1
|
Kumari S, Singh P, Singh R. Repeated Silica exposures lead to Silicosis severity via PINK1/PARKIN mediated mitochondrial dysfunction in mice model. Cell Signal 2024; 121:111272. [PMID: 38944258 DOI: 10.1016/j.cellsig.2024.111272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND AND OBJECTIVES Silicosis, one of the occupational health illnesses is caused by inhalation of crystalline silica. Deposition of extracellular matrix and fibroblast proliferation in lungs are linked to silicosis development. Mitochondrial dysfunction plays critical role in some diseases, but how these processes progress and regulated in silicosis, remains limited. Detailed study of silica induced pulmonary fibrosis in mouse model, its progression and severity may be helpful in designing future therapeutic strategies. METHODS In present study, mice model of silicosis has been developed after repeated silica exposures which may closely resemble clinical symptoms of silicosis in human. In addition to efficiently mimicking the acute/chronic transformation processes of silicosis, this is practical and efficient in terms of time and output, which avoids mechanical injury to the upper respiratory tract due to surgical interventions. Sonicated sterile silica suspension (120 mg/kg) was administered through intranasal route thrice a week at regular intervals (21, 28 and 35 days). RESULTS Presence of minute to larger silicotic nodules in H&E-stained lung sections were observed in all silica induced model groups. Enhanced ECM deposition was noted in MT stained lung sections of silica exposure groups as compared to control which were confirmed by significantly higher MMP9 expression levels and hydroxyproline content in silica 35 days group. Increase in Reactive oxygen species (ROS), inflammatory cell recruitment mainly, neutrophils and macrophage were observed in all three silica exposure groups. Transmission electron microscopic analysis has confirmed presence of many aberrant shaped mitochondria (swollen, round shape) in 35 days model where autophagosomes were minimum. Western blot analysis of mitophagy and autophagy markers such as Pink1, Parkin, Cytochrome c, SQSTM1/p62, the ratio of light chain LC3B II/LC3B I was found higher in 21 and 28 days which were significantly reduced in 35 days silica model. CONCLUSIONS Higher MMP9 activity and MMP9 /TIMP1 ratio demonstrate excessive extracellular matrix damage and deposition in 35 days model. Significantly reduced expressions of autophagy and mitophagy markers have also confirmed progression in fibrosis severity and its association with repeated silica exposures in 35 days model group.
Collapse
Affiliation(s)
- Sneha Kumari
- Department of Zoology, MMV, Banaras Hindu University, Varanasi 221005, India
| | - Payal Singh
- Department of Zoology, MMV, Banaras Hindu University, Varanasi 221005, India
| | - Rashmi Singh
- Department of Zoology, MMV, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Wang Y, Geng X, Sun X, Cui H, Guo Z, Chu D, Li J, Li Z. Celastrol alleviates subconjunctival fibrosis induced by silicone implants mimicking glaucoma surgery. Eur J Pharm Biopharm 2024; 201:114352. [PMID: 38851459 DOI: 10.1016/j.ejpb.2024.114352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024]
Abstract
Subconjunctival fibrosis is critical to the outcomes of several ophthalmic conditions or procedures, such as glaucoma filtering surgery. This study aimed to investigate the anti-fibrotic effect of celastrol on subconjunctival fibrosis and to further reveal the underlying mechanisms. We used celastrol-loaded nanomicelles hydrogel hybrid as a sustained-release drug. A rabbit model of subconjunctival fibrosis following silicone implantation was used for in vivo study, and TGF-β1-induced human pterygium fibroblast (HPF) activation as an in vitro model. The effects of celastrol on inhibiting TGF-β1-induced migration and proliferation of HPFs were evaluated by scratch wound assay and CCK-8, respectively. Immunofluorescence and western blotting were used to examine the effect of celastrol on the expression of α-SMA, collagen I, fibronectin, and the targets of the Hippo signaling pathway. We found that in vivo celastrol treatment reduced the expression of YAP and TAZ in subconjunctival tissue. Moreover, celastrol alleviated collagen deposition and subconjunctival fibrosis at 8 weeks. No obvious tissue toxicity was observed in the rabbit models. Mechanistically, celastrol significantly inhibited TGF-β1-induced proliferation and migration of HPFs. Pretreatment of HPFs with celastrol also suppressed the TGF-β1-induced protein expression of α-SMA, collagen I, fibronectin, TGF-βRII, phosphorylated Smad2/3, YAP, TAZ, and TEAD1. In conclusion, celastrol effectively prevented subconjunctival fibrosis through inhibiting TGF-β1/Smad2/3-YAP/TAZ pathway. Celastrol could serve as a promising therapy for subconjunctival fibrosis.
Collapse
Affiliation(s)
- Yiwei Wang
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xingchen Geng
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xue Sun
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Haohao Cui
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Zhihua Guo
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Dandan Chu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| | - Zhanrong Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
3
|
An N, Wang R, Li L, Wang B, Wang H, Peng G, Zhou H, Chen G. Celastrol alleviates diabetic vascular injury via Keap1/Nrf2-mediated anti-inflammation. Front Pharmacol 2024; 15:1360177. [PMID: 38881873 PMCID: PMC11176472 DOI: 10.3389/fphar.2024.1360177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/10/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction: Celastrol (Cel) is a widely used main component of Chinese herbal medicine with strong anti-inflammatory, antiviral and antitumor activities. In the present study, we aimed to elucidate the cellular molecular protective mechanism of Cel against diabetes-induced inflammation and endothelial dysfunction. Methods: Type 2 diabetes (T2DM) was induced by db/db mice, and osmotic pumps containing Cel (100 μg/kg/day) were implanted intraperitoneally and were calibrated to release the drug for 28 days. In addition, human umbilical vein endothelial cells (HUVECs) were cultured in normal or high glucose and palmitic acid-containing (HG + PA) media in the presence or absence of Cel for 48 h. Results: Cel significantly ameliorated the hyperglycemia-induced abnormalities in nuclear factor (erythroid-derived 2)-like protein 2 (Nrf2) pathway activity and alleviated HG + PA-induced oxidative damage. However, the protective effect of Cel was almost completely abolished in HUVECs transfected with short hairpin (sh)RNA targeting Nrf2, but not by nonsense shRNA. Furthermore, HG + PA reduced the phosphorylation of AMP-activated protein kinase (AMPK), the autophagic degradation of p62/Kelch-like ECH-associated protein 1 (Keap1), and the nuclear localization of Nrf2. However, these catabolic pathways were inhibited by Cel treatment in HUVECs. In addition, compound C (AMPK inhibitors) and AAV9-sh-Nrf2 reduced Cel-induced Nrf2 activation and angiogenesis in db/db mice. Discussion: Taking these findings together, the endothelial protective effect of Cel in the presence of HG + PA may be at least in part attributed to its effects to reduce reactive oxygen species (ROS) and inflammation through p62/Keap1-mediated Nrf2 activation.
Collapse
Affiliation(s)
- Ning An
- The Affiliated Li Huili Hospital of Ningbo University, Health Science Center, Ningbo University, Ningbo, China
| | - Rixiang Wang
- The Affiliated Li Huili Hospital of Ningbo University, Health Science Center, Ningbo University, Ningbo, China
| | - Lin Li
- The Affiliated Li Huili Hospital of Ningbo University, Health Science Center, Ningbo University, Ningbo, China
| | - Bingyu Wang
- The Affiliated Li Huili Hospital of Ningbo University, Health Science Center, Ningbo University, Ningbo, China
| | - Huiting Wang
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, China
| | - Ganyu Peng
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, China
| | - Hua Zhou
- The Affiliated Li Huili Hospital of Ningbo University, Health Science Center, Ningbo University, Ningbo, China
| | - Gen Chen
- The Affiliated Li Huili Hospital of Ningbo University, Health Science Center, Ningbo University, Ningbo, China
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Cai L, Wang J, Yi X, Yu S, Wang C, Zhang L, Zhang X, Cheng L, Ruan W, Dong F, Su P, Shi Y. Nintedanib-loaded exosomes from adipose-derived stem cells inhibit pulmonary fibrosis induced by bleomycin. Pediatr Res 2024; 95:1543-1552. [PMID: 38245633 DOI: 10.1038/s41390-024-03024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a progressive lung disorder with a high mortality rate; its therapy remains limited due to the inefficiency of drug delivery. In this study, the system of drug delivery of nintedanib (Nin) by exosomes derived from adipose-derived stem cells (ADSCs-Exo, Exo) was developed to effectively deliver Nin to lung lesion tissue to ensure enhanced anti-fibrosis therapy. METHODS The bleomycin (BLM)-induced PF model was constructed in vivo and in vitro. The effects of Exo-Nin on BLM-induced PF and its regulatory mechanism were examined using RT-qPCR, Western blotting, immunofluorescence, and H&E staining. RESULTS We found Exo-Nin significantly improved BLM-induced PF in vivo and in vitro compared to Nin and Exo groups alone. Mechanistically, Exo-Nin alleviated fibrogenesis by suppressing endothelial-mesenchymal transition through the down-regulation of the TGF-β/Smad pathway and the attenuation of oxidative stress in vivo and in vitro. CONCLUSIONS Utilizing adipose stem cell-derived exosomes as carriers for Nin exhibited a notable enhancement in therapeutic efficacy. This improvement can be attributed to the regenerative properties of exosomes, indicating promising prospects for adipose-derived exosomes in cell-free therapies for PF. IMPACT The system of drug delivery of nintedanib (Nin) by exosomes derived from adipose-derived stem cells was developed to effectively deliver Nin to lung lesion tissue to ensure enhanced anti-fibrosis therapy. The use of adipose stem cell-derived exosomes as the carrier of Nin may increase the therapeutic effect of Nin, which can be due to the regenerative properties of the exosomes and indicate promising prospects for adipose-derived exosomes in cell-free therapies for PF.
Collapse
Affiliation(s)
- Liyun Cai
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Jie Wang
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Xue Yi
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Shuwei Yu
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Chong Wang
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Liyuan Zhang
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Xiaoling Zhang
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Lixian Cheng
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Wenwen Ruan
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Feige Dong
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Ping Su
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Ying Shi
- Department of Basic Medicine, Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, China.
| |
Collapse
|
5
|
Zhou YM, Dong XR, Xu D, Tang J, Cui YL. Therapeutic potential of traditional Chinese medicine for interstitial lung disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116952. [PMID: 37487964 DOI: 10.1016/j.jep.2023.116952] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/26/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Interstitial lung disease (ILD) is a chronic lung dysfunction disease with a poor prognosis and poor recovery. The clinically used therapeutic drugs, such as glucocorticoids and immunosuppressants, have no significant therapeutic effect and are accompanied with severe side effects. In recent years, considerable progress has been made in exploring and applying natural herb components for treating ILD. Traditional Chinese Medicine (TCM) possesses innate, non-toxic characteristics and offers advantages in preventing and treating pulmonary ailments. However, a comprehensive study of TCM on ILD therapy has not yet been reviewed. AIM OF THE REVIEW This review aimed to provide a comprehensive summary of the monomer components, total extracts, and prescriptions of TCM for ILD therapy, elucidating their molecular mechanisms to serve as a reference in treating ILD. MATERIALS AND METHODS The literature information was searched in the PubMed, Web of Science databases. The search keywords included 'interstitial lung disease', 'lung fibrosis' or 'pulmonary fibrosis', and 'traditional Chinese medicine', 'traditional herbal medicine', or 'herb medicine'. RESULTS The active components of single herbs, such as alkaloids, flavonoids, terpenoids, phenols, and quinones, have potential therapeutic effects on ILD. The active extracts and prescriptions were also summarized and analyzed. The herbs, Glycyrrhiza uralensis Fisch. (Gancao), Astragalus membranaceus Fisch. Bunge. (Huangqi) and Angelicasinensis (Oliv.) Diels (Danggui), play significant roles in the treatment of ILD. The mechanisms involve the inhibition of inflammatory factor release, anti-oxidative injury, and interference with collagen production, etc. CONCLUSION: This review examines the therapeutic potential of TCM for ILD and elucidates its molecular mechanisms, demonstrating that mitigating inflammation and oxidative stress, modulating the immune system, and promoting tissue repair are efficacious strategies for ILD therapy. The depth research will yield both theoretical and practical implications.
Collapse
Affiliation(s)
- Yan-Ming Zhou
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, PR China
| | - Xin-Ran Dong
- The Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - Dong Xu
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, PR China.
| | - Jie Tang
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, PR China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, PR China.
| |
Collapse
|
6
|
Roohi TF, Faizan S, Parray ZA, Baig MDAI, Mehdi S, Kinattingal N, Krishna KL. Beyond Glucose: The Dual Assault of Oxidative and ER Stress in Diabetic Disorders. High Blood Press Cardiovasc Prev 2023; 30:513-531. [PMID: 38041772 DOI: 10.1007/s40292-023-00611-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023] Open
Abstract
Diabetes mellitus, a prevalent global health concern, is characterized by hyperglycemia. However, recent research reveals a more intricate landscape where oxidative stress and endoplasmic reticulum (ER) stress orchestrate a dual assault, profoundly impacting diabetic disorders. This review elucidates the interplay between these two stress pathways and their collective consequences on diabetes. Oxidative stress emanates from mitochondria, where reactive oxygen species (ROS) production spirals out of control, leading to cellular damage. We explore ROS-mediated signaling pathways, which trigger β-cell dysfunction, insulin resistance, and endothelial dysfunction the quintessential features of diabetes. Simultaneously, ER stress unravels, unveiling how protein folding disturbances activate the unfolded protein response (UPR). We dissect the UPR's dual role, oscillating between cellular adaptation and apoptosis, significantly influencing pancreatic β-cells and peripheral insulin-sensitive tissues. Crucially, this review exposes the synergy between oxidative and ER stress pathways. ROS-induced UPR activation and ER stress-induced oxidative stress create a detrimental feedback loop, exacerbating diabetic complications. Moreover, we spotlight promising therapeutic strategies that target both stress pathways. Antioxidants, molecular chaperones, and novel pharmacological agents offer potential avenues for diabetes management. As the global diabetes burden escalates, comprehending the dual assault of oxidative and ER stress is paramount. This review not only unveils the intricate molecular mechanisms governing diabetic pathophysiology but also advocates a holistic therapeutic approach. By addressing both stress pathways concurrently, we may forge innovative solutions for diabetic disorders, ultimately alleviating the burden of this pervasive health issue.
Collapse
Affiliation(s)
- Tamsheel Fatima Roohi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka, 570015, India
| | - Syed Faizan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka, 570015, India
| | - Zahoor Ahmad Parray
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas Campus, New Delhi, 110016, India
| | - M D Awaise Iqbal Baig
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka, 570015, India
| | - Seema Mehdi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka, 570015, India
| | - Nabeel Kinattingal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka, 570015, India
| | - K L Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka, 570015, India.
| |
Collapse
|
7
|
Gu J, Shi YN, Zhu N, Li HF, Zhang CJ, Qin L. Celastrol functions as an emerging manager of lipid metabolism: Mechanism and therapeutic potential. Biomed Pharmacother 2023; 164:114981. [PMID: 37285754 DOI: 10.1016/j.biopha.2023.114981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023] Open
Abstract
Lipid metabolism disorders are pivotal in the development of various lipid-related diseases, such as obesity, atherosclerosis, non-alcoholic fatty liver disease, type 2 diabetes, and cancer. Celastrol, a bioactive compound extracted from the Chinese herb Tripterygium wilfordii Hook F, has recently demonstrated potent lipid-regulating abilities and promising therapeutic effects for lipid-related diseases. There is substantial evidence indicating that celastrol can ameliorate lipid metabolism disorders by regulating lipid profiles and related metabolic processes, including lipid synthesis, catabolism, absorption, transport, and peroxidation. Even wild-type mice show augmented lipid metabolism after treatment with celastrol. This review aims to provide an overview of recent advancements in the lipid-regulating properties of celastrol, as well as to elucidate its underlying molecular mechanisms. Besides, potential strategies for targeted drug delivery and combination therapy are proposed to enhance the lipid-regulating effects of celastrol and avoid the limitations of its clinical application.
Collapse
Affiliation(s)
- Jia Gu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Ya-Ning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan, China
| | - Hong-Fang Li
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Chan-Juan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China.
| |
Collapse
|
8
|
Mohd Khairudin NY, Azme N, Nasrudin N, Ab Karim SA. The Promising Therapeutic Potential of Celastrol for Fibrotic Diseases: A Systematic Literature Review on Its Mechanism. Cureus 2023; 15:e44269. [PMID: 37772226 PMCID: PMC10523829 DOI: 10.7759/cureus.44269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Celastrol is a pentacyclic tripterine sourced from Tripterygium wilfordii hook root. Celastrol can exert certain biological functions such as antitumor, anti-inflammatory, and antiproliferative properties. Celastrol was shown from the previous literature to be capable of attenuating many fibrotic diseases. As the effects of various fibrotic diseases such as atherosclerosis, cancer, and ischemia affect more people with devastating repercussions, this warrants celastrol to be exploited as a phytotherapeutic drug. The purpose of this study is to review previous research and identify the proposed therapeutic mechanisms of celastrol in fibrotic diseases focusing on both the in vitro and in vivo experimental models. A systematic literature search on Web of Science (WoS), Scopus, and ScienceDirect that included articles published between 2012 and 2022 was carried out using the keywords "celastrol", "tripterine", "fibrotic disease", and "fibrosis". After screening the initial search yield of 405 articles, 25 articles were included in this review. The study findings summarize the potential therapeutic mechanism of celastrol in the attenuation of fibrotic diseases in in vivo and in vitro experimental models. It shows that celastrol is useful as a treatment means. However, more studies are needed on the effects of celastrol on humans to carry out clinical trials to verify the long-term benefits of celastrol.
Collapse
Affiliation(s)
| | - Nasibah Azme
- Faculty of Medicine, Universiti Teknologi MARA, Shah Alam, MYS
| | | | | |
Collapse
|
9
|
Rabitha R, Shivani S, Showket Y, Sudhandiran G. Ferroptosis regulates key signaling pathways in gastrointestinal tumors: Underlying mechanisms and therapeutic strategies. World J Gastroenterol 2023; 29:2433-2451. [PMID: 37179581 PMCID: PMC10167906 DOI: 10.3748/wjg.v29.i16.2433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023] Open
Abstract
Ferroptosis is an emerging novel form of non-apoptotic, regulated cell death that is heavily dependent on iron and characterized by rupture in plasma membrane. Ferroptosis is distinct from other regulated cell death modalities at the biochemical, morphological, and molecular levels. The ferroptotic signature includes high membrane density, cytoplasmic swelling, condensed mitochondrial membrane, and outer mitochondrial rupture with associated features of accumulation of reactive oxygen species and lipid peroxidation. The selenoenzyme glutathione peroxidase 4, a key regulator of ferroptosis, greatly reduces the lipid overload and protects the cell membrane against oxidative damage. Ferroptosis exerts a momentous role in regulating cancer signaling pathways and serves as a therapeutic target in cancers. Dysregulated ferroptosis orchestrates gastrointestinal (GI) cancer signaling pathways leading to GI tumors such as colonic cancer, pancreatic cancer, and hepatocellular carcinoma. Crosstalk exists between ferroptosis and other cell death modalities. While apoptosis and autophagy play a detrimental role in tumor progression, depending upon the factors associated with tumor microenvironment, ferroptosis plays a decisive role in either promoting tumor growth or suppressing it. Several transcription factors, such as TP53, activating transcription factors 3 and 4, are involved in influencing ferroptosis. Importantly, several molecular mediators of ferroptosis, such as p53, nuclear factor erythroid 2-related factor 2/heme oxygenase-1, hypoxia inducible factor 1, and sirtuins, coordinate with ferroptosis in GI cancers. In this review, we elaborated on key molecular mechanisms of ferroptosis and the signaling pathways that connect ferroptosis to GI tumors.
Collapse
Affiliation(s)
- Ravichandiran Rabitha
- Department of Biochemistry, University of Madras, Cell Biology Research Laboratory, Chennai 600 025, Tamil Nadu, India
| | - Sethuraman Shivani
- Department of Biochemistry, University of Madras, Cell Biology Research Laboratory, Chennai 600 025, Tamil Nadu, India
| | - Yahya Showket
- Department of Biochemistry, University of Madras, Cell Biology Research Laboratory, Chennai 600 025, Tamil Nadu, India
| | - Ganapasam Sudhandiran
- Department of Biochemistry, University of Madras, Cell Biology Research Laboratory, Chennai 600 025, Tamil Nadu, India
| |
Collapse
|
10
|
Celastrol inhibits necroptosis by attenuating the RIPK1/RIPK3/MLKL pathway and confers protection against acute pancreatitis in mice. Int Immunopharmacol 2023; 117:109974. [PMID: 37012867 DOI: 10.1016/j.intimp.2023.109974] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023]
Abstract
Necroptosis is a necrotic form of regulated cell death, which is primarily mediated by the receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like (MLKL) pathway in a caspase-independent manner. Necroptosis has been found to occur in virtually all tissues and diseases evaluated, including pancreatitis. Celastrol, a pentacyclic triterpene extracted from the roots of Tripterygium wilfordii (thunder god vine), possesses potent anti-inflammatory and anti-oxidative activities. Yet, it is unclear whether celastrol has any effects on necroptosis and necroptotic-related diseases. Here we showed that celastrol significantly suppressed necroptosis induced by lipopolysaccharide (LPS) plus pan-caspase inhibitor (IDN-6556) or by tumor-necrosis factor-α in combination with LCL-161 (Smac mimetic) and IDN-6556 (TSI). In these in vitro cellular models, celastrol inhibited the phosphorylation of RIPK1, RIPK3, and MLKL and the formation of necrosome during necroptotic induction, suggesting its possible action on upstream signaling of the necroptotic pathway. Consistent with the known role of mitochondrial dysfunction in necroptosis, we found that celastrol significantly rescued TSI-induced loss of mitochondrial membrane potential. TSI-induced intracellular and mitochondrial reactive oxygen species (mtROS), which are involved in the autophosphorylation of RIPK1 and recruitment of RIPK3, were significantly attenuated by celastrol. Moreover, in a mouse model of acute pancreatitis that is associated with necroptosis, celastrol administration significantly reduced the severity of caerulein-induced acute pancreatitis accompanied by decreased phosphorylation of MLKL in pancreatic tissues. Collectively, celastrol can attenuate the activation of RIPK1/RIPK3/MLKL signaling likely by attenuating mtROS production, thereby inhibiting necroptosis and conferring protection against caerulein-induced pancreatitis in mice.
Collapse
|
11
|
Wang X, Chauhan G, Tacderas ARL, Muth A, Gupta V. Surface-Modified Inhaled Microparticle-Encapsulated Celastrol for Enhanced Efficacy in Malignant Pleural Mesothelioma. Int J Mol Sci 2023; 24:5204. [PMID: 36982279 PMCID: PMC10049545 DOI: 10.3390/ijms24065204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive cancer affecting the pleural lining of the lungs. Celastrol (Cela), a pentacyclic triterpenoid, has demonstrated promising therapeutic potential as an antioxidant, anti-inflammatory, neuroprotective agent, and anti-cancer agent. In this study, we developed inhaled surface-modified Cela-loaded poly(lactic-co-glycolic) acid (PLGA) microparticles (Cela MPs) for the treatment of MPM using a double emulsion solvent evaporation method. The optimized Cela MPs exhibited high entrapment efficiency (72.8 ± 6.1%) and possessed a wrinkled surface with a mean geometric diameter of ~2 µm and an aerodynamic diameter of 4.5 ± 0.1 µm, suggesting them to be suitable for pulmonary delivery. A subsequent release study showed an initial burst release up to 59.9 ± 2.9%, followed by sustained release. The therapeutic efficacy of Cela MPs was evaluated against four mesothelioma cell lines, where Cela MP exhibited significant reduction in IC50 values, and blank MPs produced no toxicity to normal cells. Additionally, a 3D-spheroid study was performed where a single dose of Cela MP at 1.0 µM significantly inhibited spheroid growth. Cela MP was also able to retain the antioxidant activity of Cela only while mechanistic studies revealed triggered autophagy and an induction of apoptosis. Therefore, these studies highlight the anti-mesothelioma activity of Cela and demonstrate that Cela MPs are a promising inhalable medicine for MPM treatment.
Collapse
Affiliation(s)
- Xuechun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Gautam Chauhan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Alison R. L. Tacderas
- Department of Biological Sciences, College of Liberal Arts and Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Aaron Muth
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| |
Collapse
|
12
|
Qing TL, Yan L, Wang SK, Dai XY, Ren LJ, Zhang JQZ, Shi WJ, Zhang XF, Wang MT, Chen JK, Zhu JB. Celastrol alleviates oxidative stress induced by multi-walled carbon nanotubes through the Keap1/Nrf2/HO-1 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114623. [PMID: 36774793 DOI: 10.1016/j.ecoenv.2023.114623] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/20/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) mainly induce oxidative stress through the overproduction of reactive oxygen species (ROS), which can lead to cytotoxicity. Celastrol, a plant-derived compound, can exert antioxidant effects by reducing ROS production. Our results indicated that exposure to MWCNTs decreased cell viability and increased ROS production. Nrf2 knockdown (kd) led to increased ROS production and enhanced MWCNT-induced cytotoxicity. Keap1-kd led to decreased ROS production and attenuated cytotoxicity. Treatment with celastrol significantly decreased ROS production and promoted Keap1 protein degradation through the lysosomal pathway, thereby enhancing the translocation of Nrf2 from the cytoplasm to the nucleus and increasing HO-1 expression. The in vivo results showed that celastrol could alleviate the inflammatory damage of lung tissues, increase the levels of the antioxidants, GSH and SOD, as well as promote the expression of the antioxidant protein, HO-1 in MWCNT-treated mice. Celastrol can alleviate MWCNT-induced oxidative stress through the Keap1/Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Tao-Lin Qing
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Lang Yan
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Shao-Kang Wang
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiao-Yu Dai
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Li-Jun Ren
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Ji-Qian-Zhu Zhang
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Wen-Jing Shi
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Xiao-Fang Zhang
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Mei-Tang Wang
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Ji-Kuai Chen
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China.
| | - Jiang-Bo Zhu
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
13
|
Tan JL, Yi J, Cao XY, Wang FY, Xie SL, Zhou LL, Qin L, Dai AG. Celastrol: The new dawn in the treatment of vascular remodeling diseases. Biomed Pharmacother 2023; 158:114177. [PMID: 36809293 DOI: 10.1016/j.biopha.2022.114177] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Evidence is mounting that abnormal vascular remodeling leads to many cardiovascular diseases (CVDs). This suggests that vascular remodeling can be a crucial target for the prevention and treatment of CVDs. Recently, celastrol, an active ingredient of the broadly used Chinese herb Tripterygium wilfordii Hook F, has attracted extensive interest for its proven potential to improve vascular remodeling. Substantial evidence has shown that celastrol improves vascular remodeling by ameliorating inflammation, hyperproliferation, and migration of vascular smooth muscle cells, vascular calcification, endothelial dysfunction, extracellular matrix remodeling, and angiogenesis. Moreover, numerous reports have proven the positive effects of celastrol and its therapeutic promise in treating vascular remodeling diseases such as hypertension, atherosclerosis, and pulmonary artery hypertension. The present review summarizes and discusses the molecular mechanism of celastrol regulating vascular remodeling and provides preclinical proof for future clinical applications of celastrol.
Collapse
Affiliation(s)
- Jun-Lan Tan
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, China
| | - Jian Yi
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan, China
| | - Xian-Ya Cao
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, China
| | - Fei-Ying Wang
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, China
| | - Si-Lin Xie
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, China
| | - Ling-Ling Zhou
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, China
| | - Li Qin
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, China; Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China.
| | - Ai-Guo Dai
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, Hunan, China; Department of Respiratory Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan, China.
| |
Collapse
|
14
|
Natural Bioactive Compounds Targeting NADPH Oxidase Pathway in Cardiovascular Diseases. Molecules 2023; 28:molecules28031047. [PMID: 36770715 PMCID: PMC9921542 DOI: 10.3390/molecules28031047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 01/21/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, in both developed and developing countries. According to the WHO report, the morbidity and mortality caused by CVD will continue to rise with the estimation of death going up to 22.2 million in 2030. NADPH oxidase (NOX)-derived reactive oxygen species (ROS) production induces endothelial nitric oxide synthase (eNOS) uncoupling and mitochondrial dysfunction, resulting in sustained oxidative stress and the development of cardiovascular diseases. Seven distinct members of the family have been identified of which four (namely, NOX1, 2, 4 and 5) may have cardiovascular functions. Currently, the treatment and management plan for patients with CVDs mainly depends on the drugs. However, prolonged use of prescribed drugs may cause adverse drug reactions. Therefore, it is crucial to find alternative treatment options with lesser adverse effects. Natural products have been gaining interest as complementary therapy for CVDs over the past decade due to their wide range of medicinal properties, including antioxidants. These might be due to their potent active ingredients, such as flavonoid and phenolic compounds. Numerous natural compounds have been demonstrated to have advantageous effects on cardiovascular disease via NADPH cascade. This review highlights the potential of natural products targeting NOX-derived ROS generation in treating CVDs. Emphasis is put on the activation of the oxidases, including upstream or downstream signalling events.
Collapse
|
15
|
Liu T, Gu J, Yuan Y, Yang Q, Zheng PF, Shan C, Wang F, Li H, Xie XQ, Chen XH, Ouyang Q. Discovery of a pyrano[2,3-b]pyridine derivative YX-2102 as a cannabinoid receptor 2 agonist for alleviating lung fibrosis. J Transl Med 2022; 20:565. [PMID: 36474298 PMCID: PMC9724349 DOI: 10.1186/s12967-022-03773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Pharmacological modulation of cannabinoid 2 receptor (CB2R) is a promising therapeutic strategy for pulmonary fibrosis (PF). Thus, to develop CB2R selective ligands with new chemical space has attracted much research interests. This work aims to discover a novel CB2R agonist from an in-house library, and to evaluate its therapeutic effects on PF model, as well as to disclose the pharmacological mechanism. METHODS Virtual screening was used to identify the candidate ligand for CB2R from a newly established in-house library. Both in vivo experiments on PF rat model and in vitro experiments on cells were performed to investigate the therapeutic effects of the lead compound and underlying mechanism. RESULTS A "natural product-like" pyrano[2,3-b]pyridine derivative, YX-2102 was identified that bound to CB2R with high affinity. Intraperitoneal YX-2102 injections significantly ameliorated lung injury, inflammation and fibrosis in a rat model of PF induced by bleomycin (BLM). On one hand, YX-2102 inhibited inflammatory response at least partially through modulating macrophages polarization thereby exerting protective effects. Whereas, on the other hand, YX-2102 significantly upregulated CB2R expression in alveolar epithelial cells in vivo. Its pretreatment inhibited lung alveolar epithelial-to-mesenchymal transition (EMT) in vitro and PF model induced by transforming growth factor beta-1 (TGF-β1) via a CB2 receptor-dependent pathway. Further studies suggested that the Nrf2-Smad7 pathway might be involved in. CONCLUSION These findings suggest that CB2R is a potential target for PF treatment and YX-2102 is a promising CB2R agonist with new chemical space.
Collapse
Affiliation(s)
- Tao Liu
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Jing Gu
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Yi Yuan
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Qunfang Yang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Peng-Fei Zheng
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Changyu Shan
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Fangqin Wang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Hongwei Li
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Xiao-Hong Chen
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
16
|
Soni SS, D'Elia AM, Alsasa A, Cho S, Tylek T, O'Brien EM, Whitaker R, Spiller KL, Rodell CB. Sustained release of drug-loaded nanoparticles from injectable hydrogels enables long-term control of macrophage phenotype. Biomater Sci 2022; 10:6951-6967. [PMID: 36341688 PMCID: PMC9724601 DOI: 10.1039/d2bm01113a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Injectable hydrogels may be pre-formed through dynamic crosslinks, allowing for injection and subsequent retention in the tissue by shear-thinning and self-healing processes, respectively. These properties enable the site-specific delivery of encapsulated therapeutics; yet, the sustained release of small-molecule drugs and their cell-targeted delivery remains challenging due to their rapid diffusive release and non-specific cellular biodistribution. Herein, we develop an injectable hydrogel system composed of a macrophage-targeted nanoparticle (cyclodextrin nanoparticles, CDNPs) crosslinked by adamantane-modified hyaluronic acid (Ad-HA). The polymer-nanoparticle hydrogel uniquely leverages cyclodextrin's interaction with small molecule drugs to create a spatially discrete drug reservoir and with adamantane to yield dynamic, injectable hydrogels. Through an innovative two-step drug screening approach and examination of 45 immunomodulatory drugs with subsequent in-depth transcriptional profiling of both murine and human macrophages, we identify celastrol as a potent inhibitor of pro-inflammatory (M1-like) behavior that furthermore promotes a reparatory (M2-like) phenotype. Celastrol encapsulation within the polymer-nanoparticle hydrogels permitted shear-thinning injection and sustained release of drug-laden nanoparticles that targeted macrophages to modulate cell behavior for greater than two weeks in vitro. The modular hydrogel system is a promising approach to locally modulate cell-specific phenotype in a range of applications for immunoregenerative medicine.
Collapse
Affiliation(s)
- Shreya S Soni
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Abdulrahman Alsasa
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Sylvia Cho
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Tina Tylek
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Erin M O'Brien
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Ricardo Whitaker
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Kara L Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Christopher B Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Liang ST, Chen C, Chen RX, Li R, Chen WL, Jiang GH, Du LL. Michael acceptor molecules in natural products and their mechanism of action. Front Pharmacol 2022; 13:1033003. [PMID: 36408214 PMCID: PMC9666775 DOI: 10.3389/fphar.2022.1033003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose: Michael receptor molecules derived from plants are biologically active due to electrophilic groups in their structure. They can target nucleophilic residues on disease-related proteins, with significant therapeutic effects and low toxicity for many diseases. They provide a good option for relevant disease treatment. The aim of this study is to summarize the existing MAMs and their applications, and lay a foundation for the application of Michael receptor molecules in life science in the future. Methods: This review summarizes the published studies on Michael receptor molecules isolated from plants in literature databases such as CNKI, Wanfang Data, PubMed, Web of Science, ScienceDirect, and Wiley. Latin names of plants were verified through https://www.iplant.cn/. All relevant compound structures were verified through PubChem and literature, and illustrated with ChemDraw 20.0. Result: A total of 50 Michael receptor molecules derived from various plants were discussed. It was found that these compounds have similar pharmacological potential, most of them play a role through the Keap1-Nrf2-ARE pathway and the NF-κB pathway, and have biological activities such as antioxidant and anti-inflammatory. They can be used to treat inflammatory diseases and tumors. Conclusion: The Michael receptor molecule has electrophilicity due to its unsaturated aldehyde ketone structure, which can combine with nucleophilic residues on the protein to form complexes and activate or inhibit the protein pathway to play a physiological role. Michael receptor molecules can regulate the Keap1-Nrf2-ARE pathway and the NF-κB pathway. Michael receptor molecules can be used to treat diseases such as inflammation, cancer, oxidative stress, etc.
Collapse
Affiliation(s)
- Song-Ting Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chu Chen
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Rui-Xin Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen-Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gui-Hua Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei-Lei Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Zhou Y, Li M, Shen T, Yang T, Shi G, Wei Y, Chen C, Wang D, Wang Y, Zhang T. Celastrol Targets Cullin-Associated and Neddylation-Dissociated 1 to Prevent Fibroblast-Myofibroblast Transformation against Pulmonary Fibrosis. ACS Chem Biol 2022; 17:2734-2743. [PMID: 36076154 DOI: 10.1021/acschembio.2c00099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Celastrol (CEL), a pentacyclic triterpene compound, has been proven to have a definite antipulmonary fibrosis effect. However, its direct targets for antipulmonary fibrosis remain unknown. In this study, we designed and synthesized a series of celastrol-based probes to identify the direct targets in human pulmonary fibroblasts using an activity-based protein profiling strategy. Among many fished targets, we identified a key protein, cullin-associated and neddylation-dissociated 1 (CAND1), which was involved in fibroblast-myofibroblast transformation (FMT). More importantly, we found that the inhibitory effect of celastrol on FMT is dependent on CAND1, through improving the interactions between CAND1 and Cullin1 to promote the activity of Skp1/Cullin1/F-box ubiquitin ligases. In silico studies and cysteine mutation experiments further demonstrated that Cys264 of CAND1 is the site for conjugation of celastrol. This reveals a new mechanism of celastrol against pulmonary fibrosis and may provide a novel therapeutic option for antipulmonary fibrosis.
Collapse
Affiliation(s)
- Yu Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Manru Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Tao Shen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Tianming Yang
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, China.,State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, China
| | - Gaona Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yazi Wei
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Chengjuan Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Dongmei Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yanan Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
19
|
Tang M, Yang Z, Liu J, Zhang X, Guan L, Liu X, Zeng M. Combined intervention with N-acetylcysteine and desipramine alleviated silicosis development by regulating the Nrf2/HO-1 and ASMase/ceramide signaling pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113914. [PMID: 35878501 DOI: 10.1016/j.ecoenv.2022.113914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Silicosis is a systemic disease characterized by diffuse fibrosis of the lung tissue caused by long-term inhalation of large amounts of free silica (SiO2) dust. The pathogenesis of silicosis has not been fully elucidated, and there is a lack of effective treatment methods. N-acetylcysteine (NAC) can potentially treat pulmonary fibrosis by exerting antioxidant effects. Desipramine (DMI) can influence pulmonary fibrosis development by inhibiting acid sphingomyelinase (ASMase) activity and regulating ceramide concentrations. Both can interfere with pulmonary fibrosis through different mechanisms, but the intervention effects of NAC combined with DMI on silicosis fibrosis have not been reported. Therefore, this study established a rat silicosis model using a single tracheal drip of SiO2 dust suspension in Wistar rats to investigate the effect of NAC combined with DMI on SiO2 dust-induced silicosis and its related molecular mechanisms. The histopathological examination of the SiO2 dust-induced silicosis rats suggested that NAC and DMI alone or in combination could decrease the severity of pulmonary fibrosis in rats. The combined intervention had a better effect on reducing fibrosis than the individual interventions. NAC and DMI, alone or in combination, decreased the levels of markers related to pulmonary fibrosis in rats (smooth muscle α-actin (α-SMA), collagen (Col) I, Col III, hydroxyproline (HYP), inflammatory factors (transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α)), and lipid peroxidase malondialdehyde (MDA)). The nuclear factor-erythroid 2-related factor 2 (Nrf2)/heme-oxygenase-1 (HO-1) and ASMase/ceramide pathways were inhibited to some extent by increasing the superoxide dismutase (SOD) levels of antioxidant enzymes and 8-iso-prostaglandin F2α (8-iso-PGF2α) levels of lipid peroxides. The combined intervention and NAC alone inhibited the SiO2 dust-induced elevation of matrix metalloproteinase 1 (MMP-1) and tissue inhibitor matrix metalloproteinase 1 (TIMP-1), but the effect was not significant in the DMI-treated group. Combining DMI and NAC inhibited Col I deposition and reduced HO-1, TIMP-1, and ASMase levels in lung tissues compared to individual treatments. In summary, the SiO2 dust could induce oxidative stress and inflammation in rats, resulting in an imbalance in extracellular matrix (ECM) synthesis/catabolism and ASMase/ceramide signaling pathway activation, leading to silicosis development.The combined intervention of DMI and NAC may synergistically regulate the Nrf2/HO-1 pathway, maintain the anabolic balance of the ECM, inhibit ASMase/ceramide signaling pathway activation by suppressing the inflammatory response and effectively delay silicosis fibrosis progression.
Collapse
Affiliation(s)
- Meng Tang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, China
| | - Zhihui Yang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, China
| | - Jing Liu
- Tongxiang Center for Disease Control and Prevention, Jiaxing, Zhejiang Province, China
| | - Xiangfei Zhang
- Chengdu Longquanyi Disease Prevention and Control Center, Cheng Du, Si Chuan Province, China
| | - Lan Guan
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, China
| | - Xinming Liu
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, China
| | - Ming Zeng
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
20
|
Zhang X, Chen Y, Feng X, Li L, Song K, Sun Y, Zhang G, Zhang L. A comprehensive study of celastrol metabolism in vivo and in vitro using ultra‐high‐performance liquid chromatography coupled with hybrid triple quadrupole time‐of‐flight mass spectrometry. J Sep Sci 2022; 45:1222-1239. [PMID: 35080126 DOI: 10.1002/jssc.202100807] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Xiao‐wei Zhang
- Department of Neurosurgery The Second Hospital of Hebei Medical University Shijiazhuang 050000 China
| | - Yu‐ting Chen
- Department of Pharmaceutical Analysis School of Pharmacy Hebei Medical University Shijiazhuang 050017 China
| | - Xue Feng
- Department of Pharmaceutical Analysis School of Pharmacy Hebei Medical University Shijiazhuang 050017 China
| | - Lu‐ya Li
- Department of Pharmaceutical Analysis School of Pharmacy Hebei Medical University Shijiazhuang 050017 China
| | - Ke‐wei Song
- The Fourth Hospital of Shijiazhuang Shijiazhuang 050017 China
| | - Yu‐peng Sun
- Department of Pharmaceutical Analysis School of Pharmacy Hebei Medical University Shijiazhuang 050017 China
| | - Guo‐hua Zhang
- Department of Neurosurgery The Second Hospital of Hebei Medical University Shijiazhuang 050000 China
| | - Lan‐tong Zhang
- Department of Pharmaceutical Analysis School of Pharmacy Hebei Medical University Shijiazhuang 050017 China
| |
Collapse
|
21
|
Bioactive Compounds in Oxidative Stress-Mediated Diseases: Targeting the NRF2/ARE Signaling Pathway and Epigenetic Regulation. Antioxidants (Basel) 2021; 10:antiox10121859. [PMID: 34942962 PMCID: PMC8698417 DOI: 10.3390/antiox10121859] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress is a pathological condition occurring due to an imbalance between the oxidants and antioxidant defense systems in the body. Nuclear factor E2-related factor 2 (NRF2), encoded by the gene NFE2L2, is the master regulator of phase II antioxidant enzymes that protect against oxidative stress and inflammation. NRF2/ARE signaling has been considered as a promising target against oxidative stress-mediated diseases like diabetes, fibrosis, neurotoxicity, and cancer. The consumption of dietary phytochemicals acts as an effective modulator of NRF2/ARE in various acute and chronic diseases. In the present review, we discussed the role of NRF2 in diabetes, Alzheimer's disease (AD), Parkinson's disease (PD), cancer, and atherosclerosis. Additionally, we discussed the phytochemicals like curcumin, quercetin, resveratrol, epigallocatechin gallate, apigenin, sulforaphane, and ursolic acid that have effectively modified NRF2 signaling and prevented various diseases in both in vitro and in vivo models. Based on the literature, it is clear that dietary phytochemicals can prevent diseases by (1) blocking oxidative stress-inhibiting inflammatory mediators through inhibiting Keap1 or activating Nrf2 expression and its downstream targets in the nucleus, including HO-1, SOD, and CAT; (2) regulating NRF2 signaling by various kinases like GSK3beta, PI3/AKT, and MAPK; and (3) modifying epigenetic modulation, such as methylation, at the NRF2 promoter region; however, further investigation into other upstream signaling molecules like NRF2 and the effect of phytochemicals on them still need to be investigated in the near future.
Collapse
|
22
|
Babu AA, Vellaichamy E. Enhanced Activation of Atrial Natriuretic Peptide (ANP) and Natriuretic Peptide Receptor-A (NPRA) in Chronic Cigarette Smoke-Induced Lung Inflammation in Experimental Rats. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10271-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Celastrol Prevents Oxidative Stress Effects on FSHR, PAPP, and CYP19A1 Gene Expression in Cultured Human Granulosa-Lutein Cells. Int J Mol Sci 2021; 22:ijms22073596. [PMID: 33808393 PMCID: PMC8037896 DOI: 10.3390/ijms22073596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/31/2022] Open
Abstract
Regulation of oxidative stress (OS) is important to prevent damage to female reproductive physiology. While normal OS levels may have a regulatory role, high OS levels may negatively affect vital processes such as folliculogenesis or embryogenesis. The aim of this work was to study OS induced by glucose, a reactive oxygen species generator, or peroxynitrite, a reactive nitrogen species generator, in cultured human granulosa-lutein (hGL) cells from oocyte donors, analyzing expression of genes involved in oocyte maturation (FSHR, PAPP, and CYP19A1) and OS damage response (ALDH3A2). We also evaluated the effect of celastrol as an antioxidant. Our results showed that although both glucose and peroxynitrite produce OS increments in hGL cells, only peroxynitrite treatment increases ALDH3A2 and PAPP gene expression levels and decreases FSHR gene expression levels. Celastrol pre-treatment prevents this effect of peroxynitrite. Interestingly, when celastrol alone was added, we observed a reduction of the expression of all genes studied, which was independent of both OS inductors. In conclusion, regulation of OS imbalance by antioxidant substances such as celastrol may prevent negative effects of OS in female fertility. In addition to the antioxidant activity, celastrol may well have an independent role on regulation of gene expression in hGL cells.
Collapse
|
24
|
Yang CC, Yang CM. Chinese Herbs and Repurposing Old Drugs as Therapeutic Agents in the Regulation of Oxidative Stress and Inflammation in Pulmonary Diseases. J Inflamm Res 2021; 14:657-687. [PMID: 33707963 PMCID: PMC7940992 DOI: 10.2147/jir.s293135] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Several pro-inflammatory factors and proteins have been characterized that are involved in the pathogenesis of inflammatory diseases, including acute respiratory distress syndrome, chronic obstructive pulmonary disease, and asthma, induced by oxidative stress, cytokines, bacterial toxins, and viruses. Reactive oxygen species (ROS) act as secondary messengers and are products of normal cellular metabolism. Under physiological conditions, ROS protect cells against oxidative stress through the maintenance of cellular redox homeostasis, which is important for proliferation, viability, cell activation, and organ function. However, overproduction of ROS is most frequently due to excessive stimulation of either the mitochondrial electron transport chain and xanthine oxidase or reduced nicotinamide adenine dinucleotide phosphate (NADPH) by pro-inflammatory cytokines, such as interleukin-1β and tumor necrosis factor α. NADPH oxidase activation and ROS overproduction could further induce numerous inflammatory target proteins that are potentially mediated via Nox/ROS-related transcription factors triggered by various intracellular signaling pathways. Thus, oxidative stress is considered important in pulmonary inflammatory processes. Previous studies have demonstrated that redox signals can induce pulmonary inflammatory diseases. Thus, therapeutic strategies directly targeting oxidative stress may be effective for pulmonary inflammatory diseases. Therefore, drugs with anti-inflammatory and anti-oxidative properties may be beneficial to these diseases. Recent studies have suggested that traditional Chinese medicines, statins, and peroxisome proliferation-activated receptor agonists could modulate inflammation-related signaling processes and may be beneficial for pulmonary inflammatory diseases. In particular, several herbal medicines have attracted attention for the management of pulmonary inflammatory diseases. Therefore, we reviewed the pharmacological effects of these drugs to dissect how they induce host defense mechanisms against oxidative injury to combat pulmonary inflammation. Moreover, the cytotoxicity of oxidative stress and apoptotic cell death can be protected via the induction of HO-1 by these drugs. The main objective of this review is to focus on Chinese herbs and old drugs to develop anti-inflammatory drugs able to induce HO-1 expression for the management of pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan, 33302, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, 33302, Taiwan
| | - Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan.,Ph.D. Program for Biotech Pharmaceutical Industry, China Medical University, Taichung, 40402, Taiwan.,Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Taichung, 41354, Taiwan
| |
Collapse
|
25
|
Leung ELH, Pan HD, Huang YF, Fan XX, Wang WY, He F, Cai J, Zhou H, Liu L. The Scientific Foundation of Chinese Herbal Medicine against COVID-19. ENGINEERING (BEIJING, CHINA) 2020; 6:1099-1107. [PMID: 33520331 PMCID: PMC7833648 DOI: 10.1016/j.eng.2020.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/15/2020] [Accepted: 08/10/2020] [Indexed: 05/04/2023]
Abstract
The recent coronavirus disease 2019 (COVID-19) pandemic outbreak has caused a serious global health emergency. Supporting evidence shows that COVID-19 shares a genomic similarity with other coronaviruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), and that the pathogenesis and treatment strategies that were applied 17 years ago in combating SARS-CoV and other viral infections could be taken as references in today's antiviral battle. According to the clinical pathological features of COVID-19 patients, patients can suffer from five steps of progression, starting with severe viral infection and suppression of the immune system and eventually progressing to cytokine storm, multi-organ damage, and lung fibrosis, which is the cause of mortality. Therefore, early prevention of disease progression is important. However, no specific effective drugs and vaccination are currently available, and the World Health Organization is urging the development of novel prevention and treatment strategies. Traditional Chinese medicine could be used as an alternative treatment option or in combination with Western medicine to treat COVID-19, due to its basis on historical experience and holistic pharmacological action. Here, we summarize the potential uses and therapeutic mechanisms of Chinese herbal formulas (CHFs) from the reported literature, along with patent drugs that have been recommended by institutions at the national and provincial levels in China, in order to verify their scientific foundations for treating COVID-19. In perspective, more basic and clinical studies with multiple high-tech and translational technologies are suggested to further confirm the therapeutic efficacies of CHFs.
Collapse
Affiliation(s)
- Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Hu-Dan Pan
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Yu-Feng Huang
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Wan-Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Fang He
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Jun Cai
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| |
Collapse
|
26
|
Thota SM, Balan V, Sivaramakrishnan V. Natural products as home-based prophylactic and symptom management agents in the setting of COVID-19. Phytother Res 2020; 34:3148-3167. [PMID: 32881214 PMCID: PMC7461159 DOI: 10.1002/ptr.6794] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/03/2020] [Accepted: 06/19/2020] [Indexed: 01/08/2023]
Abstract
Coronavirus disease (COVID‐19) caused by the novel coronavirus (SARS‐CoV‐2) has rapidly spread across the globe affecting 213 countries or territories with greater than six million confirmed cases and about 0.37 million deaths, with World Health Organization categorizing it as a pandemic. Infected patients present with fever, cough, shortness of breath, and critical cases show acute respiratory infection and multiple organ failure. Likelihood of these severe indications is further enhanced by age as well as underlying comorbidities such as diabetes, cardiovascular, or thoracic problems, as well as due to an immunocompromised state. Currently, curative drugs or vaccines are lacking, and the standard of care is limited to symptom management. Natural products like ginger, turmeric, garlic, onion, cinnamon, lemon, neem, basil, and black pepper have been scientifically proven to have therapeutic benefits against acute respiratory tract infections including pulmonary fibrosis, diffuse alveolar damage, pneumonia, and acute respiratory distress syndrome, as well as associated septic shock, lung and kidney injury, all of which are symptoms associated with COVID‐19 infection. This review highlights the potential of these natural products to serve as home‐based, inexpensive, easily accessible, prophylactic agents against COVID‐19.
Collapse
Affiliation(s)
- Sai Manohar Thota
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur, India
| | - Venkatesh Balan
- Engineering Technology Department, College of Technology, University of Houston, Sugar Land, Texas, USA
| | | |
Collapse
|
27
|
Wang R, Bao B, Bao C, Wang S, Ur Rahman S, Hou C, Elango J, Wu W. Resveratrol and Celastrol Loaded Collagen Dental Implants Regulate Periodontal Ligament Fibroblast Growth and Osteoclastogenesis of Bone Marrow Macrophages. Chem Biodivers 2020; 17:e2000295. [PMID: 32649040 DOI: 10.1002/cbdv.202000295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
Collagen is widely used for dental therapy in several ways such as films, 3D matrix, and composites, besides traditional Chinese medicine (TCM), has been used in tissue regeneration and wound healing application for centuries. Hence, the present study was targeted for the first time to fabricate collagen film with TCM such as resveratrol and celastrol in order to investigate the human periodontal ligament fibroblasts (HPLF) growth and bone marrow macrophages (BMM) derived osteoclastogenesis. Further, the physicochemical, mechanical and biological activities of collagen-TCM films crosslinked by glycerol and EDC-NHS (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-N-hydroxysulfosuccinimide) were investigated. Collagen film characterization was significantly regulated by the nature of plasticizers like hydrophobic and degree of polarity. Interestingly, the collagen film's denaturation temperature was increased by EDC-NHS than glycerol. FT-IR data confirmed the functional group changes due to chemical interaction of collagen with TCM. Morphological changes of HPLF cells cultured in control and collagen films were observed by SEM. Importantly, the addition of resveratrol upregulated the proliferation of HPLF cells, while osteoclastogenesis of BMM cells treated with mCSF-RANKL was significantly downregulated by celastrol. Accordingly, the collagen-TCM film could be an interesting material for dental regeneration, and especially it is a therapeutic target to restrain the elevated bone resorption during osteoporosis.
Collapse
Affiliation(s)
- Ruijie Wang
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Bin Bao
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Chunling Bao
- East Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 201306, P. R. China
| | - Shujun Wang
- Jiangsu Ocean University, Lianyungang, 222005, P. R. China
| | - Saeed Ur Rahman
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Punjab, 54000, Pakistan
| | - Chunyu Hou
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Jeevithan Elango
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Wenhui Wu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China.,National R&D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai, Shanghai, 201306, P. R. China
| |
Collapse
|
28
|
Zhou Y, Zhou L, Zhou K, Zhang J, Shang F, Zhang X. Celastrol Protects RPE Cells from Oxidative Stress-Induced Cell Death via Activation of Nrf2 Signaling Pathway. Curr Mol Med 2020; 19:172-182. [PMID: 31032752 DOI: 10.2174/1566524019666190424131704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/05/2019] [Accepted: 04/10/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE Oxidative stress to retinal pigment epithelial (RPE) cells and inflammation are closely related to the pathogenesis of age-related macular degeneration (AMD). Celastrol is a natural compound isolated from the root of Tripterygium wilfordii. Celastrol has been shown to have potent anti-inflammatory and anti-tumor effects in multiple disease models. The objective of this study was to test the anti-oxidative effects of celastrol in RPE cells and to investigate the underlying mechanisms. METHODS ARPE-19 cells were treated with hydrogen peroxide (H2O2) and menadione alone or in combination with celastrol. Cell viability and apoptosis were examined by CCK-8 and TUNEL assay, respectively. The expression of Nrf2 and its target genes, such as GCLM and HO-1 was determined by Western blotting. The knockdown of Nrf2 was done by transfecting ARPE-19 cells with lentivirus encoding shRNA against Nrf2. The knockdown efficiency was determined by real-time quantitative PCR and Western blotting. RESULTS Treatment of ARPE-19 cells with celastrol significantly attenuated the toxic effects of both H2O2 and menadione. Treatment with celastrol enhanced the expression of transcription factor Nrf2 and its targets, GCLM and HO-1. Knockdown of Nrf2 expression by shRNA partially abolished the protective effects of celastrol. Chemical inhibition of glutathione synthesis by L-buthionine-S,R-sulfoximine (BSO) completely abolished the protective effects of celastrol against H2O2 and menadione-induced damage. However, chemical inhibition of HO-1 activity by ZnPPIX did not reduce the protective effects of celastrol. CONCLUSION This study provides evidence that treatment of RPE cells with celastrol shows potent protective effects against oxidative insults via activation of Nrf2 signaling pathway and upregulation of GCLM expression. This finding suggests that celastrol might be used as a potential therapeutic agent for oxidative stress-related eyes diseases, such as AMD.
Collapse
Affiliation(s)
- Yeqi Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Linbin Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Kewen Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.,Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Jingyue Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Fu Shang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xinyu Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
29
|
Louzada RA, Bouviere J, Matta LP, Werneck-de-Castro JP, Dupuy C, Carvalho DP, Fortunato RS. Redox Signaling in Widespread Health Benefits of Exercise. Antioxid Redox Signal 2020; 33:745-760. [PMID: 32174127 DOI: 10.1089/ars.2019.7949] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Exercise-induced reactive oxygen species (ROS) production activates multiple intracellular signaling pathways through genomic and nongenomic mechanisms that are responsible for the beneficial effects of exercise in muscle. Beyond the positive effect of exercise on skeletal muscle cells, other tissues such as white and brown adipose, liver, central nervous system, endothelial, heart, and endocrine organ tissues are also responsive to exercise. Recent Advances: Crosstalk between different cells is essential to achieve homeostasis and to promote the benefits of exercise through paracrine or endocrine signaling. This crosstalk can be mediated by different effectors that include the secretion of metabolites of muscle contraction, myokines, and exosomes. During the past 20 years, it has been demonstrated that contracting muscle cells produce and secrete different classes of myokines, which functionally link muscle with nearly all other cell types. Critical Issues: The redox signaling behind this exercise-induced crosstalk is now being decoded. Many of these widespread beneficial effects of exercise require not only a complex ROS-dependent intramuscular signaling cascade but simultaneously, an integrated network with many remote tissues. Future Directions: Strong evidence suggests that the powerful beneficial effect of regular physical activity for preventing (or treating) a large range of disorders might also rely on ROS-mediated signaling. Within a contracting muscle, ROS signaling may control exosomes and myokines secretion. In remote tissues, exercise generates regular and synchronized ROS waves, creating a transient pro-oxidative environment in many cells. These new concepts integrate exercise, ROS-mediated signaling, and the widespread health benefits of exercise.
Collapse
Affiliation(s)
- Ruy A Louzada
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Université Paris-Sud, Orsay, UMR 8200 CNRS and Institut Gustave Roussy, Villejuif, France
| | - Jessica Bouviere
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo P Matta
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joao Pedro Werneck-de-Castro
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Corinne Dupuy
- Université Paris-Sud, Orsay, UMR 8200 CNRS and Institut Gustave Roussy, Villejuif, France
| | - Denise P Carvalho
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo S Fortunato
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Seasonal changes in NRF2 antioxidant pathway regulates winter depression-like behavior. Proc Natl Acad Sci U S A 2020; 117:9594-9603. [PMID: 32277035 PMCID: PMC7196813 DOI: 10.1073/pnas.2000278117] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
At high latitudes, about 10% of the population suffers from depression in winter. Although it has become a serious public health issue, its underlying mechanism remains unknown. Interestingly, animals also show depression-like behavior in winter, and small teleosts have emerged as powerful models for the study of complex brain disorders. Here, we show that medaka exhibit decreased sociability and increased anxiety-like behavior under winter-like conditions. Using metabolomic and transcriptomic analyses, we found changes in multiple signaling pathways involved in depression, including the NRF2 antioxidant pathway. Chemical genomics and targeted mutation of the NRF2 gene revealed that seasonal changes in the NRF2 pathway regulate winter depression-like behavior. This study provides insights into the understanding and treatment of seasonally regulated affective disorders. Seasonal changes in the environment lead to depression-like behaviors in humans and animals. The underlying mechanisms, however, are unknown. We observed decreased sociability and increased anxiety-like behavior in medaka fish exposed to winter-like conditions. Whole brain metabolomic analysis revealed seasonal changes in 68 metabolites, including neurotransmitters and antioxidants associated with depression. Transcriptome analysis identified 3,306 differentially expressed transcripts, including inflammatory markers, melanopsins, and circadian clock genes. Further analyses revealed seasonal changes in multiple signaling pathways implicated in depression, including the nuclear factor erythroid-derived 2-like 2 (NRF2) antioxidant pathway. A broad-spectrum chemical screen revealed that celastrol (a traditional Chinese medicine) uniquely reversed winter behavior. NRF2 is a celastrol target expressed in the habenula (HB), known to play a critical role in the pathophysiology of depression. Another NRF2 chemical activator phenocopied these effects, and an NRF2 mutant showed decreased sociability. Our study provides important insights into winter depression and offers potential therapeutic targets involving NRF2.
Collapse
|
31
|
Matrix metalloproteinase: An upcoming therapeutic approach for idiopathic pulmonary fibrosis. Pharmacol Res 2020; 152:104591. [PMID: 31837390 DOI: 10.1016/j.phrs.2019.104591] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/26/2023]
|
32
|
Schiavone S, Tucci P, Trabace L, Morgese MG. Early Celastrol Administration Prevents Ketamine-Induced Psychotic-Like Behavioral Dysfunctions, Oxidative Stress and IL-10 Reduction in The Cerebellum of Adult Mice. Molecules 2019; 24:molecules24213993. [PMID: 31694174 PMCID: PMC6864687 DOI: 10.3390/molecules24213993] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Administration of subanesthetic doses of ketamine during brain maturation represents a tool to mimic an early insult to the central nervous system (CNS). The cerebellum is a key player in psychosis pathogenesis, to which oxidative stress also contributes. Here, we investigated the impact of early celastrol administration on behavioral dysfunctions in adult mice that had received ketamine (30 mg/kg i.p.) at postnatal days (PNDs) 7, 9, and 11. Cerebellar levels of 8-hydroxydeoxyguanosine (8-OHdG), NADPH oxidase (NOX) 1 and NOX2, as well as of the calcium-binding protein parvalbumin (PV), were also assessed. Furthermore, celastrol effects on ketamine-induced alterations of proinflammatory (TNF-α, IL-6 and IL-1β) and anti-inflammatory (IL-10) cytokines in this brain region were evaluated. Early celastrol administration prevented ketamine-induced discrimination index decrease at adulthood. The same was found for locomotor activity elevations and increased close following and allogrooming, whereas no beneficial effects on sniffing impairment were detected. Ketamine increased 8-OHdG in the cerebellum of adult mice, which was also prevented by early celastrol injection. Cerebellar NOX1 levels were enhanced at adulthood following postnatal ketamine exposure. Celastrol per se induced NOX1 decrease in the cerebellum. This effect was more significant in animals that were early administered with ketamine. NOX2 levels did not change. Ketamine administration did not affect PV amount in the cerebellum. TNF-α levels were enhanced in ketamine-treated animals; however, this was not prevented by early celastrol administration. While no changes were observed for IL-6 and IL-1β levels, ketamine determined a reduction of cerebellar IL-10 expression, which was prevented by early celastrol treatment. Our results suggest that NOX inhibition during brain maturation prevents the development of psychotic-like behavioral dysfunctions, as well as the increased cerebellar oxidative stress and the reduction of IL-10 in the same brain region following ketamine exposure in postnatal life. This opens novel neuroprotective opportunities against early detrimental insults occurring during brain development.
Collapse
|
33
|
Fan M, Choi YJ, Tang Y, Bae SM, Yang HP, Kim EK. Efficacy and Mechanism of Polymerized Anthocyanin from Grape-Skin Extract on High-Fat-Diet-Induced Nonalcoholic Fatty Liver Disease. Nutrients 2019; 11:nu11112586. [PMID: 31717842 PMCID: PMC6893447 DOI: 10.3390/nu11112586] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022] Open
Abstract
We investigated the therapeutic potential of polymerized anthocyanin (PA) on a nonalcoholic fatty liver disease (NAFLD) model in mice. C57BL/6 mice were fed a high-fat diet (HFD) for 8 weeks to establish the NAFLD mouse model and randomly divided into four groups: control diet (con), NAFLD mice treated with saline (NAFLD), NAFLD mice treated with PA (PA), and NAFLD mice treated with orlistat (Orlistat) for four weeks. Mice were euthanized at the end of the four weeks. Total cholesterol (TC) and triglyceride (TG) levels were estimated, and pathological changes in the liver, white adipose tissue, and signaling pathways related to lipid metabolism were evaluated. Results revealed that the body, liver, and white fat weight of the NAFLD group was significantly increased compared to that of the con group, while that of the PA group showed significant reduction. NAFLD led to an increase in blood lipids in mice (except for HDL). Conversely, PA effectively reduced TC and LDL-C. Compared to the control group, the degree of steatosis in the mice of PA group was decreased. Moreover, PA also regulated the NAFLD signaling pathway. In agreement with improved lipid deposition, PA supplementation inhibited the activation of inflammatory pathways, depressing oxidative stress through increased antioxidant levels, and increasing β-oxidation to inhibit mitochondrial dysfunction. Taken together, our results demonstrate that PA can improve the liver function of NAFLD mice, regulating blood lipids, reducing liver-fat accumulation, and regulating lipid metabolism.
Collapse
Affiliation(s)
- Meiqi Fan
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju 27478, Korea; (M.F.); (Y.-J.C.); ; (Y.T.)
| | - Young-Jin Choi
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju 27478, Korea; (M.F.); (Y.-J.C.); ; (Y.T.)
| | - Yujiao Tang
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju 27478, Korea; (M.F.); (Y.-J.C.); ; (Y.T.)
- Changchun University of Science and Technology, Changchun 130-600, China
| | - Sung Mun Bae
- Gyeongnam Agricultural Research and Extension Services, Jinju 52733, Korea;
| | - Hyun Pil Yang
- Technical R and D Center, Kitto Life Co., Ltd., Pyeongtacek 17749, Korea;
| | - Eun-Kyung Kim
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju 27478, Korea; (M.F.); (Y.-J.C.); ; (Y.T.)
- Correspondence:
| |
Collapse
|
34
|
Zaghloul MS, Said E, Suddek GM, Salem HA. Crocin attenuates lung inflammation and pulmonary vascular dysfunction in a rat model of bleomycin-induced pulmonary fibrosis. Life Sci 2019; 235:116794. [DOI: 10.1016/j.lfs.2019.116794] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/18/2019] [Accepted: 08/25/2019] [Indexed: 12/28/2022]
|
35
|
Boran T, Gunaydin A, Jannuzzi AT, Ozcagli E, Alpertunga B. Celastrol pretreatment as a therapeutic option against cisplatin-induced nephrotoxicity. Toxicol Res (Camb) 2019; 8:723-730. [PMID: 31588349 PMCID: PMC6762010 DOI: 10.1039/c9tx00141g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022] Open
Abstract
Celastrol is a natural bioactive compound extracted from the medicinal plant Tripterygium wilfordii Hook F. It exhibits immunosuppressive, anti-inflammatory, and antioxidant activities. Cisplatin is a commonly used chemotherapeutic drug in the treatment of a wide range of tumors. Although very effective therapeutically, it can cause nephrotoxicity leading to dose reduction or discontinuation of treatment. This study aims to clarify the therapeutic potential of celastrol in cisplatin-induced nephrotoxicity. The possible protective effects of celastrol pretreatment against cisplatin-induced oxidative stress and genotoxicity were investigated. A rat kidney epithelial cell line NRK-52E was pretreated with the desired concentrations of celastrol (200 nM, 100 nM, and 50 nM) for 24 h. The cells were treated with 50 μM cisplatin for a further 24 h to see whether cisplatin caused the same or less toxicity compared to the vehicle control group. Alkaline comet assay was performed for genotoxicity assessment. Genotoxicity evaluation revealed that celastrol caused a statistically significant reduction in DNA damage. Oxidative stress parameters were evaluated by measuring the glutathione (GSH) and protein carbonyl (PC) levels and also by measuring the enzyme activities of glutathione peroxidase (GPx), glutathione reductase (GR), catalase (CAT) and superoxide dismutase (SOD) enzymes. Celastrol pretreatment increased the GSH content of the cells and ameliorated the protein carbonylation level. Likewise, celastrol pretreatment improved the GR and CAT activities. However, no significant difference was observed in GPx and SOD activities. In the light of these findings, celastrol treatment could be a therapeutic option to reduce cisplatin-induced nephrotoxicity. Further studies are needed for the clarification of its therapeutic potential.
Collapse
Affiliation(s)
- Tugce Boran
- Istanbul University , Faculty of Pharmacy , Department of Pharmaceutical Toxicology , 34116 , Beyazıt , Istanbul , Turkey . ; ; Tel: +902124400000
| | - Aysenur Gunaydin
- Istanbul University , Faculty of Pharmacy , Department of Pharmaceutical Toxicology , 34116 , Beyazıt , Istanbul , Turkey . ; ; Tel: +902124400000
- Bezmialem Vakif University , Faculty of Pharmacy , Department of Pharmaceutical Toxicology , Vatan Street , 34093 , Fatih , Istanbul , Turkey
| | - Ayse Tarbin Jannuzzi
- Istanbul University , Faculty of Pharmacy , Department of Pharmaceutical Toxicology , 34116 , Beyazıt , Istanbul , Turkey . ; ; Tel: +902124400000
| | - Eren Ozcagli
- Istanbul University , Faculty of Pharmacy , Department of Pharmaceutical Toxicology , 34116 , Beyazıt , Istanbul , Turkey . ; ; Tel: +902124400000
| | - Buket Alpertunga
- Istanbul University , Faculty of Pharmacy , Department of Pharmaceutical Toxicology , 34116 , Beyazıt , Istanbul , Turkey . ; ; Tel: +902124400000
| |
Collapse
|
36
|
Bai F, Zhang B, Hou Y, Yao J, Xu Q, Xu J, Fang J. Xanthohumol Analogues as Potent Nrf2 Activators against Oxidative Stress Mediated Damages of PC12 Cells. ACS Chem Neurosci 2019; 10:2956-2966. [PMID: 31116948 DOI: 10.1021/acschemneuro.9b00171] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2), a master transcription factor controlling a series of cytoprotective genes, is closely associated with scavenging the reactive oxygen species and maintaining the intracellular redox balance. Accumulating evidence has indicated that activation of Nrf2 is efficient to block or retard oxidative stress mediated neurodegenerative disorders. Small molecules that contribute directly or indirectly to the Nrf2 activation thus are promising therapeutic agents. Herein, we screened xanthohumol and its analogues, and two analogues (11 and 12) were disclosed to possess low cytotoxicity and rescue PC12 cells from the hydrogen peroxide or 6-hydroxydopamine induced injuries. Molecular mechanism studies demonstrated that compounds 11 and 12 are potent Nrf2 activators by promoting the nuclear accumulation of Nrf2 and enhancing the cellular antioxidant defense system. More importantly, genetically silencing the Nrf2 expression shuts down the observed cytoprotection conferred by both compounds, supporting the critical involvement of Nrf2 for the cellular actions of compounds 11 and 12.
Collapse
Affiliation(s)
- Feifei Bai
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Juan Yao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Qianhe Xu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Jianqiang Xu
- School of Life Science and Medicine & Panjin Industrial Technology Institute, Dalian University of Technology, Panjin Campus, Panjin 124221, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
37
|
Li X, Wei W, Zhao Z, Lv S. Tripterine up-regulates miR-223 to alleviate lipopolysaccharide-induced damage in murine chondrogenic ATDC5 cells. Int J Immunopathol Pharmacol 2019; 33:2058738418824521. [PMID: 30791741 PMCID: PMC6350133 DOI: 10.1177/2058738418824521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tripterine, also known as celastrol, is a main natural ingredient in
Tripterygium wilfordii. Tripterine has a variety of
pharmacological functions, and the therapeutic potential of tripterine in many
kinds of inflammation-linked diseases has been revealed. However, the function
of tripterine on osteoarthritis still remains unclear. The objective of this
study was to study the function of tripterine (TPR) on lipopolysaccharide
(LPS)-injured chondrocyte. ATDC5 cells were treated with tripterine after LPS
stimulation and then cell survival, the release of pro-inflammatory cytokines,
and the expression of chondrogenic differentiation-associated proteins were
assessed by performing CCK-8, flow cytometry, reverse transcription quantitative
polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA),
and Western blot. Moreover, the expression of miR-223 and core factors in
PI3K/AKT and nuclear factor kappa B (NF-κB) signaling was tested by
RT-qPCR/Western blot. LPS stimulation significantly reduced ATDC5 cells
viability, induced apoptosis, and increased the release of interleukin (IL)-6
and tumor necrosis factor (TNF)-α. Tripterine protected ATDC5 cells against
LPS-induced chondrocyte loss and the release of IL-6 and TNF-α. miR-223 was
down-regulated by LPS, while was up-regulated by tripterine. The protective
actions of tripterine were eliminated when miR-223 was silenced. Besides,
tripterine inhibited hypertrophic differentiation induced by LPS, and the
inhibitory effects of tripterine on hypertrophic differentiation could be
abolished when miR-223 was silenced. Furthermore, tripterine activated PI3K/AKT
pathway and deactivated NF-κB pathway. And the regulatory effects of tripterine
on these two pathways were abolished by miR-223 silence. This study revealed
that tripterine protected ATDC5 cells against LPS-induced cell damage possibly
via up-regulation of miR-223 and modulation of NF-κB and PI3K/AKT pathways.
Collapse
Affiliation(s)
- Xuefu Li
- Department of Orthopedics, Liaocheng Third People's Hospital, Liaocheng, China
| | - Wei Wei
- Department of Orthopedics, Liaocheng Third People's Hospital, Liaocheng, China
| | - Zhongquan Zhao
- Department of Orthopedics, Liaocheng Third People's Hospital, Liaocheng, China
| | - Shuzhen Lv
- Department of Orthopedics, Liaocheng Third People's Hospital, Liaocheng, China
| |
Collapse
|
38
|
Xu P, Yao Y, Zhou J. Particulate matter with a diameter of ≤2.5 μm induces and enhances bleomycin-induced pulmonary fibrosis by stimulating endoplasmic reticulum stress in rat. Biochem Cell Biol 2019; 97:357-363. [PMID: 31059283 DOI: 10.1139/bcb-2018-0053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study was designed to investigate the effect of particulate matter with a diameter of ≤2.5 μm (PM2.5) on bleomycin (BLM) induced pulmonary fibrosis. Thirty-two Sprague Dawley rats were assigned into four groups (intratracheal instillation of 500 μL of PBS (control), 2 mg/kg PM2.5, 3.5 mg/kg BLM A5, and BLM plus 2.0 mg/kg PM2.5) and were fed for 14 days. All rats were sacrificed after the study. Lung tissues and bronchoalveolar lavage fluid were prepared for histological and biological analysis. We found that PM2.5 caused dose-trend pulmonary alveolitis and fibrosis. Histological scores, expression of α-SMA and Collagen I as well as contents of TNF-α and IL-6 in lung tissues were upregulated by treatment of PM2.5. PM2.5 did not change the percentage of neutrophils and macrophages. The expression of endoplasmic reticulum (ER) stress markers Chop and GRP78 was upregulated by treatment of PM2.5. In comparison with either PM2.5 or BLM treatment, BLM plus PM2.5 treatment induced higher histological scores, higher expression of α-SMA, collagen I, TNF-α, IL-6, Chop, and GRP78, with increased neutrophil counts and decreased macrophage counts. We concluded that PM2.5 instillation caused pulmonary alveolitis and fibrosis by stimulating ER stress responses in rat. PM2.5 also showed a synergistic effect on BLM-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Panfeng Xu
- Department of Respiratory Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Department of Respiratory Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China
| | - Yake Yao
- Department of Respiratory Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Department of Respiratory Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China
| | - Jianying Zhou
- Department of Respiratory Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Department of Respiratory Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China
| |
Collapse
|
39
|
Xin X, Yao D, Zhang K, Han S, Liu D, Wang H, Liu X, Li G, Huang J, Wang J. Protective effects of Rosavin on bleomycin-induced pulmonary fibrosis via suppressing fibrotic and inflammatory signaling pathways in mice. Biomed Pharmacother 2019; 115:108870. [PMID: 31026730 DOI: 10.1016/j.biopha.2019.108870] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
Idiopathic Pulmonary fibrosis (IPF) is diagnosed as a life-threatening, progressive and incurable lung disease characterized by accumulation of extracellular matrix and myofibroblasts, resulting in the function degradation and structural alterations in normal lung parenchyma. Notably, Pulmonary Fibrosis has been considering as a difficult problem in clinical with high mortality and effective treatment strategies. Rosavin, a benzylPropylene glycoside, is isolated from Rhodiola rosea L., exhibiting nootropic, anti-depressant, anti-cancer, anti-inflammatory and anti-oxidative activities. In this study, we attended to elucidate the pharmacological activity of Rosavin for treatment of pulmonary fibrosis induced by bleomycin in mice. The results indicated that Rosavin could significantly ameliorate the lung index and Pathological structure of mice with Pulmonary fibrosis by bleomycin-induced. Additionally, Rosavin could evidently decreased inflammatory cells infiltration in bronchoalveolar lavage fluid and pro-inflammatory cytokines expression in lung tissue specimens induced by bleomycin. Rosavin could down-regulate the expression of hydroxyproline and malondialdehyde and increased the activities of superoxide dismutase, glutathione peroxidase in lung tissue. The expression of Nrf2 were increased, and the expression of NF-κB p65, TGF-β1 and α-SMA were inhibited. The findings revealed the protective effects and the primary mechanism of rosavin on bleomycin-induced pulmonary fibrosis, which provided a scientific foundation for Rosavin as a promising candidate for Pulmonary fibrosis treatment.
Collapse
Affiliation(s)
- Xiaobin Xin
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Dahong Yao
- Shenzhen Honghui Biopharmaceutical Co., Ltd. Shenzhen 518000, China; Department of Pharmacology, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Ke Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China.
| | - Shuai Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Danni Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Hangyu Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Xueying Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Guoyu Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Jian Huang
- Shenzhen Honghui Biopharmaceutical Co., Ltd. Shenzhen 518000, China
| | - Jinhui Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China; Shenzhen Honghui Biopharmaceutical Co., Ltd. Shenzhen 518000, China.
| |
Collapse
|
40
|
Chen RR, Fan XH, Chen G, Zeng GW, Xue YG, Liu XT, Wang CY. Irisin attenuates angiotensin II-induced cardiac fibrosis via Nrf2 mediated inhibition of ROS/ TGFβ1/Smad2/3 signaling axis. Chem Biol Interact 2019; 302:11-21. [PMID: 30703374 DOI: 10.1016/j.cbi.2019.01.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/10/2019] [Accepted: 01/26/2019] [Indexed: 12/13/2022]
Abstract
Angiotensin II-related cardiac fibrosis is one of the key pathological changes of the hypertrophied left ventricle in various heart disease. Irisin was recently reported to confer cardio-protective and anti-oxidative effects, while whether it can reverse the renin-angiotensin-aldosterone system(RAAS) activation related(angiotensin II-induced) cardiac fibrosis is unknown. In this study, we found that angiotensin II-induced cardiac dysfunction and fibrotic responses were dampened by irisin treatment in mice. Mechanistically, angiotensin II induced robust ROS generation, which in turn triggered activation of pro-fibrotic TGFβ1-Smad2/3 signaling and subsequent collagen synthesis and fibroblast-myofibroblast transformation in cardiac fibroblasts. In contrast, Irisin treatment suppressed angiotensin II-induced ROS generation, TGFβ1 activation, collagen synthesis and fibroblast-myofibroblast transformation, the effects of which was accompanied by Nrf2 activation and also abolished by a Nrf2 targeted siRNA. Taken together, we here identified irisin as a promising anti-fibrotic therapeutic for angiotensin II-related cardiac fibrosis.
Collapse
Affiliation(s)
- Rui-Rui Chen
- Department of Cardiology, Second Affiliated Hospital of Air Forced Military Medical University, Xi'an, Shaanxi Province, 710068, China; Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710068, China
| | - Xue-Hui Fan
- Department of Cardiology, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Gang Chen
- Department of Cardiac Surgery, Second Affiliated Hospital of Lanzhou University, Lanzhou, Gansu Province, 730000, China
| | - Guang-Wei Zeng
- Department of Cardiology, Second Affiliated Hospital of Air Forced Military Medical University, Xi'an, Shaanxi Province, 710068, China; Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710068, China
| | - Yu-Gang Xue
- Department of Cardiology, Second Affiliated Hospital of Air Forced Military Medical University, Xi'an, Shaanxi Province, 710068, China; Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710068, China
| | - Xiong-Tao Liu
- Department of Cardiology, Second Affiliated Hospital of Air Forced Military Medical University, Xi'an, Shaanxi Province, 710068, China; Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710068, China
| | - Chi-Yao Wang
- Department of Cardiology, Second Affiliated Hospital of Air Forced Military Medical University, Xi'an, Shaanxi Province, 710068, China; Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710068, China.
| |
Collapse
|
41
|
El-Kashef DH. Nicorandil ameliorates pulmonary inflammation and fibrosis in a rat model of silicosis. Int Immunopharmacol 2018; 64:289-297. [PMID: 30223191 DOI: 10.1016/j.intimp.2018.09.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 10/28/2022]
Abstract
Nicorandil, an antianginal and potassium channel opener agent, has different useful impacts on cardiovascular and respiratory systems. Its effect against silicosis has not been discussed yet, therefore, this is an attempt to decide whether nicorandil can reduce silica-induced lung injury in rats. Silica model was induced by intranasal instillation of silica dust once. Rats were given nicorandil for 56 days after exposure to silica. Results showed that nicorandil significantly alleviated silica-induced inflammation as it decreased the elevated levels of total and differential cell counts, pulmonary edema (revealed by decreased lung/body weight ratio and W/D weight ratio), LDH and total protein levels in BALF. Notably, nicorandil decreased collagen deposition as evidenced by reduction in levels of hydroxyproline and collagen in lung tissues as well as obvious alleviation in silica-induced fibrosis in histopathological findings. Nicorandil effectively reduced the increased expression of NF-κB and iNOS and decreased MPO levels in lung tissues. Moreover, nicorandil abolished oxidative and nitrosative stress via reducing levels of pulmonary MDA and NOx concomitant with elevating levels of pulmonary GSH and SOD. Meanwhile, nicorandil decreased the levels of TNF-α and TGF-β, up regulated Nrf-2 and HO-1 levels in BALF suggesting antioxidant, anti-inflammatory and antifibrotic properties. In summary, nicorandil can confer protection against silica-induced lung inflammation and fibrosis. This impact might be due to its ability to down regulate the production of inflammatory and fibrotic cytokines in addition to restoring oxidant/antioxidant balance.
Collapse
Affiliation(s)
- Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
42
|
Kashyap D, Sharma A, Tuli HS, Sak K, Mukherjee T, Bishayee A. Molecular targets of celastrol in cancer: Recent trends and advancements. Crit Rev Oncol Hematol 2018; 128:70-81. [PMID: 29958633 DOI: 10.1016/j.critrevonc.2018.05.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 05/25/2018] [Accepted: 05/30/2018] [Indexed: 12/29/2022] Open
|
43
|
Abstract
Celastrol is a highly investigated anticancer moiety. It is a pentacyclic triterpenoid, isolated several decades ago with promising role in chemoprevention. Celastrol has been found to target multiple proinflammatory, angiogenic and metastatic proteins. Inhibition of these targets results in significant reduction of cancer growth, survival and metastasis. This review summarizes the varied molecular targets of celastrol along with insight into the various recently published clinical, preclinical and industrial patents (2011-2017).
Collapse
|
44
|
Han XB, Tan Y, Fang YQ, Li F. Protective effects of celastrol against γ irradiation-induced oxidative stress in human umbilical vein endothelial cells. Exp Ther Med 2018; 16:685-694. [PMID: 30116323 PMCID: PMC6090236 DOI: 10.3892/etm.2018.6270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/31/2018] [Indexed: 12/20/2022] Open
Abstract
High-dose ionizing radiation can cause harmful effects on the cardiovascular system. Notably, endothelial cells are critical targets in radiation-induced damage. γ radiation exerts its biological effects through the radiolysis of water, which further generates ROS and induces lipid peroxidation and DNA damage. The present study aimed to evaluate the potential protective effects of celastrol against γ radiation-induced oxidative stress in human umbilical vein endothelial cells (HUVECs). HUVECs were exposed to γ radiation at different doses with or without celastrol treatment. Cell viability and cytotoxicity, migratory ability, ROS production, lipid peroxidation, oxidative DNA damage and antioxidative enzyme levels were evaluated in HUVECs at 24 h post-irradiation. It was observed that HUVECs exhibited decreased cell viability, increased cytotoxicity and a decreased migratory ability after exposure to 20-Gy γ radiation. Celastrol treatment concentration-dependently reversed these effects. γ irradiation was also demonstrated to increase the production of ROS, enhance lipid peroxidation and oxidative DNA damage and decrease the levels of SOD, catalase, GST and GPx in HUVECs. These detrimental effects were blocked by treatment with celastrol for 24 h. These data suggested that celastrol not only attenuated γ radiation-induced cytotoxicity, but also effectively blocked oxidative stress in HUVECs. As an antioxidant agent, celastrol may have potential protective effects in HUVECs against γ irradiation-induced injury.
Collapse
Affiliation(s)
- Xiang-Bei Han
- Department of Pathophysiology, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China.,Tumor Biotherapy Center, Jilin Province People's Hospital, Changchun, Jilin 130021, P.R. China
| | - Yan Tan
- Tumor Biotherapy Center, Jilin Province People's Hospital, Changchun, Jilin 130021, P.R. China
| | - Yan-Qiu Fang
- Tumor Biotherapy Center, Jilin Province People's Hospital, Changchun, Jilin 130021, P.R. China
| | - Feng Li
- Department of Nursing, School of Nursing, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
45
|
Divya T, Velavan B, Sudhandiran G. Regulation of Transforming Growth Factor-β/Smad-mediated Epithelial-Mesenchymal Transition by Celastrol Provides Protection against Bleomycin-induced Pulmonary Fibrosis. Basic Clin Pharmacol Toxicol 2018; 123:122-129. [PMID: 29394529 DOI: 10.1111/bcpt.12975] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/24/2018] [Indexed: 12/21/2022]
Abstract
The respiratory disease pulmonary fibrosis (PF), which is characterized by scar formation throughout the lung, imposes a serious health burden. No effective drug without side effects has been proven to prevent this fatal lung disease. In this context, this study was undertaken to elucidate the protective effect of celastrol, a quinine methide pentacyclic triterpenoid from a Chinese medicinal plant 'thunder god vine' against bleomycin (BLM)-induced PF. We also attempted to study how the cytokine transforming growth factor-β (TGF-β) stimulates fibrosis through the induction of epithelial-mesenchymal transition (EMT) and the role of celastrol in regulating EMT. TGF-β (5 ng/ml) was administered to human alveolar epithelial adenocarcinoma A549 cells to induce fibrotic response in cells. Induction of EMT was analysed in cells through morphological analysis and expression of epithelial and mesenchymal markers by Western blotting. Bleomycin at a concentration of 3 U/Kg b.w was used to induce fibrosis in adult male rat lungs. Celastrol (5 mg/kg b.w) was given to rats twice a week after BLM administration for a period of 28 days. Western blot and immunofluorescence analyses were performed with lung tissue sample to find out the potential of celastrol in regulating EMT during the progression of fibrosis. TGF-β induces EMT in A549 cells as demonstrated by changes in epithelial cell morphology and expression of epithelial and mesenchymal marker proteins. The expressions of epithelial marker proteins E-cadherin and claudin were found to be reduced in the BLM-induced group of rats. Expression of mesenchymal markers, such as N-cadherin, snail, slug, vimentin and β-catenin, was enhanced in BLM-induced rat lungs. Celastrol reverts these cellular changes in rat lungs, and it was found that celastrol regulates EMT through the inhibition of heat shock protein 90 (HSP 90). Together, the results indicate that EMT is a crucial phenomenon for the progression of fibrosis, and celastrol provides protection against PF through the regulation of EMT.
Collapse
Affiliation(s)
- Thomas Divya
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Chennai, India
| | | | - Ganapasam Sudhandiran
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Chennai, India
| |
Collapse
|
46
|
Pang C, Luo J, Liu C, Wu X, Wang D. Synthesis and Biological Evaluation of a Series of Novel Celastrol Derivatives with Amino Acid Chain. Chem Biodivers 2018; 15:e1800059. [DOI: 10.1002/cbdv.201800059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/03/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Chaohai Pang
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Science; Haikou 571101 P. R. China
| | - Jinhui Luo
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Science; Haikou 571101 P. R. China
| | - Chunhua Liu
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Science; Haikou 571101 P. R. China
| | - Xuejin Wu
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Science; Haikou 571101 P. R. China
| | - Dingyong Wang
- College of Pharmacy; Guangdong Pharmaceutical University; Guangzhou Guangdong 510006 P. R. China
| |
Collapse
|
47
|
Guan Y, Tan Y, Liu W, Yang J, Wang D, Pan D, Sun Y, Zheng C. NF-E2-Related Factor 2 Suppresses Intestinal Fibrosis by Inhibiting Reactive Oxygen Species-Dependent TGF-β1/SMADs Pathway. Dig Dis Sci 2018; 63:366-380. [PMID: 28815354 DOI: 10.1007/s10620-017-4710-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/01/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND AIMS This study aimed to evaluate the antifibrotic effects of NF-E2-Related Factor 2 (Nrf2) on intestinal fibrosis. Intestinal fibrosis is a common complication of Crohn's disease; however, its mechanism of intestinal fibrosis is largely unclear. METHODS BALB/c mice received 2,4,6-trinitrobenzene sulfonic acid weekly via intrarectal injections to induce chronic fibrotic colitis. They also diet containing received 1% (w/w) tert-butylhydroquinone (tBHQ), which is an agonist of Nrf2. Human intestinal fibroblasts (CCD-18Co cells) were pretreated with tBHQ or si-Nrf2 followed by stimulation with transforming growth factor-β1 (TGF-β1), which transformed the cells into myofibroblasts. The main fibrosis markers such as α-smooth muscle actin, collagen I, tissue inhibitor of metalloproteinase-1, and TGF-β1/SMADs signaling pathway were detected by quantitative real-time RT-PCR, immunohistochemical analysis, and Western blot analysis. Levels of cellular reactive oxygen species (ROS) were detected by dichlorodihydrofluorescein diacetate. RESULTS tBHQ suppressed the intestinal fibrosis through the TGF-β1/SMADs signaling pathway in TNBS-induced colitis and CCD-18Co cells. Moreover, Nrf2 knockdown enhanced the TGF-β1-induced differentiation of CCD-18Co cells. ROS significantly increased in TGF-β1-stimulated CCD-18Co cells. Pretreatment with H2O2, the primary component of ROS, was demonstrated to block the effect of tBHQ on reducing the expression of TGF-β1. Moreover, scavenging ROS by N-acetyl cysteine could inhibit the increasing expression of TGF-β1 promoted by Nrf2 knockdown. CONCLUSIONS The results suggested that Nrf2 suppressed intestinal fibrosis by inhibiting ROS/TGF-β1/SMADs pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Yadi Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110022, Liaoning Province, China
| | - Yue Tan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110022, Liaoning Province, China
| | - Weiyu Liu
- Department of Gastroenterology, The People's Hospital Liaoning Provincial, 33 Wenyi Road, Shenhe District, Shenyang, 110013, Liaoning Province, China
| | - Jun Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110022, Liaoning Province, China
| | - Dongxu Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110022, Liaoning Province, China
| | - Di Pan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110022, Liaoning Province, China
| | - Yan Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110022, Liaoning Province, China
| | - Changqing Zheng
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang, 110022, Liaoning Province, China.
| |
Collapse
|
48
|
Liu M, Xu H, Zhang L, Zhang C, Yang L, Ma E, Liu L, Li Y. Salvianolic acid B inhibits myofibroblast transdifferentiation in experimental pulmonary fibrosis via the up-regulation of Nrf2. Biochem Biophys Res Commun 2018; 495:325-331. [DOI: 10.1016/j.bbrc.2017.11.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 11/02/2017] [Indexed: 12/26/2022]
|
49
|
Zhang HJ, Zhang GR, Piao HR, Quan ZS. Synthesis and characterisation of celastrol derivatives as potential anticancer agents. J Enzyme Inhib Med Chem 2017; 33:190-198. [PMID: 29231066 PMCID: PMC6009949 DOI: 10.1080/14756366.2017.1404590] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In the present study, three series of novel celastrol derivatives were designed and synthesised by modifying the carboxylic acid at the 20th position with amino acid, amine, and triazole derivatives. All the synthesised compounds were screened for their anticancer activities using MTT assay against AGS, MGC-803, SGC-7901, HCT-116, A549, HeLa, BEL-7402, and HepG-2 cell lines. Most of the synthesised compounds exhibited potent antiproliferative effects. The most promising compound 3-Hydroxy-9β,13α-dimethyl-2-oxo-24,25,26-trinoroleana-1(10),3,5,7-tetraen-29-oic amide, N-(R)-methyl-3-(1H-indol-2-yl)propanoate (11) showed considerable high anticancer activity against AGS cell lines, with an IC50 value of 0.44 μM, and considerably higher activities against HCT-116, BEL-7402, and HepG-2 cell lines, with IC50 values of 0.78, 0.63, and 0.76 μM, respectively. The results of apoptosis tests and molecular docking study of compound 11 binding to Caspase-3 revealed that its mechanism of action with antiproliferative was possibly involved in inducing apoptosis by inducing the activation of caspase-3.
Collapse
Affiliation(s)
- Hong-Jian Zhang
- a Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin , China
| | - Guo-Rui Zhang
- a Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin , China
| | - Hu-Ri Piao
- a Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin , China
| | - Zhe-Shan Quan
- a Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin , China
| |
Collapse
|
50
|
Jannuzzi AT, Kara M, Alpertunga B. Celastrol ameliorates acetaminophen-induced oxidative stress and cytotoxicity in HepG2 cells. Hum Exp Toxicol 2017; 37:742-751. [DOI: 10.1177/0960327117734622] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Acetaminophen (APAP) is the most commonly used analgesic and antipyretic drug in the world. However, hepatotoxicity caused by APAP overdose is the most frequent cause of acute liver failure worldwide and oxidative stress involved in the pathogenesis of APAP hepatotoxicity. Celastrol is a natural triterpenoid derived from Tripterygium wilfordii Hook F. that exhibits antioxidant, anti-inflammatory, and antitumor activities. In this study, we aimed to investigate the potential ameliorative effects of celastrol against APAP-induced cytotoxicity and oxidative stress. Human hepatocellular carcinoma cells (HepG2) were incubated with 20 mM of APAP for 24 h and posttreated with 50 nM, 100 nM, or 200 nM of celastrol for a further 24 h. The methylthiazolyldiphenyl-tetrazolium bromide, lactate dehydrogenase, and neutral red uptake assays showed celastrol posttreatments recovered cell viability and cell membrane integrity in a concentration-dependent manner. Celastrol posttreatments exerted a significant increase in the glutathione content and a decrease in the malondialdehyde and protein carbonylation levels. Also, celastrol posttreatments attenuated the APAP-induced oxidative stress by raising glutathione peroxidase, glutathione reductase, and catalase activities. However, superoxide dismutase activity did not change. In conclusion, celastrol treatment may improve cell viability and increase cellular antioxidant defense in HepG2 cells. These results suggest that celastrol may have the potential to ameliorate the APAP-induced oxidative stress and cytotoxicity.
Collapse
Affiliation(s)
- AT Jannuzzi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul, Turkey
| | - M Kara
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul, Turkey
| | - B Alpertunga
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul, Turkey
| |
Collapse
|