1
|
Cho S, Jo H, Hwang YJ, Kim C, Jo YH, Yun JW. Potential impact of underlying diseases influencing ADME in nonclinical safety assessment. Food Chem Toxicol 2024; 188:114636. [PMID: 38582343 DOI: 10.1016/j.fct.2024.114636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Nonclinical studies involve in vitro, in silico, and in vivo experiments to assess the toxicokinetics, toxicology, and safety pharmacology of drugs according to regulatory requirements by a national or international authority. In this review, we summarize the potential effects of various underlying diseases governing the absorption, distribution, metabolism, and excretion (ADME) of drugs to consider the use of animal models of diseases in nonclinical trials. Obesity models showed alterations in hepatic metabolizing enzymes, transporters, and renal pathophysiology, which increase the risk of drug-induced toxicity. Diabetes models displayed changes in hepatic metabolizing enzymes, transporters, and glomerular filtration rates (GFR), leading to variability in drug responses and susceptibility to toxicity. Animal models of advanced age exhibited impairment of drug metabolism and kidney function, thereby reducing the drug-metabolizing capacity and clearance. Along with changes in hepatic metabolic enzymes, animal models of metabolic syndrome-related hypertension showed renal dysfunction, resulting in a reduced GFR and urinary excretion of drugs. Taken together, underlying diseases can induce dysfunction of organs involved in the ADME of drugs, ultimately affecting toxicity. Therefore, the use of animal models of representative underlying diseases in nonclinical toxicity studies can be considered to improve the predictability of drug side effects before clinical trials.
Collapse
Affiliation(s)
- Sumin Cho
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Harin Jo
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeon Jeong Hwang
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changuk Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Yong Hyeon Jo
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Xu H, Zhou W, Zhan L, Bi T, Lu X. Liver mitochondria-associated endoplasmic reticulum membrane proteomics for studying the effects of ZiBuPiYin recipe on Zucker diabetic fatty rats after chronic psychological stress. Front Cell Dev Biol 2022; 10:995732. [PMID: 36407109 PMCID: PMC9669571 DOI: 10.3389/fcell.2022.995732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex metabolic disease with multiple etiologies, involving both genetic and environmental factors. With changes associated with modern life, increasing attention has been paid to chronic psychological stressors such as work stress. Chronic psychological stress can induce or aggravate diabetes mellitus, and conversely, with the deterioration of T2DM, patients often experience different degrees of depression, anxiety, and other negative emotions. In order to clarify the role of ZiBuPiYin recipe (ZBPYR) in regulating the liver mitochondria-associated endoplasmic reticulum membrane proteome to improve T2DM with chronic psychological stress, differentially expressed proteins (DEPs) were identified among Zucker lean littermates (control group), chronic psychological stress T2DM rats (model group), and ZBPYR administration rats (ZBPYR group) through iTRAQ with LC-MS/MS. Using Mfuzz soft clustering analysis, DEPs were divided into six different clusters. Clusters 1–6 contained 5, 68, 44, 57, 28, and 32 DEPs, respectively. Given that ZBPYR can alleviate T2DM symptoms and affect exploratory behavior during T2DM with chronic psychological stress, we focused on the clusters with opposite expression trends between model:control and ZBPYR:model groups. We screened out the DEPs in clusters 1, 3, and 4, which may be good candidates for the prevention and treatment of T2DM with chronic psychological stress, and further conducted bioinformatics analyses. DEPs were mainly involved in the insulin signaling pathway, oxidative phosphorylation, tricarboxylic acid cycle, amino acid metabolism, lysosome-related processes, and lipid metabolism. This may indicate the pathogenic basis of T2DM with chronic psychological stress and the potential therapeutic mechanism of ZBPYR. In addition, two key proteins, lysosome-associated protein (Lamp2) and tricarboxylic acid cycle-related protein (Suclg1), may represent novel biomarkers for T2DM with chronic psychological stress and drug targets of ZBPYR. Western blot analyses also showed similar expression patterns of these two proteins in liver MAMs of the model and ZBPYR groups.
Collapse
Affiliation(s)
- Huiying Xu
- Modern Research Laboratory of Spleen Visceral Manifestations Theory, School of Traditional Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen Zhou
- Modern Research Laboratory of Spleen Visceral Manifestations Theory, School of Traditional Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Libin Zhan
- Center for Innovative Engineering Technology in Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- *Correspondence: Libin Zhan, ; Xiaoguang Lu,
| | - Tingting Bi
- Modern Research Laboratory of Spleen Visceral Manifestations Theory, School of Traditional Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoguang Lu
- Department of Emergency Medicine, Zhongshan Hospital, Dalian University, Dalian, China
- *Correspondence: Libin Zhan, ; Xiaoguang Lu,
| |
Collapse
|
3
|
SAYED N, MURATA I, ABDALLA O, KILANY O, DESSOUKI A, SASAKI K. Effects of dapagliflozin in combination with insulin on cytochrome P450 activities in a diabetes type 1 rat model. J Vet Med Sci 2021; 83:1597-1603. [PMID: 34483187 PMCID: PMC8569876 DOI: 10.1292/jvms.21-0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/21/2021] [Indexed: 11/22/2022] Open
Abstract
Previous studies reported that diabetes alters the activities of hepatic cytochrome P450 (CYP) enzymes, which, in turn, affects the disposition of some drugs. We herein examined and compared the effects of the combination of dapagliflozin with a low insulin dose, a full dose of insulin alone, and dapagliflozin alone for 3 and 8 weeks on CYP activities in a diabetes type 1 rat model. We induced type 1 diabetes in rats using a single intraperitoneal injection of 60 mg/kg streptozotocin (STZ). Daily treatment with the full dose of insulin alone, dapagliflozin alone, or dapagliflozin in combination with a low dose of insulin was then initiated. STZ-induced rats developed marked hyperglycemia and altered CYP2E activities. Dapagliflozin in combination with a low dose of insulin stabilized hyperglycemia and CYP1A, 2D, 2E and 3A activities. However, dapagliflozin alone did not improve blood glucose levels or CYP activities. These results suggest that the effects of dapagliflozin in combination with a low dose of insulin are similar to those of a full dose of insulin, and stabilize CYP activities in type 1 diabetes.
Collapse
Affiliation(s)
- Noha SAYED
- Laboratory of Veterinary Pharmacology, Cooperative
Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu,
Tokyo 183-8509, Japan
- Clinical Pathology Department, Faculty of Veterinary
Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ikue MURATA
- Laboratory of Veterinary Pharmacology, Cooperative
Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu,
Tokyo 183-8509, Japan
| | - Osama ABDALLA
- Clinical Pathology Department, Faculty of Veterinary
Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Omnia KILANY
- Clinical Pathology Department, Faculty of Veterinary
Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Amina DESSOUKI
- Pathology Department, Faculty of Veterinary Medicine, Suez
Canal University, Ismailia 41522, Egypt
| | - Kazuaki SASAKI
- Laboratory of Veterinary Pharmacology, Cooperative
Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu,
Tokyo 183-8509, Japan
| |
Collapse
|
4
|
Adiwidjaja J, Sasongko L. Effect of Nigella sativa oil on pharmacokinetics and pharmacodynamics of gliclazide in rats. Biopharm Drug Dispos 2021; 42:359-371. [PMID: 34327715 DOI: 10.1002/bdd.2300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/22/2021] [Accepted: 07/26/2021] [Indexed: 11/11/2022]
Abstract
Nigella sativa oil (NSO) has been used widely for its putative anti-hyperglycemic activity. However, little is known about its potential effect on the pharmacokinetics and pharmacodynamics of antidiabetic drugs, including gliclazide. This study aimed to investigate herb-drug interactions between gliclazide and NSO in rats. Plasma concentrations of gliclazide (single oral and intravenous dose of 33 and 26.4 mg/kg, respectively) in the presence and absence of co-administration with NSO (52 mg/kg per oral) were quantified in healthy and insulin resistant rats (n = 5 for each group). Physiological and treatment-related factors were evaluated as potential influential covariates using a population pharmacokinetic modeling approach (NONMEM version 7.4). Clearance, volume of distribution and bioavailability of gliclazide were unaffected by disease state (healthy or insulin resistant). The concomitant administration of NSO resulted in higher systemic exposures of gliclazide by modulating bioavailability (29% increase) and clearance (20% decrease) of the drug. A model-independent analysis highlighted that pre-treatment with NSO in healthy rats was associated with a higher glucose lowering effect by up to 50% compared with that of gliclazide monotherapy, but not of insulin resistant rats. Although a similar trend in glucose reductions was not observed in insulin resistant rats, co-administration of NSO improved the sensitivity to insulin of this rat population. Natural product-drug interaction between gliclazide and NSO merits further evaluation of its clinical importance.
Collapse
Affiliation(s)
- Jeffry Adiwidjaja
- School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia.,Sydney Pharmacy School, The University of Sydney, Sydney, Australia
| | - Lucy Sasongko
- School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| |
Collapse
|
5
|
Hu N, Liu X, Mu Q, Yu M, Wang H, Jiang Y, Chen R, Wang L. The gut microbiota contributes to the modulation of intestinal CYP3A1 and P-gp in streptozotocin-induced type 1 diabetic rats. Eur J Pharm Sci 2021; 162:105833. [PMID: 33826935 DOI: 10.1016/j.ejps.2021.105833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/28/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
Hepatic and intestinal CYP3A and P-gp in diabetic rats exhibit opposite expression patterns. However, the underlying mechanisms remain unclear. In this study, CYP3A1 and P-gp protein and mRNA expression levels in liver and different intestinal segments (duodenum, jejunum, ileum and colon) were compared between diabetic and normal rats. The microbiota in the ileum and colon contents was analyzed via 16S rRNA high-throughput sequencing technology. Caco-2 cells were incubated with serum or culture supernatant of colon contents from diabetic and normal rats, and CYP3A4 and ABCB1 mRNA levels were measured. Compared with that in normal rats, hepatic CYP3A1 and P-gp protein expression in diabetic rats was increased. CYP3A1 and P-gp protein was not changed in the duodenum and jejunum but significantly decreased by 29-41% in the ileum and colon of diabetic rats. Cyp3a1 and Abcb1a mRNA expression results were similar to the protein expression results. The composition of some bacteria changed significantly in the ileum and colon of diabetic rats compared with normal rats. CYP3A1 and P-gp protein expression was positively correlated with Lachnoclostridium and unclassified_f_Ruminococcaceae but negatively correlated with Clostridium_sensu_stricto_1, Turicibacter, Ruminococcaceae_UCG-005 and several genera belonging to the family Prevotellaceae. In addition, in vitro cell culture experiments showed that serum from diabetic rats significantly induced CYP3A4 and ABCB1 mRNA expression, while the supernatant of colon contents of diabetic rats significantly reduced CYP3A4 and ABCB1 mRNA expression by 45% and 86% respectively in Caco-2 cells. In conclusion, diabetes exhibited synchronous and regional effects on CYP3A and P-gp expression in the intestinal tract, in which gut microbiota dysbiosis might play an important role.
Collapse
Affiliation(s)
- Nan Hu
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, Jiangsu Province, 213003, China.
| | - Xiang Liu
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, Jiangsu Province, 213003, China; Department of Pharmacy and Medicine Pharmacy, Jiangsu College of Nursing, Huaian, Jiangsu Province, 223005, China
| | - Qinfeng Mu
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, 213003, China
| | - Miaomei Yu
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, 213003, China
| | - Hui Wang
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, 213003, China
| | - Yan Jiang
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, Jiangsu Province, 213003, China
| | - Rong Chen
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, Jiangsu Province, 213003, China
| | - Liying Wang
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, Jiangsu Province, 213003, China
| |
Collapse
|
6
|
Kuzgun G, Başaran R, Arıoğlu İnan E, Can Eke B. Effects of insulin treatment on hepatic CYP1A1 and CYP2E1 activities and lipid peroxidation levels in streptozotocin-induced diabetic rats. J Diabetes Metab Disord 2021; 19:1157-1164. [PMID: 33520832 DOI: 10.1007/s40200-020-00616-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species (ROS) and lipid peroxidation (LPO) levels may increase in diabetic state and lead to oxidative stress, which plays a critical role in the progression of diabetes. There are various sources of ROS, including cytochrome P450 monooxygenases (CYP450s), which may be modulated in terms of their activities and expressions under diabetic conditions. This study is aimed to investigate the effects of streptozotocin-induced diabetes and insulin treatment on hepatic cytochrome P450 1A1 (CYP1A1) and cytochrome P450 2E1 (CYP2E1) activities and LPO levels. Methods: CYP1A1 and CYP2E1 activities were measured with ethoxyresorufin O-deethylase and p-nitrophenol hydroxylase activities, respectively. LPO levels were then corroborated via thiobarbituric acid reactive substances. Results: In diabetic rats, a marked 2.1- and 2.4-fold increase in hepatic CYP1A1 activity and 1.8- and 1.6-fold increase in hepatic CYP2E1 activity were observed compared to controls and insulin-treated diabetic rats, respectively. Hepatic LPO levels in diabetic rats did not significantly change compared to controls. However, in insulin-treated diabetic rats, LPO levels are 0.92- and 0.89-fold remarkably decrease compared to controls and diabetics, respectively. Conclusion: The present study suggests that insulin might have a useful role in the modulation of CYP1A1 and CYP2E1 activities as well as LPO levels in the liver of diabetic rats.
Collapse
Affiliation(s)
- Gökçe Kuzgun
- Present Address: Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Yenimahalle, Ankara 06560 Turkey
| | - Rahman Başaran
- Present Address: Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Yenimahalle, Ankara 06560 Turkey
| | - Ebru Arıoğlu İnan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Yenimahalle, Ankara 06560 Turkey
| | - Benay Can Eke
- Present Address: Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Yenimahalle, Ankara 06560 Turkey
| |
Collapse
|
7
|
Kondo K, Yamada N, Suzuki Y, Hashimoto T, Toyoda K, Takahashi T, Kobayashi A, Sugai S, Yoshinari K. Enhancement of acetaminophen-induced chronic hepatotoxicity in spontaneously diabetic torii (SDT) rats. J Toxicol Sci 2020; 45:245-260. [PMID: 32404557 DOI: 10.2131/jts.45.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Some patients encounter hepatotoxicity after repeated acetaminophen (APAP) dosing even at therapeutic doses. In the present study, we focused on the diabetic state as one of the suggested risk factors of drug-induced liver injury in humans and investigated the contribution of accelerated gluconeogenesis to the susceptibility to APAP-induced hepatotoxicity using an animal model of type 2 diabetes patients. Sprague-Dawley (SD) rats and spontaneously diabetic torii (SDT) rats were each given APAP at 0 mg/kg, 300 and 500 mg/kg for 35 days by oral gavage. Plasma and urinary glutathione-related metabolites, liver function parameters, and hepatic glutathione levels were compared between the non-APAP-treated SDT and SD rats and between the APAP-treated SDT and SD rats. Hepatic function parameters were not increased at either dose level in the APAP-treated SD rats, but were increased at both dose levels in the APAP-treated SDT rats. Increases in hepatic glutathione levels attributable to the treatment of APAP were noted only in the APAP-treated SD rats. There were differences in the profiles of plasma and urinary glutathione-related metabolites between the non-APAP-treated SD and SDT rats and the plasma/urinary endogenous metabolite profile after treatment with APAP in the SDT rats indicated that hepatic glutathione synthesis was decreased due to accelerated gluconeogenesis. In conclusion, SDT rats were more sensitive to APAP-induced chronic hepatotoxicity than SD rats and the high susceptibility of SDT rats was considered to be attributable to lowered hepatic glutathione levels induced by accelerated gluconeogenesis.
Collapse
Affiliation(s)
- Kazuma Kondo
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO INC.,Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Naohito Yamada
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO INC
| | - Yusuke Suzuki
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO INC
| | - Tatsuji Hashimoto
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO INC
| | - Kaoru Toyoda
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO INC
| | - Tadakazu Takahashi
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO INC
| | - Akio Kobayashi
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO INC
| | - Shoichiro Sugai
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO INC
| | - Kouichi Yoshinari
- Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
8
|
Yang Y, Liu X. Imbalance of Drug Transporter-CYP450s Interplay by Diabetes and Its Clinical Significance. Pharmaceutics 2020; 12:E348. [PMID: 32290519 PMCID: PMC7238081 DOI: 10.3390/pharmaceutics12040348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/28/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023] Open
Abstract
The pharmacokinetics of a drug is dependent upon the coordinate work of influx transporters, enzymes and efflux transporters (i.e., transporter-enzyme interplay). The transporter-enzyme interplay may occur in liver, kidney and intestine. The influx transporters involving drug transport are organic anion transporting polypeptides (OATPs), peptide transporters (PepTs), organic anion transporters (OATs), monocarboxylate transporters (MCTs) and organic cation transporters (OCTs). The efflux transporters are P-glycoprotein (P-gp), multidrug/toxin extrusions (MATEs), multidrug resistance-associated proteins (MRPs) and breast cancer resistance protein (BCRP). The enzymes related to drug metabolism are mainly cytochrome P450 enzymes (CYP450s) and UDP-glucuronosyltransferases (UGTs). Accumulating evidence has demonstrated that diabetes alters the expression and functions of CYP450s and transporters in a different manner, disordering the transporter-enzyme interplay, in turn affecting the pharmacokinetics of some drugs. We aimed to focus on (1) the imbalance of transporter-CYP450 interplay in the liver, intestine and kidney due to altered expressions of influx transporters (OATPs, OCTs, OATs, PepTs and MCT6), efflux transporters (P-gp, BCRP and MRP2) and CYP450s (CYP3As, CYP1A2, CYP2E1 and CYP2Cs) under diabetic status; (2) the net contributions of these alterations in the expression and functions of transporters and CYP450s to drug disposition, therapeutic efficacy and drug toxicity; (3) application of a physiologically-based pharmacokinetic model in transporter-enzyme interplay.
Collapse
Affiliation(s)
| | - Xiaodong Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China;
| |
Collapse
|
9
|
Neyshaburinezhad N, Rouini M, Shirzad N, Esteghamati A, Nakhjavani M, Namazi S, Ardakani YH. Evaluating the effect of type 2 diabetes mellitus on CYP450 enzymes and P-gp activities, before and after glycemic control: A protocol for a case-control pharmacokinetic study. MethodsX 2020; 7:100853. [PMID: 32337164 PMCID: PMC7176986 DOI: 10.1016/j.mex.2020.100853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 02/29/2020] [Indexed: 12/18/2022] Open
Abstract
Cytochrome P450s (CYP450) family is one of the most critical factors in the metabolism process. Hence, the present study aims to characterize the activity of CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4/5, and P-glycoprotein (P-gp) pump in patients with type 2 diabetes (T2DM). This characterization was performed before and after good glycemic control versus non-diabetic subjects following the administration of a substrate probe drug cocktail. This single-center clinical study proposes the characterization of T2DM impacts on major CYP450 drug-metabolizing enzyme and P-glycoprotein (P-gp) activities. The main propose of the present study is evaluating any alternation in major CYP450 enzymes and P-gp activities in patients with T2DM, before (A1C>7%) and after (A1C≤7%) good glycemic control along with comparing the activities versus non-diabetic subjects. The phenotypes will be assessed following the oral administration of a drug cocktail containing caffeine (CYP1A2), bupropion (CYP2B6), flurbiprofen (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A4/5), and fexofenadine (P-gp) as probe substrates. Furthermore, the influence of variables such as glycemia, genetic polymorphisms, and inflammation on the metabolism process will be evaluated. The first patient has entered the study in Dec 2018.
Collapse
Affiliation(s)
- Navid Neyshaburinezhad
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Rouini
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nooshin Shirzad
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Esteghamati
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Manouchehr Nakhjavani
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soha Namazi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Yalda H. Ardakani
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Liu J, Jin X, Zhou F, Chen H, Wang W, Liu Y, Wang G, Hao K, Zhang J. Disrupted hepatic pentose phosphate pathway directly participates in and indirectly promotes CYP3A reduction: A new strategy for CYP3A-mediated drug hepatotoxicity. Br J Pharmacol 2020; 177:1538-1555. [PMID: 31670839 DOI: 10.1111/bph.14916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/17/2019] [Accepted: 10/13/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Hepatic CYP450s play an important role in drug-induced hepatotoxicity. They are altered in liver diseases and in many non-liver diseases, such as extra-hepatic tumours. Consequently, CYP450-mediated abnormal drug exposure increases the incidence and extent of hepatotoxicity. This risk is often underestimated because the mechanisms underlying decreases in hepatic CYP450s in extra-hepatic tumours remain unclear. EXPERIMENTAL APPROACH We used Balb/c nude mice with s.c. transplanted 4T1, LoVo and HepG2 tumours to model extra-hepatic tumours. Decreased levels of CYP3A were evaluated by qPCR, western blotting, and metabolic activity. LC-Q/TOF-MS and GC-MS were used in combination for analysing liver metabolomics. The contribution of the pentose phosphate pathway (PPP) to decreased CYP3A was assessed using menadione and silencing of glucose-6-phosphate dehydrogenase. KEY RESULTS CYP3A activity was inhibited at early stages of tumour growth when no significant inflammatory response was observed. The PPP was predominately disrupted at this non-inflammatory stage. Disruption of the PPP directly inhibited CYP3A through the chk2/p53/p65 pathway at the non-inflammatory stage, but at the later inflammatory stage, it indirectly potentiated the subsequent IL-6-mediated CYP3A decrease. Recovery of the PPP with menadione at the non-inflammatory stage, reversed the decreased CYP3A. Similar reversal was obtained with the IL-6 inhibitor, tocilizumab. Such modulation of the PPP to alleviate CYP3A-mediated drug hepatotoxicity was validated with dasatinib in vivo. CONCLUSIONS AND IMPLICATIONS PPP modulation at early, non-inflammatory stages might provide a novel and distinctive approach to manage drug hepatotoxicity mediated by decreased CYP3A.
Collapse
Affiliation(s)
- Jiali Liu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaoliang Jin
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Fang Zhou
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hongzhu Chen
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wenjie Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yan Liu
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guangji Wang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Kun Hao
- Department of Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jingwei Zhang
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Ko E, Kim D, Kim K, Choi M, Shin S. The action of low doses of persistent organic pollutants (POPs) on mitochondrial function in zebrafish eyes and comparison with hyperglycemia to identify a link between POPs and diabetes. Toxicol Mech Methods 2020; 30:275-283. [DOI: 10.1080/15376516.2020.1717704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Eun Ko
- Interdisciplinary Program of Bioenergy and Biomaterials Graduate School, College of Engineering, Chonnam National University, Gwangju, Republic of Korea
| | - Dayoung Kim
- Interdisciplinary Program of Bioenergy and Biomaterials Graduate School, College of Engineering, Chonnam National University, Gwangju, Republic of Korea
| | - Kitae Kim
- Department of Environmental Engineering, College of Energy and Biotechnology, Seoul National University of Science and Technology, Seoul, Republic of Korea
| | - Moonsung Choi
- Department of Optometry, College of Energy and Biotechnology, Seoul National University of Science and Technology, Seoul, Republic of Korea
| | - Sooim Shin
- Interdisciplinary Program of Bioenergy and Biomaterials Graduate School, College of Engineering, Chonnam National University, Gwangju, Republic of Korea
- Department of Biotechnology and Bioengineering, College of Engineering, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
12
|
Chittka D, Banas B, Lennartz L, Putz FJ, Eidenschink K, Beck S, Stempfl T, Moehle C, Reichelt-Wurm S, Banas MC. Long-term expression of glomerular genes in diabetic nephropathy. Nephrol Dial Transplant 2019; 33:1533-1544. [PMID: 29340699 DOI: 10.1093/ndt/gfx359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/11/2017] [Indexed: 12/23/2022] Open
Abstract
Background Although diabetic nephropathy (DN) is the most common cause for end-stage renal disease in western societies, its pathogenesis still remains largely unclear. A different gene pattern of diabetic and healthy kidney cells is one of the probable explanations. Numerous signalling pathways have emerged as important pathophysiological mechanisms for diabetes-induced renal injury. Methods Glomerular cells, as podocytes or mesangial cells, are predominantly involved in the development of diabetic renal lesions. While many gene assays concerning DN are performed with whole kidney or renal cortex tissue, we isolated glomeruli from black and tan, brachyuric (BTBR) obese/obese (ob/ob) and wildtype mice at four different timepoints (4, 8, 16 and 24 weeks) and performed an mRNA microarray to identify differentially expressed genes (DEGs). In contrast to many other diabetic mouse models, these homozygous ob/ob leptin-deficient mice develop not only a severe type 2 diabetes, but also diabetic kidney injury with all the clinical and especially histologic features defining human DN. By functional enrichment analysis we were able to investigate biological processes and pathways enriched by the DEGs at different disease stages. Altered expression of nine randomly selected genes was confirmed by quantitative polymerase chain reaction from glomerular RNA. Results Ob/ob type 2 diabetic mice showed up- and downregulation of genes primarily involved in metabolic processes and pathways, including glucose, lipid, fatty acid, retinol and amino acid metabolism. Members of the CYP4A and ApoB family were found among the top abundant genes. But more interestingly, altered gene loci showed enrichment for processes and pathways linked to angioneogenesis, complement cascades, semaphorin pathways, oxidation and reduction processes and renin secretion. Conclusion The gene profile of BTBR ob/ob type 2 diabetic mice we conducted in this study can help to identify new key players in molecular pathogenesis of diabetic kidney injury.
Collapse
Affiliation(s)
- Dominik Chittka
- Department of Nephrology, University hospital Regensburg, Regensburg, Germany
| | - Bernhard Banas
- Department of Nephrology, University hospital Regensburg, Regensburg, Germany
| | - Laura Lennartz
- Department of Nephrology, University hospital Regensburg, Regensburg, Germany
| | - Franz Josef Putz
- Department of Nephrology, University hospital Regensburg, Regensburg, Germany
| | - Kathrin Eidenschink
- Department of Nephrology, University hospital Regensburg, Regensburg, Germany
| | - Sebastian Beck
- Department of Nephrology, University hospital Regensburg, Regensburg, Germany
| | - Thomas Stempfl
- Kompetenzzentrum Fluoreszente Bioanalytik (KFB), Regensburg, Germany
| | - Christoph Moehle
- Kompetenzzentrum Fluoreszente Bioanalytik (KFB), Regensburg, Germany
| | | | - Miriam C Banas
- Department of Nephrology, University hospital Regensburg, Regensburg, Germany
| |
Collapse
|
13
|
Malinska H, Hüttl M, Oliyarnyk O, Markova I, Poruba M, Racova Z, Kazdova L, Vecera R. Beneficial effects of troxerutin on metabolic disorders in non-obese model of metabolic syndrome. PLoS One 2019; 14:e0220377. [PMID: 31404079 PMCID: PMC6690532 DOI: 10.1371/journal.pone.0220377] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022] Open
Abstract
Background Troxerutin (TRX) has a beneficial effect on blood viscosity and platelet aggregation, and is currently used for the treatment of chronic varicosity. Recently, TRX can improve lipid abnormalities, glucose intolerance and oxidative stress in high-fat diet-induced metabolic disorders. In this study, we tested the effect of TRX on metabolic syndrome-associated disorders using a non-obese model of metabolic syndrome–the Hereditary Hypertriglyceridaemic rats (HHTg). Methods Adult male HHTg rats were fed standard diet without or with TRX (150 mg/kg bwt/day for 4 weeks). Results Compared to untreated rats, TRX supplementation in HHTg rats decreased serum glucose (p<0.05) and insulin (p<0.05). Although blood lipids were not affected, TRX decreased hepatic cholesterol concentrations (p<0.01) and reduced gene expression of HMGCR, SREBP2 and SCD1 (p<0.01), involved in cholesterol synthesis and lipid homeostasis. TRX-treated rats exhibited decreased lipoperoxidation and increased activity of antioxidant enzymes SOD and GPx (p<0.05) in the liver. In addition, TRX supplementation increased insulin sensitivity in muscles and epididymal adipose tissue (p<0.05). Elevated serum adiponectin (p<0.05) and decreased muscle triglyceride (p<0.05) helped improve insulin sensitivity. Among the beneficial effects of TRX were changes to cytochrome P450 family enzymes. Hepatic gene expression of CYP4A1, CYP4A3 and CYP5A1 (p<0.01) decreased, while there was a marked elevation in gene expression of CYP1A1 (p<0.01). Conclusion Our results indicate that TRX improves hepatic lipid metabolism and insulin sensitivity in peripheral tissues. As well as ameliorating oxidative stress, TRX can reduce ectopic lipid deposition, affect genes involved in lipid metabolism, and influence the activity of CYP family enzymes.
Collapse
Affiliation(s)
- Hana Malinska
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- * E-mail:
| | - Martina Hüttl
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Olena Oliyarnyk
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Irena Markova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martin Poruba
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Zuzana Racova
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Ludmila Kazdova
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Rostislav Vecera
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
14
|
A Pilot Study towards the Impact of Type 2 Diabetes on the Expression and Activities of Drug Metabolizing Enzymes and Transporters in Human Duodenum. Int J Mol Sci 2019; 20:ijms20133257. [PMID: 31269743 PMCID: PMC6651059 DOI: 10.3390/ijms20133257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/13/2019] [Accepted: 06/21/2019] [Indexed: 12/24/2022] Open
Abstract
To characterize effects of type 2 diabetes (T2D) on mRNA expression levels for 10 Cytochromes P450 (CYP450s), two carboxylesterases, and three drug transporters (ABCB1, ABCG2, SLCO2B1) in human duodenal biopsies. To compare drug metabolizing enzyme activities of four CYP450 isoenzymes in duodenal biopsies from patients with or without T2D. mRNA levels were quantified (RT-qPCR) in human duodenal biopsies obtained from patients with (n = 20) or without (n = 16) T2D undergoing a scheduled gastro-intestinal endoscopy. CYP450 activities were determined following incubation of biopsy homogenates with probe substrates for CYP2B6 (bupropion), CYP2C9 (tolbutamide), CYP2J2 (ebastine), and CYP3A4/5 (midazolam). Covariables related to inflammation, T2D, demographic, and genetics were investigated. T2D had no major effects on mRNA levels of all enzymes and transporters assessed. Formation rates of metabolites (pmoles mg protein−1 min−1) determined by LC-MS/MS for CYP2C9 (0.48 ± 0.26 vs. 0.41 ± 0.12), CYP2J2 (2.16 ± 1.70 vs. 1.69 ± 0.93), and CYP3A (5.25 ± 3.72 vs. 5.02 ± 4.76) were not different between biopsies obtained from individuals with or without T2D (p > 0.05). No CYP2B6 specific activity was measured. TNF-α levels were higher in T2D patients but did not correlate with any changes in mRNA expression levels for drug metabolizing enzymes or transporters in the duodenum. T2D did not modulate expression or activity of tested drug metabolizing enzymes and transporters in the human duodenum. Previously reported changes in drug oral clearances in patients with T2D could be due to a tissue-specific disease modulation occurring in the liver and/or in other parts of the intestines.
Collapse
|
15
|
Zhang L, Xu P, Cheng Y, Wang P, Ma X, Liu M, Wang X, Xu F. Diet-induced obese alters the expression and function of hepatic drug-metabolizing enzymes and transporters in rats. Biochem Pharmacol 2019; 164:368-376. [PMID: 31063713 DOI: 10.1016/j.bcp.2019.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/02/2019] [Indexed: 01/16/2023]
Abstract
Obesity increases the incidences of metabolic syndrome, including type 2 diabete, fatty liver, dyslipidemia, hyperglycemia, heart disease, hypertension and cancer. In particular, pharmacokinetics and pharmacodynamics of many drugs have changed in obese patients. However, little is known about the hepatic drug-metabolizing enzymes and transporters that are influenced by diet-induced obese. In this report, we established obesity and fatty liver models in male rats by high-fat diet. The expression profiles of drug-metabolizing enzymes and transporters were studied by quantitative real-timePCR and Western blotting analysis. The function of these enzymes and transporters were assessed by their substrates and cocktail methods. The expression and activity of phase I enzymes (CYP1A2, CYP2B1, CYP2C11, CYP3A1, CYP4A1 and FMO1) and phase II enzymes (UGT1A1, UGT1A3, UGT1A6, UGT1A9, UGT2B7, NAT1 and GSTT1) were decreased in the liver of obese rats. In addition, the mRNA levels of hepatic transporter Slco1a2, Slco1b2, Slc22a5, Abcc2, Abcc3, Abcb1a and Abcg2 decreased significantly in obese animals, while Abcb1b increased significantly. Furthermore, the decreased expression of hepatic phase I and II enzymes and transporter may be due to changes of Hnf4α, LXRα and FXR. In conclusion, the diet-induced obese altered the expression and function of hepatic drug-metabolizing enzymes and transporters in male rats, thereby impacting drug metabolism and pharmacokinetics.
Collapse
Affiliation(s)
- Lei Zhang
- Fengxian Hospital and East China Normal University Joint Research Centre for Translational Medicine, Department of Pharmacy, Fengxian Hospital, Shanghai, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Peipei Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi Cheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Peili Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xinrun Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; Department of Molecular and Cellular Medicine, Institute of Biosciences and Technology, Texas A&M University Health Science Centre, Houston, TX, USA
| | - Xin Wang
- Fengxian Hospital and East China Normal University Joint Research Centre for Translational Medicine, Department of Pharmacy, Fengxian Hospital, Shanghai, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Feng Xu
- Fengxian Hospital and East China Normal University Joint Research Centre for Translational Medicine, Department of Pharmacy, Fengxian Hospital, Shanghai, China.
| |
Collapse
|
16
|
Wu Z, Mao W, Yang Z, Lei D, Huang J, Fan C, Suqing W. Knockdown of CYP1B1 suppresses the behavior of the extravillous trophoblast cell line HTR-8/SVneo under hyperglycemic condition. J Matern Fetal Neonatal Med 2019; 34:500-511. [PMID: 31046505 DOI: 10.1080/14767058.2019.1610379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Introduction: Trophoblast plays a vital role in the embryonic implantation and function of the placenta. Exposure to a hyperglycemic environment results in the abnormal function of trophoblasts during fetoplacental development, which leads to maternal complications and poor fetal outcomes. However, the precise mechanisms of placental pathology during hyperglycemia remain elusive. We investigated the role of CYP1B1 in the functional behavior of the extravillous trophoblast (EVT) cell line HTR-8/SVneo under hyperglycemic condition.Methods: We determined the expression of CYP1B1 via real-time polymerase chain reaction and Western blot. Specific CYP1B1 inhibitors and small interfering RNA were used to knockdown CYP1B1, whereas an agonist and an adenovirus were used to overexpress CYP1B1. The proliferation, migration, and invasion of the EVT cell line (i.e. HTR-8/SVneo) were assessed via colony formation, 5-ethynyl-2-deoxyuridine, wound healing, and transwell assay.Results: CYP1B1 is highly expressed in placentas from women with gestational diabetes mellitus. The blockage of CYP1B1 inhibits EVT activities induced by hyperglycemia in vitro, including proliferation, migration, and invasion, whereas the exogenous expression of CYP1B1 exhibits the opposite effects.Discussion: Our study may offer a new method for regulating EVT motility under hyperglycemic condition via CYP1B1.
Collapse
Affiliation(s)
- Zhaoye Wu
- Department of Nutrition and Food Hygiene, School of Health Sciences, Wuhan University, Wuhan, China
| | - Wenjing Mao
- Department of Nutrition and Food Hygiene, School of Health Sciences, Wuhan University, Wuhan, China
| | - Zhuanhong Yang
- Department of Nutrition and Food Hygiene, School of Health Sciences, Wuhan University, Wuhan, China
| | - Di Lei
- Department of Obstetrics and Gynecology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Jinfa Huang
- Department of Obstetrics and Gynecology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Cuifang Fan
- Department of Obstetrics and Gynecology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Wang Suqing
- Department of Nutrition and Food Hygiene, School of Health Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Academy for Preventive Medicine, Wuhan, China
| |
Collapse
|
17
|
Zhang XJ, Liu S, Xing JP, Liu ZQ, Song FR. Effect of type 2 diabetes mellitus on flavonoid pharmacokinetics and tissue distribution after oral administration of Radix Scutellaria extract in rats. Chin J Nat Med 2018; 16:418-427. [PMID: 30047463 DOI: 10.1016/s1875-5364(18)30075-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Indexed: 12/01/2022]
Abstract
Radix Scutellaria is widely applied to the treatment of diabetes mellitus in China. Its main bioactive constituents contain baicalin, wogonoside, oroxyloside, and their aglycones. To investigate the effect of type 2 diabetes mellitus on both pharmacokinetics and tissue distribution of these flavonoid compounds, the six flavonoids in plasma and tissues from the normal and type 2 diabetic rats after oral administration of Radix Scutellaria extract were simultaneously measured by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. The results showed that baicalin, wogonoside, and oroxyloside had higher Cmax and AUC values (P < 0.05) in type 2 diabetic rats than that in normal rats and the tissue-distribution behaviors of the six flavonoid compounds in hearts, livers, spleens, lungs, kidneys, brains, pancreas, fat and muscle of the type 2 diabetic rats showed obviously differences from the normal rats (P < 0.05). In conclusion, the differences in the pharmacokinetics of oroxyloside and tissue distribution of the six flavanoids in Radix Scutellaria extract between diabetic and normal rats were found for the first time. The results from the present study provided a crucial basis for a better understanding of in vivo anti-diabetic mechanism of action of the six flavonoids from Radix Scutellaria.
Collapse
Affiliation(s)
- Xue-Ju Zhang
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jun-Peng Xing
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhi-Qiang Liu
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Feng-Rui Song
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
18
|
Chen F, Li DY, Zhang B, Sun JY, Sun F, Ji X, Qiu JC, Parker RB, Laizure SC, Xu J. Alterations of drug-metabolizing enzymes and transporters under diabetic conditions: what is the potential clinical significance? Drug Metab Rev 2018; 50:369-397. [PMID: 30221555 DOI: 10.1080/03602532.2018.1497645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Feng Chen
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - De-Yi Li
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Bo Zhang
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jie-Yu Sun
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Fang Sun
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xing Ji
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jin-Chun Qiu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Robert B. Parker
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - S. Casey Laizure
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jing Xu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Elfaki I, Mir R, Almutairi FM, Duhier FMA. Cytochrome P450: Polymorphisms and Roles in Cancer, Diabetes and Atherosclerosis. Asian Pac J Cancer Prev 2018; 19:2057-2070. [PMID: 30139042 PMCID: PMC6171375 DOI: 10.22034/apjcp.2018.19.8.2057] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cytochromes P450s (CYPs) constitute a superfamily of enzymes that catalyze the metabolism of drugs and other substances. Endogenous substrates of CYPs include eicosanoids, estradiol, arachidonic acids, cholesterol, vitamin D and neurotransmitters. Exogenous substrates of CYPs include the polycyclic aromatic hydrocarbons and about 80% of currently used drugs. Some isoforms can activate procarcinogens to ultimate carcinogens. Genetic polymorphisms of CYPs may affect the enzyme catalytic activity and have been reported among different populations to be associated with various diseases and adverse drug reactions. With regard of drug metabolism, phenotypes for CYP polymorphism range from ultrarapid to poor metabolizers. In this review, we discuss some of the most clinically important CYPs isoforms (CYP2D6, CYP2A6, CYP2C19, CYP2C9, CYP1B1 and CYP1A2) with respect to gene polymorphisms and drug metabolism. Moreover, we review the role of CYPs in renal, lung, breast and prostate cancers and also discuss their significance for atherosclerosis and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Kingdom of Saudi Arabia.
| | | | | | | |
Collapse
|
20
|
Zhou G, Zhang Y, Li Y, Wang M, Li X. The metabolism of a natural product mogroside V, in healthy and type 2 diabetic rats. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1079:25-33. [DOI: 10.1016/j.jchromb.2018.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 10/18/2017] [Accepted: 02/04/2018] [Indexed: 01/19/2023]
|
21
|
Xu R, Qi J, Zhan RJ, Zhou GS, Hao B, Ma J, Wei X, Xu AJ, Zhang J. Comparative pharmacokinetics of four active components on normal and diabetic rats after oral administration of Gandi capsules. RSC Adv 2018; 8:6620-6628. [PMID: 35540372 PMCID: PMC9078286 DOI: 10.1039/c7ra11420f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/26/2018] [Accepted: 01/23/2018] [Indexed: 11/21/2022] Open
Abstract
The Gandi capsule, a famous traditional Chinese medicine (TCM), is a hospital preparation that has been widely used in China for decades for the treatment of diabetes.
Collapse
Affiliation(s)
- Renjie Xu
- Department of Pharmacy
- Xinhua Hospital
- Shanghai 200092
- China
| | - Jia Qi
- Department of Pharmacy
- Xinhua Hospital
- Shanghai 200092
- China
| | - Ruan-Juan Zhan
- Department of Pharmacy
- The First Affiliated Hospital
- Wenzhou Medical University
- Wenzhou
- China
| | - Gui-Sheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine
- Nanjing University of Chinese Medicine
- Nanjing 210023
- China
| | - Bin Hao
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Jing Ma
- Department of Pharmacy
- Xinhua Hospital
- Shanghai 200092
- China
| | - Xin Wei
- Department of Pharmacy
- Xinhua Hospital
- Shanghai 200092
- China
| | - A.-Jing Xu
- Department of Pharmacy
- Xinhua Hospital
- Shanghai 200092
- China
| | - Jian Zhang
- Department of Pharmacy
- Xinhua Hospital
- Shanghai 200092
- China
| |
Collapse
|
22
|
Tissue Specific Modulation of cyp2c and cyp3a mRNA Levels and Activities by Diet-Induced Obesity in Mice: The Impact of Type 2 Diabetes on Drug Metabolizing Enzymes in Liver and Extra-Hepatic Tissues. Pharmaceutics 2017; 9:pharmaceutics9040040. [PMID: 28954402 PMCID: PMC5750646 DOI: 10.3390/pharmaceutics9040040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/18/2017] [Accepted: 09/22/2017] [Indexed: 12/16/2022] Open
Abstract
Various diseases such as type 2 diabetes (T2D) may alter drug clearance. The objective of this study was to evaluate the effects of T2D on CYP450 expressions and activities using high-fat diet (HFD) as a model of obesity-dependent diabetes in C57BL6 mice. The cyp450 mRNA expression levels for 15 different isoforms were determined in the liver and extra-hepatic tissues (kidneys, lungs and heart) of HFD-treated animals (n = 45). Modulation of cyp450 metabolic activities by HFD was assessed using eight known substrates for specific human ortholog CYP450 isoforms: in vitro incubations were conducted with liver and extra-hepatic microsomes. Expression levels of cyp3a11 and cyp3a25 mRNA were decreased in the liver (>2-14-fold) and kidneys (>2-fold) of HFD groups which correlated with a significant reduction in midazolam metabolism (by 21- and 5-fold in hepatic and kidney microsomes, respectively, p < 0.001). HFD was associated with decreased activities of cyp2b and cyp2c subfamilies in all organs tested except in the kidneys (for tolbutamide). Other cyp450 hepatic activities were minimally or not affected by HFD. Taken together, our data suggest that substrate-dependent and tissue-dependent modulation of cyp450 metabolic capacities by early phases of T2D are observed, which could modulate drug disposition and pharmacological effects in various tissues.
Collapse
|
23
|
Bondarenko LB, Shayakhmetova GM, Voronina AK, Kovalenko VM. Age-dependent features of CYP3A, CYP2C, and CYP2E1 functioning at metabolic syndrome. J Basic Clin Physiol Pharmacol 2017; 27:603-610. [PMID: 27371822 DOI: 10.1515/jbcpp-2016-0012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/04/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Complex investigations of cytochrome P450 (CYP) isoforms with metabolic syndrome (MS) development are limited, and specific features of adolescent's metabolisms are generally disregarded. The aim of present study was a comparative estimation of MS-mediated changes in CYP3A, CYP2C, and CYP2E1 mRNA expression and enzymatic activities, as well as antioxidant system parameters of adult and pubertal rats. METHODS Wistar albino male rats of two age categories [young animals of 21 days age (50-70 g) and adults (160-180 g)] were divided into four groups (eight animals in each group): (1) control 1 (intact young rats), (2) control 2 (intact adult rats), (3) MS3 (young rats with MS), and (4) MS4 (adult rats with MS). The MS was induced by full replacement of drinking water by 20% fructose solution (200 g/L). After 60 days of MS modeling, the investigation of rat liver CYP3A, CYP2C, and CYP2E1 mRNA expressions, their enzyme-marker activities, as well as the antioxidant system parameters was conducted. RESULTS Levels of liver CYP2E1 mRNA expression increased with MS: 40% (adults) and 80% (pubertal rats). Pubertal rats had also increased CYP3A2 mRNA expression (30%) and decreased CYP2C mRNA expression (30%). Changes in CYP2E1 and CYP2C enzymatic activities were consistent with the changes of corresponding gene expressions at both age-groups with MS. Simultaneously, liver reduced glutathione contents, and glutathione transferase and reductase activities were decreased in pubertal animals. CONCLUSIONS CYP isoform expression rates and glutathione system were greatly violated with MS. The greater changes were observed in pubertal rats with MS.
Collapse
|
24
|
Kim DW, Weon KY, Hong EP, Chung EK, Lee KT. Comparative Physicochemical and Pharmacokinetic Properties of Quetiapine and Its Active Metabolite Norquetiapine. Chem Pharm Bull (Tokyo) 2017; 64:1546-1554. [PMID: 27803466 DOI: 10.1248/cpb.c16-00223] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Quetiapine (QTP) is an atypical antipsychotic drug commonly used to treat several psychiatric disorders and is metabolized into the active metabolite norquetiapine (NQTP). This study was designed to evaluate and compare the physicochemical properties, metabolic stability, brain distribution, and pharmacokinetics of QTP and NQTP. Compared to QTP, NQTP had a higher pKa, solubility, and rat liver microsomal stability, optimal log D and similar log P values. For pharmacokinetic evaluation, QTP and NQTP were administered orally and intravenously to rats at various doses. The plasma QTP and NQTP concentrations in rats were determined by a fully-validated liquid-chromatography tandem mass spectrometry (LC-MS/MS). Over the investigated dosing range, both QTP and NQTP showed linear pharmacokinetics. Following oral administration of the same dose, the area under the concentration-time curve (AUC0-∞) and maximum serum concentration (Cmax) were larger after NQTP administration compared to QTP administration. In addition, NQTP had a greater absolute oral bioavailability compared to QTP (15.6% vs. 0.63%, respectively). The brain-to-plasma concentration ratio was greater after NQTP administration compared to the QTP and NQTP ratios after QTP administration. NQTP administration results in increased systemic exposure and brain distribution compared to QTP administration. Future studies are needed to evaluate the pharmacologic and toxicologic effects of increased NQTP exposures.
Collapse
Affiliation(s)
- Dong-Wook Kim
- Department of Pharmaceutical Engineering, Cheongju University
| | | | | | | | | |
Collapse
|
25
|
Hepatic expression of cytochrome P450 in Zucker diabetic fatty rats. Food Chem Toxicol 2016; 96:244-53. [DOI: 10.1016/j.fct.2016.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 11/21/2022]
|
26
|
Babelova A, Burckhardt BC, Salinas-Riester G, Pommerenke C, Burckhardt G, Henjakovic M. Next generation sequencing of sex-specific genes in the livers of obese ZSF1 rats. Genomics 2015. [PMID: 26200819 DOI: 10.1016/j.ygeno.2015.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Type 2 diabetes induces pathophysiological changes in the liver. The aim of this study was to identify differently expressed genes in the livers of male and female ZSF1 rats (ZDFxSHHF-hybrid, generation F1), a model for type 2 diabetes. Gene expression was investigated using next-generation sequencing (NGS). Selected candidate genes were verified by real-time PCR in the livers of obese and lean rats. 103 sex-different genes, associated to pathways "response to chemical stimulus", "lipid metabolism", and "response to organic substance", were identified. Male-specific genes were involved in hepatic metabolism, detoxification, and secretion, e.g. cytochrome P450 2c11 (Cyp2c11), Cyp4a2, glutathione S-transferases mu 2 (Gstm2), and Slc22a8 (organic anion transporter 3, Oat3). Most female-specific genes were associated to lipid metabolism (e.g. glycerol-3-phosphate acyltransferase 1, Gpam) or glycolysis (e.g. glucokinase, Gck). Our data suggest the necessity to pay attention to sex- and diabetes-dependent changes in pre-clinical testing of hepatic metabolized and secreted drugs.
Collapse
Affiliation(s)
- Andrea Babelova
- Cancer Research Institute, Slovak Academy of Sciences, Vlarska 7, 83391 Bratislava, Slovak Republic
| | - Birgitta C Burckhardt
- Institute for Systemic Physiology and Pathophysiology, University Medical Center Goettingen, 37073 Goettingen, Germany
| | - Gabriela Salinas-Riester
- Department of Developmental Biochemistry, DNA Microarray and Deep-Sequencing Facility, University Medical Center Goettingen, 37077 Goettingen, Germany
| | - Claudia Pommerenke
- Department of Developmental Biochemistry, DNA Microarray and Deep-Sequencing Facility, University Medical Center Goettingen, 37077 Goettingen, Germany
| | - Gerhard Burckhardt
- Institute for Systemic Physiology and Pathophysiology, University Medical Center Goettingen, 37073 Goettingen, Germany
| | - Maja Henjakovic
- Institute for Systemic Physiology and Pathophysiology, University Medical Center Goettingen, 37073 Goettingen, Germany.
| |
Collapse
|
27
|
Lee JY, Lee SY, Lee K, Oh SJ, Kim SK. Determination of species-difference in microsomal metabolism of amitriptyline using a predictive MRM-IDA-EPI method. Chem Biol Interact 2015; 229:109-18. [PMID: 25623954 DOI: 10.1016/j.cbi.2015.01.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 11/27/2022]
Abstract
We investigated to compare species differences in amitriptyline (AMI) metabolism among mouse, rat, dog, and human liver microsomes. We developed a method for simultaneous determination of metabolic stability and metabolite profiling using predictive multiple reaction monitoring information-dependent acquisition-enhanced product ion (MRM-IDA-EPI) scanning. In the cofactor-dependent microsomal metabolism study, AMI was metabolized more rapidly in rat and human liver microsomes incubated with NADPH than UDPGA. AMI incubated with NADPH+UDPGA in rat, dog, or mouse liver microsomes disappeared rapidly with a half-life of 3.5, 8.4, or 9.2 min, respectively, but slowly in human liver microsomes with a half-life of 96 min. In total, 9, 10, 11, and 6 putative metabolites of AMI were detected in mouse, rat, dog, and human liver microsomes, respectively, based on mass spectrometric analyses. Kinetic analysis of metabolites in liver microsomes from each species over 120 min showed common metabolic routes of AMI, such as N-demethylation, hydroxylation, and glucuronidation, and subtle interspecies differences in AMI metabolism. The main metabolic routes in mouse, rat, dog, and human liver microsomes were hydroxylation followed by glucuronide conjugation, methyl hydroxylation, and N-demethylation, respectively. The MRM-IDA-EPI method can provide quantitative and qualitative information about metabolic stability and metabolite profiling simultaneously. Moreover, time course analysis of metabolites can not only eliminate false identification of metabolites, but also provide a rationale for proposed metabolic pathways. The MRM-IDA-EPI method combined with time course analysis of metabolites is useful for investigating drug metabolism at the early drug discovery stage.
Collapse
Affiliation(s)
- Ji-Yoon Lee
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Sang Yoon Lee
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - KiHo Lee
- College of Pharmacy, Korea University, Jochiwon-eup, Yeongi-gun, Chungnam 339-700, Republic of Korea
| | - Soo Jin Oh
- Bio-Evaluation Center, KRIBB, Ochang, Chungbuk, Republic of Korea.
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea.
| |
Collapse
|
28
|
Konstandi M, Johnson EO, Lang MA. Consequences of psychophysiological stress on cytochrome P450-catalyzed drug metabolism. Neurosci Biobehav Rev 2014; 45:149-67. [DOI: 10.1016/j.neubiorev.2014.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/17/2014] [Accepted: 05/18/2014] [Indexed: 12/11/2022]
|
29
|
He MY, Deng YX, Shi QZ, Zhang XJ, Lv Y. Comparative pharmacokinetic investigation on baicalin and wogonoside in type 2 diabetic and normal rats after oral administration of traditional Chinese medicine Huanglian Jiedu decoction. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:334-342. [PMID: 24910405 DOI: 10.1016/j.jep.2014.05.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 05/18/2014] [Accepted: 05/21/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huanglian Jiedu decoction (HLJDD) is used traditionally in China for the treatment of diabetes mellitus in clinical practice, which has been proved to be effective. The purpose of this study was to investigate the pharmacokinetic characteristics (especially the area under the curve, AUC) of baicalin and wogonoside in type 2 diabetic rats after oral administration of HLJDD extract and to explore its possible mechanism. MATERIALS AND METHODS HLJDD extract and Radix scutellariae extract were prepared and the contents of baicalin and wogonoside contained in two extracts were assayed with high performance liquid chromatography (HPLC). Type 2 diabetic rats were induced by high fat diet and intraperitoneal injection of streptozotocin. Pharmacokinetics of baicalin and wogonoside in type 2 diabetic and normal control rats after oral administration of HLJDD extract or Radix scutellariae extract were investigated. Pharmacokinetics of baicalin in type 2 diabetic and normal rats after oral administration of pure baicalin was also investigated. RESULTS The pharmacokinetic parameters (especially AUCs) of baicalin and wogonoside in type 2 diabetic rats after oral administration of HLJDD extract were remarkably different from those in normal rats. And the alterations of the AUCs of baicalin and wogonoside in type 2 diabetic rats after oral administration of Radix scutellariae extract were similar to those after oral administration of HLJDD extract. Moreover, the increase of the AUC of baicalin in type 2 diabetic rats after oral administration of pure baicalin was similar to that after oral administration of HLJDD extract or Radix scutellariae extract. CONCLUSION The pharmacokinetic behaviors of baicalin and wogonoside (especially the systemic exposure [AUCs] of baicalin and wogonoside) were significantly altered in type 2 diabetic rats after orally administrated HLJDD extract. And the increased AUCs of baicalin and wogonoside in type 2 diabetic rats after oral administration of HLJDD extract resulted from neither the effects of other herbs contained in HLJDD nor the effects of other components contained in Radix scutellariae. It might result from the effects of the pathological status of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Meng-Yun He
- Department of Pharmaceutical Science, Medical College of Hunan Normal University, Changsha 410013, PR China
| | - Yuan-Xiong Deng
- Department of Pharmaceutical Science, Medical College of Hunan Normal University, Changsha 410013, PR China.
| | - Qun-Zhi Shi
- Department of Pharmaceutical Science, Medical College of Hunan Normal University, Changsha 410013, PR China
| | - Xiao-Jie Zhang
- Department of Pharmaceutical Science, Medical College of Hunan Normal University, Changsha 410013, PR China
| | - Yuan Lv
- Department of Pharmaceutical Science, Medical College of Hunan Normal University, Changsha 410013, PR China
| |
Collapse
|
30
|
Hu N, Hu M, Duan R, Liu C, Guo H, Zhang M, Yu Y, Wang X, Liu L, Liu X. Increased Levels of Fatty Acids Contributed to Induction of Hepatic CYP3A4 Activity Induced by Diabetes — In Vitro Evidence From HepG2 Cell and Fa2N-4 Cell Lines. J Pharmacol Sci 2014; 124:433-44. [DOI: 10.1254/jphs.13212fp] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
31
|
Expression of hepatic antioxidant enzymes in non-obese type-2 diabetic Goto-Kakizaki rats. Arch Pharm Res 2013; 37:1345-53. [PMID: 24254933 DOI: 10.1007/s12272-013-0267-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/15/2013] [Indexed: 10/26/2022]
Abstract
Diabetes mellitus and its complications have been attributed in part to oxidative stress, against which antioxidant enzymes constitute a major protective mechanism. The present study was performed to investigate the effects of early stage type 2 diabetes in the absence of obesity and liver damage on hepatic antioxidant enzyme expression and oxidative stress using 9-week-old Goto-Kakizaki (GK) rats. Hepatic total antioxidant capacity determined by total oxygen radical scavenging capacity and lipid peroxidation determined by malondialdehyde in plasma and liver were not significantly different between normal Wistar rats and GK rats. These results indicated that oxidative stress is not evident in these type 2 diabetic rats. Hepatic expression levels of antioxidant enzymes, including superoxide dismutase-1, catalase, glutathione peroxidase and reductase, thioredoxin-1, mu- and pi-class glutathione S-transferase (GST), and the gamma-glutamylcysteine ligase catalytic subunit, were not different between normal rats and GK rats. But, hepatic level and activity of alpha-class GST were decreased and peroxiredoxin-1 level was increased in GK rats, suggesting that upregulation of peroxiredoxin-1 compensates for downregulation of alpha-class GST. These results suggest that alpha-class GST and peroxiredoxin-1 in liver can be altered during the early stages of type 2 diabetes in the absence of obesity and severe oxidative stress.
Collapse
|
32
|
Comparative pharmacokinetics of baicalin in normal and the type 2 diabetic rats after oral administration of the Radix scutellariae extract. Fitoterapia 2012; 83:1435-42. [DOI: 10.1016/j.fitote.2012.08.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|