1
|
Lavudi K, Nuguri SM, Pandey P, Kokkanti RR, Wang QE. ALDH and cancer stem cells: Pathways, challenges, and future directions in targeted therapy. Life Sci 2024; 356:123033. [PMID: 39222837 DOI: 10.1016/j.lfs.2024.123033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Human ALDH comprise 19 subfamilies in which ALDH1A1, ALDH1A3, ALDH3A1, ALDH5A1, ALDH7A1, and ALDH18A1 are implicated in CSC. Studies have shown that ALDH can also be involved in drug resistance and standard chemotherapy regimens are ineffective in treating patients at the stage of disease recurrence. Existing chemotherapeutic drugs eliminate the bulk of tumors but are usually not effective against CSC which express ALDH+ population. Henceforth, targeting ALDH is convincing to treat the patient's post-relapse. Combination therapies that interlink signaling mechanisms seem promising to increase the overall disease-free survival rate. Therefore, targeting ALDH through ALDH inhibitors along with immunotherapies may create a novel platform for translational research. This review aims to fill in the gap between ALDH1 family members in relation to its cell signaling mechanisms, highlighting their potential as molecular targets to sensitize recurrent tumors and bring forward the future development concerning the current progress and draw backs. This review summarizes the role of cancer stem cells and their upregulation by maintaining the tumor microenvironment in which ALDH is specifically highlighted. It discusses the regulation of ALDH family proteins and the crosstalk between ALDH and CSC in relation to cancer metabolism. Furthermore, it establishes the correlation between ALDH involved signaling mechanisms and their specific targeted inhibitors, as well as their functional modularity, bioavailability, and mechanistic role in various cancers.
Collapse
Affiliation(s)
- Kousalya Lavudi
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States
| | - Shreya Madhav Nuguri
- Department of Food science and Technology, The Ohio State University, Columbus, OH, United States
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, U.P., India; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | | | - Qi-En Wang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
2
|
Esposito M, Amory JK, Kang Y. The pathogenic role of retinoid nuclear receptor signaling in cancer and metabolic syndromes. J Exp Med 2024; 221:e20240519. [PMID: 39133222 PMCID: PMC11318670 DOI: 10.1084/jem.20240519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
The retinoid nuclear receptor pathway, activated by the vitamin A metabolite retinoic acid, has been extensively investigated for over a century. This study has resulted in conflicting hypotheses about how the pathway regulates health and how it should be pharmaceutically manipulated. These disagreements arise from a fundamental contradiction: retinoid agonists offer clear benefits to select patients with rare bone growth disorders, acute promyelocytic leukemia, and some dermatologic diseases, yet therapeutic retinoid pathway activation frequently causes more harm than good, both through acute metabolic dysregulation and a delayed cancer-promoting effect. In this review, we discuss controlled clinical, mechanistic, and genetic data to suggest several disease settings where inhibition of the retinoid pathway may be a compelling therapeutic strategy, such as solid cancers or metabolic syndromes, and also caution against continued testing of retinoid agonists in cancer patients. Considerable evidence suggests a central role for retinoid regulation of immunity and metabolism, with therapeutic opportunities to antagonize retinoid signaling proposed in cancer, diabetes, and obesity.
Collapse
Affiliation(s)
- Mark Esposito
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Kayothera, Inc , Seattle, WA, USA
| | | | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research Princeton Branch , Princeton, NJ, USA
| |
Collapse
|
3
|
Ferreira IC, Torrejón E, Abecasis B, Alexandre BM, Gomes RA, Verslype C, van Pelt J, Barbas A, Simão D, Bandeiras TM, Bortoluzzi A, Rebelo SP. Aldehyde Dehydrogenase 2 (ALDH2): A novel sorafenib target in hepatocellular carcinoma unraveled by the proteome-wide cellular thermal shift assay. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100154. [PMID: 38521503 DOI: 10.1016/j.slasd.2024.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Sorafenib is a multikinase inhibitor indicated for first-line treatment of unresectable hepatocellular carcinoma. Despite its widespread use in the clinic, the existing knowledge of sorafenib mode-of-action remains incomplete. To build upon the current understanding, we used the Cellular Thermal Shift Assay (CETSA) coupled to Mass Spectrometry (CETSA-MS) to monitor compound binding to its target proteins in the cellular context on a proteome-wide scale. Among the potential sorafenib targets, we identified aldehyde dehydrogenase 2 (ALDH2), an enzyme that plays a major role in alcohol metabolism. We validated the interaction of sorafenib with ALDH2 by orthogonal methods using pure recombinant protein, proving that this interaction is not mediated by other cellular components. Moreover, we showed that sorafenib inhibits ALDH2 activity, supporting a functional role for this interaction. Finally, we were able to demonstrate that both ALDH2 protein expression and activity were reduced in sorafenib-resistant cells compared to the parental cell line. Overall, our study allowed the identification of ALDH2 as a novel sorafenib target and sheds light on its potential role in both hepatocellular carcinoma and sorafenib resistance condition.
Collapse
Affiliation(s)
- Inês C Ferreira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Estefania Torrejón
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; ITQB, ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Bernardo Abecasis
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Bruno M Alexandre
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; ITQB, ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo A Gomes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; ITQB, ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Chris Verslype
- Department of Gastroenterology and Hepatology, KU Leuven, Leuven, Belgium
| | - Jos van Pelt
- Department of Oncology, Laboratory of Clinical Digestive Oncology, KU, Leuven, Belgium
| | - Ana Barbas
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Bayer Portugal, Carnaxide, Portugal
| | - Daniel Simão
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Tiago M Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; ITQB, ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Alessio Bortoluzzi
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; ITQB, ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Sofia P Rebelo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.
| |
Collapse
|
4
|
Zhai Y, Shen H, Wei H. A Comprehensive Metabolism-Related Gene Signature Predicts the Survival of Patients with Acute Myeloid Leukemia. Genes (Basel) 2023; 15:63. [PMID: 38254953 PMCID: PMC10815187 DOI: 10.3390/genes15010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
(1) Background: Acute myeloid leukemia (AML) is a clonal malignancy with heterogeneity in genomics and clinical outcome. Metabolism reprogramming has been increasingly recognized to play an important role in the leukemogenesis and prognosis in AML. A comprehensive prognostic model based on metabolism signatures has not yet been developed. (2) Methods: We applied Cox regression analysis and the least absolute shrinkage and selection operator (LASSO) normalization to establish a metabolism-related prognostic gene signature based on glycolysis, fatty acid metabolism, and the tricarboxylic acid cycle gene signatures. The Cancer Genome Atlas-Acute Myeloid Leukemia-like (TCGA-LAML) cohort was set as the training dataset for model construction. Three independent AML cohorts (GSE37642, GSE10358, and GSE12417) combined from Gene Expression Omnibus (GEO) datasets and the Beat-AML dataset were retrieved as two validation sets to test the robustness of the model. The transcriptome data and clinic information of the cohorts were enrolled for the analysis. (3) Results: Divided by the median value of the metabolism risk score, the five-year overall survival (OS) of the high-risk and low-risk groups in the training set were 8.2% and 41.3% (p < 0.001), respectively. The five-year OS of the high-risk and low-risk groups in the combined GEO cohort were 25.5% and 37.3% (p = 0.002), respectively. In the Beat-AML cohort, the three-year OS of the high-risk and low-risk groups were 16.2% and 40.2% (p = 0.0035), respectively. The metabolism risk score showed a significantly negative association with the long-term survival of AML. Furthermore, this metabolism risk score was an independent unfavorable factor for OS by univariate analysis and multivariate analysis. (4) Conclusions: Our study constructed a comprehensive metabolism-related signature with twelve metabolism-related genes for the risk stratification and outcome prediction of AML. This novel signature might contribute to a better use of metabolism reprogramming factors as prognostic markers and provide novel insights into potential metabolism targets for AML treatment.
Collapse
Affiliation(s)
| | | | - Hui Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; (Y.Z.); (H.S.)
| |
Collapse
|
5
|
Duan JJ, Cai J, Gao L, Yu SC. ALDEFLUOR activity, ALDH isoforms, and their clinical significance in cancers. J Enzyme Inhib Med Chem 2023; 38:2166035. [PMID: 36651035 PMCID: PMC9858439 DOI: 10.1080/14756366.2023.2166035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
High aldehyde dehydrogenase (ALDH) activity is a metabolic feature of adult stem cells and various cancer stem cells (CSCs). The ALDEFLUOR system is currently the most commonly used method for evaluating ALDH enzyme activity in viable cells. This system is applied extensively in the isolation of normal stem cells and CSCs from heterogeneous cell populations. For many years, ALDH1A1 has been considered the most important subtype among the 19 ALDH family members in determining ALDEFLUOR activity. However, in recent years, studies of many types of normal and tumour tissues have demonstrated that other ALDH subtypes can also significantly influence ALDEFLUOR activity. In this article, we briefly review the relationships between various members of the ALDH family and ALDEFLUOR activity. The clinical significance of these ALDH isoforms in different cancers and possible directions for future studies are also summarised.
Collapse
Affiliation(s)
- Jiang-Jie Duan
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital; Third Military Medical University (Army Medical University), Chongqing, China,International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, China,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, China,Ministry of Education, Key Laboratory of Cancer Immunopathology, Chongqing, China
| | - Jiao Cai
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital; Third Military Medical University (Army Medical University), Chongqing, China,International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, China,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, China,Ministry of Education, Key Laboratory of Cancer Immunopathology, Chongqing, China
| | - Lei Gao
- Department of Hematology, Xinqiao Hospital; Third Medical University (Army Medical University), Chongqing, China
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital; Third Military Medical University (Army Medical University), Chongqing, China,International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, China,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, China,Ministry of Education, Key Laboratory of Cancer Immunopathology, Chongqing, China,Jin-feng Laboratory, Chongqing, China,CONTACT Shi-Cang Yu Department of Stem Cell and Regenerative Medicine, Third Military Medical University (Army Medical University), Chongqing400038, China
| |
Collapse
|
6
|
Primeaux M, Liu X, Gowrikumar S, Fatima I, Fisher KW, Bastola D, Vecchio AJ, Singh AB, Dhawan P. Claudin-1 interacts with EPHA2 to promote cancer stemness and chemoresistance in colorectal cancer. Cancer Lett 2023; 579:216479. [PMID: 37924938 PMCID: PMC10765961 DOI: 10.1016/j.canlet.2023.216479] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/12/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Therapy resistance is the primary problem in treating late-stage colorectal cancer (CRC). Claudins are frequently dysregulated in cancer, and several are being investigated as novel therapeutic targets and biomarkers. We have previously demonstrated that Claudin-1 (CLDN1) expression in CRC promotes epithelial-mesenchymal transition, metastasis, and resistance to anoikis. Here, we hypothesize that CLDN1 promotes cancer stemness and chemoresistance in CRC. We found that high CLDN1 expression in CRC is associated with cancer stemness and chemoresistance signaling pathways in patient datasets, and it promotes chemoresistance both in vitro and in vivo. Using functional stemness assays, proteomics, biophysical binding assays, and patient-derived organoids, we found that CLDN1 promotes properties of cancer stemness including CD44 expression, tumor-initiating potential, and chemoresistance through a direct interaction with ephrin type-A receptor 2 (EPHA2) tyrosine kinase. This interaction is dependent on the CLDN1 PDZ-binding motif, increases EPHA2 protein expression by inhibiting its degradation, and enhances downstream AKT signaling and CD44 expression to promote stemness and chemoresistance. These results suggest CLDN1 is a viable target for pharmacological intervention and/or biomarker development.
Collapse
Affiliation(s)
- Mark Primeaux
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xiangdong Liu
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Saiprasad Gowrikumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Iram Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kurt W Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dhundy Bastola
- Department of Bioinformatics, University of Nebraska Omaha, Omaha, NE, USA
| | - Alex J Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA.
| |
Collapse
|
7
|
Ikhmais BA, Hammad AM, Abusara OH, Hamadneh L, Abumansour H, Abdallah QM, Ibrahim AIM, Elsalem L, Awad M, Alshehada R. Investigating Carvedilol's Repurposing for the Treatment of Non-Small Cell Lung Cancer via Aldehyde Dehydrogenase Activity Modulation in the Presence of β-Adrenergic Agonists. Curr Issues Mol Biol 2023; 45:7996-8012. [PMID: 37886948 PMCID: PMC10605277 DOI: 10.3390/cimb45100505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Repurposing existing drugs appears to be a potential solution for addressing the challenges in the treatment of non-small cell lung cancer (NSCLC). β-adrenoceptor antagonist drugs (β-blockers) have tumor-inhibiting effects, making them promising candidates for potential NSCLC treatment. This study investigates the anticancer potential of a subset of β-blockers in NSCLC cell lines; A549 and H1299. Additionally, it investigates the underlying mechanism behind β-blockers' anticancer effect by influencing a potential novel target named aldehyde dehydrogenase (ALDH). The MTT assay assessed β-blockers' cytotoxicity on both cell lines, while Western blot and NADH fluorescence assays evaluated their influence on ALDH protein expression and activity. Carvedilol (CAR) was the most effective blocker in reducing cell survival of A549 and H1299 with IC50 of 18 µM and 13.7 µM, respectively. Significantly, CAR led to a 50% reduction in ALDH expression and 80% decrease in ALDH activity in A549 cells, especially when combined with β-agonists, in comparison to the control. This effect might be attributed to β-agonist blockade or an alternative pathway. This novel finding adds to our understanding of CAR's multifaceted anticancer properties, implying that combining CAR with β-agonists could be a useful strategy for lung cancer treatment.
Collapse
Affiliation(s)
- Balqis A. Ikhmais
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan; (A.M.H.); (O.H.A.); (H.A.); (A.I.M.I.); (M.A.); (R.A.)
| | - Alaa M. Hammad
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan; (A.M.H.); (O.H.A.); (H.A.); (A.I.M.I.); (M.A.); (R.A.)
| | - Osama H. Abusara
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan; (A.M.H.); (O.H.A.); (H.A.); (A.I.M.I.); (M.A.); (R.A.)
| | - Lama Hamadneh
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, P.O. Box 206, Al-Salt 19117, Jordan;
| | - Hamza Abumansour
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan; (A.M.H.); (O.H.A.); (H.A.); (A.I.M.I.); (M.A.); (R.A.)
| | - Qasem M. Abdallah
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, P.O. Box 961343, Amman 11196, Jordan;
| | - Ali I. M. Ibrahim
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan; (A.M.H.); (O.H.A.); (H.A.); (A.I.M.I.); (M.A.); (R.A.)
| | - Lina Elsalem
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan;
| | - Mariam Awad
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan; (A.M.H.); (O.H.A.); (H.A.); (A.I.M.I.); (M.A.); (R.A.)
| | - Rahaf Alshehada
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan; (A.M.H.); (O.H.A.); (H.A.); (A.I.M.I.); (M.A.); (R.A.)
| |
Collapse
|
8
|
Xanthis V, Mantso T, Dimtsi A, Pappa A, Fadouloglou VE. Human Aldehyde Dehydrogenases: A Superfamily of Similar Yet Different Proteins Highly Related to Cancer. Cancers (Basel) 2023; 15:4419. [PMID: 37686694 PMCID: PMC10650815 DOI: 10.3390/cancers15174419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
The superfamily of human aldehyde dehydrogenases (hALDHs) consists of 19 isoenzymes which are critical for several physiological and biosynthetic processes and play a major role in the organism's detoxification via the NAD(P) dependent oxidation of numerous endogenous and exogenous aldehyde substrates to their corresponding carboxylic acids. Over the last decades, ALDHs have been the subject of several studies as it was revealed that their differential expression patterns in various cancer types are associated either with carcinogenesis or promotion of cell survival. Here, we attempt to provide a thorough review of hALDHs' diverse functions and 3D structures with particular emphasis on their role in cancer pathology and resistance to chemotherapy. We are especially interested in findings regarding the association of structural features and their changes with effects on enzymes' functionalities. Moreover, we provide an updated outline of the hALDHs inhibitors utilized in experimental or clinical settings for cancer therapy. Overall, this review aims to provide a better understanding of the impact of ALDHs in cancer pathology and therapy from a structural perspective.
Collapse
Affiliation(s)
| | | | | | | | - Vasiliki E. Fadouloglou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
9
|
Gomez-Salazar MA, Wang Y, Thottappillil N, Hardy RW, Alexandre M, Höller F, Martin N, Gonzalez-Galofre ZN, Stefancova D, Medici D, James AW, Péault B. Aldehyde Dehydrogenase, a Marker of Normal and Malignant Stem Cells, Typifies Mesenchymal Progenitors in Perivascular Niches. Stem Cells Transl Med 2023; 12:474-484. [PMID: 37261440 PMCID: PMC10651226 DOI: 10.1093/stcltm/szad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 04/07/2023] [Indexed: 06/02/2023] Open
Abstract
Innate mesenchymal stem cells exhibiting multilineage differentiation and tissue (re)generative-or pathogenic-properties reside in perivascular niches. Subsets of these progenitors are committed to either osteo-, adipo-, or fibrogenesis, suggesting the existence of a developmental organization in blood vessel walls. We evaluated herein the activity of aldehyde dehydrogenase, a family of enzymes catalyzing the oxidation of aldehydes into carboxylic acids and a reported biomarker of normal and malignant stem cells, within human adipose tissue perivascular areas. A progression of ALDHLow to ALDHHigh CD34+ cells was identified in the tunica adventitia. Mesenchymal stem cell potential was confined to ALDHHigh cells, as assessed by proliferation and multilineage differentiation in vitro of cells sorted by flow cytometry with a fluorescent ALDH substrate. RNA sequencing confirmed and validated that ALDHHigh cells have a progenitor cell phenotype and provided evidence that the main isoform in this fraction is ALDH1A1, which was confirmed by immunohistochemistry. This demonstrates that ALDH activity, which marks hematopoietic progenitors and stem cells in diverse malignant tumors, also typifies native, blood vessel resident mesenchymal stem cells.
Collapse
Affiliation(s)
- Mario A Gomez-Salazar
- Center for Regenerative Medicine and Center for Cardiovascular Research, University of Edinburgh, Edinburgh, UK
- Department of Pathology, Johns Hopkins University, Baltimore, MB, USA
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, MB, USA
| | | | - Reef W Hardy
- Orthopaedic Hospital Research Center and Broad Stem Cell Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Manon Alexandre
- Center for Regenerative Medicine and Center for Cardiovascular Research, University of Edinburgh, Edinburgh, UK
- Polytech Marseille, Aix Marseille University, Marseille, France
| | - Fabian Höller
- Center for Regenerative Medicine and Center for Cardiovascular Research, University of Edinburgh, Edinburgh, UK
| | - Niall Martin
- Center for Regenerative Medicine and Center for Cardiovascular Research, University of Edinburgh, Edinburgh, UK
| | - Zaniah N Gonzalez-Galofre
- Center for Regenerative Medicine and Center for Cardiovascular Research, University of Edinburgh, Edinburgh, UK
| | - Dorota Stefancova
- Center for Regenerative Medicine and Center for Cardiovascular Research, University of Edinburgh, Edinburgh, UK
| | - Daniele Medici
- Center for Regenerative Medicine and Center for Cardiovascular Research, University of Edinburgh, Edinburgh, UK
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MB, USA
| | - Bruno Péault
- Center for Regenerative Medicine and Center for Cardiovascular Research, University of Edinburgh, Edinburgh, UK
- Orthopaedic Hospital Research Center and Broad Stem Cell Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Ismailov ZB, Belykh ES, Chernykh AA, Udoratina AM, Kazakov DV, Rybak AV, Kerimova SN, Velegzhaninov IO. Systematic review of comparative transcriptomic studies of cellular resistance to genotoxic stress. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108467. [PMID: 37657754 DOI: 10.1016/j.mrrev.2023.108467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
The development of resistance by tumor cells to various types of therapy is a significant problem that decreases the effectiveness of oncology treatments. For more than two decades, comparative transcriptomic studies of tumor cells with different sensitivities to ionizing radiation and chemotherapeutic agents have been conducted in order to identify the causes and mechanisms underlying this phenomenon. However, the results of such studies have little in common and often contradict each other. We have assumed that a systematic analysis of a large number of such studies will provide new knowledge about the mechanisms of development of therapeutic resistance in tumor cells. Our comparison of 123 differentially expressed gene (DEG) lists published in 98 papers suggests a very low degree of consistency between the study results. Grouping the data by type of genotoxic agent and tumor type did not increase the similarity. The most frequently overexpressed genes were found to be those encoding the transport protein ABCB1 and the antiviral defense protein IFITM1. We put forward a hypothesis that the role played by the overexpression of the latter in the development of resistance may be associated not only with the stimulation of proliferation, but also with the limitation of exosomal communication and, as a result, with a decrease in the bystander effect. Among down regulated DEGs, BNIP3 was observed most frequently. The expression of BNIP3, together with BNIP3L, is often suppressed in cells resistant to non-platinum genotoxic chemotherapeutic agents, whereas it is increased in cells resistant to ionizing radiation. These observations are likely to be mediated by the binary effects of these gene products on survival, and regulation of apoptosis and autophagy. The combined data also show that even such obvious mechanisms as inhibition of apoptosis and increase of proliferation are not universal but show multidirectional changes.
Collapse
Affiliation(s)
- Z B Ismailov
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia
| | - E S Belykh
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia
| | - A A Chernykh
- Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 50 Pervomaiskaya St., Syktyvkar 167982, Russia
| | - A M Udoratina
- Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603022, Russia
| | - D V Kazakov
- Institute of Physics and Mathematics of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 4 Oplesnina St., Syktyvkar 167982, Russia
| | - A V Rybak
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia
| | - S N Kerimova
- State Medical Institution Komi Republican Oncology Center, 46 Nyuvchimskoe highway, Syktyvkar 167904, Russia
| | - I O Velegzhaninov
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, 28b Kommunisticheskaya St., Syktyvkar 167982, Russia.
| |
Collapse
|
11
|
Kang X, Jadhav S, Annaji M, Huang CH, Amin R, Shen J, Ashby CR, Tiwari AK, Babu RJ, Chen P. Advancing Cancer Therapy with Copper/Disulfiram Nanomedicines and Drug Delivery Systems. Pharmaceutics 2023; 15:1567. [PMID: 37376016 DOI: 10.3390/pharmaceutics15061567] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Disulfiram (DSF) is a thiocarbamate based drug that has been approved for treating alcoholism for over 60 years. Preclinical studies have shown that DSF has anticancer efficacy, and its supplementation with copper (CuII) significantly potentiates the efficacy of DSF. However, the results of clinical trials have not yielded promising results. The elucidation of the anticancer mechanisms of DSF/Cu (II) will be beneficial in repurposing DSF as a new treatment for certain types of cancer. DSF's anticancer mechanism is primarily due to its generating reactive oxygen species, inhibiting aldehyde dehydrogenase (ALDH) activity inhibition, and decreasing the levels of transcriptional proteins. DSF also shows inhibitory effects in cancer cell proliferation, the self-renewal of cancer stem cells (CSCs), angiogenesis, drug resistance, and suppresses cancer cell metastasis. This review also discusses current drug delivery strategies for DSF alone diethyldithocarbamate (DDC), Cu (II) and DSF/Cu (II), and the efficacious component Diethyldithiocarbamate-copper complex (CuET).
Collapse
Affiliation(s)
- Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Sanika Jadhav
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Manjusha Annaji
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Chung-Hui Huang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Rajesh Amin
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Jianzhong Shen
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy, St. John's University, Queens, NY 11431, USA
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Pengyu Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
12
|
Han Y, Fu Y, Shi Q, Liu H, Sun H, Niu C, Fu L. The ALDH2, IGSF9, and PRDM16 Proteins as Predictive Biomarkers for Prognosis in Breast Cancer. Clin Breast Cancer 2023; 23:e140-e150. [PMID: 36639264 DOI: 10.1016/j.clbc.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION ALDH2, IGSF9, and PRDM16 play crucial roles in regulating diverse cellular pathophysiologic functions. The current study was to evaluate the effect of the 3 proteins on clinicopathologic features and prognosis of patients with breast cancer. MATERIALS AND METHODS The formalin-fixed and paraffin-embedded tissue specimens were collected from breast cancer patients by immunohistochemistry (IHC) were analyzed. RESULTS Of the 216 patients enrolled, ALDH2 high expression was significantly correlated with the age (p = .040), larger tumor size (p = .001), LVI (p < .001), LNM (p < .001), advanced TNM staging (p < .001), PR (p = .027), HER2 status (p = .002), and molecular subtype (p = .003). IGSF9 low expression was significantly correlated with the LV1 (p = .024), LNM (p = .024), advanced TNM staging (p = .001). The low expression of PRDM16 was significantly correlated with age (p = .023), and LNM (p = .014). The A+I-P- expression (13.4%) were markedly correlated with lymphatic vessel invasion (LVI) (p < .001), lymph node metastasis (LNM) (p < .001), advanced TNM staging (p < .001). Furthermore, patients with A+I-P- expression had significantly advanced-stage breast cancer [stage III (72.4%) vs. (23.0%)]. Univariate and multivariate analysis identified variables (ie, larger tumor size, lymph node involvement, and A+I-P- expression) as independent prognostic factors for survival. CONCLUSION Our results reveal ALDH2 high expression, IGSF9 and PRDM16 low expression, A+I-P- expression was associated with advanced clinicopathological characteristics, and shorter OS and DFS in breast cancer patients. The 3 proteins may be potential prognosis markers and therapeutic targets for breast cancer patients.
Collapse
Affiliation(s)
- Yunwei Han
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; National Clinical Research Center of Cancer, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China; Ministry of Education, Breast Cancer Innovation Team of the Ministry of Education, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Breast Cancer Research, Tianjin, China
| | - Yiru Fu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; National Clinical Research Center of Cancer, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China; Ministry of Education, Breast Cancer Innovation Team of the Ministry of Education, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Breast Cancer Research, Tianjin, China
| | - Qianqian Shi
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; National Clinical Research Center of Cancer, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China; Ministry of Education, Breast Cancer Innovation Team of the Ministry of Education, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Breast Cancer Research, Tianjin, China; Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hanjiao Liu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; National Clinical Research Center of Cancer, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China; Ministry of Education, Breast Cancer Innovation Team of the Ministry of Education, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Breast Cancer Research, Tianjin, China
| | - Hui Sun
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; National Clinical Research Center of Cancer, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China; Ministry of Education, Breast Cancer Innovation Team of the Ministry of Education, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Breast Cancer Research, Tianjin, China
| | - Chen Niu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; National Clinical Research Center of Cancer, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China; Ministry of Education, Breast Cancer Innovation Team of the Ministry of Education, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Breast Cancer Research, Tianjin, China
| | - Li Fu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; National Clinical Research Center of Cancer, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin, China; Ministry of Education, Breast Cancer Innovation Team of the Ministry of Education, Tianjin, China; Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Breast Cancer Research, Tianjin, China.
| |
Collapse
|
13
|
MacDonald JA, Sheehan HC, Piasecki A, Faustino LR, Hauschildt C, Stolzenbach V, Woods DC, Tilly JL. Characterization of Oogonial Stem Cells in Adult Mouse Ovaries with Age and Comparison to In Silico Data on Human Ovarian Aging. Stem Cells Dev 2023; 32:99-114. [PMID: 36594561 PMCID: PMC9986025 DOI: 10.1089/scd.2022.0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Many adult somatic stem cell lineages are comprised of subpopulations that differ in gene expression, mitotic activity, and differentiation status. In this study, we explored if cellular heterogeneity also exists within oogonial stem cells (OSCs), and how chronological aging impacts OSCs. In OSCs isolated from mouse ovaries by flow cytometry and established in culture, we identified subpopulations of OSCs that could be separated based on differential expression of stage-specific embryonic antigen 1 (SSEA1) and cluster of differentiation 61 (CD61). Levels of aldehyde dehydrogenase (ALDH) activity were inversely related to OSC differentiation, whereas commitment of OSCs to differentiation through transcriptional activation of stimulated by retinoic acid gene 8 was marked by a decline in ALDH activity and in SSEA1 expression. Analysis of OSCs freshly isolated from ovaries of mice between 3 and 20 months of age revealed that these subpopulations were present and persisted throughout adult life. However, expression of developmental pluripotency associated 3 (Dppa3), an epigenetic modifier that promotes OSC differentiation into oocytes, was lost as the mice transitioned from a time of reproductive compromise (10 months) to reproductive failure (15 months). Further analysis showed that OSCs from aged females could be established in culture, and that once established the cultured cells reactivated Dppa3 expression and the capacity for oogenesis. Analysis of single-nucleus RNA sequence data sets generated from ovaries of women in their 20s versus those in their late 40s to early 50s showed that the frequency of DPPA3-expressing cells decreased with advancing age, and this was paralleled by reduced expression of several key meiotic differentiation genes. These data support the existence of OSC subpopulations that differ in gene expression profiles and differentiation status. In addition, an age-related decrease in Dppa3/DPPA3 expression, which is conserved between mice and humans, may play a role in loss of the ability of OSCs to maintain oogenesis with age.
Collapse
Affiliation(s)
- Julie A MacDonald
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Hannah C Sheehan
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Andrew Piasecki
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Luciana R Faustino
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Charlotte Hauschildt
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Victor Stolzenbach
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Dori C Woods
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Jonathan L Tilly
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Tsochantaridis I, Roupas A, Mohlin S, Pappa A, Voulgaridou GP. The Concept of Cancer Stem Cells: Elaborating on ALDH1B1 as an Emerging Marker of Cancer Progression. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010197. [PMID: 36676146 PMCID: PMC9863106 DOI: 10.3390/life13010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Cancer is a multifactorial, complex disease exhibiting extraordinary phenotypic plasticity and diversity. One of the greatest challenges in cancer treatment is intratumoral heterogeneity, which obstructs the efficient eradication of the tumor. Tumor heterogeneity is often associated with the presence of cancer stem cells (CSCs), a cancer cell sub-population possessing a panel of stem-like properties, such as a self-renewal ability and multipotency potential. CSCs are associated with enhanced chemoresistance due to the enhanced efflux of chemotherapeutic agents and the existence of powerful antioxidant and DNA damage repair mechanisms. The distinctive characteristics of CSCs make them ideal targets for clinical therapeutic approaches, and the identification of efficient and specific CSCs biomarkers is of utmost importance. Aldehyde dehydrogenases (ALDHs) comprise a wide superfamily of metabolic enzymes that, over the last years, have gained increasing attention due to their association with stem-related features in a wide panel of hematopoietic malignancies and solid cancers. Aldehyde dehydrogenase 1B1 (ALDH1B1) is an isoform that has been characterized as a marker of colon cancer progression, while various studies suggest its importance in additional malignancies. Here, we review the basic concepts related to CSCs and discuss the potential role of ALDH1B1 in cancer development and its contribution to the CSC phenotype.
Collapse
Affiliation(s)
- Ilias Tsochantaridis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Angelos Roupas
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Sofie Mohlin
- Division of Pediatrics, Clinical Sciences, Lund Stem Cell Center, Lund University Cancer Center, 22384 Lund, Sweden
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Georgia-Persephoni Voulgaridou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Correspondence:
| |
Collapse
|
15
|
Li W, Ling L, Xiang L, Ding P, Yue W. Identification and validation of a risk model and molecular subtypes based on tryptophan metabolism-related genes to predict the clinical prognosis and tumor immune microenvironment in lower-grade glioma. Front Cell Neurosci 2023; 17:1146686. [PMID: 36925967 PMCID: PMC10011102 DOI: 10.3389/fncel.2023.1146686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023] Open
Abstract
Background Lower-grade glioma (LGG) is one of the most common malignant tumors in the central nervous system (CNS). Accumulating evidence have demonstrated that tryptophan metabolism is significant in tumor. Therefore, this study aims to comprehensively clarify the relationship between tryptophan metabolism-related genes (TRGs) and LGGs. Methods The expression level of TRGs in LGG and normal tissues was first analyzed. Next, the key TRGs with prognostic value and differential expression in LGGs were identified using the least absolute shrinkage and selection operator (LASSO) regression analysis. Subsequently, a risk model was constructed and Consensus clustering analysis was conducted based on the expression level of key TRGs. Then, the prognostic value, clinicopathological factors, and tumor immune microenvironment (TIME) characteristics between different risk groups and molecular subtypes were analyzed. Finally, the expression, prognosis, and TIME of each key TRGs were analyzed separately in LGG patients. Results A total of 510 patients with LGG from The Cancer Genome Atlas (TCGA) dataset and 1,152 normal tissues from the Genotype-Tissue Expression (GTEx) dataset were included to evaluate the expression level of TRGs. After LASSO regression analysis, we identified six key TRGs and constructed a TRGs risk model. The survival analysis revealed that the risk model was the independent predictor in LGG patients. And the nomogram containing risk scores and independent clinicopathological factors could accurately predict the prognosis of LGG patients. In addition, the results of the Consensus cluster analysis based on the expression of the six TRGs showed that it could classify the LGG patients into two distinct clusters, with significant differences in prognosis, clinicopathological factors and TIME between these two clusters. Finally, we validated the expression, prognosis and immune infiltration of six key TRGs in patients with LGG. Conclusion This study demonstrated that tryptophan metabolism plays an important role in the progression of LGG. In addition, the risk model and the molecular subtypes we constructed not only could be used as an indicator to predict the prognosis of LGG patients but also were closely related to the clinicopathological factors and TIME of LGG patients. Overall, our study provides theoretical support for the ultimate realization of precision treatment for patients with LGG.
Collapse
Affiliation(s)
- Wenxia Li
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Ling Ling
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Lei Xiang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Peng Ding
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Wei Yue
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
16
|
Williams AL, Bohnsack BL. Zebrafish Model of Stickler Syndrome Suggests a Role for Col2a1a in the Neural Crest during Early Eye Development. J Dev Biol 2022; 10:jdb10040042. [PMID: 36278547 PMCID: PMC9589970 DOI: 10.3390/jdb10040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Most cases of Stickler syndrome are due to autosomal-dominant COL2A1 gene mutations leading to abnormal type II collagen. Ocular findings include axial eye lengthening with vitreal degeneration and early-onset glaucoma, which can result in vision loss. Although COL2A1 is a major player in cartilage and bone formation, its specific role in eye development remains elusive. We investigated the role of Col2a1a in neural crest migration and differentiation during early zebrafish eye development. In situ hybridization, immunofluorescence, live imaging, exogenous treatments [10 μM diethylaminobenzaldehyde (DEAB), 100 nM all-trans retinoic acid (RA) and 1-3% ethanol (ETOH)] and morpholino oligonucleotide (MO) injections were used to analyze wildtype Casper (roy-/-;nacre-/-), TgBAC(col2a1a::EGFP), Tg(sox10::EGFP) and Tg(foxd3::EGFP) embryos. Col2a1a colocalized with Foxd3- and Sox10-positive cells in the anterior segment and neural crest-derived jaw. Col2a1a expression was regulated by RA and inhibited by 3% ETOH. Furthermore, MO knockdown of Col2a1a delayed jaw formation and disrupted the ocular anterior segment neural crest migration of Sox10-positive cells. Interestingly, human COL2A1 protein rescued the MO effects. Altogether, these results suggest that Col2a1a is a downstream target of RA in the cranial neural crest and is required for both craniofacial and eye development.
Collapse
Affiliation(s)
- Antionette L. Williams
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL 60611, USA
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, 645 N. Michigan Ave., Chicago, IL 60611, USA
- Correspondence: (A.L.W.); (B.L.B.); Tel.: +1-312-503-4706 (A.L.W.); +1-312-227-6180 (B.L.B.)
| | - Brenda L. Bohnsack
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL 60611, USA
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, 645 N. Michigan Ave., Chicago, IL 60611, USA
- Correspondence: (A.L.W.); (B.L.B.); Tel.: +1-312-503-4706 (A.L.W.); +1-312-227-6180 (B.L.B.)
| |
Collapse
|
17
|
Feng D, Zhu W, You J, Shi X, Han P, Wei W, Wei Q, Yang L. Mitochondrial Aldehyde Dehydrogenase 2 Represents a Potential Biomarker of Biochemical Recurrence in Prostate Cancer Patients. Molecules 2022; 27:6000. [PMID: 36144737 PMCID: PMC9500792 DOI: 10.3390/molecules27186000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND We aimed to explore the role of mitochondrial aldehyde dehydrogenase 2 (ALDH2) in prostate cancer (PCa) patients and provide insights into the tumor immune microenvironment (TME) for those patients undergoing radical radiotherapy. METHODS We performed all analyses using R version 3.6.3 and its suitable packages. Cytoscape 3.8.2 was used to establish network of competing endogenous RNAs (ceRNAs). RESULTS Downregulation of ADLH2 was significantly associated with higher risk of BCR-free survival (HR: 0.40, 95%CI: 0.24-0.68, p = 0.001) and metastasis-free survival (HR: 0.21, 95%CI: 0.09-0.49, p = 0.002). Additionally, ALDH2 repression contributed to significantly shorter BCR-free survival in the TCGA database (HR: 0.55, 95%CI: 0.33-0.93, p = 0.027). For immune checkpoints, patients that expressed a higher level of CD96 had a higher risk of BCR than their counterparts (HR: 1.79, 95%CI: 1.06-3.03, p = 0.032), as well as NRP1 (HR: 2.18, 95%CI: 1.29-3.69, p = 0.005). In terms of the TME parameters, the spearman analysis showed that ALDH was positively associated with B cells (r: 0.13), CD8+ T cells (r: 0.19), neutrophils (r: 0.13), and macrophages (r: 0.17). Patients with higher score of neutrophils (HR: 1.75, 95%CI: 1.03-2.95, p = 0.038), immune score (HR: 1.92, 95%CI: 1.14-3.25, p = 0.017), stromal score (HR: 2.52, 95%CI: 1.49-4.26, p = 0.001), and estimate score (HR: 1.81, 95%CI: 1.07-3.06, p = 0.028) had higher risk of BCR than their counterparts. Our ceRNA network found that PART1 might regulate the expression of ALDH via has-miR-578 and has-miR-6833-3p. Besides, PHA-793887, PI-103, and piperlongumine had better correlations with ALDH2. CONCLUSIONS We found that ALDH2 might serve as a potential biomarker predicting biochemical recurrence for PCa patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Zhong S, Shengyu Liu, Xin Shi, Zhang X, Li K, Liu G, Li L, Tao S, Zheng B, Sheng W, Ye Z, Xing Q, Zhai Q, Ren L, Wu Y, Bao Y. Disulfiram in glioma: Literature review of drug repurposing. Front Pharmacol 2022; 13:933655. [PMID: 36091753 PMCID: PMC9448899 DOI: 10.3389/fphar.2022.933655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Gliomas are the most common malignant brain tumors. High-grade gliomas, represented by glioblastoma multiforme (GBM), have a poor prognosis and are prone to recurrence. The standard treatment strategy is tumor removal combined with radiotherapy and chemotherapy, such as temozolomide (TMZ). However, even after conventional treatment, they still have a high recurrence rate, resulting in an increasing demand for effective anti-glioma drugs. Drug repurposing is a method of reusing drugs that have already been widely approved for new indication. It has the advantages of reduced research cost, safety, and increased efficiency. Disulfiram (DSF), originally approved for alcohol dependence, has been repurposed for adjuvant chemotherapy in glioma. This article reviews the drug repurposing method and the progress of research on disulfiram reuse for glioma treatment.
Collapse
|
19
|
Can gene therapy be used to prevent cancer? Gene therapy for aldehyde dehydrogenase 2 deficiency. Cancer Gene Ther 2022; 29:889-896. [PMID: 34799722 PMCID: PMC9117562 DOI: 10.1038/s41417-021-00399-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 11/08/2022]
Abstract
Approximately 8% of the world population and 35-45% of East Asians are carriers of the hereditary disorder aldehyde dehydrogenase 2 (ALDH2) deficiency. ALDH2 plays a central role in the liver to metabolize ethanol. With the common E487K variant, there is a deficiency of ALDH2 function; when ethanol is consumed, there is a systemic accumulation of acetaldehyde, an intermediate product in ethanol metabolism. In ALDH2-deficient individuals, ethanol consumption acutely causes the "Alcohol Flushing Syndrome" with facial flushing, tachycardia, nausea, and headaches. With chronic alcohol consumption, ALDH2 deficiency is associated with a variety of disorders, including a remarkably high risk for aerodigestive tract cancers. Acetaldehyde is a known carcinogen. The epidemiologic data relating to the association of ALDH2 deficiency and cancer risk are striking: ALDH2 homozygotes who are moderate-to-heavy consumers of ethanol have a 7-12-fold increased risk for esophageal cancer, making ALDH2 deficiency the most common hereditary disorder associated with an increased cancer risk. In this review, we summarize the genetics and biochemistry of ALDH2, the epidemiology of cancer risk associated with ALDH2 deficiency, the metabolic consequences of ethanol consumption associated with ALDH2 deficiency, and gene therapy strategies to correct ALDH2 deficiency and its associated cancer risk. With the goal of reducing the risk of aerodigestive tract cancers, in the context that ALDH2 is a hereditary disorder and ALDH2 functions primarily in the liver, ALDH2 deficiency is an ideal target for the application of adeno-associated virus-mediated liver-directed gene therapy to prevent cancer.
Collapse
|
20
|
Wang W, Wang J, Liu S, Ren Y, Wang J, Liu S, Cui W, Jia L, Tang X, Yang J, Wu C, Wang L. An EHMT2/NFYA-ALDH2 signaling axis modulates the RAF pathway to regulate paclitaxel resistance in lung cancer. Mol Cancer 2022; 21:106. [PMID: 35477569 PMCID: PMC9044593 DOI: 10.1186/s12943-022-01579-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
Background Lung cancer is a kind of malignancy with high morbidity and mortality worldwide. Paclitaxel (PTX) is the main treatment for non-small cell lung cancer (NSCLC), and resistance to PTX seriously affects the survival of patients. However, the underlying mechanism and potential reversing strategy need to be further explored. Methods We identified ALDH2 as a PTX resistance-related gene using gene microarray analysis. Subsequently, a series of functional analysis in cell lines, patient samples and xenograft models were performed to explore the functional role, clinical significance and the aberrant regulation mechanism of ALDH2 in PTX resistance of NSCLC. Furthermore, the pharmacological agents targeting ALDH2 and epigenetic enzyme were used to investigate the diverse reversing strategy against PTX resistance. Results Upregulation of ALDH2 expression is highly associated with resistance to PTX using in vitro and in vivo analyses of NSCLC cells along with clinicopathological analyses of NSCLC patients. ALDH2-overexpressing NSCLC cells exhibited significantly reduced PTX sensitivity and increased biological characteristics of malignancy in vitro and tumor growth and metastasis in vivo. EHMT2 (euchromatic histone lysine methyltransferase 2) inhibition and NFYA (nuclear transcription factor Y subunit alpha) overexpression had a cooperative effect on the regulation of ALDH2. Mechanistically, ALDH2 overexpression activated the RAS/RAF oncogenic pathway. NSCLC/PTX cells re-acquired sensitivity to PTX in vivo and in vitro when ALDH2 was inhibited by pharmacological agents, including the ALDH2 inhibitors Daidzin (DZN)/Disulfiram (DSF) and JIB04, which reverses the effect of EHMT2. Conclusion Our findings suggest that ALDH2 status can help predict patient response to PTX therapy and ALDH2 inhibition may be a promising strategy to overcome PTX resistance in the clinic. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01579-9.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Jianmin Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Shuai Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Yong Ren
- Department of Pathology, General Hospital of Central Theater Command of People's Liberation Army, Wuhan, People's Republic of China
| | - Jingyu Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Sen Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Lina Jia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Xing Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China. .,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China. .,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.
| |
Collapse
|
21
|
Sun F, Wang H, Nie J, Hong B. Repurposing disulfiram as a chemo-therapeutic sensitizer: molecular targets and mechanisms. Anticancer Agents Med Chem 2022; 22:2920-2926. [PMID: 35430981 DOI: 10.2174/1871520621666220415102553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/20/2021] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
Currently, chemo-therapy is still the main strategy for cancer treatment. However, chemo-therapy resistance remains its main challenge. Disulfiram [DSF] is a drug approved by FDA for the treatment of alcohol addiction, but it is later discovered that it has the anticancer activity. Importantly, there have been many literatures reporting that DSF can be used as a chemo-therapeutic sensitizer to enhance the anticancer activity of chemo-drugs in a variety of cancers. Furthermore, the combinations of DSF and chemo-drugs have been tested in clinic trials. In the review, we summarized the possible molecular targets and mechanisms of DSF to reverse chemo-resistance. We also further discussed the opportunities and challenges of DSF as a chemo-therapeutic sensitizer. In conclusion, DSF could be a potential repurposed drug to sensitize cancer cells to chemo-therapy in clinic.
Collapse
Affiliation(s)
- Feilong Sun
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,University of Science and Technology of China, Hefei, Anhui, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Jinfu Nie
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Bo Hong
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| |
Collapse
|
22
|
Ibrahim AIM, Batlle E, Sneha S, Jiménez R, Pequerul R, Parés X, Rüngeler T, Jha V, Tuccinardi T, Sadiq M, Frame F, Maitland NJ, Farrés J, Pors K. Expansion of the 4-(Diethylamino)benzaldehyde Scaffold to Explore the Impact on Aldehyde Dehydrogenase Activity and Antiproliferative Activity in Prostate Cancer. J Med Chem 2022; 65:3833-3848. [PMID: 35212533 PMCID: PMC9007462 DOI: 10.1021/acs.jmedchem.1c01367] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Aldehyde dehydrogenases (ALDHs) are
overexpressed in various tumor
types including prostate cancer and considered a potential target
for therapeutic intervention. 4-(Diethylamino)benzaldehyde (DEAB)
has been extensively reported as a pan-inhibitor of ALDH isoforms,
and here, we report on the synthesis, ALDH isoform selectivity, and
cellular potencies in prostate cancer cells of 40 DEAB analogues;
three analogues (14, 15, and 16) showed potent inhibitory activity against ALDH1A3, and two analogues
(18 and 19) showed potent inhibitory activity
against ALDH3A1. Significantly, 16 analogues displayed increased cytotoxicity
(IC50 = 10–200 μM) compared with DEAB (>200
μM) against three different prostate cancer cell lines. Analogues 14 and 18 were more potent than DEAB against
patient-derived primary prostate tumor epithelial cells, as single
agents or in combination treatment with docetaxel. In conclusion,
our study supports the use of DEAB as an ALDH inhibitor but also reveals
closely related analogues with increased selectivity and potency.
Collapse
Affiliation(s)
- Ali I M Ibrahim
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Yorkshire BD7 1DP, U.K.,Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Elisabet Batlle
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Yorkshire BD7 1DP, U.K.,Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | - Smarakan Sneha
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Yorkshire BD7 1DP, U.K
| | - Rafael Jiménez
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | - Raquel Pequerul
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | - Till Rüngeler
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | - Vibhu Jha
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Maria Sadiq
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Yorkshire BD7 1DP, U.K.,Cancer Research Unit, Department of Biology, University of York, Heslington, Yorkshire YO10 5DD, U.K
| | - Fiona Frame
- Cancer Research Unit, Department of Biology, University of York, Heslington, Yorkshire YO10 5DD, U.K
| | - Norman J Maitland
- Cancer Research Unit, Department of Biology, University of York, Heslington, Yorkshire YO10 5DD, U.K
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | - Klaus Pors
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Yorkshire BD7 1DP, U.K
| |
Collapse
|
23
|
Ma B, Liu Z, Xu H, Liu L, Huang T, Meng L, Wang L, Zhang Y, Li L, Han X. Molecular Characterization and Clinical Relevance of ALDH2 in Human Cancers. Front Med (Lausanne) 2022; 8:832605. [PMID: 35096916 PMCID: PMC8792945 DOI: 10.3389/fmed.2021.832605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Aldehyde dehydrogenase 2 (ALDH2) is well-known to be a key enzyme in alcohol metabolism. However, a comprehensive understanding of ALDH2 across human cancers is lacking. Methods: A systematic and comprehensive analysis of the molecular alterations and clinical relevance for ALDH2 in more than 10,000 samples from 33 cancer types was performed. qRT-PCR was performed on 60 cancer and 60 paired nontumor tissues. Results: It was observed that ALDH2 was generally downregulated in most cancers, which was mainly driven by DNA hypermethylation rather than mutations or copy number variations. Besides, ALDH2 was closely related to the inhibition and activation of tumor pathways and a variety of potential targeted agents had been discovered in our research. Last but not least, ALDH2 had the best prediction efficacy in assessing immunotherapeutic response compared with PD-L1, PD-1, CTLA4, CD8, and tumor mutation burden (TMB) in cutaneous melanoma. According to the analysis of large-scale public data and 60 pairs of clinical cancer samples, we found the downregulation of ALDH2 expression tends to suggest the malignant phenotypes and adverse prognosis, which might enhance the precise diagnosis and timely intervention of cancer patients. Conclusion: This study advanced the understanding of ALDH2 across cancers, and provided important insight into chemotherapy, immunotherapy and prognosis of patients with cancer.
Collapse
Affiliation(s)
- Bo Ma
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Provice, Zhengzhou, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Provice, Zhengzhou, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Huang
- Medical School, Huanghe Science and Technology University, Zhengzhou, China
| | - Lingfang Meng
- Department of Infection Management, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Provice, Zhengzhou, China
| |
Collapse
|
24
|
Zhang BB, Liu JG, Bai XY, Huang YJ, Xu N, Ren T. A Novel Fluorescent Dye Invades Mitochondria to Selectively Kill Cancer Stem Cells via Increased ROS Production. Bioinorg Chem Appl 2021; 2021:4763944. [PMID: 34691164 PMCID: PMC8528615 DOI: 10.1155/2021/4763944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022] Open
Abstract
Development of multiple agents has a significant impact on the cancer diagnosis and therapy. Several fluorescent dyes including near-infrared (NIR) fluorescent agents have been already well studied in the field of photodynamic therapy (PDT). In the present study, we reported a novel fluorescent dye could obviously inhibit cancer cell proliferation with slight toxic effects on the biological organism. Furthermore, it displayed selective staining on cancer cells, particularly on cancer stem cells (CSCs), rather than normal cells. Mechanically, this dye preferred to invading mitochondria of cancer cells and inducing overwhelming reactive oxygen species (ROS) production. The in vivo experiments further demonstrated that this dye could image cancer cells and even CSCs in a short-time intratumor injection manner using a zebrafish model and subsequently inhibit cancer cell proliferation after a relatively long-time drug exposure. Taken together, the future development of this agent will promise to make an essential contribution to the cancer diagnosis and therapeutics.
Collapse
Affiliation(s)
- Bei-Bei Zhang
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Jun-gang Liu
- Guangxi Medical University Affiliated Cancer Hospital, Nanning, China
| | - Xian-Yu Bai
- Graduate School, Guangxi Medical University, Nanning, China
| | - Yuan-Jiao Huang
- Life Science Institute, Guangxi Medical University, Nanning, China
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Ning Xu
- The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tao Ren
- The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
25
|
Gwili N, Jones SJ, Amri WA, Carr IM, Harris S, Hogan BV, Hughes WE, Kim B, Langlands FE, Millican-Slater RA, Pramanik A, Thorne JL, Verghese ET, Wells G, Hamza M, Younis L, El Deeb NMF, Hughes TA. Transcriptome profiles of stem-like cells from primary breast cancers allow identification of ITGA7 as a predictive marker of chemotherapy response. Br J Cancer 2021; 125:983-993. [PMID: 34253873 PMCID: PMC8476506 DOI: 10.1038/s41416-021-01484-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/07/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Breast cancer stem cells (BCSCs) are drivers of therapy-resistance, therefore are responsible for poor survival. Molecular signatures of BCSCs from primary cancers remain undefined. Here, we identify the consistent transcriptome of primary BCSCs shared across breast cancer subtypes, and we examine the clinical relevance of ITGA7, one of the genes differentially expressed in BCSCs. METHODS Primary BCSCs were assessed using immunohistochemistry and fluorescently labelled using Aldefluor (n = 17). Transcriptomes of fluorescently sorted BCSCs and matched non-stem cancer cells were determined using RNA-seq (n = 6). ITGA7 expression was examined in breast cancers using immunohistochemistry (n = 305), and its functional role was tested using siRNA in breast cancer cells. RESULTS Proportions of BCSCs varied from 0 to 9.4%. 38 genes were significantly differentially expressed in BCSCs; genes were enriched for functions in vessel morphogenesis, motility, and metabolism. ITGA7 was found to be significantly downregulated in BCSCs, and low expression significantly correlated with reduced survival in patients treated with chemotherapy, and with chemoresistance in breast cancer cells in vitro. CONCLUSIONS This study is the first to define the molecular profile of BCSCs from a range of primary breast cancers. ITGA7 acts as a predictive marker for chemotherapy response, in accordance with its downregulation in BCSCs.
Collapse
Affiliation(s)
- Noha Gwili
- grid.9909.90000 0004 1936 8403School of Medicine, University of Leeds, Leeds, UK ,grid.7155.60000 0001 2260 6941Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Stacey J. Jones
- grid.9909.90000 0004 1936 8403School of Medicine, University of Leeds, Leeds, UK ,grid.415967.80000 0000 9965 1030Department of Breast Surgery, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Waleed Al Amri
- grid.416132.30000 0004 1772 5665Department of Histopathology and Cytopathology, The Royal Hospital, Muscat, Oman
| | - Ian M. Carr
- grid.9909.90000 0004 1936 8403School of Medicine, University of Leeds, Leeds, UK
| | - Sarah Harris
- grid.9909.90000 0004 1936 8403School of Physics and Astronomy, University of Leeds, Leeds, UK
| | - Brian V. Hogan
- grid.415967.80000 0000 9965 1030Department of Breast Surgery, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - William E. Hughes
- grid.414235.50000 0004 0619 2154Children’s Medical Research Institute, Westmead, NSW Australia ,grid.1005.40000 0004 4902 0432St. Vincent’s Clinical School, University of New South Wales, Sydney, Australia
| | - Baek Kim
- grid.415967.80000 0000 9965 1030Department of Breast Surgery, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Fiona E. Langlands
- Department of Breast Surgery, Bradford Teaching Hospitals NHS Trust, Bradford, UK
| | | | - Arindam Pramanik
- grid.9909.90000 0004 1936 8403School of Medicine, University of Leeds, Leeds, UK
| | - James L. Thorne
- grid.9909.90000 0004 1936 8403School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Eldo T. Verghese
- grid.443984.6Department of Histopathology, St. James’s University Hospital, Leeds, UK
| | - Geoff Wells
- grid.83440.3b0000000121901201School of Pharmacy, University College London, London, UK
| | - Mervat Hamza
- grid.7155.60000 0001 2260 6941Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Layla Younis
- grid.7155.60000 0001 2260 6941Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nevine M. F. El Deeb
- grid.7155.60000 0001 2260 6941Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Thomas A. Hughes
- grid.9909.90000 0004 1936 8403School of Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
26
|
Liu C, Qiang J, Deng Q, Xia J, Deng L, Zhou L, Wang D, He X, Liu Y, Zhao B, Lv J, Yu Z, Lei QY, Shao ZM, Zhang XY, Zhang L, Liu S. ALDH1A1 activity in tumor-initiating cells remodels myeloid-derived suppressor cells to promote breast cancer progression. Cancer Res 2021; 81:5919-5934. [PMID: 34580061 DOI: 10.1158/0008-5472.can-21-1337] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/17/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022]
Abstract
Tumor-initiating cells (TIC) are associated with tumor initiation, growth, metastasis, and recurrence. Aldehyde dehydrogenase 1A1 (ALDH1A1) is a TIC marker in many cancers, including breast cancer. However the molecular mechanisms underlying ALDH1A1 functions in solid tumors remain largely unknown. Here we demonstrate that ALDH1A1 enzymatic activity facilitates breast tumor growth. Mechanistically, ALDH1A1 decreased the intracellular pH in breast cancer cells to promote phosphorylation of TAK1, activate NFκB signaling, and increase the secretion of granulocyte macrophage colony-stimulating factor (GM-CSF), which led to myeloid-derived suppressor cell (MDSC) expansion and immunosuppression. Furthermore, the ALDH1A1 inhibitor disulfiram and chemotherapeutic agent gemcitabine cooperatively inhibited breast tumor growth and tumorigenesis by purging ALDH+ TICs and activating T cell immunity. These findings elucidate how active ALDH1A1 modulates the immune system to promote tumor development, highlghting new therapeutic strategies for malignant breast cancer.
Collapse
Affiliation(s)
- Cuicui Liu
- Cancer Institute, Fudan University Shanghai Cancer Center
| | | | - Qiaodan Deng
- Cancer Institute, Fudan University Shanghai Cancer Center
| | - Jie Xia
- Cancer Institute, Fudan University Shanghai Cancer Center
| | - Lu Deng
- Stowers Institute for Medical Research
| | - Lei Zhou
- Cancer Institute, Fudan University Shanghai Cancer Center
| | | | - Xueyan He
- Life Science, University of Science and Technology of China
| | | | | | - Jinhui Lv
- Shanghai East Hospital, Tongji University School of Medicine
| | - Zuoren Yu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Life Sciences and Technology
| | - Qun-Ying Lei
- Department of Oncology, Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University
| | - Zhi-Ming Shao
- Breast Surgery, Fudan University Shanghai Cancer Center
| | - Xiao-Yong Zhang
- The Institute of Science and Technology for Brain-inspired Intelligence, Fudan University
| | | | - Suling Liu
- Cancer Institute, Fudan University Shanghai Cancer Center
| |
Collapse
|
27
|
Schemann-Miguel F, Aloise AC, Gaiba S, Ferreira LM. Effect of Static Compressive Force on Aldehyde Dehydrogenase Activity in Periodontal Ligament Fibroblasts. Open Dent J 2021. [DOI: 10.2174/1874210602115010417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
The application of static compressive forces to periodontal ligament fibroblasts (PDLFs) in vivo or in vitro has been linked to the expression of biochemical agents and local tissue modifications that could be involved in maintaining homeostasis during orthodontic movement. An approach used for identifying mesenchymal cells, or a subpopulation of progenitor cells in both tumoral and normal tissues, involves determining the activity of aldehyde dehydrogenase (ALDH). However, the role of subpopulations of PDLF-derived undifferentiated cells in maintaining homeostasis during tooth movement remains unclear.
Objective:
This study aimed at analyzing the effect of applying a static compressive force to PDLFs on the activity of ALDH in these cells.
Methods:
PDLFs were distributed into two groups: control group (CG), where fibroblasts were not submitted to compression, and experimental group (EG), where fibroblasts were submitted to a static compressive force of 4 g/mm2 for 6 hours. The compressive force was applied directly to the cells using a custom-built device. ALDH activity in the PDLFs was evaluated by a flow cytometry assay.
Results:
ALDH activity was observed in both groups, but was significantly lower in EG than in CG after the application of a static compressive force in the former.
Conclusion:
Application of a static compressive force to PDLFs decreased ALDH activity.
Collapse
|
28
|
Inhibition of aldehyde dehydrogenase by furazolidone nanoemulsion to decrease cisplatin resistance in lung cancer cells. Ther Deliv 2021; 12:611-625. [PMID: 34286601 DOI: 10.4155/tde-2020-0130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: The overexpression of aldehyde dehydrogenase (ALDH) in cancer cells contributes to therapeutic resistance. Furazolidone (FUR) is a strong ALDH inhibitor. Methods: FUR nanoemulsion (NE) was formulated and tested for ALDH inhibitory activity in comparison with free FUR. The cytotoxic potential of cisplatin was evaluated in combination with free FUR and FUR NE. Results: The optimized FUR NE showed droplet size of 167.9 ± 3.1 nm and drug content of 84.2 ± 2.3%. FUR NE inhibited 99.75 ± 2.1% of ALDH activity while 25.0 ± 4.6% was inhibited by free FUR. FUR NE increased the sensitivity to cisplatin in A549 cells by more than tenfold by its ALDH inhibitory effects. Conclusion: This finding can be a promising approach to improve cancer survival in ALDH-positive drug-resistant cancers.
Collapse
|
29
|
Zhang C, Amanda S, Wang C, King Tan T, Zulfaqar Ali M, Zhong Leong W, Moy Ng L, Kitajima S, Li Z, Eng Juh Yeoh A, Hao Tan S, Sanda T. Oncorequisite role of an aldehyde dehydrogenase in the pathogenesis of T-cell acute lymphoblastic leukemia. Haematologica 2021; 106:1545-1558. [PMID: 32414855 PMCID: PMC8168519 DOI: 10.3324/haematol.2019.245639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Aldehyde dehydrogenases (ALDH) are overexpressed in various types of cancers. One of the ALDH family genes, ALDH1A2, is aberrantly expressed in more than 50% of cases of T-cell acute lymphoblastic leukemia (T-ALL). However, its molecular function and role in the pathogenesis of T-ALL are largely unknown. Chromatin immunoprecipitation-sequencing and RNA-sequencing analyses showed that the oncogenic transcription factor TAL1 and its regulatory partners bind to the intronic regulatory element of the ALDH1A2 gene, directly inducing a T-ALL-specific isoform with enzymatic activity. ALDH1A2 was preferentially expressed in the TAL1-positive T-ALL subgroup. In TALL cell lines, depletion of ALDH1A2 inhibited cell viability and induced apoptosis. Interestingly, gene expression and metabolomic profiling revealed that ALDH1A2 supported glycolysis and the tricarboxylic acid cycle, accompanied by NADH production, by affecting multiple metabolic enzymes to promote ATP production. Depletion of ALDH1A2 increased the levels of reactive oxygen species, while the levels were reduced by ALDH1A2 overexpression both in vitro and in vivo. Overexpression of ALDH1A2 accelerated tumor onset and increased tumor penetrance in a zebrafish model of T-ALL. Taken together, our results indicate that ALDH1A2 protects against intracellular stress and promotes T-ALL cell metabolism and survival. ALDH1A2 overexpression enables leukemic clones to sustain a hyper-proliferative state driven by oncogenes.
Collapse
Affiliation(s)
- Chujing Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Stella Amanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Cheng Wang
- Department of Anatomy, National University of Singapore, Singapore
| | - Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Wei Zhong Leong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ley Moy Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Shojiro Kitajima
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Zhenhua Li
- Department of Paediatrics, National University of Singapore, Singapore
| | - Allen Eng Juh Yeoh
- Dept of Paediatrics, National University of Singapore and Cancer Science Institute of Singapore
| | - Shi Hao Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| |
Collapse
|
30
|
Evaluation of spice and herb as phyto-derived selective modulators of human retinaldehyde dehydrogenases using a simple in vitro method. Biosci Rep 2021; 41:228584. [PMID: 33950219 PMCID: PMC8493444 DOI: 10.1042/bsr20210491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/19/2021] [Accepted: 05/05/2021] [Indexed: 11/17/2022] Open
Abstract
Selective modulation of retinaldehyde dehydrogenases (RALDHs)-the main aldehyde dehydrogenase (ALDH) enzymes converting retinal into retinoic acid (RA), is very important not only in the RA signaling pathway but also for the potential regulatory effects on RALDH isozyme-specific processes and RALDH-related cancers. However, very few selective modulators for RALDHs have been identified, partly due to variable overexpression protocols of RALDHs and insensitive activity assay that needs to be addressed. In the present study, deletion of the N-terminal disordered regions is found to enable simple preparation of all RALDHs and their closest paralog ALDH2 using a single protocol. Fluorescence-based activity assay was employed for enzymatic activity investigation and screening for RALDH-specific modulators from extracts of various spices and herbs that are well-known for containing many phyto-derived anti-cancer constituents. Under the established conditions, spice and herb extracts exhibited differential regulatory effects on RALDHs/ALDH2 with several extracts showing potential selective inhibition of the activity of RALDHs. In addition, the presence of magnesium ions was shown to significantly increase the activity for the natural substrate retinal of RALDH3 but not the others, while His-tag cleavage considerably increased the activity of ALDH2 for the non-specific substrate retinal. Altogether we propose a readily reproducible workflow to find selective modulators for RALDHs and suggest potential sources of selective modulators from spices and herbs.
Collapse
|
31
|
A J, Zhang B, Zhang Z, Hu H, Dong JT. Novel Gene Signatures Predictive of Patient Recurrence-Free Survival and Castration Resistance in Prostate Cancer. Cancers (Basel) 2021; 13:cancers13040917. [PMID: 33671634 PMCID: PMC7927111 DOI: 10.3390/cancers13040917] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Molecular signatures predictive of recurrence-free survival (RFS) and castration resistance are critical for treatment decision-making in prostate cancer (PCa), but the robustness of current signatures is limited. This study aims to identify castration-resistant PCa (CRPC)-associated genes and develop robust RFS and CRPC signatures. Among 287 genes differentially expressed between localized CRPC and hormone-sensitive PCa (HSPC) samples, 6 genes constituted a signature (CRPC-derived prognosis signature, CRPCPS) that predicted RFS. Moreover, a 3-gene panel derived from the 6 CRPCPS genes was capable of distinguishing CRPC from HSPC. The CRPCPS predicted RFS in 5/9 cohorts in the multivariate analysis and maintained prognostic in patients stratified by tumor stage, Gleason score, and lymph node metastasis status. It also predicted overall survival and metastasis-free survival. Notably, the signature was validated in another six independent cohorts. These findings suggest that these two signatures could be robust tools for predicting RFS and CRPC in clinical practice. Abstract Molecular signatures predictive of recurrence-free survival (RFS) and castration resistance are critical for treatment decision-making in prostate cancer (PCa), but the robustness of current signatures is limited. Here, we applied the Robust Rank Aggregation (RRA) method to PCa transcriptome profiles and identified 287 genes differentially expressed between localized castration-resistant PCa (CRPC) and hormone-sensitive PCa (HSPC). Least absolute shrinkage and selection operator (LASSO) and stepwise Cox regression analyses of the 287 genes developed a 6-gene signature predictive of RFS in PCa. This signature included NPEPL1, VWF, LMO7, ALDH2, NUAK1, and TPT1, and was named CRPC-derived prognosis signature (CRPCPS). Interestingly, three of these 6 genes constituted another signature capable of distinguishing CRPC from HSPC. The CRPCPS predicted RFS in 5/9 cohorts in the multivariate analysis and remained valid in patients stratified by tumor stage, Gleason score, and lymph node status. The signature also predicted overall survival and metastasis-free survival. The signature’s robustness was demonstrated by the C-index (0.55–0.74) and the calibration plot in all nine cohorts and the 3-, 5-, and 8-year area under the receiver operating characteristic curve (0.67–0.77) in three cohorts. The nomogram analyses demonstrated CRPCPS’ clinical applicability. The CRPCPS thus appears useful for RFS prediction in PCa.
Collapse
Affiliation(s)
- Jun A
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China;
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China;
| | - Baotong Zhang
- Emory Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA 30322, USA;
| | - Zhiqian Zhang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China;
| | - Hailiang Hu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China;
| | - Jin-Tang Dong
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China;
- Correspondence:
| |
Collapse
|
32
|
Liu L, Borlak J. Advances in Liver Cancer Stem Cell Isolation and their Characterization. Stem Cell Rev Rep 2021; 17:1215-1238. [PMID: 33432485 DOI: 10.1007/s12015-020-10114-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2020] [Indexed: 12/24/2022]
Abstract
Over the last decade research on cancer stem cells (CSC) significantly contributed to a better understanding of tumor biology. Given their similarity to normal stem cells, i.e. self-renewal and pluripotency the need arises to develop robust protocols for the isolation and characterization of CSCs. As with other malignancies, hepatic tumors are composed of a heterogeneous population of cells including liver cancer stem cells (LCSC). Yet, a precise understanding of why stem cells become cancerous is still lacking. There is unmet need to develop robust protocols for the successful isolation of LCSCs from human tissue resection material as to assist in the development of molecular targeted therapies. Here we review the research progress made in the isolation and characterization of LCSCs by considering a wide range of cell surface markers and sorting methods, as applied to side populations, microsphere cultures and the gradient centrifugation method. We emphasize the different fluorescence activated cell sorting methods and the possibility to enrich LCSCs by immunomagnetic beads. We review the specificity of functional assays by considering ABCG transporter and ALDH1 enzyme activities and evaluate the in vivo tumorigenicity of LCSCs in highly sensitive bioassays. Finally, we evaluate different LCSC markers in association with viral and non-viral liver disease and explore the potential of novel drug delivery systems targeting CD133, EpCAM, CD13 and CD90 for the development of molecular targeted therapies. Graphical Abstract.
Collapse
Affiliation(s)
- Lu Liu
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
33
|
Aldehyde Dehydrogenase 1B1 Is Associated with Altered Cell Morphology, Proliferation, Migration and Chemosensitivity in Human Colorectal Adenocarcinoma Cells. Biomedicines 2021; 9:biomedicines9010044. [PMID: 33419031 PMCID: PMC7825346 DOI: 10.3390/biomedicines9010044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/28/2022] Open
Abstract
Aldehyde dehydrogenases (ALDHs) are NAD(P)+-dependent enzymes that catalyze the oxidation of endogenous and exogenous aldehydes to their corresponding carboxylic acids. ALDHs participate in a variety of cellular mechanisms, such as metabolism, cell proliferation and apoptosis, as well as differentiation and stemness. Over the last few years, ALDHs have emerged as cancer stem cell markers in a wide spectrum of solid tumors and hematological malignancies. In this study, the pathophysiological role of ALDH1B1 in human colorectal adenocarcinoma was investigated. Human colon cancer HT29 cells were stably transfected either with human green fluorescent protein (GFP)-tagged ALDH1B1 or with an empty lentiviral expression vector. The overexpression of ALDH1B1 was correlated with altered cell morphology, decreased proliferation rate and reduced clonogenic efficiency. Additionally, ALDH1B1 triggered a G2/M arrest at 24 h post-cell synchronization, probably through p53 and p21 upregulation. Furthermore, ALDH1B1-overexpressing HT29 cells exhibited enhanced resistance against doxorubicin, fluorouracil (5-FU) and etoposide. Finally, ALDH1B1 induced increased migratory potential and displayed epithelial–mesenchymal transition (EMT) through the upregulation of ZEB1 and vimentin and the consequent downregulation of E-cadherin. Taken together, ALDH1B1 confers alterations in the cell morphology, cell cycle progression and gene expression, accompanied by significant changes in the chemosensitivity and migratory potential of HT29 cells, underlying its potential significance in cancer progression.
Collapse
|
34
|
Biological characteristics of aging in human acute myeloid leukemia cells: the possible importance of aldehyde dehydrogenase, the cytoskeleton and altered transcriptional regulation. Aging (Albany NY) 2020; 12:24734-24777. [PMID: 33349623 PMCID: PMC7803495 DOI: 10.18632/aging.202361] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022]
Abstract
Patients with acute myeloid leukemia (AML) have a median age of 65-70 years at diagnosis. Elderly patients have more chemoresistant disease, and this is partly due to decreased frequencies of favorable and increased frequencies of adverse genetic abnormalities. However, aging-dependent differences may also contribute. We therefore compared AML cell proteomic and phosphoproteomic profiles for (i) elderly low-risk and younger low-risk patients with favorable genetic abnormalities; and (ii) high-risk patients with adverse genetic abnormalities and a higher median age against all low-risk patients with lower median age. Elderly low-risk and younger low-risk patients showed mainly phosphoproteomic differences especially involving transcriptional regulators and cytoskeleton. When comparing high-risk and low-risk patients both proteomic and phosphoproteomic studies showed differences involving cytoskeleton and immunoregulation but also transcriptional regulation and cell division. The age-associated prognostic impact of cyclin-dependent kinases was dependent on the cellular context. The protein level of the adverse prognostic biomarker mitochondrial aldehyde dehydrogenase (ALDH2) showed a similar significant upregulation both in elderly low-risk and elderly high-risk patients. Our results suggest that molecular mechanisms associated with cellular aging influence chemoresistance of AML cells, and especially the cytoskeleton function may then influence cellular hallmarks of aging, e.g. mitosis, polarity, intracellular transport and adhesion.
Collapse
|
35
|
He L, Yu A, Deng L, Zhang H. Eradicating the Roots: Advanced Therapeutic Approaches Targeting Breast Cancer Stem Cells. Curr Pharm Des 2020; 26:2009-2021. [PMID: 32183663 DOI: 10.2174/1381612826666200317132949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/08/2020] [Indexed: 12/30/2022]
Abstract
Accumulating evidences have demonstrated that the existence of breast cancer-initiating cells, which drives the original tumorigenicity, local invasion and migration propensity of breast cancer. These cells, termed as breast cancer stem cells (BCSCs), possess properties including self-renewal, multidirectional differentiation and proliferative potential, and are believed to play important roles in the intrinsic drug resistance of breast cancer. One of the reasons why BCBCs cause difficulties in breast cancer treating is that BCBCs can control both genetic and non-genetic elements to keep their niches safe and sound, which allows BCSCs for constant self-renewal and differentiation. Therapeutic strategies designed to target BCSCs may ultimately result in effective interventions for the treatment of breast cancer. Novel strategies including nanomedicine, oncolytic virus therapy, immunotherapy and induced differentiation therapy are emerging and proved to be efficient in anti-BCSCs therapy. In this review, we summarized breast tumor biology and the current challenges of breast cancer therapies, focused on breast cancer stem cells, and introduced promising therapeutic strategies targeting BCSCs.
Collapse
Affiliation(s)
- Lili He
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Anran Yu
- The State University of New York, Buffalo, NY 12246, United States
| | - Li Deng
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Hongwei Zhang
- School of Pharmacy, MCPHS University, Boston, MA 02115, United States
| |
Collapse
|
36
|
Nakamura J. Potential Doxorubicin-Mediated Dual-Targeting Chemotherapy in FANC/BRCA-Deficient Tumors via Modulation of Cellular Formaldehyde Concentration. Chem Res Toxicol 2020; 33:2659-2667. [PMID: 32876438 DOI: 10.1021/acs.chemrestox.0c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Doxorubicin (DOX) is a widely used classical broad-spectrum anticancer drug. The major mechanism of DOX-mediated anticancer activity at clinically relevant concentrations is believed to be via DNA double-strand breaks due to topoisomerase IIα. However, other mechanisms by which DOX causes cytotoxicity have been proposed, including formaldehyde-dependent virtual interstrand cross-linking (ICL) formation. In this study, a method was established whereby cytotoxicity caused by virtual ICL derived from DOX is turned on and off using a cell culture system. Using this strategy, DOX-mediated cytotoxicity in Fanconi anemia group gene (FANC)/breast cancer susceptibility gene (BRCA)-deficient cells increased up to 70-fold compared to that in cells proficient in DNA repair pathways by increasing intracellular formaldehyde (FA) concentration. This approach also demonstrated that cytotoxicity introduced by DOX-mediated FA-dependent virtual ICL is completely independent of the toxicity induced by topoisomerase II inhibition at the cellular level. The potential of dual-targeting by DOX treatment was verified using an acid-specific FA donor. Overall, anticancer therapy targeting tumors deficient in the FANC/BRCA pathway may be possible by minimizing DOX-induced toxicity in normal cells.
Collapse
Affiliation(s)
- Jun Nakamura
- Laboratory of Laboratory Animal Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan.,Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| |
Collapse
|
37
|
Li B, Yang K, Liang D, Jiang C, Ma Z. Discovery and development of selective aldehyde dehydrogenase 1A1 (ALDH1A1) inhibitors. Eur J Med Chem 2020; 209:112940. [PMID: 33328099 DOI: 10.1016/j.ejmech.2020.112940] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/29/2020] [Accepted: 10/11/2020] [Indexed: 12/24/2022]
Abstract
ALDH1A1, one important member of 19 ALDHs, can metabolize reactive aldehydes to their corresponding carboxylic acid derivatives and play important physiological and toxicological roles in many areas, including CNS, metabolic disorders, and cancers. Overexpression of ALDH1A1 correlates with poor prognosis and tumor aggressiveness, is associated with drug resistance in traditional chemotherapy for cancer treatment and contributes to obesity, diabetes, and inflammation. So, inhibition of ALDH1A1 may offer new therapeutic options for patients with cancer, obesity, diabetes, and inflammation. Up to now, many ALDH1A1 inhibitors with different scaffolds have been identified and developed as useful chemical tools for better understanding of the functions of ALDH1A1 in physiologic and pathophysiologic conditions. In this review, the advances in the discovery and development of selective ALDH1A1 inhibitors are summarized, and opportunities and challenges associated with this field are also discussed.
Collapse
Affiliation(s)
- Bingyan Li
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China
| | - Kang Yang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China
| | - Dailin Liang
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China
| | - Cheng Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China.
| | - Zonghui Ma
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China.
| |
Collapse
|
38
|
Althobiti M, El Ansari R, Aleskandarany M, Joseph C, Toss MS, Green AR, Rakha EA. The prognostic significance of ALDH1A1 expression in early invasive breast cancer. Histopathology 2020; 77:437-448. [PMID: 32369651 DOI: 10.1111/his.14129] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/28/2020] [Indexed: 12/29/2022]
Abstract
AIMS Aldehyde dehydrogenase family 1 member A1 (ALDH1A1) is reportedly a key ALDH isozyme linked to the cancer stem cells (CSC) of many solid tumours, where it is involved in self-renewal, differentiation and self-protection. In this study, the prognostic significance of ALDH1A1 expression in early invasive breast cancer (BC) and its role as a BC stem cell (BCSC) were evaluated. METHODS AND RESULTS ALDH1A1 expression was assessed, using immunohistochemistry and tissue microarrays, in a large well-characterised BC cohort. ALDH1A1 mRNA expression was also assessed at transcriptomic levels, utilising data from the Molecular Taxonomy of Breast Cancer International Consortium. The associations of ALDH1A1 with clinicopathological parameters, other stem cell markers and patient outcomes were determined. ALDH1A1 was expressed in 71% of BC cases at both the protein and mRNA levels. High ALDH1A1 expression was associated with poor prognostic features, including high grade, poor Nottingham Prognostic Index (NPI), lymph node metastasis and highly proliferative ER+ (luminal B) and triple-negative (TNBC) subtypes. ALDH1A1 expression was positively correlated with the expression of CD44, CD24, TWIST, SOX9, EPCAM and CD133. The high immunoexpression of ALDH1A1 was significantly associated with poor BC-specific survival (P < 0.001), and specifically in the luminal B and TNBC subtypes (P = 0.042 and P = 0.003, respectively). The immunoexpression of ALDH1A1 was an independent predictor of poor prognosis (P = 0.015). CONCLUSIONS ALDH1A1, as assessed using immunohistochemistry, seems to act as a BCSC marker associated not only with other BCSC markers but also with poor prognostic characteristics and poor outcomes, particularly in the luminal B and TNBC subtypes.
Collapse
Affiliation(s)
- Maryam Althobiti
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK.,The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK.,Department of Clinical Laboratory Science, College of Applied Medical Science, Shaqra, Saudi Arabia
| | - Rokaya El Ansari
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK.,The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Mohammed Aleskandarany
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK.,The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Chitra Joseph
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK.,The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Michael S Toss
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK.,The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK.,The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, UK.,The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK
| |
Collapse
|
39
|
Ko HJ, Hong SW, Verma R, Jung J, Lee M, Kim N, Kim D, Surh CD, Kim KS, Rudra D, Im SH. Dietary Glucose Consumption Promotes RALDH Activity in Small Intestinal CD103 +CD11b + Dendritic Cells. Front Immunol 2020; 11:1897. [PMID: 32849649 PMCID: PMC7433714 DOI: 10.3389/fimmu.2020.01897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022] Open
Abstract
Retinal dehydrogenase (RALDH) enzymatic activities catalyze the conversion of vitamin A to its metabolite Retinoic acid (RA) in intestinal dendritic cells (DCs) and promote immunological tolerance. However, precise understanding of the exogenous factors that act as initial trigger of RALDH activity in these cells is still evolving. By using germ-free (GF) mice raised on an antigen free (AF) elemental diet, we find that certain components in diet are critically required to establish optimal RALDH expression and activity, most prominently in small intestinal CD103+CD11b+ DCs (siLP-DCs) right from the beginning of their lives. Surprisingly, systematic screens using modified diets devoid of individual dietary components indicate that proteins, starch and minerals are dispensable for this activity. On the other hand, in depth comparison between subtle differences in dietary composition among different dietary regimes reveal that adequate glucose concentration in diet is a critical determinant for establishing RALDH activity specifically in siLP-DCs. Consequently, pre-treatment of siLP-DCs, and not mesenteric lymph node derived MLNDCs with glucose, results in significant enhancement in the in vitro generation of induced Regulatory T (iTreg) cells. Our findings reveal previously underappreciated role of dietary glucose concentration in establishing regulatory properties in intestinal DCs, thereby extending a potential therapeutic module against intestinal inflammation.
Collapse
Affiliation(s)
- Hyun-Ja Ko
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang-si, South Korea
| | - Sung-Wook Hong
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang-si, South Korea
| | - Ravi Verma
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang-si, South Korea.,ImmunoBiome Inc., Pohang-si, South Korea
| | - Jisun Jung
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang-si, South Korea
| | - Minji Lee
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang-si, South Korea
| | - Nahyun Kim
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang-si, South Korea
| | - Daeun Kim
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang-si, South Korea
| | - Charles D Surh
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang-si, South Korea.,Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang-si, South Korea
| | - Kwang Soon Kim
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang-si, South Korea
| | - Dipayan Rudra
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang-si, South Korea
| | - Sin-Hyeog Im
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang-si, South Korea.,ImmunoBiome Inc., Pohang-si, South Korea
| |
Collapse
|
40
|
Tusa I, Cheloni G, Poteti M, Silvano A, Tubita A, Lombardi Z, Gozzini A, Caporale R, Scappini B, Dello Sbarba P, Rovida E. In Vitro Comparison of the Effects of Imatinib and Ponatinib on Chronic Myeloid Leukemia Progenitor/Stem Cell Features. Target Oncol 2020; 15:659-671. [PMID: 32780298 PMCID: PMC7568716 DOI: 10.1007/s11523-020-00741-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background The development of molecularly tailored therapeutic agents such as the BCR/ABL-active tyrosine kinase inhibitors (TKi) resulted in an excellent treatment option for chronic myeloid leukemia (CML) patients. However, following TKi discontinuation, disease relapses in 40–60% of patients, an occurrence very likely due to the persistence of leukemic stem cells that are scarcely sensitive to TKi. Nevertheless, TKi are still the only current treatment option for CML patients. Objective The aim of this study was to compare the effects of TKi belonging to different generations, imatinib and ponatinib (first and third generation, respectively), on progenitor/stem cell expansion potential and markers. Patients and Methods We used stabilized CML cell lines (KCL22, K562 and LAMA-84 cells), taking advantage of the previous demonstration of ours that cell lines contain cell subsets endowed with progenitor/stem cell properties. Primary cells explanted from CML patients were also used. The effects of TKi on the expression of stem cell related genes were compared by quantitative PCR. Flow cytometry was performed to evaluate aldehyde-dehydrogenase (ALDH) activity and the expression of cluster of differentiation (CD) cell surface hematopoietic stem cell markers. Progenitor/stem cell potential was estimated by serial colony formation ability (CFA) assay. Results Ponatinib was more effective than imatinib for the reduction of cells with ALDH activity and progenitor/stem cell potential of CML patient-derived cells and cell lines. Furthermore, ponatinib was more effective than imatinib in reducing the percentage of CD26-expressing cells in primary CML cells, whereas imatinib and ponatinib showed similar efficacy on KCL22 cells. Both drugs strongly upregulated NANOG and SOX2 in CML cell lines, but in KCL22 cells this upregulation was significantly lower with ponatinib than with imatinib, an outcome compatible with a lower level of enrichment of the stem cell compartment upon ponatinib treatment. Conclusion Ponatinib seems to target CML progenitor/stem cells better than imatinib. Electronic supplementary material The online version of this article (10.1007/s11523-020-00741-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ignazia Tusa
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Giulia Cheloni
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Martina Poteti
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Angela Silvano
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Alessandro Tubita
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Zoe Lombardi
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | | | - Roberto Caporale
- Dipartimento DAI Oncologico e di Chirurgia ad Indirizzo Robotico SOD Centro Diagnostico di Citofluorimetria e Immunoterapia, AOU Careggi, Florence, Italy
| | | | - Persio Dello Sbarba
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy.
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy.
| |
Collapse
|
41
|
Etienne J, Joanne P, Catelain C, Riveron S, Bayer AC, Lafable J, Punzon I, Blot S, Agbulut O, Vilquin JT. Aldehyde dehydrogenases contribute to skeletal muscle homeostasis in healthy, aging, and Duchenne muscular dystrophy patients. J Cachexia Sarcopenia Muscle 2020; 11:1047-1069. [PMID: 32157826 PMCID: PMC7432589 DOI: 10.1002/jcsm.12557] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/12/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Aldehyde dehydrogenases (ALDHs) are key players in cell survival, protection, and differentiation via the metabolism and detoxification of aldehydes. ALDH activity is also a marker of stem cells. The skeletal muscle contains populations of ALDH-positive cells amenable to use in cell therapy, whose distribution, persistence in aging, and modifications in myopathic context have not been investigated yet. METHODS The Aldefluor® (ALDEF) reagent was used to assess the ALDH activity of muscle cell populations, whose phenotypic characterizations were deepened by flow cytometry. The nature of ALDH isoenzymes expressed by the muscle cell populations was identified in complementary ways by flow cytometry, immunohistology, and real-time PCR ex vivo and in vitro. These populations were compared in healthy, aging, or Duchenne muscular dystrophy (DMD) patients, healthy non-human primates, and Golden Retriever dogs (healthy vs. muscular dystrophic model, Golden retriever muscular dystrophy [GRMD]). RESULTS ALDEF+ cells persisted through muscle aging in humans and were equally represented in several anatomical localizations in healthy non-human primates. ALDEF+ cells were increased in dystrophic individuals in humans (nine patients with DMD vs. five controls: 14.9 ± 1.63% vs. 3.6 ± 0.39%, P = 0.0002) and dogs (three GRMD dogs vs. three controls: 10.9 ± 2.54% vs. 3.7 ± 0.45%, P = 0.049). In DMD patients, such increase was due to the adipogenic ALDEF+ /CD34+ populations (11.74 ± 1.5 vs. 2.8 ± 0.4, P = 0.0003), while in GRMD dogs, it was due to the myogenic ALDEF+ /CD34- cells (3.6 ± 0.6% vs. 1.03 ± 0.23%, P = 0.0165). Phenotypic characterization associated the ALDEF+ /CD34- cells with CD9, CD36, CD49a, CD49c, CD49f, CD106, CD146, and CD184, some being associated with myogenic capacities. Cytological and histological analyses distinguished several ALDH isoenzymes (ALDH1A1, 1A2, 1A3, 1B1, 1L1, 2, 3A1, 3A2, 3B1, 3B2, 4A1, 7A1, 8A1, and 9A1) expressed by different cell populations in the skeletal muscle tissue belonging to multinucleated fibres, or myogenic, endothelial, interstitial, and neural lineages, designing them as potential new markers of cell type or of metabolic activity. Important modifications were noted in isoenzyme expression between healthy and DMD muscle tissues. The level of gene expression of some isoenzymes (ALDH1A1, 1A3, 1B1, 2, 3A2, 7A1, 8A1, and 9A1) suggested their specific involvement in muscle stability or regeneration in situ or in vitro. CONCLUSIONS This study unveils the importance of the ALDH family of isoenzymes in the skeletal muscle physiology and homeostasis, suggesting their roles in tissue remodelling in the context of muscular dystrophies.
Collapse
Affiliation(s)
- Jessy Etienne
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France.,Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, USA
| | - Pierre Joanne
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France
| | - Cyril Catelain
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Stéphanie Riveron
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Alexandra Clarissa Bayer
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Jérémy Lafable
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Isabel Punzon
- Université Paris-Est Créteil, INSERM, Institut Mondor de Recherche Biomédicale, IMRB, École Nationale Vétérinaire d'Alfort, ENVA, U955-E10, Maisons-Alfort, France
| | - Stéphane Blot
- Université Paris-Est Créteil, INSERM, Institut Mondor de Recherche Biomédicale, IMRB, École Nationale Vétérinaire d'Alfort, ENVA, U955-E10, Maisons-Alfort, France
| | - Onnik Agbulut
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France
| | - Jean-Thomas Vilquin
- Sorbonne Université, INSERM, AIM, Centre de Recherche en Myologie, UMRS 974, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| |
Collapse
|
42
|
Wyatt JW, Korasick DA, Qureshi IA, Campbell AC, Gates KS, Tanner JJ. Inhibition, crystal structures, and in-solution oligomeric structure of aldehyde dehydrogenase 9A1. Arch Biochem Biophys 2020; 691:108477. [PMID: 32717224 DOI: 10.1016/j.abb.2020.108477] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 10/23/2022]
Abstract
Aldehyde dehydrogenase 9A1 (ALDH9A1) is a human enzyme that catalyzes the NAD+-dependent oxidation of the carnitine precursor 4-trimethylaminobutyraldehyde to 4-N-trimethylaminobutyrate. Here we show that the broad-spectrum ALDH inhibitor diethylaminobenzaldehyde (DEAB) reversibly inhibits ALDH9A1 in a time-dependent manner. Possible mechanisms of inhibition include covalent reversible inactivation involving the thiohemiacetal intermediate and slow, tight-binding inhibition. Two crystal structures of ALDH9A1 are reported, including the first of the enzyme complexed with NAD+. One of the structures reveals the active conformation of the enzyme, in which the Rossmann dinucleotide-binding domain is fully ordered and the inter-domain linker adopts the canonical β-hairpin observed in other ALDH structures. The oligomeric structure of ALDH9A1 was investigated using analytical ultracentrifugation, small-angle X-ray scattering, and negative stain electron microscopy. These data show that ALDH9A1 forms the classic ALDH superfamily dimer-of-dimers tetramer in solution. Our results suggest that the presence of an aldehyde substrate and NAD+ promotes isomerization of the enzyme into the active conformation.
Collapse
Affiliation(s)
- Jesse W Wyatt
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, United States
| | - David A Korasick
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States
| | - Insaf A Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad, 500046, India
| | - Ashley C Campbell
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States
| | - Kent S Gates
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, United States; Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States
| | - John J Tanner
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, United States; Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States.
| |
Collapse
|
43
|
Sobh A, Loguinov A, Stornetta A, Balbo S, Tagmount A, Zhang L, Vulpe CD. Genome-Wide CRISPR Screening Identifies the Tumor Suppressor Candidate OVCA2 As a Determinant of Tolerance to Acetaldehyde. Toxicol Sci 2020; 169:235-245. [PMID: 31059574 DOI: 10.1093/toxsci/kfz037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Acetaldehyde, a metabolite of ethanol, is a cellular toxicant and a human carcinogen. A genome-wide CRISPR-based loss-of-function screen in erythroleukemic K562 cells revealed candidate genetic contributors affecting acetaldehyde cytotoxicity. Secondary screening exposing cells to a lower acetaldehyde dose simultaneously validated multiple candidate genes whose loss results in increased sensitivity to acetaldehyde. Disruption of genes encoding components of various DNA repair pathways increased cellular sensitivity to acetaldehyde. Unexpectedly, the tumor suppressor gene OVCA2, whose function is unknown, was identified in our screen as a determinant of acetaldehyde tolerance. Disruption of the OVCA2 gene resulted in increased acetaldehyde sensitivity and higher accumulation of the acetaldehyde-derived DNA adduct N2-ethylidene-dG. Together these results are consistent with a role for OVCA2 in adduct removal and/or DNA repair.
Collapse
Affiliation(s)
- Amin Sobh
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida.,Department of Nutritional Sciences & Toxicology, Comparative Biochemistry Program, University of California, Berkeley, California
| | - Alex Loguinov
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Alessia Stornetta
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota
| | - Abderrahmane Tagmount
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California
| | - Chris D Vulpe
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
44
|
Kletzmayr A, Clement Frey F, Zimmermann M, Eberli D, Millan C. An Automatable Hydrogel Culture Platform for Evaluating Efficacy of Antibody‐Based Therapeutics in Overcoming Chemoresistance. Biotechnol J 2020; 15:e1900439. [DOI: 10.1002/biot.201900439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/25/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Anna Kletzmayr
- CellSpring AGETH Zürich ieLab Zürich Switzerland
- Department of Chemistry and Applied BiosciencesInstitute of Pharmaceutical Sciences, ETH Zurich Zürich 8093 Switzerland
| | | | | | - Daniel Eberli
- Laboratory for Tissue Engineering and Stem Cell TherapyUSZ Zürich 8952 Switzerland
| | - Christopher Millan
- CellSpring AGETH Zürich ieLab Zürich Switzerland
- Laboratory for Tissue Engineering and Stem Cell TherapyUSZ Zürich 8952 Switzerland
| |
Collapse
|
45
|
Bissoli I, Muscari C. Doxorubicin and α-Mangostin oppositely affect luminal breast cancer cell stemness evaluated by a new retinaldehyde-dependent ALDH assay in MCF-7 tumor spheroids. Biomed Pharmacother 2020; 124:109927. [PMID: 31982725 DOI: 10.1016/j.biopha.2020.109927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/29/2019] [Accepted: 12/29/2019] [Indexed: 02/08/2023] Open
Abstract
According to cancer stem cell theory, only a limited number of self-renewing and cloning cells are responsible for tumor relapse after a period of remittance. The aim of the present study was to investigate the effects of Doxorubicin and α-Mangostin, two antiproliferative drugs, on both tumor bulk and stem cells in multicellular tumor spheroids originated from the luminal MCF-7 breast cancer cell line. A new and original fluorimetric assay was used to selectively measure the activity of the retinaldehyde-dependent isoenzymes of aldehyde dehydrogenase (RALDH), which are markers of a subpopulation of breast cancer stem cells. The administration of 5 μg/ml (12.2 μM) α-Mangostin for 48 h provoked: i) a marked disaggregation of the spheroids, leading to a doubling of their volume (p < 0.01), ii) a 40 % decrease in cell viability (p < 0.01), evaluated by the acid phosphatase assay, and iii) a reduction by more than 90 % of RALDH activity. By contrast, Doxorubicin given for 48 h in the range of 0.1-40 μM did not significantly reduce cell viability and caused only a modest modification of the spheroid morphology. Moreover, 40 μM Doxorubicin increased RALDH activity 2.5-fold compared to the untreated sample. When the two drugs were administered together using 5 μg/ml α-Mangostin, the IC50 of Doxorubicin referred to cell viability decreased six-fold and the RALDH activity was further reduced. In conclusion, the combined administration of Doxorubicin and α-Mangostin provoked a significant cytotoxicity and a remarkable inhibition of RALDH activity in MCF-7 tumor spheroids, suggesting that these drugs could be effective in reducing cell stemness in luminal breast cancer.
Collapse
Affiliation(s)
- Irene Bissoli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Claudio Muscari
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.
| |
Collapse
|
46
|
Ren T, Mackowiak B, Lin Y, Gao Y, Niu J, Gao B. Hepatic injury and inflammation alter ethanol metabolism and drinking behavior. Food Chem Toxicol 2019; 136:111070. [PMID: 31870920 DOI: 10.1016/j.fct.2019.111070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 01/15/2023]
Abstract
While liver injury is commonly associated with excessive alcohol consumption, how liver injury affects alcohol metabolism and drinking preference remains unclear. To answer these questions, we measured the expression and activity of alcohol dehydrogenase 1 (ADH1) and acetaldehyde dehydrogenase 2 (ALDH2) enzymes, ethanol and acetaldehyde levels in vivo, and binge-like and preferential drinking behaviors with drinking in the dark and two-bottle choice in animal models with liver injury. Acute and chronic carbon tetrachloride (CCl4), and acute LPS-induced liver injury repressed hepatic ALDH2 activity and expression and consequently, blood and liver acetaldehyde concentrations were increased in these models. In addition, chronic CCl4 and acute LPS treatment inhibited hepatic ADH1 expression and activity, leading to increases in blood and liver ethanol concentrations. Consistent with the increase in acetaldehyde levels, alcohol drinking behaviors were reduced in mice with acute or chronic liver injury. Furthermore, oxidative stress induced by hydrogen peroxide attenuated ADH1 and ALDH2 activity post-transcriptionally, while proinflammatory cytokines led to transcriptional repression of ADH1 and ALDH2 in cultured hepatocytes, which correlated with the repression of transcription factor HNF4α. Collectively, our data suggest that alcohol metabolism is suppressed by inflammation and oxidative stress, which is correlated with decreased drinking behavior.
Collapse
Affiliation(s)
- Tianyi Ren
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, China; Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bryan Mackowiak
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yuhong Lin
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yanhang Gao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, China.
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
47
|
Chen L, Wu M, Ji C, Yuan M, Liu C, Yin Q. Silencing transcription factor FOXM1 represses proliferation, migration, and invasion while inducing apoptosis of liver cancer stem cells by regulating the expression of ALDH2. IUBMB Life 2019; 72:285-295. [PMID: 31580537 DOI: 10.1002/iub.2166] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE This study is performed to explore the role of transcription factor FOXM1 in promoting the self-renewal and proliferation of liver cancer stem cells (LCSCs) by regulating the expression of acetaldehyde dehydrogenase-2 (ALDH2). METHODS CD133+ CD24+ LCSCs were sorted and identified. A series of experiments were carried out to determine the proliferation, colony formation rate, migration, invasion, and apoptosis of LCSCs after interfering with FOXM1. Proliferation-, epithelial-mesenchymal transition (EMT)-, apoptosis-, and stemness-related factors were then detected by western blot analysis. Tumor xenograft in nude mice was used to figure out the role of FOXM1 in tumorigenesis in vivo by regulating ALDH2 expression. Luciferase activity assay was conducted to determine whether FOXM1 could target ALDH2 promoter region and thereby affecting ALDH2 expression. RESULTS The sorted CD133+ CD24+ Huh-7 cells had the characteristic of stem cells. FOXM1 was highly expressed in CD133+ CD24+ Huh-7 cells. Silencing FOXM1 inhibited the proliferation and colony formation of LCSCs and decreased the expression of proliferating cell nuclear antigen and Ki-67 protein; inhibited the migration, invasion, and EMT of LCSCs while promoting the apoptosis of LCSCs, as well as promoted the expression of Bax and cleaved-caspase-3, and inhibited the expression of Bcl-2. Silencing FOXM1 inhibited the expression of Nanog, Oct4, and Sox2 in LCSCs by decreasing the expression of ALDH2. in vivo experiment, silencing FOXM1 suppressed tumorigenesis of LCSCs by decreasing the expression of ALDH2. CONCLUSION Our study provides evidence that silencing FOXM1 inhibits stemness of LCSCs by decreasing the expression of ALDH2, and represses the proliferation, migration, invasion, and tumorigenesis while inducing the apoptosis of LCSCs.
Collapse
Affiliation(s)
- Lijian Chen
- Department of General Surgery, Hunan Children's Hospital, Changsha, China
| | - Meiyun Wu
- NP, RN, Department of Nursing, Chang Gung Memorial Hospital Kaohsiung, Doctoral student, College of Nursing, Kaohsiung Medical University
| | - Chunyi Ji
- Department of General Surgery, Hunan Children's Hospital, Changsha, China
| | - Miaoxian Yuan
- Department of General Surgery, Hunan Children's Hospital, Changsha, China
| | - Chaoyang Liu
- Department of General Surgery, Hunan Children's Hospital, Changsha, China
| | - Qiang Yin
- Department of General Surgery, Hunan Children's Hospital, Changsha, China
| |
Collapse
|
48
|
Dinavahi SS, Bazewicz CG, Gowda R, Robertson GP. Aldehyde Dehydrogenase Inhibitors for Cancer Therapeutics. Trends Pharmacol Sci 2019; 40:774-789. [DOI: 10.1016/j.tips.2019.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/29/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023]
|
49
|
Li K, Guo W, Li Z, Wang Y, Sun B, Xu D, Ling J, Song H, Liao Y, Wang T, Jing B, Hu M, Kuang Y, Wang Q, Yao F, Sun A, Zhu L, Wang L, Deng J. ALDH2 Repression Promotes Lung Tumor Progression via Accumulated Acetaldehyde and DNA Damage. Neoplasia 2019; 21:602-614. [PMID: 31071657 PMCID: PMC6506700 DOI: 10.1016/j.neo.2019.03.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022]
Abstract
The major role of aldehyde dehydrogenase 2 family (ALDH2) is to detoxify acetaldehyde (ACE) to non-toxic acetic acid. Many evidences suggest that ALDH2 dysfunction contributes to a variety of human diseases including cancer. However, the biological function and molecular mechanism of ALDH2 in tumor progression remain elusive. In this study, we found that ALDH2 repression was associated with poor prognosis in lung adenocarcinoma. Overexpression of ALDH2 inhibited malignant features of lung adenocarcinoma cells, such as proliferation, stemness and migration, whereas ALDH2 knockdown increased these features. Mechanistically, ALDH2 repression led to accumulation of ACE; whereas ACE enhanced the migration features of lung adenocarcinoma cells, which was associated with increased DNA damage. Importantly, accumulated ACE and increased DNA damage were identified in Aldh2-knockout (KO) mouse lung tissues in vivo. Consistent with this concept, treatment of lung adenocarcinoma cells with ALDH2 agonist Alda-1 suppressed the proliferation, stemness and migration features of lung adenocarcinoma cells. Thus, activating ALDH2, such as via its agonist, may provide a novel strategy for treatment of lung cancer.
Collapse
Key Words
- aldh2, aldehyde dehydrogenase 2
- ros, reactive oxygen species
- nc membranes, nitrocellulose membranes
- hrp, horseradish peroxidase
- hek293t, human embryonic kidney cells
- ihc, immunohistochemistry
- atcc, american type culture collection
- 16hbe, human bronchial epithelial cells
- ko, knockout
- fbs, fetal bovine serum
- gepia, gene expression profiling interactive analysis
- luad, lung adenocarcinoma
- lusc, lung squamous cel l carcinoma
- tcga, the cancer genome atlas
- thpa, the human protein atlas
- ace, acetaldehyde
- wt, wild-type
- ucsc xena dataset, university of california santa cruz xena dataset
Collapse
Affiliation(s)
- Kaimi Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenzheng Guo
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhanming Li
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai 201199, China
| | - Yang Wang
- Department of Pharmacology and Chemical Biology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beibei Sun
- Translational Medical Research Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Dongliang Xu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Ling
- Department of Pharmacology and Chemical Biology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyong Song
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueling Liao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong Wang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Jing
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Hu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanbin Kuang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Aijun Sun
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Liang Zhu
- Department of Pharmacology and Chemical Biology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lishun Wang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai 201199, China.
| | - Jiong Deng
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
50
|
Zhang H, Xue L, Li B, Zhang Z, Tao S. Vitamin D Protects Against Alcohol‐Induced Liver Cell Injury Within an NRF2–ALDH2 Feedback Loop. Mol Nutr Food Res 2019; 63:e1801014. [DOI: 10.1002/mnfr.201801014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/06/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Hong Zhang
- School of Public HealthMedical College of Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu China
| | - Lian Xue
- School of Public HealthMedical College of Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu China
| | - Bingyan Li
- Experimental Center of Medical CollegeSoochow University 199 Ren'ai Road Suzhou 215123 Jiangsu China
| | - Zengli Zhang
- School of Public HealthMedical College of Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu China
| | - Shasha Tao
- School of Public HealthMedical College of Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu China
- J. Key Laboratory of Preventive and Translational Medicine for Geriatric DiseaseSchool of Public HealthSoochow University Suzhou 215123 PR China
| |
Collapse
|