cells (hFOB 1.19 non-tumor fetal osteoblast cell line and U-2 OS osteosarcoma cell line) were used for a biocompatibility assessment. The initial adhesion of hFOB 1.19 cells, evaluated by cell numbers and cell spreading area, was better supported by SF-500 than by SF-RT. While no increase in cell membrane damage, in ROS generation and in TNF-alpha secretion of bone-derived cells grown on both SFs was found, gamma H2AX staining revealed an elevated DNA damage response of U-2 OS cells grown on heat-treated samples (SF-500). This study also discusses differences between osteosarcoma cell lines and non-tumor osteoblastic cells, stressing the importance of choosing the right cell type model.
Collapse
Affiliation(s)
- Ivana Nemcakova
- Institute of Physiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Ivan Jirka
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, v.v.i., Dolejskova 3, 182 23, Prague 8, Czech Republic
| | - Martina Doubkova
- Institute of Physiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20, Prague 4, Czech Republic.,Second Faculty of Medicine, Charles University, V Uvalu 84, 150 06, Prague 5, Czech Republic
| | - Lucie Bacakova
- Institute of Physiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20, Prague 4, Czech Republic
| |
Collapse
|
9
|
Nrf2 Activation and Its Coordination with the Protective Defense Systems in Response to Electrophilic Stress. Int J Mol Sci 2020; 21:ijms21020545. [PMID: 31952233 PMCID: PMC7013553 DOI: 10.3390/ijms21020545] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 01/11/2020] [Indexed: 12/18/2022] Open
Abstract
Molecular responses mediated by sensor proteins are important for biological defense against electrophilic stresses, such as xenobiotic electrophile exposure. NF-E2-related factor 2 (Nrf2) has an essential function as a master regulator of such cytoprotective molecular responses along with sensor protein Kelch-like ECH-associated protein 1. This review focuses on Nrf2 activation and its involvement with the protective defense systems under electrophilic stresses integrated with our recent findings that reactive sulfur species (RSS) mediate detoxification of electrophiles. The Nrf2 pathway does not function redundantly with the RSS-generating cystathionine γ-lyase pathway, and vice versa.
Collapse
|
10
|
Clergé A, Le Goff J, Lopez C, Ledauphin J, Delépée R. Oxy-PAHs: occurrence in the environment and potential genotoxic/mutagenic risk assessment for human health. Crit Rev Toxicol 2019; 49:302-328. [DOI: 10.1080/10408444.2019.1605333] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Adeline Clergé
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, Caen Cedex, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen Cedex, France
| | | | - Claire Lopez
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, Caen Cedex, France
| | | | - Raphaël Delépée
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, Caen Cedex, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen Cedex, France
- Normandie Univ, UNICAEN, PRISMM core facility, SF4206 ICORE, CCC F. Baclesse, Caen, France
| |
Collapse
|
11
|
Matsui T, Yamada N, Kuno H, Kanaly RA. Formation of Bulky DNA Adducts by Non-Enzymatic Production of 1,2-Naphthoquinone-Epoxide from 1,2-Naphthoquinone under Physiological Conditions. Chem Res Toxicol 2019; 32:1760-1771. [PMID: 31430133 DOI: 10.1021/acs.chemrestox.9b00088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Quinones may be formed metabolically or abiotically from environmental pollutants and polycyclic aromatic hydrocarbons (PAHs); many are recognized as toxicological intermediates that cause a variety of deleterious cellular effects including mutagenicity. The PAH-o-quinone, 1,2-naphthoquinone (1,2-NQ), may exert its genotoxic effects through interactions with cellular nucleophiles such as DNA, however, the mechanisms of 1,2-NQ adduct formation are still under investigation. With the aim to further understand these mechanisms, the chemical structures of adducts formed from the reaction of 2'-deoxyguanosine (dG) with 1,2-NQ under physiological conditions were investigated by liquid chromatography electrospray ionization tandem mass spectrometry and 1H NMR analyses. Results showed that 1,2-NQ underwent non-enzymatic oxidation to form a 1,2-NQ-epoxide which in turn formed at least four bulky adducts with dG, and these adducts were more likely to be formed under physiological conditions. A mechanism was proposed whereby hydration of 1,2-NQ to form unstable naphthohydroquinones and 2-hydroxy-1,4-naphthoquinone resulted in formation of hydrogen peroxide that oxidized 1,2-NQ. These results suggest that the genotoxicity of 1,2-NQ may not only be caused through oxidative DNA damage and adduct formation through Michael addition but also through non-enzymatic oxidative transformation of 1,2-NQ itself to form an intermediate PAH-epoxide which covalently binds to DNA.
Collapse
Affiliation(s)
- Takuya Matsui
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences , Yokohama City University , 22-2 Seto, Kanazawa , Yokohama , Kanagawa 236-0027 , Japan.,Toxicology Research Laboratories , Central Pharmaceutical Research Institute Japan Tobacco, Inc. , 1-13-2 Fukuura, Kanazawa-ku , Yokohama-city , Kanagawa 236-0004 , Japan
| | - Naohito Yamada
- Toxicology Research Laboratories , Central Pharmaceutical Research Institute Japan Tobacco, Inc. , 1-13-2 Fukuura, Kanazawa-ku , Yokohama-city , Kanagawa 236-0004 , Japan
| | - Hideyuki Kuno
- Toxicology Research Laboratories , Central Pharmaceutical Research Institute Japan Tobacco, Inc. , 1-13-2 Fukuura, Kanazawa-ku , Yokohama-city , Kanagawa 236-0004 , Japan
| | - Robert A Kanaly
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences , Yokohama City University , 22-2 Seto, Kanazawa , Yokohama , Kanagawa 236-0027 , Japan
| |
Collapse
|
12
|
Akiyama M, Unoki T, Shinkai Y, Ishii I, Ida T, Akaike T, Yamamoto M, Kumagai Y. Environmental Electrophile-Mediated Toxicity in Mice Lacking Nrf2, CSE, or Both. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:67002. [PMID: 31166132 PMCID: PMC6794492 DOI: 10.1289/ehp4949] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Transcription factor Nrf2 (nuclear factor-erythroid 2-related factor 2) plays a key role in detoxification of electrophiles via formation of glutathione (GSH) adducts and subsequent excretion into extracellular spaces. We found that reactive sulfur species (RSS), such as cysteine persulfides produced by cystathionine [Formula: see text] (CSE), capture environmental electrophiles through formation of sulfur adducts. However, contributions of Nrf2 and CSE to the blockage of environmental electrophile-mediated toxicity remain to be evaluated. OBJECTIVES The aim of this study was to clarify roles that CSE and Nrf2 play in the protection against various environmental electrophiles. We also wished to clarify the molecular basis of the developmental window of toxicity through investigating expression levels of Nrf2, RSS-producing enzymes, and sulfur nucleophiles during developmental stages of mice. METHODS Wild-type (WT), CSE knockout (KO), Nrf2 KO, Nrf2/CSE double KO (DKO) mice, and their primary hepatocytes were analyzed in this study. Cadmium (Cd), methylmercury (MeHg), 1,4-naphthoquinone, crotonaldehyde, and acrylamide were used. We conducted Western blotting, real-time polymerase chain reaction (PCR), 3-(4,5-dimethylthiazol-2-yl)-2,5-triphenyl tetrazolium bromide (MTT) assays, liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis, alanine transaminase (ALT) activity, histopathological analysis, and rotarod test. RESULTS Primary hepatocytes from DKO mice were significantly more sensitive to the environmental electrophiles than each single KO counterpart. Both Nrf2 and CSE single KO mice were highly susceptible to Cd and MeHg, and such sensitivity was further exacerbated in the DKO mice. Lower-level expressions of CSE and sulfur nucleophiles than those in adult mice were observed in a window of developmental stage. CONCLUSIONS Our mouse model provided new insights into the response to environmental electrophiles; while Nrf2 is recognized as a key transcription factor for detoxification of environmental electrophiles, CSE is crucial factor to repress their toxicity in a parallel mode. In addition, the sensitivity of fetuses to MeHg appears to be, at least in part, associated with the restricted production of RSS due to low-level expression of CSE. https://doi.org/10.1289/EHP4949.
Collapse
Affiliation(s)
- Masahiro Akiyama
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takamitsu Unoki
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Basic Medical Sciences, National Institute for Minamata Disease, Minamata, Japan
| | - Yasuhiro Shinkai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Isao Ishii
- Laboratory of Health Chemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Tomoaki Ida
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takaaki Akaike
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
13
|
Bao L, Liu W, Li Y, Wang X, Xu F, Yang Z, Yue Y, Zuo C, Zhang Q, Wang W. Carcinogenic Metabolic Activation Process of Naphthalene by the Cytochrome P450 Enzyme 1B1: A Computational Study. Chem Res Toxicol 2019; 32:603-612. [PMID: 30794404 DOI: 10.1021/acs.chemrestox.8b00297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The metabolic activation and transformation of naphthalene by the cytochrome P450 enzyme (CYP 1B1) plays an important role in its potential carcinogenicity. The process has been explored by a quantum mechanics/molecular mechanics (QM/MM) computational method. Molecular dynamic simulations were performed to explore the interaction between naphthalene and CYP 1B1. Naphthalene involves α- and β-carbon, the electrophilic addition of which would result in different reaction pathways. Our computational results show that both additions on α- and β-carbon can generate naphthalene 1,2-oxide. The activation barrier for the addition on β-carbon is higher than that for the α-carbon by 2.6 kcal·mol-1, which is possibly caused by the proximity between β-carbon and the iron-oxo group of Cpd I in the system. We also found that naphthalene 1,2-oxide is unstable and the O-C bond cleavage easily occurs via cellular hydronium ion, hydroxyl radical/anion; then it will convert to the potential ultimate carcinogen 1,2-naphthoquinone. The results demonstrate and inform a detailed process of generating naphthalene 1,2-oxide and new predictions for its conversion.
Collapse
Affiliation(s)
- Lei Bao
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| | - Wen Liu
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| | - Yanwei Li
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| | - Xueyu Wang
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| | - Fei Xu
- Shenzhen Research Institute of Shandong University , Shenzhen 518057 , People's Republic of China
| | - Zhongyue Yang
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Yue Yue
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| | - Chenpeng Zuo
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| | - Qingzhu Zhang
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| | - Wenxing Wang
- Environment Research Institute , Shandong University , Qingdao 266237 , People's Republic of China
| |
Collapse
|
14
|
Jirka I, Kopová I, Kubát P, Tabor E, Bačáková L, Bouša M, Sajdl P. The Photodynamic Properties and the Genotoxicity of Heat-Treated Silicalite-1 Films. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E567. [PMID: 30769806 PMCID: PMC6416588 DOI: 10.3390/ma12040567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/31/2019] [Accepted: 02/10/2019] [Indexed: 11/17/2022]
Abstract
We investigated the use of a supported silicalite-1 film (SF) as a promising coating for metallic materials used in the fabrication of prostheses. The role of carbonaceous residua present on high-temperature calcined-SF in generating singlet oxygen for future use as a sterilization method has also been addressed, and the potential genotoxicity of these residua in osteoblast-like cells has been investigated. Calcination of as-synthesized SF induced the appearance of a rather complicated mixture of aliphatic and aromatic species on its outer surface. A series of variously volatile polycyclic aromatic hydrocarbons (PAH), including naphthalene, fluorene, phenanthrene, anthracene, fluoranthene, and pyrene, were identified in micromole concentrations. Irradiation of these PAHs on calcined-SF immersed in air-saturated chloroform led to the formation of very low concentrations of singlet oxygen. However, an increased level of DNA damage was observed on calcined-SF by immunofluorescence staining of phosphorylated histone H2AX analyzed by flow cytometry.
Collapse
Affiliation(s)
- Ivan Jirka
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, v.v.i, Dolejškova 3, 182 23 Prague 8, Czech Republic.
| | - Ivana Kopová
- Institute of Physiology of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| | - Pavel Kubát
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, v.v.i, Dolejškova 3, 182 23 Prague 8, Czech Republic.
| | - Edyta Tabor
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, v.v.i, Dolejškova 3, 182 23 Prague 8, Czech Republic.
| | - Lucie Bačáková
- Institute of Physiology of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| | - Milan Bouša
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, v.v.i, Dolejškova 3, 182 23 Prague 8, Czech Republic.
| | - Petr Sajdl
- Power Engineering Department, University of Chemistry and Technology, Technická 3, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
15
|
Sim J, Jo H, Viji M, Choi M, Jung JA, Lee H, Jung JK. Rapid, Operationally Simple, and Metal-free NBS Mediated One-pot Synthesis of 1,2-Naphthoquinone from 2-Naphthol. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201701312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jaeuk Sim
- College of Pharmacy and Medicinal Research Center (MRC); Chungbuk National University; Cheongju 28160 Republic of Korea
| | - Hyeju Jo
- College of Pharmacy and Medicinal Research Center (MRC); Chungbuk National University; Cheongju 28160 Republic of Korea
| | - Mayavan Viji
- College of Pharmacy and Medicinal Research Center (MRC); Chungbuk National University; Cheongju 28160 Republic of Korea
| | - Minho Choi
- College of Pharmacy and Medicinal Research Center (MRC); Chungbuk National University; Cheongju 28160 Republic of Korea
| | - Jin-Ah Jung
- College of Pharmacy and Medicinal Research Center (MRC); Chungbuk National University; Cheongju 28160 Republic of Korea
| | - Heesoon Lee
- College of Pharmacy and Medicinal Research Center (MRC); Chungbuk National University; Cheongju 28160 Republic of Korea
| | - Jae-Kyung Jung
- College of Pharmacy and Medicinal Research Center (MRC); Chungbuk National University; Cheongju 28160 Republic of Korea
| |
Collapse
|
16
|
Penning TM. Genotoxicity of ortho-quinones: reactive oxygen species versus covalent modification. Toxicol Res (Camb) 2017. [PMID: 29527287 DOI: 10.1039/c7tx00223h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
o-Quinones are formed metabolically from natural and synthetic estrogens as well as upon exposure to polycyclic aromatic hydrocarbons (PAH) and contribute to estrogen and PAH carcinogenesis by genotoxic mechanisms. These mechanisms include the production of reactive oxygen species to produce DNA strand breaks and oxidatively damaged nucleobases; and the formation of covalent depurinating and stable DNA adducts. Unrepaired DNA-lesions can lead to mutation in critical growth control genes and cellular transformation. The genotoxicity of the o-quinones is exacerbated by nuclear translocation of estrogen o-quinones by the estrogen receptor and by the nuclear translocation of PAH o-quinones by the aryl hydrocarbon receptor. The properties of o-quinones, their formation and detoxication mechanisms, quinone-mediated DNA lesions and their mutagenic properties support an important role in hormonal and chemical carcinogenesis.
Collapse
Affiliation(s)
- Trevor M Penning
- Center of Excellence in Environmental Toxicology and Department of Systems Pharmacology & Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| |
Collapse
|
17
|
Cavalieri EL, Rogan EG, Zahid M. Critical depurinating DNA adducts: Estrogen adducts in the etiology and prevention of cancer and dopamine adducts in the etiology and prevention of Parkinson's disease. Int J Cancer 2017; 141:1078-1090. [PMID: 28388839 DOI: 10.1002/ijc.30728] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/23/2017] [Accepted: 03/17/2017] [Indexed: 01/19/2023]
Abstract
Endogenous estrogens become carcinogens when dangerous metabolites, the catechol estrogen quinones, are formed. In particular, the catechol estrogen-3,4-quinones can react with DNA to produce an excess of specific depurinating estrogen-DNA adducts. Loss of these adducts leaves apurinic sites in the DNA, generating subsequent cancer-initiating mutations. Unbalanced estrogen metabolism yields excessive catechol estrogen-3,4-quinones, increasing formation of depurinating estrogen-DNA adducts and the risk of initiating cancer. Evidence for this mechanism of cancer initiation comes from various types of studies. High levels of depurinating estrogen-DNA adducts have been observed in women with breast, ovarian or thyroid cancer, as well as in men with prostate cancer or non-Hodgkin lymphoma. Observation of high levels of depurinating estrogen-DNA adducts in high risk women before the presence of breast cancer indicates that adduct formation is a critical factor in breast cancer initiation. Formation of analogous depurinating dopamine-DNA adducts is hypothesized to initiate Parkinson's disease by affecting dopaminergic neurons. Two dietary supplements, N-acetylcysteine and resveratrol complement each other in reducing formation of catechol estrogen-3,4-quinones and inhibiting formation of estrogen-DNA adducts in cultured human and mouse breast epithelial cells. They also inhibit malignant transformation of these cells. In addition, formation of adducts was reduced in women who followed a Healthy Breast Protocol that includes N-acetylcysteine and resveratrol. When initiation of cancer is blocked, promotion, progression and development of the disease cannot occur. These results suggest that reducing formation of depurinating estrogen-DNA adducts can reduce the risk of developing a variety of types of human cancer.
Collapse
Affiliation(s)
- Ercole L Cavalieri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE.,Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE
| | - Eleanor G Rogan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE.,Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE
| | - Muhammad Zahid
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
18
|
Mukhtar A, Zaheer M, Saeed M, Voelter W. Synthesis of lignin model compound containing a β-O-4 linkage. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2017. [DOI: 10.1515/znb-2016-0201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Development of catalysts for efficient conversion of lignin polymer to value-added materials requires appropriately-functionalized lignin model compounds. The predominant structural feature of lignin biopolymer is an extensive network of β-O-4 linkages. Access to large amounts of a model compound containing the β-O-4 linkage is crucial for the valorisation of lignin biopolymer to aromatic raw materials. Starting from commercially available vanillin, synthesis of dilignol model compound, containing a β-O-4 linkage, is accomplished in good overall yield.
Collapse
Affiliation(s)
- Asma Mukhtar
- Department of Chemistry, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Muhammad Zaheer
- Department of Chemistry, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Muhammad Saeed
- Department of Chemistry, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Wolfgang Voelter
- Interfakultäres Institut für Biochemie, Eberhard Karls Universität Tübingen, Hoppe-Seyler Straße 4, 72076 Tübingen, Germany
| |
Collapse
|
19
|
Cavalieri EL, Rogan EG. Depurinating estrogen-DNA adducts, generators of cancer initiation: their minimization leads to cancer prevention. Clin Transl Med 2016; 5:12. [PMID: 26979321 PMCID: PMC4792821 DOI: 10.1186/s40169-016-0088-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/28/2016] [Indexed: 02/15/2023] Open
Abstract
Estrogens can initiate cancer by reacting with DNA. Specific metabolites of endogenous estrogens, the catechol estrogen-3,4-quinones, react with DNA to form depurinating estrogen-DNA adducts. Loss of these adducts leaves apurinic sites in the DNA, generating mutations that can lead to the initiation of cancer. A variety of endogenous and exogenous factors can disrupt estrogen homeostasis, which is the normal balance between estrogen activating and protective enzymes. In fact, if estrogen metabolism becomes unbalanced and generates excessive catechol estrogen 3,4-quinones, formation of depurinating estrogen-DNA adducts increases and the risk of initiating cancer is greater. The levels of depurinating estrogen-DNA adducts are high in women diagnosed with breast cancer and those at high risk for the disease. High levels of depurinating estrogen-DNA adducts before the presence of breast cancer indicates that adduct formation is a critical factor in breast cancer initiation. Women with thyroid or ovarian cancer also have high levels of estrogen-DNA adducts, as do men with prostate cancer or non-Hodgkin lymphoma. Depurinating estrogen-DNA adducts are initiators of many prevalent types of human cancer. These findings and other discoveries led to the recognition that reducing the levels of estrogen-DNA adducts could prevent the initiation of human cancer. The dietary supplements N-acetylcysteine and resveratrol inhibit formation of estrogen-DNA adducts in cultured human breast cells and in women. These results suggest that the two supplements offer an approach to reducing the risk of developing various prevalent types of human cancer. Graphical abstract Major metabolic pathway in cancer initiation by estrogens.
Collapse
Affiliation(s)
- Ercole L. Cavalieri
- />Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE USA
- />Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE USA
| | - Eleanor G. Rogan
- />Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE USA
- />Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE USA
| |
Collapse
|
20
|
Carratt SA, Morin D, Buckpitt AR, Edwards PC, Van Winkle LS. Naphthalene cytotoxicity in microsomal epoxide hydrolase deficient mice. Toxicol Lett 2016; 246:35-41. [PMID: 26840748 DOI: 10.1016/j.toxlet.2016.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/16/2016] [Accepted: 01/24/2016] [Indexed: 12/01/2022]
Abstract
Naphthalene (NA) is a ubiquitous pollutant to which humans are widely exposed. 1,2-Dihydro-1,2-dihydroxynaphthalene (NA-dihydrodiol) is a major metabolite of NA generated by microsomal epoxide hydrolase (mEH). To investigate the role of the NA-dihydrodiol and subsequent metabolites (i.e. 1,2-naphthoquinone) in cytotoxicity, we exposed both male and female wild type (WT) and mEH null mice (KO) to NA by inhalation (5, 10, 20 ppm for 4h). NA-dihydrodiol was ablated in the KO mice. High-resolution histopathology was used to study site-specific cytotoxicity, and formation of naphthalene metabolites was measured by HPLC in microdissected airways. Swollen and vacuolated airway epithelial cells were observed in the intra- and extrapulmonary airways of all mice at and below the current OSHA standard (10 ppm). Female mice may be more susceptible to this acute cytotoxicity. In the extrapulmonary airways, WT mice were more susceptible to damage than KO mice, indicating that the metabolites associated with mEH-mediated metabolism could be partially responsible for cytotoxicity at this site. The level of cytotoxicity in the mEH KO mice at all airway levels suggests that non-mEH metabolites are contributing to NA cellular damage in the lung. Our results indicate that the apparent contribution of mEH-dependent metabolites to toxicity differs by location in the lung. These studies suggest that metabolites generated through the mEH pathway may be of minor importance in distal airway toxicity and subsequent carcinogenesis from NA exposure.
Collapse
Affiliation(s)
- S A Carratt
- Center for Health and the Environment, University of California Davis, Davis, CA 95616, USA
| | - D Morin
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - A R Buckpitt
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - P C Edwards
- Center for Health and the Environment, University of California Davis, Davis, CA 95616, USA
| | - L S Van Winkle
- Center for Health and the Environment, University of California Davis, Davis, CA 95616, USA; Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
21
|
Pampanin DM, Le Goff J, Skogland K, Marcucci CR, Øysæd KB, Lorentzen M, Jørgensen KB, Sydnes MO. Biological effects of polycyclic aromatic hydrocarbons (PAH) and their first metabolic products in in vivo exposed Atlantic cod (Gadus morhua). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:633-646. [PMID: 27484143 DOI: 10.1080/15287394.2016.1171993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The monitoring of the presence of polycyclic aromatic hydrocarbons (PAH) in the aquatic environment is a worldwide activity since some of these compounds are well-established carcinogens and mutagens. Contaminants in this class are in fact regarded as priority hazardous substances for environmental pollution (Water Framework Directive 2000/60/EC). In this study, Atlantic cod (Gadus morhua) was selected to assess in vivo effects of two PAH and their first metabolic products, namely, the corresponding trans-dihydrodiols, using biological markers. Fish were exposed for 1 wk to a single PAH (naphthalene or chrysene) and its synthetic metabolites ((1R,2R)-1,2-dihydronaphthalene-1,2-diol and (1R,2R)-1,2-dihydrochrysene-1,2-diol) by intraperitoneal injection in a continuous seawater flow system. After exposure, PAH metabolism including PAH metabolites in bile and ethoxyresorufin O-deethylase (EROD) activity, oxidative stress glutathione S-transferases (GST) and catalase (CAT) activities, and genotoxicity such as DNA adducts were evaluated, as well as general health conditions including condition index (CI), hepatosomatic index (HSI), and gonadosomatic index (GSI). PAH metabolite values were low and not significantly different when measured with the fixed-wavelength fluorescence screening method, while the gas chromatography-mass spectroscopy (GC-MS) method showed an apparent dose response in fish exposed to naphthalene. DNA adduct levels ≥0.16 × 10(-8) relative adduct level (RAL) were detected. It should be noted that 0.16 × 10(-8) RAL is considered the maximal acceptable background level for this species. The other biomarkers activities of catalase, GST, and EROD did not display a particular compound- or dose-related response. The GSI values were significantly lower in some chrysene- and in both naphthalene- and naphthalene diol-exposed groups compared to control.
Collapse
Affiliation(s)
- Daniela M Pampanin
- a International Research Institute of Stavanger (IRIS) , Environment Department , Randaberg , Norway
| | | | - Karianne Skogland
- a International Research Institute of Stavanger (IRIS) , Environment Department , Randaberg , Norway
| | - Cristian R Marcucci
- a International Research Institute of Stavanger (IRIS) , Environment Department , Randaberg , Norway
- c Faculty of Science and Technology, Department of Mathematics and Natural Science , University of Stavanger , Stavanger , Norway
| | - Kjell Birger Øysæd
- a International Research Institute of Stavanger (IRIS) , Environment Department , Randaberg , Norway
| | - Marianne Lorentzen
- c Faculty of Science and Technology, Department of Mathematics and Natural Science , University of Stavanger , Stavanger , Norway
| | - Kåre B Jørgensen
- c Faculty of Science and Technology, Department of Mathematics and Natural Science , University of Stavanger , Stavanger , Norway
| | - Magne O Sydnes
- c Faculty of Science and Technology, Department of Mathematics and Natural Science , University of Stavanger , Stavanger , Norway
| |
Collapse
|
22
|
Bailey LA, Nascarella MA, Kerper LE, Rhomberg LR. Hypothesis-based weight-of-evidence evaluation and risk assessment for naphthalene carcinogenesis. Crit Rev Toxicol 2015; 46:1-42. [PMID: 26202831 PMCID: PMC4732411 DOI: 10.3109/10408444.2015.1061477] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/09/2015] [Indexed: 11/13/2022]
Abstract
Inhalation of naphthalene causes olfactory epithelial nasal tumors in rats (but not in mice) and benign lung adenomas in mice (but not in rats). The limited available human data have not identified an association between naphthalene exposure and increased respiratory cancer risk. Assessing naphthalene's carcinogenicity in humans, therefore, depends entirely on experimental evidence from rodents. We evaluated the respiratory carcinogenicity of naphthalene in rodents, and its potential relevance to humans, using our Hypothesis-Based Weight-of-Evidence (HBWoE) approach. We systematically and comparatively reviewed data relevant to key elements in the hypothesized modes of action (MoA) to determine which is best supported by the available data, allowing all of the data from each realm of investigation to inform interpretation of one another. Our analysis supports a mechanism that involves initial metabolism of naphthalene to the epoxide, followed by GSH depletion, cytotoxicity, chronic inflammation, regenerative hyperplasia, and tumor formation, with possible weak genotoxicity from downstream metabolites occurring only at high cytotoxic doses, strongly supporting a non-mutagenic threshold MoA in the rat nose. We also conducted a dose-response analysis, based on the likely MoA, which suggests that the rat nasal MoA is not relevant in human respiratory tissues at typical environmental exposures. Our analysis illustrates how a thorough WoE evaluation can be used to support a MoA, even when a mechanism of action cannot be fully elucidated. A non-mutagenic threshold MoA for naphthalene-induced rat nasal tumors should be considered as a basis to determine human relevance and to guide regulatory and risk-management decisions.
Collapse
|
23
|
Gavina JMA, Yao C, Feng YL. Recent developments in DNA adduct analysis by mass spectrometry: a tool for exposure biomonitoring and identification of hazard for environmental pollutants. Talanta 2014; 130:475-94. [PMID: 25159438 DOI: 10.1016/j.talanta.2014.06.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/19/2014] [Accepted: 06/22/2014] [Indexed: 02/08/2023]
Abstract
DNA adducts represent an important category of biomarkers for detection and exposure surveillance of potential carcinogenic and genotoxic chemicals in the environment. Sensitive and specific analytical methods are required to detect and differentiate low levels of adducts from native DNA from in vivo exposure. In addition to biomonitoring of environmental pollutants, analytical methods have been developed for structural identification of adducts which provides fundamental information for determining the toxic pathway of hazardous chemicals. In order to achieve the required sensitivity, mass spectrometry has been increasingly utilized to quantify adducts at low levels as well as to obtain structural information. Furthermore, separation techniques such as chromatography and capillary electrophoresis can be coupled to mass spectrometry to increase the selectivity. This review will provide an overview of advances in detection of adducted and modified DNA by mass spectrometry with a focus on the analysis of nucleosides since 2007. Instrument advances, sample and instrument considerations, and recent applications will be summarized in the context of hazard assessment. Finally, advances in biomonitoring applying mass spectrometry will be highlighted. Most importantly, the usefulness of DNA adducts measurement and detection will be comprehensively discussed as a tool for assessment of in vitro and in vivo exposure to environmental pollutants.
Collapse
Affiliation(s)
- Jennilee M A Gavina
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Columbine Driveway, AL: 0800C, Ottawa, Ontario, Canada K1A 0K9
| | - Chunhe Yao
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Columbine Driveway, AL: 0800C, Ottawa, Ontario, Canada K1A 0K9
| | - Yong-Lai Feng
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Columbine Driveway, AL: 0800C, Ottawa, Ontario, Canada K1A 0K9.
| |
Collapse
|
24
|
Cavalieri E, Rogan E. The molecular etiology and prevention of estrogen-initiated cancers: Ockham's Razor: Pluralitas non est ponenda sine necessitate. Plurality should not be posited without necessity. Mol Aspects Med 2014; 36:1-55. [PMID: 23994691 PMCID: PMC3938998 DOI: 10.1016/j.mam.2013.08.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 12/22/2022]
Abstract
Elucidation of estrogen carcinogenesis required a few fundamental discoveries made by studying the mechanism of carcinogenesis of polycyclic aromatic hydrocarbons (PAH). The two major mechanisms of metabolic activation of PAH involve formation of radical cations and diol epoxides as ultimate carcinogenic metabolites. These intermediates react with DNA to yield two types of adducts: stable adducts that remain in DNA unless removed by repair and depurinating adducts that are lost from DNA by cleavage of the glycosyl bond between the purine base and deoxyribose. The potent carcinogenic PAH benzo[a]pyrene, dibenzo[a,l]pyrene, 7,12-dimethylbenz[a]anthracene and 3-methylcholanthrene predominantly form depurinating DNA adducts, leaving apurinic sites in the DNA that generate cancer-initiating mutations. This was discovered by correlation between the depurinating adducts formed in mouse skin by treatment with benzo[a]pyrene, dibenzo[a,l]pyrene or 7,12-dimethylbenz[a]anthracene and the site of mutations in the Harvey-ras oncogene in mouse skin papillomas initiated by one of these PAH. By applying some of these fundamental discoveries in PAH studies to estrogen carcinogenesis, the natural estrogens estrone (E1) and estradiol (E2) were found to be mutagenic and carcinogenic through formation of the depurinating estrogen-DNA adducts 4-OHE1(E2)-1-N3Ade and 4-OHE1(E2)-1-N7Gua. These adducts are generated by reaction of catechol estrogen quinones with DNA, analogously to the DNA adducts obtained from the catechol quinones of benzene, naphthalene, and the synthetic estrogens diethylstilbestrol and hexestrol. This is a weak mechanism of cancer initiation. Normally, estrogen metabolism is balanced and few estrogen-DNA adducts are formed. When estrogen metabolism becomes unbalanced, more catechol estrogen quinones are generated, resulting in higher levels of estrogen-DNA adducts, which can be used as biomarkers of unbalanced estrogen metabolism and, thus, cancer risk. The ratio of estrogen-DNA adducts to estrogen metabolites and conjugates has repeatedly been found to be significantly higher in women at high risk for breast cancer, compared to women at normal risk. These results indicate that formation of estrogen-DNA adducts is a critical factor in the etiology of breast cancer. Significantly higher adduct ratios have been observed in women with breast, thyroid or ovarian cancer. In the women with ovarian cancer, single nucleotide polymorphisms in the genes for two enzymes involved in estrogen metabolism indicate risk for ovarian cancer. When polymorphisms produce high activity cytochrome P450 1B1, an activating enzyme, and low activity catechol-O-methyltransferase, a protective enzyme, in the same woman, she is almost six times more likely to have ovarian cancer. These results indicate that formation of estrogen-DNA adducts is a critical factor in the etiology of ovarian cancer. Significantly higher ratios of estrogen-DNA adducts to estrogen metabolites and conjugates have also been observed in men with prostate cancer or non-Hodgkin lymphoma, compared to healthy men without cancer. These results also support a critical role of estrogen-DNA adducts in the initiation of cancer. Starting from the perspective that unbalanced estrogen metabolism can lead to increased formation of catechol estrogen quinones, their reaction with DNA to form adducts, and generation of cancer-initiating mutations, inhibition of estrogen-DNA adduct formation would be an effective approach to preventing a variety of human cancers. The dietary supplements resveratrol and N-acetylcysteine can act as preventing cancer agents by keeping estrogen metabolism balanced. These two compounds can reduce the formation of catechol estrogen quinones and/or their reaction with DNA. Therefore, resveratrol and N-acetylcysteine provide a widely applicable, inexpensive approach to preventing many of the prevalent types of human cancer.
Collapse
Affiliation(s)
- Ercole Cavalieri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA; Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, 984388 Nebraska Medical Center, Omaha, NE 68198-4388, USA.
| | - Eleanor Rogan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA; Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, 984388 Nebraska Medical Center, Omaha, NE 68198-4388, USA.
| |
Collapse
|
25
|
Orjuela MA, Liu X, Miller RL, Warburton D, Tang D, Jobanputra V, Hoepner L, Suen IH, Diaz-Carreño S, Li Z, Sjodin A, Perera FP. Urinary naphthol metabolites and chromosomal aberrations in 5-year-old children. Cancer Epidemiol Biomarkers Prev 2012; 21:1191-202. [PMID: 22573794 PMCID: PMC3392422 DOI: 10.1158/1055-9965.epi-12-0214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Exposure to naphthalene, an International Agency for Research on Cancer (IARC)-classified possible carcinogen and polycyclic aromatic hydrocarbon (PAH), is widespread, though resulting health effects are poorly understood. Metabolites of naphthalene, 1- and 2-naphthol, are measurable in urine and are biomarkers of personal exposure. Chromosomal aberrations, including translocations, are established markers of cancer risk and a biodosimeter of clastogenic exposures. Although prenatal (maternal) PAH exposure predicts chromosomal aberrations in cord blood, few studies have examined chromosomal aberrations in school-age children and none has examined their association with metabolites of specific PAHs. METHODS Using Whole Chromosome Paint Fluorescent in situ Hybridization, we documented chromosomal aberrations including translocations, in 113 five-year-old urban minority children and examined their association with concurrent concentrations of PAH metabolites measured in urine. RESULTS We report that in lymphocytes, the occurrence and frequency of chromosomal aberrations including translocations are associated with levels of urinary 1- and 2-naphthol. When doubling the levels of urinary naphthols, gender-adjusted OR for chromosomal aberrations are 1.63 [95% confidence interval (CI), 1.21-2.19] and 1.44 (95% CI, 1.02-2.04) for 1- and 2-naphthol, respectively; and for translocations OR = 1.55 (95% CI, 1.11-2.17) and 1.92 (95% CI, 1.20-3.08) for 1- and 2-naphthol, respectively. CONCLUSION Our results show that markers of exposure to naphthalene in children are associated with translocations in a dose-related manner, and that naphthalene may be a clastogen. IMPACT Indoor exposure to elevated levels of naphthalene is prevalent in large regions of the world. This study is the first to present an association between a marker of naphthalene exposure and a precarcinogenic effect in humans.
Collapse
Affiliation(s)
- Manuela A Orjuela
- Department of Pediatrics, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kapuci M, Ulker Z, Gurkan S, Alpsoy L. Determination of cytotoxic and genotoxic effects of naphthalene, 1-naphthol and 2-naphthol on human lymphocyte culture. Toxicol Ind Health 2012; 30:82-9. [DOI: 10.1177/0748233712451772] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Naphthalene, a bicyclic aromatic hydrocarbon, has toxic effects on animals and humans. Although recent studies stressed on the genotoxic and cytotoxic effects of naphthalene and its metabolites on eukaryotic cells, there is a big controversy among the results of these studies. The aim of this study is to investigate the effects of naphthalene and its metabolites on the cytotoxicity and genotoxicity in the human lymphocytes in the culture. The genotoxic and cytotoxic effects of naphthalene and its metabolites, 1-naphthol and 2-naphthol, were studied using cytotoxicity test (lactate dehydrogenase and cell proliferation (WST-1) assays) and DNA fragmentation assay (terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay). Naphthalene and its metabolites had no significant cytotoxic effect on treated samples when compared with untreated ones. This result was also confirmed by WST-1 assay. In the TUNEL assay, DNA fragmentation was induced significantly by all concentrations of naphthalene and 2-naphthol and 50 and 100 µM concentrations of 1-naphthol ( p < 0.05 or 0.001). In the DNA fragmentation, the most effective dose of 2-naphthol (63%) was 100 µM, when compared with negative control group (13%). These results suggest that naphthalene and its metabolites, 1-naphthol and 2-naphthol, may cause DNA damage on human lymphocytes.
Collapse
Affiliation(s)
- Mete Kapuci
- Department of Biology, Faculty of Arts and Science, Fatih Üniversitesi, Büyükçekmece/Istanbul, Turkey
| | - Zeynep Ulker
- Department of Biology, Faculty of Arts and Science, Fatih Üniversitesi, Büyükçekmece/Istanbul, Turkey
| | - Sezin Gurkan
- Department of Biology, Faculty of Arts and Science, Fatih Üniversitesi, Büyükçekmece/Istanbul, Turkey
| | - Lokman Alpsoy
- Department of Biology, Faculty of Arts and Science, Fatih Üniversitesi, Büyükçekmece/Istanbul, Turkey
| |
Collapse
|
27
|
Development of new structural alerts suitable for chemical category formation for assigning covalent and non-covalent mechanisms relevant to DNA binding. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 743:10-9. [DOI: 10.1016/j.mrgentox.2011.12.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/11/2011] [Accepted: 12/15/2011] [Indexed: 11/19/2022]
|
28
|
Recio L, Shepard KG, Hernández LG, Kedderis GL. Dose-response assessment of naphthalene-induced genotoxicity and glutathione detoxication in human TK6 lymphoblasts. Toxicol Sci 2012; 126:405-12. [PMID: 22253058 DOI: 10.1093/toxsci/kfs012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The dose-response relationship for the induction of micronuclei (MN) and the impact of glutathione (GSH) detoxication on naphthalene-induced cytotoxicity and genotoxicity were investigated in human TK6 cells. TK6 cells were exposed to 10 concentrations ranging from 0.0625 to 30μM naphthalene in the presence of β-naphthoflavone- and phenobarbital (βNP/PB)-induced rat liver S9 with a nicotinamide adenine dinucleotide phosphate-generating system. Three approaches were used to identify a no-observed-effect level (NOEL) for naphthalene-induced genotoxicity: (1) laboratory criteria of ≥ twofold increase over the concurrent solvent controls (NOEL = 10μM), (2) ANOVA with Bonferroni correction (NOEL = 2.5μM), and (3) the benchmark dose approach (BMCL(10) = 3.35μM). The NOEL and point of departure micronucleus frequency for naphthalene-induced MN are between the tested naphthalene concentrations of 2.5-10.0μM in this experimental system. Supplementation of the exposure system with physiological relevant concentrations of 5mM GSH eliminated naphthalene-induced cytotoxicity and genotoxicity; no increased cytotoxicity or genotoxicity was observed at concentrations of up to 500μM naphthalene in the presence of GSH compared with 2.5-10.0μM in the absence of GSH. Naphthalene bioactivation by βNP/PB-induced rat liver S9 exhibits a nonlinear dose-response for the induction of MN in TK6 cells with a NOEL of 2.5-10μM that in the presence of GSH is shifted upward greater than 50- to 200-fold. These data demonstrate a nonlinear dose-response for naphthalene-induced genotoxicity that is eliminated by GSH, and both observations should be considered when assessing human risk from naphthalene exposures.
Collapse
Affiliation(s)
- Leslie Recio
- Integrated Laboratory Systems, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | |
Collapse
|
29
|
Cavalieri EL, Rogan EG. The etiology and prevention of breast cancer. DRUG DISCOVERY TODAY. DISEASE MECHANISMS 2012; 9:e55-e69. [PMID: 26246832 PMCID: PMC4522944 DOI: 10.1016/j.ddmec.2013.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Metabolism of estrogens via the catechol estrogen pathway is characterized by a balanced set of activating and protective enzymes (homeostasis). Disruption of homeostasis, with excessive production of catechol estrogen quinones, can lead to reaction of these quinones with DNA to form depurinating estrogen-DNA adducts. Some of the mutations generated by these events can lead to initiation of breast cancer. A wealth of evidence, from studies of metabolism, mutagenicity, cell transformation and carcinogenicity, demonstrates that estrogens are genotoxic. Women at high risk for breast cancer, or diagnosed with the disease, have relatively high levels of depurinating estrogen-DNA adducts compared to normal-risk women. The dietary supplements N-acetylcysteine and resveratrol can inhibit formation of catechol estrogen quinones and their reaction with DNA to form estrogen-DNA adducts, thereby preventing initiation of breast cancer.
Collapse
Affiliation(s)
- Ercole L. Cavalieri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Eleanor G. Rogan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
30
|
Kastrati I, Edirisinghe PD, Hemachandra LPMP, Chandrasena ER, Choi J, Wang YT, Bolton JL, Thatcher GRJ. Raloxifene and desmethylarzoxifene block estrogen-induced malignant transformation of human breast epithelial cells. PLoS One 2011; 6:e27876. [PMID: 22140478 PMCID: PMC3226622 DOI: 10.1371/journal.pone.0027876] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 10/27/2011] [Indexed: 11/25/2022] Open
Abstract
There is association between exposure to estrogens and the development and progression of hormone-dependent gynecological cancers. Chemical carcinogenesis by catechol estrogens derived from oxidative metabolism is thought to contribute to breast cancer, yet exact mechanisms remain elusive. Malignant transformation was studied in MCF-10A human mammary epithelial cells, since estrogens are not proliferative in this cell line. The human and equine estrogen components of estrogen replacement therapy (ERT) and their catechol metabolites were studied, along with the influence of co-administration of selective estrogen receptor modulators (SERMs), raloxifene and desmethyl-arzoxifene (DMA), and histone deacetylase inhibitors. Transformation was induced by human estrogens, and selectively by the 4-OH catechol metabolite, and to a lesser extent by an equine estrogen metabolite. The observed estrogen-induced upregulation of CYP450 1B1 in estrogen receptor negative MCF-10A cells, was compatible with a causal role for 4-OH catechol estrogens, as was attenuated transformation by CYP450 inhibitors. Estrogen-induced malignant transformation was blocked by SERMs correlating with a reduction in formation of nucleobase catechol estrogen (NCE) adducts and formation of 8-oxo-dG. NCE adducts can be formed consequent to DNA abasic site formation, but NCE adducts were also observed on incubation of estrogen quinones with free nucleotides. These results suggest that NCE adducts may be a biomarker for cellular electrophilic stress, which together with 8-oxo-dG as a biomarker of oxidative stress correlate with malignant transformation induced by estrogen oxidative metabolites. The observed attenuation of transformation by SERMs correlated with these biomarkers and may also be of clinical significance in breast cancer chemoprevention.
Collapse
Affiliation(s)
- Irida Kastrati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Illinois, United States
| | - Praneeth D. Edirisinghe
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Illinois, United States
| | - L-P-Madhubani P. Hemachandra
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Illinois, United States
| | - Esala R. Chandrasena
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Illinois, United States
| | - Jaewoo Choi
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Illinois, United States
| | - Yue-Ting Wang
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Illinois, United States
| | - Judy L. Bolton
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Illinois, United States
| | - Gregory R. J. Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Illinois, United States
| |
Collapse
|
31
|
Cavalieri EL, Rogan EG. Unbalanced metabolism of endogenous estrogens in the etiology and prevention of human cancer. J Steroid Biochem Mol Biol 2011; 125:169-80. [PMID: 21397019 PMCID: PMC4423478 DOI: 10.1016/j.jsbmb.2011.03.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 02/16/2011] [Accepted: 03/04/2011] [Indexed: 12/11/2022]
Abstract
Among the numerous small molecules in the body, the very few aromatic ones include the estrogens and dopamine. In relation to cancer initiation, the estrogens should be considered as chemicals, not as hormones. Metabolism of estrogens is characterized by two major pathways. One is hydroxylation to form the 2- and 4-catechol estrogens, and the second is hydroxylation at the 16α position. In the catechol pathway, the metabolism involves further oxidation to semiquinones and quinones, including formation of the catechol estrogen-3,4-quinones, the major carcinogenic metabolites of estrogens. These electrophilic compounds react with DNA to form the depurinating adducts 4-OHE(1)(E(2))-1-N3Ade and 4-OHE(1)(E(2))-1-N7Gua. The apurinic sites obtained by this reaction generate the mutations that may lead to the initiation of cancer. Oxidation of catechol estrogens to their quinones is normally in homeostasis, which minimizes formation of the quinones and their reaction with DNA. When the homeostasis is disrupted, excessive amounts of catechol estrogen quinones are formed and the resulting increase in depurinating DNA adducts can lead to initiation of cancer. Substantial evidence demonstrates the mutagenicity of the estrogen metabolites and their ability to induce transformation of mouse and human breast epithelial cells, and tumors in laboratory animals. Furthermore, women at high risk for breast cancer or diagnosed with the disease, men with prostate cancer, and men with non-Hodgkin lymphoma all have relatively high levels of estrogen-DNA adducts, compared to matched control subjects. Specific antioxidants, such as N-acetylcysteine and resveratrol, can block the oxidation of catechol estrogens to their quinones and their reaction with DNA. As a result, the initiation of cancer can be prevented.
Collapse
Affiliation(s)
- Ercole L Cavalieri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, United States.
| | | |
Collapse
|
32
|
Endo A, Sumi D, Iwamoto N, Kumagai Y. Inhibition of DNA binding activity of cAMP response element-binding protein by 1,2-naphthoquinone through chemical modification of Cys-286. Chem Biol Interact 2011; 192:272-7. [PMID: 21530497 DOI: 10.1016/j.cbi.2011.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/10/2011] [Accepted: 04/13/2011] [Indexed: 11/27/2022]
Abstract
1,2-Naphthoquinone (1,2-NQ) is an atmospheric electrophile that reacts covalently with protein thiols. Our previous study revealed that exposure of bovine aortic endothelial cells to 1,2-NQ causes covalent modification of cAMP response element-binding protein (CREB), thereby inhibiting its DNA binding activity and substantial gene expression of B-cell lymphoma-2 (Bcl-2) that is regulated by this transcription factor. In this study, we identified the modification sites of CREB that are associated with the decreased transcriptional activity. Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF/MS) analysis indicated that three amino acids (Cys-286, Lys-290, and Lys-319) were irreversibly modified by 1,2-NQ. Mutational analysis revealed that electrophilic modification of Cys-286, but not the other two amino acids, at the DNA binding domain is essential for the reduced CREB activity. Substitution of Cys-286 with tryptophan (C286W), which mimics CREB modification by 1,2-NQ, supported this notion. These results suggest that the covalent interaction of CREB with 1,2-NQ through Cys-286 blocks the DNA binding activity of CREB, resulting in the repression of CREB-regulated genes.
Collapse
Affiliation(s)
- Akiko Endo
- Doctoral Programs in Medical Sciences, Graduate School of Comprehensive Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
33
|
Miura T, Shinkai Y, Jiang HY, Iwamoto N, Sumi D, Taguchi K, Yamamoto M, Jinno H, Tanaka-Kagawa T, Cho AK, Kumagai Y. Initial Response and Cellular Protection through the Keap1/Nrf2 System during the Exposure of Primary Mouse Hepatocytes to 1,2-Naphthoquinone. Chem Res Toxicol 2011; 24:559-67. [DOI: 10.1021/tx100427p] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | | | | | | | - Keiko Taguchi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Hideto Jinno
- Division of Environmental Chemistry, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Toshiko Tanaka-Kagawa
- Division of Environmental Chemistry, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Arthur K. Cho
- Southern California Particle Center, University of California, Los Angeles, California 90095, United States
| | - Yoshito Kumagai
- Southern California Particle Center, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
34
|
Meng F, Wang Y, Myers MB, Wong BA, Gross EA, Clewell HJ, Dodd DE, Parsons BL. p53 codon 271 CGT to CAT mutant fraction does not increase in nasal respiratory and olfactory epithelia of rats exposed to inhaled naphthalene. Mutat Res 2011; 721:199-205. [PMID: 21324376 DOI: 10.1016/j.mrgentox.2011.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/04/2011] [Accepted: 02/07/2011] [Indexed: 11/17/2022]
Abstract
A 2-year rat tumor bioassay testing whole body exposure to naphthalene (NA) vapor found a significant increase in nasal respiratory epithelial adenomas in male rats and in olfactory epithelial neuroblastomas in female rats. To obtain mechanistic insight into NA-induced nasal carcinogenesis, NA dose-response was characterized in nasal epithelium using a tumor-relevant endpoint. Specifically, levels of p53 codon 271 CGT to CAT mutation were measured in nasal respiratory and olfactory epithelium of NA-exposed male and female rats by allele-specific competitive blocker-PCR (ACB-PCR). Male and female, 8-9 week-old F344 rats (5 rats/group) were exposed to 0, 0.1, 1.0, 10, and 30ppm NA vapor for 13 weeks (6h/day, 5 days/week). The geometric mean p53 mutant fraction (MF) levels in nasal epithelium of control treatment groups ranged between 2.05 × 10(-5) and 3.05 × 10(-5). No significant dose-related changes in p53 mutant fraction (MF) were observed in the olfactory or respiratory epithelia of female rats. However, statistically significant treatment-related differences were observed in male respiratory and olfactory epithelium, with the p53 MF in the respiratory epithelium of male rats exposed to 30ppm NA significantly lower than that in controls. Further, a significant trend of decreasing p53 MF with increasing dose was observed in the male respiratory epithelium. Of the tissue types analyzed, respiratory epithelium is the most sensitive to the cytotoxic effects of NA, suggesting cytotoxicity may be responsible for the loss of p53 mutation. Because ACB-PCR has been used successfully to detect the effects of known mutagenic carcinogens, the absence of any significant increases in p53 MF associated with NA exposure adds to the weight of evidence that NA does not operate through a directly mutagenic mode of action.
Collapse
Affiliation(s)
- Fanxue Meng
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Enoch SJ, Cronin MTD. A review of the electrophilic reaction chemistry involved in covalent DNA binding. Crit Rev Toxicol 2011; 40:728-48. [PMID: 20722585 DOI: 10.3109/10408444.2010.494175] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The need to assess the ability of a chemical to act as a mutagen or a genotoxic carcinogen (collectively termed genotoxicity) is one of the primary requirements in regulatory toxicology. Several pieces of legislation have led to an increased interest in the use of in silico methods, specifically the formation of chemical categories for the assessment of toxicological endpoints. A key step in the development of chemical categories for genotoxicity is defining the organic chemistry associated with the formation of a covalent bond between DNA and an exogenous chemical. This organic chemistry is typically defined as structural alerts. To this end, this article has reviewed the literature defining the structural alerts associated with covalent DNA binding. Importantly, this review article also details the mechanistic organic chemistry associated with each of the structural alerts. This information is extremely important in terms of meeting regulatory requirements for the acceptance of the chemical category approach. The structural alerts and associated mechanistic chemistry have been incorporated into the Organisation for Economic Co-operation and Development (OECD) (Q)SAR Application Toolbox.
Collapse
Affiliation(s)
- S J Enoch
- School of Pharmacy and Chemistry, Liverpool John Moores University, Liverpool, England, UK
| | | |
Collapse
|
36
|
Rhomberg LR, Bailey LA, Goodman JE. Hypothesis-based weight of evidence: A tool for evaluating and communicating uncertainties and inconsistencies in the large body of evidence in proposing a carcinogenic mode of action—naphthalene as an example. Crit Rev Toxicol 2010; 40:671-96. [PMID: 20722583 DOI: 10.3109/10408444.2010.499504] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
DeStefano-Shields C, Morin D, Buckpitt A. Formation of covalently bound protein adducts from the cytotoxicant naphthalene in nasal epithelium: species comparisons. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:647-52. [PMID: 20435546 PMCID: PMC2866680 DOI: 10.1289/ehp.0901333] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 12/07/2009] [Indexed: 05/06/2023]
Abstract
BACKGROUND Naphthalene is a volatile hydrocarbon that causes dose-, species-, and cell type-dependent cytotoxicity after acute exposure and hyperplasia/neoplasia after lifetime exposures in rodents. Toxicity depends on metabolic activation, and reactive metabolite binding correlates with tissue and site susceptibility. OBJECTIVES We compared proteins adducted in nasal epithelium from rats and rhesus macaques in vitro. METHODS Adducted proteins recovered from incubations of nasal epithelium and 14C-naphthalene were separated by two-dimensional (2D) gel electrophoresis and imaged to register radioactive proteins. We identified proteins visualized by silver staining on complementary non-radioactive gels by peptide mass mapping. RESULTS The levels of reactive metabolite binding in incubations of rhesus ethmo-turbinates and maxillo-turbinates are similar to those in incubations of target tissues, including rat septal/-olfactory regions and murine dissected airway incubations. We identified 40 adducted spots from 2D gel separations of rat olfactory epithelial proteins; 22 of these were non-redundant. In monkeys, we identified 19 spots by mass spectrometry, yielding three non-redundant identifications. Structural proteins (actin/tubulin) were prominent targets in both species. CONCLUSIONS In this study we identified potential target proteins that may serve as markers closely associated with toxicity. The large differences in previously reported rates of naphthalene metabolism to water-soluble metabolites in dissected airways from mice and monkeys are not reflected in similar differences in covalent adduct formation in the nose. This raises concerns that downstream metabolic/biochemical events are very similar between the rat, a known target for naphthalene toxicity and tumorigenicity, and the rhesus macaque, a species similar to the human.
Collapse
Affiliation(s)
| | | | - Alan Buckpitt
- Address correspondence to A. Buckpitt, Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA 95616 USA. Telephone: (530) 752-7674. Fax: (530) 752-4698. E-mail:
| |
Collapse
|
38
|
Dodd DE, Gross EA, Miller RA, Wong BA. Nasal olfactory epithelial lesions in F344 and SD rats following 1- and 5-day inhalation exposure to naphthalene vapor. Int J Toxicol 2010; 29:175-84. [PMID: 20086191 DOI: 10.1177/1091581809357955] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The exposure-response relationship and threshold for nasal epithelial effects of naphthalene (NP) vapor in F344 and SD rats were investigated in 1-day (6 hours) and 5-day (6 h/d) studies at concentration ranges of 0 to 30 ppm. Lesions related to 1-day exposure were predominantly necrosis of the olfactory epithelium (OE). The severity of OE lesions was concentration dependent and ranged from minimal (< or =1 ppm) to marked (10-30 ppm). In the 5-day study, degeneration of OE was observed in both strains, both sexes, with increasing incidence and severity that correlated with concentration. The epithelial degeneration lesion was minimal to moderate in severity. At 0.1 ppm, minimal OE lesions were observed in female SD rats only (20% incidence). Animals exposed to 10 ppm NP followed by 14 days without exposure also had OE lesions, but of lower severity, showing evidence of good recovery. In both studies, differences between sex or strain were not remarkable.
Collapse
Affiliation(s)
- Darol E Dodd
- Hamner Institutes for Health Sciences, Research Triangle Park, NC, USA.
| | | | | | | |
Collapse
|
39
|
Zahid M, Saeed M, Rogan EG, Cavalieri EL. Benzene and dopamine catechol quinones could initiate cancer or neurogenic disease. Free Radic Biol Med 2010; 48:318-24. [PMID: 19909805 PMCID: PMC2818485 DOI: 10.1016/j.freeradbiomed.2009.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 10/22/2009] [Accepted: 11/04/2009] [Indexed: 01/21/2023]
Abstract
Catechol quinones of estrogens react with DNA by 1,4-Michael addition to form depurinating N3Ade and N7Gua adducts. Loss of these adducts from DNA creates apurinic sites that can generate mutations leading to cancer initiation. We compared the reactions of the catechol quinones of the leukemogenic benzene (CAT-Q) and N-acetyldopamine (NADA-Q) with 2'-deoxyguanosine (dG) or DNA. NADA was used to prevent intramolecular cyclization of dopamine quinone. Reaction of CAT-Q or NADA-Q with dG at pH 4 afforded CAT-4-N7dG or NADA-6-N7dG, which lost deoxyribose with a half-life of 3 h to form CAT-4-N7Gua or 4 h to form NADA-6-N7Gua. When CAT-Q or NADA-Q was reacted with DNA, N3Ade adducts were formed and lost from DNA instantaneously, whereas N7Gua adducts were lost over several hours. The maximum yield of adducts in the reaction of CAT-Q or NADA-Q with DNA at pH 4 to 7 was at pH 4. When tyrosinase-activated CAT or NADA was reacted with DNA at pH 5 to 8, adduct levels were much higher (10- to 15-fold), and the highest yield was at pH 5. Reaction of catechol quinones of natural and synthetic estrogens, benzene, naphthalene, and dopamine with DNA to form depurinating adducts is a common feature that may lead to initiation of cancer or neurodegenerative disease.
Collapse
Affiliation(s)
- Muhammad Zahid
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Muhammad Saeed
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Eleanor G. Rogan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE
| | - Ercole L. Cavalieri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
- Ercole L. Cavalieri, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 658198-6805, Telephone: 402-559-7237, Fax: 402-559-8068,
| |
Collapse
|
40
|
Saeed M, Higginbotham S, Gaikwad N, Chakravarti D, Rogan E, Cavalieri E. Depurinating naphthalene-DNA adducts in mouse skin related to cancer initiation. Free Radic Biol Med 2009; 47:1075-81. [PMID: 19619639 PMCID: PMC4424927 DOI: 10.1016/j.freeradbiomed.2009.07.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/10/2009] [Accepted: 07/13/2009] [Indexed: 11/15/2022]
Abstract
Naphthalene has been shown to be a weak carcinogen in rats. To investigate its mechanism of metabolic activation and cancer initiation, mice were topically treated with naphthalene or one of its metabolites, 1-naphthol, 1,2-dihydrodiolnaphthalene (1,2-DDN), 1,2-dihydroxynaphthalene (1,2-DHN), and 1,2-naphthoquinone (1,2-NQ). After 4 h, the mice were sacrificed, the treated skin was excised, and the depurinating and stable DNA adducts were analyzed. The depurinating adducts were identified and quantified by ultraperformance liquid chromatography/tandem mass spectrometry, whereas the stable adducts were quantified by (32)P-postlabeling. For comparison, the stable adducts formed when a mixture of the four deoxyribonucleoside monophosphates was treated with 1,2-NQ or enzyme-activated naphthalene were also analyzed. The depurinating adducts 1,2-DHN-1-N3Ade and 1,2-DHN-1-N7Gua arise from reaction of 1,2-NQ with DNA. Similarly, the major stable adducts appear to derive from the 1,2-NQ. The depurinating DNA adducts are, in general, the most abundant. Therefore, naphthalene undergoes metabolic activation to the electrophilic ortho-quinone, 1,2-NQ, which reacts with DNA to form depurinating adducts. This is the same mechanism as other weak carcinogens, such as the natural and synthetic estrogens, and benzene.
Collapse
Affiliation(s)
- Muhammad Saeed
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Sheila Higginbotham
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Nilesh Gaikwad
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Dhrubajyoti Chakravarti
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Eleanor Rogan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Ercole Cavalieri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| |
Collapse
|
41
|
Lin PH, Chen DR, Wang TW, Lin CH, Chuang MC. Investigation of the cumulative tissue doses of naphthoquinones in human serum using protein adducts as biomarker of exposure. Chem Biol Interact 2009; 181:107-14. [PMID: 19505452 DOI: 10.1016/j.cbi.2009.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 05/20/2009] [Accepted: 05/21/2009] [Indexed: 10/20/2022]
Abstract
Both 1,2-naphthoquinone (1,2-NPQ) and 1,4-naphthoquinone (1,4-NPQ) are reactive metabolites of naphthalene that are thought to be responsible for the naphthalene-induced cytotoxicity and genotoxicity. The aim of this study was to investigate the cumulative tissue dose of 1,2-NPQ and 1,4-NPQ in human serum derived from blood donors in Taiwan via measurements of albumin adducts by a methodology, which employs trifluoroacetic acid anhydride and methanesulfonic acid to selectively cleave cysteinyl adducts on proteins. Both 1,2-NPQ and 1,4-NPQ adducts were detected in all male and female subjects (n=22). The median levels of 1,2-NPQ adduct in human subjects were estimated to be 268 (range 139-857) and 203 (range 128-1352) (pmol/g) in male (n=11) and female (n=11) subjects, respectively. In contrast, the median levels of 1,4-NPQ adduct were estimated to be 45.0 (range 22.0-117) and 38.9 (range 21.5-172) (pmol/g) in male and female subjects, respectively. We noticed that levels of 1,2-NPQ adduct were significantly correlated with those of 1,4-NPQ adduct (correlation coefficient r=0.643, p<0.01). Results from in vitro experiments confirmed that the production of naphthoquinones-derived adducts on serum albumin increased with increased concentration of naphthoquinones (0-100 microM). Linear relationships were observed over the range of concentration. Time-course experiments suggested that both 1,2-NPQ and 1,4-NPQ-derived adducts rapidly reached maximum values at 10 min mark and remained constant thereafter. The reaction rate constant analyses indicated that the second-order rate constants, representing in vitro reactions between naphthoquinones and cysteine residues of serum albumin, were estimated to be 0.0044/0.0002L(gprotein)(-1)h(-1), respectively. Overall, the cumulative tissue doses of 1,4-NPQ (217-316 nM h) in male and female subjects were approximately 3-fold greater than those of 1,2-NPQ (76-98 nM h) in the study population. The initial concentrations of serum 1,2-NPQ and 1,4-NPQ in the study population were estimated to be between 145-188 and 807-1175 nM, respectively. We conclude that the relatively large amounts of naphthoquinones present in human serum may point to toxicological consequences.
Collapse
Affiliation(s)
- Po-Hsiung Lin
- Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| | | | | | | | | |
Collapse
|
42
|
Possible genotoxic modes of action for naphthalene. Regul Toxicol Pharmacol 2008; 51:S43-50. [DOI: 10.1016/j.yrtph.2007.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 11/20/2007] [Accepted: 12/03/2007] [Indexed: 11/23/2022]
|
43
|
Brusick D. Critical assessment of the genetic toxicity of naphthalene. Regul Toxicol Pharmacol 2007; 51:S37-42. [PMID: 17980943 DOI: 10.1016/j.yrtph.2007.08.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 08/29/2007] [Indexed: 11/28/2022]
Abstract
Studies demonstrating that naphthalene produces respiratory tract tumors in mice and rats raised the question of whether humans are at risk for cancer, at environmental or workplace concentrations of naphthalene. Arguments in favor of a threshold-dependent mode of action for tumor induction have been based on the facts that naphthalene does not appear to bind to DNA in vivo and that the rodent tumors occurred at high dose levels associated with substantial target site toxicity. A summary of more than 45 publications describing results for naphthalene in genetic toxicology test methods shows that 80% of the studies reported found no evidence of genotoxicity for naphthalene and that some of the studies which reported positive finding were technically unsuited to study this class of chemicals and, therefore, generated unreliable data. The remaining positive findings for naphthalene were all consistent with secondary DNA effects produced by toxicity from naphthalene alone or one of its metabolites. Based on the data reviewed in this report, it is not apparent that genetic lesions produced by naphthalene or any of its metabolites drive the tumorigenic activity.
Collapse
|
44
|
Cavalieri E, Rogan E. Catechol Quinones of Estrogens in the Initiation of Breast, Prostate, and Other Human Cancers: Keynote Lecture. Ann N Y Acad Sci 2006; 1089:286-301. [PMID: 17261777 DOI: 10.1196/annals.1386.042] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Estrogens can be converted to electrophilic metabolites, particularly the catechol estrogen-3,4-quinones, estrone(estradiol)-3,4-quinone [E(1)(E(2))-3,4-Q], which react with DNA to form depurinating adducts. These adducts are released from DNA to generate apurinic sites. Error-prone repair of this damage leads to the mutations that initiate breast, prostate, and other types of cancer. The reaction of E(1)(E(2))-3,4-Q with DNA forms the depurinating adducts 4-hydroxyE(1)(E(2))-1-N3adenine [4-OHE(1)(E(2))-1-N3Ade] and 4-OHE(1)(E(2))-1-N7guanine(Gua). These two adducts constitute >99% of the total DNA adducts formed. The E(1)(E(2))-2,3-Q forms small amounts of the depurinating 2-OHE(1)(E(2))-6-N3Ade adducts. Reaction of the quinones with DNA occurs more abundantly when estrogen metabolism is unbalanced. Such an imbalance is the result of overexpression of estrogen-activating enzymes and/or deficient expression of deactivating (protective) enzymes. Excessive formation of E(1)(E(2))-3,4-Q is the result of this imbalance. Oxidation of catechols to semiquinones and quinones is a mechanism of tumor initiation not only for endogenous estrogens, but also for synthetic estrogens such as hexestrol and diethylstilbestrol, a human carcinogen. This mechanism is also involved in the initiation of leukemia by benzene, rat olfactory tumors by naphthalene, and neurodegenerative diseases such as Parkinson's disease by dopamine. In fact, dopamine quinone reacts with DNA similarly to the E(1)(E(2))-3,4-Q, forming analogous depurinating N3Ade and N7Gua adducts. The depurinating adducts that migrate from cells and can be found in body fluids can also serve as biomarkers of cancer risk. In fact, a higher level of estrogen-DNA adducts has been found in the urine of men with prostate cancer and in women with breast cancer compared to healthy controls. This unifying mechanism of the origin of cancer and other diseases suggests preventive strategies based on the level of depurinating DNA adducts that generate the first critical step in the initiation of diseases.
Collapse
Affiliation(s)
- Ercole Cavalieri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 8198-6805, USA.
| | | |
Collapse
|