1
|
Huang Y, Xu B. Critical review on the intervention effects of flavonoids from cereal grains and food legumes on lipid metabolism. Food Chem 2025; 464:141790. [PMID: 39509881 DOI: 10.1016/j.foodchem.2024.141790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/22/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Obesity, often caused by disorders of lipid metabolism, is a global health concern. Flavonoids from staple grains and legumes are expected as a safer and more cost-effective alternative for the future development of dietary flavonoid-based anti-obesity dietary supplements or drugs. This review systematically summarized their content variation, metabolism in the human body, effects and molecular mechanisms on lipid metabolism. These flavonoids intervene in lipid metabolism by inhibiting lipogenesis, promoting lipolysis, enhancing energy metabolism, reducing appetite, suppressing inflammation, enhancing insulin sensitivity, and improving the composition of the gut microbial. Fermentation and sprouting techniques enhance flavonoid content and these beneficial effects. The multidirectional intervention of lipid metabolism is mainly through regulating AMPK signaling pathway. This study provides potential improvement for challenges of application, including addressing high extraction costs and improving bioavailability, ensuring safety, filling clinical study gaps, and investigating potential synergistic effects between flavonoids in grains and legumes, and other components.
Collapse
Affiliation(s)
- Yin Huang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
2
|
Duffel MW. Cytosolic sulfotransferases in endocrine disruption. Essays Biochem 2024; 68:541-553. [PMID: 38699885 PMCID: PMC11531609 DOI: 10.1042/ebc20230101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
The mammalian cytosolic sulfotransferases (SULTs) catalyze the sulfation of endocrine hormones as well as a broad array of drugs, environmental chemicals, and other xenobiotics. Many endocrine-disrupting chemicals (EDCs) interact with these SULTs as substrates and inhibitors, and thereby alter sulfation reactions responsible for metabolism and regulation of endocrine hormones such as estrogens and thyroid hormones. EDCs or their metabolites may also regulate expression of SULTs through direct interaction with nuclear receptors and other transcription factors. Moreover, some sulfate esters derived from EDCs (EDC-sulfates) may serve as ligands for endocrine hormone receptors. While the sulfation of an EDC can lead to its excretion in the urine or bile, it may also result in retention of the EDC-sulfate through its reversible binding to serum proteins and thereby enable transport to other tissues for intracellular hydrolysis and subsequent endocrine disruption. This mini-review outlines the potential roles of SULTs and sulfation in the effects of EDCs and our evolving understanding of these processes.
Collapse
Affiliation(s)
- Michael W Duffel
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, U.S.A
| |
Collapse
|
3
|
Poudel SB, Ruff RR, He Z, Dixit M, Yildirim G, Jayarathne H, Manchanayake DH, Basta-Pljakic J, Duran-Ortiz S, Schaffler MB, Kopchick JJ, Sadagurski M, Yakar S. The impact of inactivation of the GH/IGF axis during aging on healthspan. GeroScience 2024:10.1007/s11357-024-01426-3. [PMID: 39535693 DOI: 10.1007/s11357-024-01426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Several mouse lines with congenital growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis disruption have shown improved health and extended lifespan. The current study investigated how inactivating this axis, specifically during aging, impacts the healthspan. We used a tamoxifen-inducible global GH receptor (GHR) knockout mouse model starting at 12 months and followed the mice until 24 months of age (iGHRKO12-24 mice). We found sex- and tissue-specific effects, with some being pro-aging and others anti-aging. Measuring an array of cytokines in serum revealed that inactivation of the GH/IGF-1 axis at 12 months did not affect systemic inflammation during aging. On the other hand, hypothalamic inflammation was significantly reduced in iGHRKO12-24 mice, evidenced by GFAP+ (glial fibrillary acidic protein, a marker of astrocytes) and Iba-1+ (a marker for microglia). Liver RNAseq analysis indicated feminization of the male transcriptome, with significant changes in the expression of monooxygenase, sulfotransferase, and solute-carrier-transporter gene clusters. Finally, we found impaired bone morphology, more pronounced in male iGHRKO12-24 mice and correlated with GH/IGF-1 inactivation onset age. We conclude that inhibiting the GH/IGF-1 axis during aging only partially preserves the beneficial healthspan effects observed with congenital GH deficiency.
Collapse
Affiliation(s)
- Sher Bahadur Poudel
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, 345 East 24Th Street, New York, NY, 10010-4086, USA
| | - Ryan R Ruff
- David B. Kriser Dental Center, Department of Epidemiology and Health Promotion, New York University College of Dentistry, New York, NY, 10010-4086, USA
| | - Zhiming He
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, 345 East 24Th Street, New York, NY, 10010-4086, USA
| | - Manisha Dixit
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, 345 East 24Th Street, New York, NY, 10010-4086, USA
| | - Godze Yildirim
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, 345 East 24Th Street, New York, NY, 10010-4086, USA
| | - Hashan Jayarathne
- Department of Biological Sciences, iBio (Integrative Biosciences Center), Integrative Biosciences Center, and Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Dulmalika Herath Manchanayake
- Department of Biological Sciences, iBio (Integrative Biosciences Center), Integrative Biosciences Center, and Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Jelena Basta-Pljakic
- Department of Biomedical Engineering, City College of New York, New York, NY, 10031, USA
| | - Silvana Duran-Ortiz
- Edison Biotechnology Institute and Department of Biomedical Sciences, Ohio University, Athens, OH, USA
| | - Mitchell B Schaffler
- Department of Biomedical Engineering, City College of New York, New York, NY, 10031, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Department of Biomedical Sciences, Ohio University, Athens, OH, USA
| | - Marianna Sadagurski
- Department of Biological Sciences, iBio (Integrative Biosciences Center), Integrative Biosciences Center, and Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Shoshana Yakar
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, 345 East 24Th Street, New York, NY, 10010-4086, USA.
| |
Collapse
|
4
|
Kolb A, Corridon P, Ullah M, Pfaffenberger ZJ, Xu WM, Winfree S, Sandoval RH, Hato T, Witzmann FA, Mohallem R, Franco J, Aryal UK, Atkinson SJ, Basile DP, Bacallao RL. Sulfotransferase 1C2 Increases Mitochondrial Respiration by Converting Mitochondrial Membrane Cholesterol to Cholesterol Sulfate. Biochemistry 2024; 63:2310-2322. [PMID: 39194960 PMCID: PMC11411706 DOI: 10.1021/acs.biochem.3c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
HYPOTHESIS In this communication, we test the hypothesis that sulfotransferase 1C2 (SULT1C2, UniProt accession no. Q9WUW8) can modulate mitochondrial respiration by increasing state-III respiration. METHODS AND RESULTS Using freshly isolated mitochondria, the addition of SULT1C2 and 3-phosphoadenosine 5 phosphosulfate (PAPS) results in an increased maximal respiratory capacity in response to the addition of succinate, ADP, and rotenone. Lipidomics and thin-layer chromatography of mitochondria treated with SULT1C2 and PAPS showed an increase in the level of cholesterol sulfate. Notably, adding cholesterol sulfate at nanomolar concentration to freshly isolated mitochondria also increases maximal respiratory capacity. In vivo studies utilizing gene delivery of SULT1C2 expression plasmids to kidneys result in increased mitochondrial membrane potential and confer resistance to ischemia/reperfusion injury. Mitochondria isolated from gene-transduced kidneys have elevated state-III respiration as compared with controls, thereby recapitulating results obtained with mitochondrial fractions treated with SULT1C2 and PAPS. CONCLUSION SULT1C2 increases mitochondrial respiratory capacity by modifying cholesterol, resulting in increased membrane potential and maximal respiratory capacity. This finding uncovers a unique role of SULT1C2 in cellular physiology and extends the role of sulfotransferases in modulating cellular metabolism.
Collapse
Affiliation(s)
- Alexander
J. Kolb
- Department
of Biology, School of Science, Indiana University-Indianapolis, Indianapolis, Indiana 46202, United States
| | - Peter Corridon
- Khalifa
University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Mahbub Ullah
- Department
of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | | | - Wei Min Xu
- Division
of Nephrology, Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Seth Winfree
- Department
of Pathology and Microbiology, University
of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Ruben H. Sandoval
- Division
of Nephrology, Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Takeshi Hato
- Division
of Nephrology, Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Frank A. Witzmann
- Department
of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Rodrigo Mohallem
- Department
of Comparative Pathobiology, College of Veterinary Medicine, Bindley
Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Uma K. Aryal
- Department
of Comparative Pathobiology, College of Veterinary Medicine, Bindley
Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue
Proteomics Facility, Bindley Biosciences Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Simon J. Atkinson
- Department
of Neuroscience, Physiology and Behavior, University of California, Davis, California 95616, United States
| | - David P. Basile
- Department
of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Robert L. Bacallao
- Division
of Nephrology, Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Division
of Nephrology, Richard Roudebush
VA Medical Center, Indianapolis, Indiana 46202, United States
| |
Collapse
|
5
|
Kopriva S, Rahimzadeh Karvansara P, Takahashi H. Adaptive modifications in plant sulfur metabolism over evolutionary time. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4697-4711. [PMID: 38841807 PMCID: PMC11350084 DOI: 10.1093/jxb/erae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
Sulfur (S) is an essential element for life on Earth. Plants are able to take up and utilize sulfate (SO42-), the most oxidized inorganic form of S compounds on Earth, through the reductive S assimilatory pathway that couples with photosynthetic energy conversion. Organic S compounds are subsequently synthesized in plants and made accessible to animals, primarily as the amino acid methionine. Thus, plant S metabolism clearly has nutritional importance in the global food chain. S metabolites may be part of redox regulation and drivers of essential metabolic pathways as cofactors and prosthetic groups, such as Fe-S centers, CoA, thiamine, and lipoic acid. The evolution of the S metabolic pathways and enzymes reflects the critical importance of functional innovation and diversifications. Here we review the major evolutionary alterations that took place in S metabolism across different scales and outline research directions that may take advantage of understanding the evolutionary adaptations.
Collapse
Affiliation(s)
- Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| | - Parisa Rahimzadeh Karvansara
- Institute of Molecular Photosynthesis, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hideki Takahashi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
van Waardenburg RCAM, Falany CN. Sulfotransferase 4A1 Coding Sequence and Protein Structure Are Highly Conserved in Vertebrates. Genes (Basel) 2024; 15:914. [PMID: 39062693 PMCID: PMC11275347 DOI: 10.3390/genes15070914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Cytosolic sulfotransferases (SULTs) are Phase 2 drug-metabolizing enzymes that catalyze the conjugation of sulfonate to endogenous and xenobiotic compounds, increasing their hydrophilicity and excretion from cells. To date, 13 human SULTs have been identified and classified into five families. SULT4A1 mRNA encodes two variants: (1) the wild type, encoding a 284 amino acid, ~33 kDa protein, and (2) an alternative spliced variant resulting from a 126 bp insert between exon 6 and 7, which introduces a premature stop codon that enhances nonsense-mediated decay. SULT4A1 is classified as an SULT based on sequence and structural similarities, including PAPS-domains, active-site His, and the dimerization domain; however, the catalytic pocket lid 'Loop 3' size is not conserved. SULT4A1 is uniquely expressed in the brain and localized in the cytosol and mitochondria. SULT4A1 is highly conserved, with rare intronic polymorphisms that have no outward manifestations. However, the SULT4A1 haplotype is correlated with Phelan-McDermid syndrome and schizophrenia. SULT4A1 knockdown revealed potential SULT4A1 functions in photoreceptor signaling and knockout mice display hampered neuronal development and behavior. Mouse and yeast models revealed that SULT4A1 protects the mitochondria from endogenously and exogenously induced oxidative stress and stimulates cell division, promoting dendritic spines' formation and synaptic transmission. To date, no physiological enzymatic activity has been associated with SULT4A1.
Collapse
|
7
|
Peng H, Feng K, Jia W, Li Y, Lv Q, Zhang Y. An integrated investigation of sulfotransferases (SULTs) in hepatocellular carcinoma and identification of the role of SULT2A1 on stemness. Apoptosis 2024; 29:898-919. [PMID: 38411862 DOI: 10.1007/s10495-024-01938-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 02/28/2024]
Abstract
The cytosolic sulfotransferases (SULTs) are phase II conjugating enzymes, which are widely expressed in the liver and mainly mediate the sulfation of numerous xenobiotics and endogenous compounds. However, the role of various SULTs genes has not been reported in hepatocellular carcinoma (HCC). This study aims to analyze the expression and potential functional roles of SULTs genes in HCC and to identify the role of SULT2A1 in HCC stemness as well as the possible mechanism. We found that all of the 12 SULTs genes were differentially expressed in HCC. Moreover, clinicopathological features and survival rates were also investigated. Multivariate regression analysis showed that SULT2A1 and SULT1C2 could be used as independent prognostic factors in HCC. SULT1C4, SULT1E1, and SULT2A1 were significantly associated with immune infiltration. SULT2A1 deficiency in HCC promoted chemotherapy resistance and stemness maintenance. Mechanistically, silencing of SULT2A1 activated the AKT signaling pathway, on the one hand, promoted the expression of downstream stemness gene c-Myc, on the other hand, facilitated the NRF2 expression to reduce the accumulation of ROS, and jointly increased HCC stemness. Moreover, knockdown NR1I3 was involved in the transcriptional regulation of SULT2A1 in stemness maintenance. In addition, SULT2A1 knockdown HCC cells promoted the proliferation and activation of hepatic stellate cells (HSCs), thereby exerting a potential stroma remodeling effect. Our study revealed the expression and role of SULTs genes in HCC and identified the contribution of SULT2A1 to the initiation and progression of HCC.
Collapse
Affiliation(s)
- Hao Peng
- Medical School, Southeast University, Nanjing, 210009, China
| | - Kun Feng
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Weilu Jia
- Medical School, Southeast University, Nanjing, 210009, China
| | - Yunxin Li
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Qingpeng Lv
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Yewei Zhang
- Medical School, Southeast University, Nanjing, 210009, China.
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China.
| |
Collapse
|
8
|
Kurogi K, Suiko M, Sakakibara Y. Evolution and multiple functions of sulfonation and cytosolic sulfotransferases across species. Biosci Biotechnol Biochem 2024; 88:368-380. [PMID: 38271594 DOI: 10.1093/bbb/zbae008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Organisms have conversion systems for sulfate ion to take advantage of the chemical features. The use of biologically converted sulfonucleotides varies in an evolutionary manner, with the universal use being that of sulfonate donors. Sulfotransferases have the ability to transfer the sulfonate group of 3'-phosphoadenosine 5'-phosphosulfate to a variety of molecules. Cytosolic sulfotransferases (SULTs) play a role in the metabolism of low-molecular-weight compounds in response to the host organism's living environment. This review will address the diverse functions of the SULT in evolution, including recent findings. In addition to the diversity of vertebrate sulfotransferases, the molecular aspects and recent studies on bacterial and plant sulfotransferases are also addressed.
Collapse
Affiliation(s)
- Katsuhisa Kurogi
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, Japan
| | - Masahito Suiko
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, Japan
| | - Yoichi Sakakibara
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
9
|
Kurogi K, Sakakibara Y, Hashiguchi T, Kakuta Y, Kanekiyo M, Teramoto T, Fukushima T, Bamba T, Matsumoto J, Fukusaki E, Kataoka H, Suiko M. A new type of sulfation reaction: C-sulfonation for α,β-unsaturated carbonyl groups by a novel sulfotransferase SULT7A1. PNAS NEXUS 2024; 3:pgae097. [PMID: 38487162 PMCID: PMC10939482 DOI: 10.1093/pnasnexus/pgae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/20/2024] [Indexed: 03/17/2024]
Abstract
Cytosolic sulfotransferases (SULTs) are cytosolic enzymes that catalyze the transfer of sulfonate group to key endogenous compounds, altering the physiological functions of their substrates. SULT enzymes catalyze the O-sulfonation of hydroxy groups or N-sulfonation of amino groups of substrate compounds. In this study, we report the discovery of C-sulfonation of α,β-unsaturated carbonyl groups mediated by a new SULT enzyme, SULT7A1, and human SULT1C4. Enzymatic assays revealed that SULT7A1 is capable of transferring the sulfonate group from 3'-phosphoadenosine 5'-phosphosulfate to the α-carbon of α,β-unsaturated carbonyl-containing compounds, including cyclopentenone prostaglandins as representative endogenous substrates. Structural analyses of SULT7A1 suggest that the C-sulfonation reaction is catalyzed by a novel mechanism mediated by His and Cys residues in the active site. Ligand-activity assays demonstrated that sulfonated 15-deoxy prostaglandin J2 exhibits antagonist activity against the prostaglandin receptor EP2 and the prostacyclin receptor IP. Modification of α,β-unsaturated carbonyl groups via the new prostaglandin-sulfonating enzyme, SULT7A1, may regulate the physiological function of prostaglandins in the gut. Discovery of C-sulfonation of α,β-unsaturated carbonyl groups will broaden the spectrum of potential substrates and physiological functions of SULTs.
Collapse
Affiliation(s)
- Katsuhisa Kurogi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yoichi Sakakibara
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Takuyu Hashiguchi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yoshimitsu Kakuta
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Miho Kanekiyo
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Takamasa Teramoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Tsuyoshi Fukushima
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Jin Matsumoto
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Hiroaki Kataoka
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Masahito Suiko
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| |
Collapse
|
10
|
Duffel MW, Lehmler HJ. Complex roles for sulfation in the toxicities of polychlorinated biphenyls. Crit Rev Toxicol 2024; 54:92-122. [PMID: 38363552 PMCID: PMC11067068 DOI: 10.1080/10408444.2024.2311270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic toxicants derived from legacy pollution sources and their formation as inadvertent byproducts of some current manufacturing processes. Metabolism of PCBs is often a critical component in their toxicity, and relevant metabolic pathways usually include their initial oxidation to form hydroxylated polychlorinated biphenyls (OH-PCBs). Subsequent sulfation of OH-PCBs was originally thought to be primarily a means of detoxication; however, there is strong evidence that it may also contribute to toxicities associated with PCBs and OH-PCBs. These contributions include either the direct interaction of PCB sulfates with receptors or their serving as a localized precursor for OH-PCBs. The formation of PCB sulfates is catalyzed by cytosolic sulfotransferases, and, when transported into the serum, these metabolites may be retained, taken up by other tissues, and subjected to hydrolysis catalyzed by intracellular sulfatase(s) to regenerate OH-PCBs. Dynamic cycling between PCB sulfates and OH-PCBs may lead to further metabolic activation of the resulting OH-PCBs. Ultimate toxic endpoints of such processes may include endocrine disruption, neurotoxicities, and many others that are associated with exposures to PCBs and OH-PCBs. This review highlights the current understanding of the complex roles that PCB sulfates can have in the toxicities of PCBs and OH-PCBs and research on the varied mechanisms that control these roles.
Collapse
Affiliation(s)
- Michael W. Duffel
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa, 52242, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa, 52242, United States
| |
Collapse
|
11
|
Wang S, Ballard TE, Christopher LJ, Foti RS, Gu C, Khojasteh SC, Liu J, Ma S, Ma B, Obach RS, Schadt S, Zhang Z, Zhang D. The Importance of Tracking "Missing" Metabolites: How and Why? J Med Chem 2023; 66:15586-15612. [PMID: 37769129 DOI: 10.1021/acs.jmedchem.3c01293] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Technologies currently employed to find and identify drug metabolites in complex biological matrices generally yield results that offer a comprehensive picture of the drug metabolite profile. However, drug metabolites can be missed or are captured only late in the drug development process. This could be due to a variety of factors, such as metabolism that results in partial loss of the molecule, covalent bonding to macromolecules, the drug being metabolized in specific human tissues, or poor ionization in a mass spectrometer. These scenarios often draw a great deal of attention from chemistry, safety assessment, and pharmacology. This review will summarize scenarios of missing metabolites, why they are missing, and associated uncovering strategies from deeper investigations. Uncovering previously missed metabolites can have ramifications in drug development with toxicological and pharmacological consequences, and knowledge of these can help in the design of new drugs.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - T Eric Ballard
- Takeda Development Center Americas, Inc., 35 Landsdowne St, Cambridge, Massachusetts 02139, United States
| | - Lisa J Christopher
- Department of Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Robert S Foti
- Preclinical Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Chungang Gu
- Drug Metabolism and Pharmacokinetics, Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Joyce Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shuguang Ma
- Drug Metabolism and Pharmacokinetics, Pliant Therapeutics, 260 Littlefield Avenue, South San Francisco, California 94080, United States
| | - Bin Ma
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - R Scott Obach
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Simone Schadt
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacher Strasse 124, 4070 Basel, Switzerland
| | - Zhoupeng Zhang
- DMPK Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Donglu Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
12
|
Marchak A, Neilson KM, Majumdar HD, Yamauchi K, Klein SL, Moody SA. The sulfotransferase XB5850668.L is required to apportion embryonic ectodermal domains. Dev Dyn 2023; 252:1407-1427. [PMID: 37597164 PMCID: PMC10842325 DOI: 10.1002/dvdy.648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/08/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Members of the sulfotransferase superfamily (SULT) influence the activity of a wide range of hormones, neurotransmitters, metabolites and xenobiotics. However, their roles in developmental processes are not well characterized even though they are expressed during embryogenesis. We previously found in a microarray screen that Six1 up-regulates LOC100037047, which encodes XB5850668.L, an uncharacterized sulfotransferase. RESULTS Since Six1 is required for patterning the embryonic ectoderm into its neural plate, neural crest, preplacodal and epidermal domains, we used loss- and gain-of function assays to characterize the role of XB5850668.L during this process. Knockdown of endogenous XB5850668.L resulted in the reduction of epidermal, neural crest, cranial placode and otic vesicle gene expression domains, concomitant with neural plate expansion. Increased levels had minimal effects, but infrequently expanded neural plate and neural crest gene domains, and infrequently reduced cranial placode and otic vesicle gene domains. Mutation of two key amino acids in the sulfotransferase catalytic domain required for PAPS binding and enzymatic activity tended to reduce the effects of overexpressing the wild-type protein. CONCLUSIONS Our analyses indicates that XB5850668.L is a member of the SULT2 family that plays important roles in patterning the embryonic ectoderm. Some aspects of its influence likely depend on sulfotransferase activity.
Collapse
Affiliation(s)
- Alexander Marchak
- Department of Anatomy and Cell Biology George Washington University School of Medicine and Health Sciences Washington, DC, USA
| | - Karen M. Neilson
- Department of Anatomy and Cell Biology George Washington University School of Medicine and Health Sciences Washington, DC, USA
| | - Himani D. Majumdar
- Department of Anatomy and Cell Biology George Washington University School of Medicine and Health Sciences Washington, DC, USA
| | - Kiyoshi Yamauchi
- Department of Biological Science Shizuoka University Shizuoka, Japan
| | - Steven L. Klein
- Department of Anatomy and Cell Biology George Washington University School of Medicine and Health Sciences Washington, DC, USA
| | - Sally A. Moody
- Department of Anatomy and Cell Biology George Washington University School of Medicine and Health Sciences Washington, DC, USA
| |
Collapse
|
13
|
Toth D, Dudas B, Miteva MA, Balog E. Role of Conformational Dynamics of Sulfotransferases SULT1A1 and SULT1A3 in Substrate Specificity. Int J Mol Sci 2023; 24:16900. [PMID: 38069221 PMCID: PMC10706399 DOI: 10.3390/ijms242316900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Sulfotransferases (SULTs) are phase II metabolizing enzymes catalyzing the sulfoconjugation from the co-factor 3'-Phosphoadenosine 5'-Phosphosulfate (PAPS) to a wide variety of endogenous compounds, drugs and natural products. Although SULT1A1 and SULT1A3 share 93% identity, SULT1A1, the most abundant SULT isoform in humans, exhibits a broad substrate range with specificity for small phenolic compounds, while SULT1A3 displays a high affinity toward monoamine neurotransmitters like dopamine. To elucidate the factors determining the substrate specificity of the SULT1 isoenzymes, we studied the dynamic behavior and structural specificities of SULT1A1 and SULT1A3 by using molecular dynamics (MD) simulations and ensemble docking of common and specific substrates of the two isoforms. Our results demonstrated that while SULT1A1 exhibits a relatively rigid structure by showing lower conformational flexibility except for the lip (loop L1), the loop L2 and the cap (L3) of SULT1A3 are extremely flexible. We identified protein residues strongly involved in the recognition of different substrates for the two isoforms. Our analyses indicated that being more specific and highly flexible, the structure of SULT1A3 has particularities in the binding site, which are crucial for its substrate selectivity.
Collapse
Affiliation(s)
- Daniel Toth
- CiTCoM UMR 8038 CNRS, INSERM U1268 MCTR, Université Paris Cité, 75006 Paris, France; (D.T.); (B.D.)
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Balint Dudas
- CiTCoM UMR 8038 CNRS, INSERM U1268 MCTR, Université Paris Cité, 75006 Paris, France; (D.T.); (B.D.)
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | - Maria A. Miteva
- CiTCoM UMR 8038 CNRS, INSERM U1268 MCTR, Université Paris Cité, 75006 Paris, France; (D.T.); (B.D.)
| | - Erika Balog
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
14
|
Cao Y, Bairam A, Liu MC, Uetrecht J. Potential Involvement of Sulfotransferase in the Mechanism of Lamotrigine-induced Skin Rash. Chem Res Toxicol 2023; 36:1711-1716. [PMID: 37922508 PMCID: PMC10664754 DOI: 10.1021/acs.chemrestox.3c00187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/20/2023] [Accepted: 10/10/2023] [Indexed: 11/05/2023]
Abstract
The mechanism of drug-induced skin rash is not well understood. Circumstantial evidence suggests that the covalent binding of a reactive metabolite is involved in the mechanism of most idiosyncratic drug reactions. However, there is a limited quantity of drug metabolizing enzymes in the skin, except for sulfotransferases. It is possible that some drugs are metabolized to reactive sulfate metabolites that are responsible for skin rashes. For example, nevirapine-induced skin rash involves metabolism of nevirapine to 12-hydroxy-nevirapine, which is further metabolized by sulfotransferase in the skin to a reactive benzylic sulfate that covalently binds to proteins. The working hypothesis is that lamotrigine, valdecoxib, and sertraline skin rashes involve the formation of reactive sulfate in the skin. Lamotrigine-N-oxide, hydroxy-valdecoxib, and hydroxy-sertraline were tested as substrates with known human sulfotransferases. Hydroxy-valdecoxib and the benzylic alcohol metabolite of sertraline were not substrates for human sulfotransferases. Therefore, this pathway is presumably not involved in the mechanism by which they cause skin rashes. In contrast, lamotrigine-N-oxide is a substrate for several human sulfotransferases and the sulfate is chemically reactive. Furthermore, lamotrigine-N-sulfate not only alkylates proteins as we described previously but also forms the sulfate of tyrosine, suggesting another possible mechanism for protein modification. This study has further added to the understanding of the potential of the sulfotransferase pathways and protein sulfation to play a role in drug-induced skin rash.
Collapse
Affiliation(s)
- Yanshan Cao
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada M5S 3M2
| | - Ahsan Bairam
- Department
of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, Ohio 43614, United States
| | - Ming-Cheh Liu
- Department
of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, Ohio 43614, United States
| | - Jack Uetrecht
- Leslie
Dan Faculty of Pharmacy and Faculty of Medicine, University of Toronto, Toronto, Canada M5S 3M2
| |
Collapse
|
15
|
Sato K, Yamauchi K, Ishihara A. Analysis of evolutionary and functional features of the bullfrog SULT1 family. Gen Comp Endocrinol 2023; 342:114349. [PMID: 37495023 DOI: 10.1016/j.ygcen.2023.114349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
We identified the bullfrog Rana catesbeiana sulfotransferase 1 (SULT1) family from the BLAST search tool of the public databases based on the SULT1 families of Nanorana parkeri, Xenopus laevis, and Xenopus tropicalis as queries, revealing the characteristics of the anuran SULT1 family. The results showed that the anuran SULT1 family comprises six subfamilies, four of which were related to the mammalian SULT1 subfamily. Additionally, the bullfrog has two SULT1Cc subfamily members that are consistent with the characteristics of the expanded Xenopus SULT1C subfamily. Several members of the bullfrog SULT1 family were suggested to play important roles in sulfation during metamorphosis. Among these, cDNAs encoding SULT1Cc1 and SULT1Y1 were cloned, and the sulfation activity was analyzed using recombinant proteins. The affinity for 2-naphthol and 3'-phosphoadenosine 5'-phosphosulfate (PAPS) and the enzymatic reaction rate were higher in SULT1Cc1 than in SULT1Y1. Both the enzymes showed inhibitory effect of many thyroid hormones (THs) analogs on the sulfation of 2-naphthol. The potency of sulfation activities of SULT1Cc1 and SULT1Y1 against T4 indicated their possible role in the intracellular T4 clearance during metamorphosis.
Collapse
Affiliation(s)
- Kosuke Sato
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| | - Kiyoshi Yamauchi
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| | - Akinori Ishihara
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| |
Collapse
|
16
|
Zhang J, Qiu Z, Zhang Y, Wang G, Hao H. Intracellular spatiotemporal metabolism in connection to target engagement. Adv Drug Deliv Rev 2023; 200:115024. [PMID: 37516411 DOI: 10.1016/j.addr.2023.115024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
The metabolism in eukaryotic cells is a highly ordered system involving various cellular compartments, which fluctuates based on physiological rhythms. Organelles, as the smallest independent sub-cell unit, are important contributors to cell metabolism and drug metabolism, collectively designated intracellular metabolism. However, disruption of intracellular spatiotemporal metabolism can lead to disease development and progression, as well as drug treatment interference. In this review, we systematically discuss spatiotemporal metabolism in cells and cell subpopulations. In particular, we focused on metabolism compartmentalization and physiological rhythms, including the variation and regulation of metabolic enzymes, metabolic pathways, and metabolites. Additionally, the intricate relationship among intracellular spatiotemporal metabolism, metabolism-related diseases, and drug therapy/toxicity has been discussed. Finally, approaches and strategies for intracellular spatiotemporal metabolism analysis and potential target identification are introduced, along with examples of potential new drug design based on this.
Collapse
Affiliation(s)
- Jingwei Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Zhixia Qiu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China; Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
17
|
Falany CN, Garcia PL, Hossain MI, van Waardenburg RCAM. Human cytosolic steroid sulfotransferases: Versatile and rapid activity assays. Methods Enzymol 2023; 689:332-352. [PMID: 37802577 DOI: 10.1016/bs.mie.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Conjugation of steroids and sterol compounds with a sulfonate group is a major pathway in the regulation of their activity, synthesis and excretion. Three human cytosolic sulfotransferases are highly involved in the sulfonation of sterol compounds. SULT1E1 has a low nM affinity for estrogen sulfonation and also conjugates non-aromatic steroids with a significantly lower affinity. SULT2A1 is responsible for the high levels of fetal and adult dehydroepiandrosterone (DHEA) sulfate synthesis in the adrenal gland as well as many 3α and 3ß-hydroxysteroids and bile acids. SULT2B1b is responsible for the majority of cholesterol sulfation in tissues as well as conjugating 3ß-hydroxysteroids. Although there are multiple methods for assaying cytosolic SULT activity, two relatively simple, rapid and versatile assays for steroid sulfonation are described. The first method utilizes radiolabeled substrates and organic solvent extraction to isolate the radiolabeled product from the aqueous phase. The second assay utilizes 35S-3'-phosphoadenosine 5'-phosphosulfate (PAPS) to generate 35S-conjugated products that are resolved by thin layer chromatography. Both assays useful in situations requiring measurement of SULT activity in a timely manner.
Collapse
Affiliation(s)
- Charles N Falany
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Volker Hall, University Boulevard, Birmingham, AL, United States.
| | - Patrick L Garcia
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Volker Hall, University Boulevard, Birmingham, AL, United States
| | - M Iqbal Hossain
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Volker Hall, University Boulevard, Birmingham, AL, United States
| | - Robert C A M van Waardenburg
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Volker Hall, University Boulevard, Birmingham, AL, United States
| |
Collapse
|
18
|
Ghosh D. Structures and functions of human placental aromatase and steroid sulfatase, two key enzymes in estrogen biosynthesis. Steroids 2023; 196:109249. [PMID: 37207843 DOI: 10.1016/j.steroids.2023.109249] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/21/2023]
Abstract
Cytochrome P450 aromatase (AROM) and steroid sulfatase (STS) are the two key enzymes for the biosynthesis of estrogens in human, and maintenance of the critical balance between androgens and estrogens. Human AROM, an integral membrane protein of the endoplasmic reticulum, is a member of the cytochrome P450 superfamily. It is the only enzyme to catalyze the conversion of androgens with non-aromatic A-rings to estrogens characterized by the aromatic A-ring. Human STS, also an integral membrane protein of the endoplasmic reticulum, is a Ca2+-dependent enzyme that catalyzes the hydrolysis of sulfate esters of estrone and dehydroepiandrosterone to the unconjugated steroids, the precursors of the most potent forms of estrogens and androgens, namely, 17β-estradiol, 16α,17β-estriol, testosterone and dihydrotestosterone. Expression of these steroidogenic enzymes locally within organs and tissues of the endocrine, reproductive, and central nervous systems is the key for maintaining high levels of the reproductive steroids. The enzymes have been drug targets for the prevention and treatment of diseases associated with steroid hormone excesses, especially in breast, endometrial and prostate malignancies. Both enzymes have been the subjects of vigorous research for the past six decades. In this article, we review the important findings on their structure-function relationships, specifically, the work that began with unravelling of the closely guarded secrets, namely, the 3-D structures, active sites, mechanisms of action, origins of substrate specificity and the basis of membrane integration. Remarkably, these studies were conducted on the enzymes purified in their pristine forms from human placenta, the discarded and their most abundant source. The purification, assay, crystallization, and structure determination methodologies are described. Also reviewed are their functional quaternary organizations, post-translational modifications and the advancements made in the structure-guided inhibitor design efforts. Outstanding questions that still remain open are summarized in closing.
Collapse
Affiliation(s)
- Debashis Ghosh
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States.
| |
Collapse
|
19
|
Zhang L, Song W, Li T, Mu Y, Zhang P, Hu J, Lin H, Zhang J, Gao H, Zhang L. Redox switching mechanism of the adenosine 5'-phosphosulfate kinase domain (APSK2) of human PAPS synthase 2. Structure 2023; 31:826-835.e3. [PMID: 37207644 DOI: 10.1016/j.str.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/24/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023]
Abstract
Adenosine 5'-phosphosulfate kinase (APSK) catalyzes the rate-limiting biosynthetic step of the universal sulfuryl donor 3'-phosphoadenosine-5'-phosphosulfate (PAPS). In higher eukaryotes, the APSK and ATP sulfurylase (ATPS) domains are fused in a single chain. Humans have two bifunctional PAPS synthetase isoforms: PAPSS1 with the APSK1 domain and PAPSS2 containing the APSK2 domain. APSK2 displays a distinct higher activity for PAPSS2-mediated PAPS biosynthesis during tumorigenesis. How APSK2 achieves excess PAPS production has remained unclear. APSK1 and APSK2 lack the conventional redox-regulatory element present in plant PAPSS homologs. Here we elucidate the dynamic substrate recognition mechanism of APSK2. We discover that APSK1 contains a species-specific Cys-Cys redox-regulatory element that APSK2 lacks. The absence of this element in APSK2 enhances its enzymatic activity for excess PAPS production and promotes cancer development. Our results help to understand the roles of human PAPSSs during cell development and may facilitate PAPSS2-specific drug discovery.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenyan Song
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tingting Li
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yajuan Mu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Pan Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingyan Hu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Houwen Lin
- Research Centre for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Jian Zhang
- Medicinal Bioinformatics Center, Shanghai JiaoTong University School of Medicine, Shanghai China
| | - Hai Gao
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Liang Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
20
|
Yu W, Zhou R, Li N, Lei ZC, Guo D, Peng F, Li Y, Bai X, Feng S, Wang Y, He J, Yin S, Zeng X, He L, Gao Y, Li M, Guo YR, Liu K, Wang Y. Histone tyrosine sulfation by SULT1B1 regulates H4R3me2a and gene transcription. Nat Chem Biol 2023; 19:855-864. [PMID: 36805701 DOI: 10.1038/s41589-023-01267-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 01/16/2023] [Indexed: 02/22/2023]
Abstract
Tyrosine sulfation is a common posttranslational modification in mammals. To date, it has been thought to be limited to secreted and transmembrane proteins, but little is known about tyrosine sulfation on nuclear proteins. Here we report that SULT1B1 is a histone sulfotransferase that can sulfate the tyrosine 99 residue of nascent histone H3 in cytosol. The sulfated histone H3 can be transported into the nucleus and majorly deposited in the promoter regions of genes in chromatin. While the H3Y99 residue is buried inside octameric nucleosome, dynamically regulated subnucleosomal structures provide chromatin-H3Y99sulf the opportunity of being recognized and bound by PRMT1, which deposits H4R3me2a in chromatin. Disruption of H3Y99sulf reduces PRMT1 binding to chromatin, H4R3me2a level and gene transcription. These findings reveal the mechanisms underlying H3Y99 sulfation and its cross-talk with H4R3me2a to regulate gene transcription. This study extends the spectrum of tyrosine sulfation on nuclear proteins and the repertoire of histone modifications regulating chromatin functions.
Collapse
Affiliation(s)
- Weixing Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runxin Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Chao Lei
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dingyuan Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Peng
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Bai
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Center for Research Equipment and Facilities, Westlake University, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Shan Feng
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Center for Research Equipment and Facilities, Westlake University, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie He
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sibi Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Leya He
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Gao
- Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yusong R Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Yugang Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
21
|
Abstract
Cytochrome P450 aromatase (AROM) and steroid (estrone (E1)/dehydroepiandrosterone (DHEA)) sulfatase (STS) are the two key enzymes responsible for the biosynthesis of estrogens in human, and maintenance of the critical balance between androgens and estrogens. Human AROM, an integral membrane protein of the endoplasmic reticulum, is a member of the Fe-heme containing cytochrome P450 superfamily having a cysteine thiolate as the fifth Fe-coordinating ligand. It is the only enzyme known to catalyze the conversion of androgens with non-aromatic A-rings to estrogens characterized by the aromatic A-ring. Human STS, also an integral membrane protein of the endoplasmic reticulum, is a Ca2+-dependent enzyme that catalyzes the hydrolysis of sulfate esters of E1 and DHEA to yield the respective unconjugated steroids, the precursors of the most potent forms of estrogens and androgens, namely, 17β-estradiol (E2), 16α,17β-estriol (E3), testosterone (TST) and dihydrotestosterone (DHT). Expression of these steroidogenic enzymes locally within various organs and tissues of the endocrine, reproductive, and central nervous systems is the key for maintaining high levels of the reproductive steroids. Thus, the enzymes have been drug targets for the prevention and treatment of diseases associated with steroid hormone excesses, especially in breast and prostate malignancies and endometriosis. Both AROM and STS have been the subjects of vigorous research for the past six decades. In this article, we review the procedures of their extraction and purification from human term placenta are described in detail, along with the activity assays.
Collapse
Affiliation(s)
- Debashis Ghosh
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, United States.
| |
Collapse
|
22
|
Soprano LL, Ferrero MR, Jacobs T, Couto AS, Duschak VG. Hallmarks of the relationship between host and Trypanosoma cruzi sulfated glycoconjugates along the course of Chagas disease. Front Cell Infect Microbiol 2023; 13:1028496. [PMID: 37256110 PMCID: PMC10225527 DOI: 10.3389/fcimb.2023.1028496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/17/2023] [Indexed: 06/01/2023] Open
Abstract
American Trypanosomiasis or Chagas disease (ChD), a major problem that is still endemic in large areas of Latin America, is caused by Trypanosoma cruzi. This agent holds a major antigen, cruzipain (Cz). Its C-terminal domain (C-T) is retained in the glycoprotein mature form and bears several post-translational modifications. Glycoproteins containing sulfated N-linked oligosaccharides have been mostly implicated in numerous specific procedures of molecular recognition. The presence of sulfated oligosaccharides was demonstrated in Cz, also in a minor abundant antigen with serine-carboxypeptidase (SCP) activity, as well as in parasite sulfatides. Sulfate-bearing glycoproteins in Trypanosomatids are targets of specific immune responses. T. cruzi chronically infected subjects mount specific humoral immune responses to sulfated Cz. Unexpectedly, in the absence of infection, mice immunized with C-T, but not with sulfate-depleted C-T, showed ultrastructural heart anomalous pathological effects. Moreover, the synthetic anionic sugar conjugate GlcNAc6SO3-BSA showed to mimic the N-glycan-linked sulfated epitope (sulfotope) humoral responses that natural Cz elicits. Furthermore, it has been reported that sulfotopes participate via the binding of sialic acid Ig-like-specific lectins (Siglecs) to sulfosialylated glycoproteins in the immunomodulation by host-parasite interaction as well as in the parasite infection process. Strikingly, recent evidence involved Cz-sulfotope-specific antibodies in the immunopathogenesis and infection processes during the experimental ChD. Remarkably, sera from chronically T. cruzi-infected individuals with mild disease displayed higher levels of IgG2 antibodies specific for sulfated glycoproteins and sulfatides than those with more severe forms of the disease, evidencing that T. cruzi sulfotopes are antigenic independently of the sulfated glycoconjugate type. Ongoing assays indicate that antibodies specific for sulfotopes might be considered biomarkers of human cardiac ChD progression, playing a role as predictors of stability from the early mild stages of chronic ChD.
Collapse
Affiliation(s)
- Luciana L. Soprano
- Area of Protein Biochemistry and Parasite Glycobiology, Research Department National Institute of Parasitology (INP)”Dr. Mario Fatala Chaben”, National Administration of Health Institutes (ANLIS)-Malbrán, National Health Department, National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Maximiliano R. Ferrero
- Max-Planck Heart and Lung Laboratory, Research Institute in Biomedicine in Buenos Aires (IBioBA), Argentine-Department of Internal Medicine II, University Medical Center Giessen and Marburg, Giessen, Germany
| | - Thomas Jacobs
- Immunology Department, Bernhard Notch Institute of Tropical Medicine, Hamburg, Germany
| | - Alicia S. Couto
- Faculty in Exact and Natural Sciences (FCEN), Chemical Organic Department-National Council of Scientific and Technical Research (CONICET), Center of CarboHydrates (CHIHIDECAR), University of Buenos Aires, Buenos Aires, Argentina
| | - Vilma G. Duschak
- Area of Protein Biochemistry and Parasite Glycobiology, Research Department National Institute of Parasitology (INP)”Dr. Mario Fatala Chaben”, National Administration of Health Institutes (ANLIS)-Malbrán, National Health Department, National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| |
Collapse
|
23
|
Giampaoli O, Ieno C, Sciubba F, Spagnoli M, Miccheli A, Tomassini A, Aureli W, Fattorini L. Metabolic Biomarkers of Red Beetroot Juice Intake at Rest and after Physical Exercise. Nutrients 2023; 15:2026. [PMID: 37432172 DOI: 10.3390/nu15092026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Red beetroot is known to be a health-promoting food. However, little attention is placed on intestinal bioactive compound absorption. The aim of the study was to assess the urinary red beetroot juice (RBJ) intake biomarkers and possible differences in RBJ's micronutrient absorption at rest or after physical exercise. METHODS This is a three-armed, single-blind study, involving seven healthy volunteers which were randomly divided into three groups and alternatively assigned to three experimental sessions: RBJ intake at rest, RBJ intake with physical activity, and placebo intake with physical activity. For each session, urine samples were collected before and 120, 180, and 240 min after the intake of RBJ or placebo. The same sampling times were employed for the experimental session at rest. The RBJ metabolic composition was also characterized to identify the urinary biomarkers derived from the intake. RESULTS 4-methylpyridine-2-carboxylic acid, dopamine-3-O-sulfate, glutamine, and 3-hydroxyisobutyrate were identified as RBJ intake biomarkers. Physical activity significantly increased only the dopamine-3-O-sulfate excretion 120 min after RBJ intake. CONCLUSIONS Urinary dopamine-3-O-sulfate is related to RBJ dopamine content, while 4-methylpyridine-2-carboxylic acid is a betanin or betalamic acid catabolite. The different excretions of these metabolites following physical activity suggest a possible effect on the RBJ uptake depending on different transport processes through the mucosa, namely diffusion-mediated transport for dopamine and saturable transcellular transport for betalamic acid derivatives. These results open new perspectives in improving the absorption of natural bioactive molecules through physical activity.
Collapse
Affiliation(s)
- Ottavia Giampaoli
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185 Rome, Italy
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | - Cristian Ieno
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Fabio Sciubba
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185 Rome, Italy
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | - Mariangela Spagnoli
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185 Rome, Italy
- Department of Occupational Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00078 Rome, Italy
| | - Alfredo Miccheli
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, 00185 Rome, Italy
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | - Alberta Tomassini
- R&D Aureli Mario S. S. Agricola, Via Mario Aureli 7, 67050 Ortucchio, Italy
| | - Walter Aureli
- R&D Aureli Mario S. S. Agricola, Via Mario Aureli 7, 67050 Ortucchio, Italy
| | - Luigi Fattorini
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
24
|
Krausová M, Braun D, Buerki-Thurnherr T, Gundacker C, Schernhammer E, Wisgrill L, Warth B. Understanding the Chemical Exposome During Fetal Development and Early Childhood: A Review. Annu Rev Pharmacol Toxicol 2023; 63:517-540. [PMID: 36202091 DOI: 10.1146/annurev-pharmtox-051922-113350] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Early human life is considered a critical window of susceptibility to external exposures. Infants are exposed to a multitude of environmental factors, collectively referred to as the exposome. The chemical exposome can be summarized as the sum of all xenobiotics that humans are exposed to throughout a lifetime. We review different exposure classes and routes that impact fetal and infant metabolism and the potential toxicological role of mixture effects. We also discuss the progress in human biomonitoring and present possiblemodels for studying maternal-fetal transfer. Data gaps on prenatal and infant exposure to xenobiotic mixtures are identified and include natural biotoxins, in addition to commonly reported synthetic toxicants, to obtain a more holistic assessment of the chemical exposome. We highlight the lack of large-scale studies covering a broad range of xenobiotics. Several recommendations to advance our understanding of the early-life chemical exposome and the subsequent impact on health outcomes are proposed.
Collapse
Affiliation(s)
- Magdaléna Krausová
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria; , ,
| | - Dominik Braun
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria; , ,
| | - Tina Buerki-Thurnherr
- Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles Biology Interactions, St. Gallen, Switzerland;
| | - Claudia Gundacker
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria; .,Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria
| | - Eva Schernhammer
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria.,Center for Public Health, Department of Epidemiology, Medical University of Vienna, Vienna, Austria; .,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Lukas Wisgrill
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria.,Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria;
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria; , , .,Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria
| |
Collapse
|
25
|
Kondo M, Ikenaka Y, Nakayama SMM, Kawai YK, Mizukawa H, Mitani Y, Nomyama K, Tanabe S, Ishizuka M. Sulfotransferases (SULTs), enzymatic and genetic variation in Carnivora: Limited sulfation capacity in pinnipeds. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109476. [PMID: 36182081 DOI: 10.1016/j.cbpc.2022.109476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/13/2022] [Accepted: 09/25/2022] [Indexed: 10/14/2022]
Abstract
Wild carnivorans are one of the most important species due to their high positions in the food chain. They are also highly affected by numerous environmental contaminants through bioaccumulation and biomagnification. Xenobiotic metabolism is a significant chemical defense system from xenobiotics because it degrades the activity of a wide range of chemicals, generally into less active forms, resulting in their deactivation. Sulfotransferases (SULTs) are one of the most important xenobiotic metabolic enzymes, which catalyze the sulfonation of a variety of endogenous and exogenous chemicals, such as hormones, neurotransmitters, and a wide range of xenobiotic compounds. Although SULTs are of such high importance, little research has focused on these enzymes in wild carnivorans. In this study, we clarified the genetic properties of SULTs in a wide range of mammals, focusing on carnivorans, using in silico genetic analyses. We found genetic deficiencies of SULT1E1 and SULT1D1 isoforms in all pinnipeds analyzed and nonsense mutations in SULT1Cs in several carnivorans including pinnipeds. We further investigated the enzymatic activity of SULT1E1 in vitro using liver cytosols from pinnipeds. Using a SULT1E1 probe substrate, we found highly limited estradiol sulfonation in pinnipeds, whereas other mammals had relatively high sulfation. These results suggest that pinnipeds have severely or completely absent SULT1E1 activity, which importantly catalyzes the metabolism of estrogens, drugs, and environmental toxins. This further implies a high susceptibility to a wide range of xenobiotics in these carnivorans, which are constantly exposed to environmental chemicals throughout their lifetime.
Collapse
Affiliation(s)
- Mitsuki Kondo
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan(1)
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan(1); Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Japan; One Health Research Center, Hokkaido University, Japan
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan(1); Biomedical Sciences Department, School of Veterinary Medicine, The University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia
| | - Yusuke K Kawai
- Laboratory of Toxicology, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan(2)
| | - Hazuki Mizukawa
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Tarumi 3-5-7, Matsuyama 790-8566, Japan
| | - Yoko Mitani
- Field Science Center for Northern Biosphere, Hokkaido University, N11, W10, Kita-ku, Sapporo 060-0811, Japan(3)
| | - Kei Nomyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan(4)
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan(4)
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan(1).
| |
Collapse
|
26
|
Mei X, Gohal SA, Zhou CY, Liu MC. Sulfation of hyperoside by the human cytosolic sulfotransferases (SULTs): impact of genetic polymorphisms on hyperoside-sulfating activity of SULT1C4 allozymes. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:75-84. [PMID: 35249434 DOI: 10.1080/10286020.2022.2047030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to identify human cytosolic sulfotransferases (SULTs) that are capable of mediating hyperoside sulfation and examine the impact of genetic polymorphisms on their sulfating activity. Of the thirteen known human SULTs analyzed, five (1A1, 1A2, 1A3, 1C2, and 1C4) displayed sulfating activity toward hyperoside. Kinetic parameters of SULT1C4 that showed the strongest sulfating activity were determined. Ten SULT1C4 allozymes previously prepared were shown to display differential sulfating activities toward hyperoside, revealing clearly the functional impact of SULT1C4 genetic polymorphisms. These findings provided a robust biochemical foundation for further studies on the metabolism of hyperoside by sulfation.
Collapse
Affiliation(s)
- Xue Mei
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA
- School of Pharmacy, Institute of Material Medica, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Saud A Gohal
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Chun-Yang Zhou
- School of Pharmacy, Institute of Material Medica, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Ming-Cheh Liu
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| |
Collapse
|
27
|
Isvoran A, Peng Y, Ceauranu S, Schmidt L, Nicot AB, Miteva MA. Pharmacogenetics of human sulfotransferases and impact of amino acid exchange on Phase II drug metabolism. Drug Discov Today 2022; 27:103349. [PMID: 36096358 DOI: 10.1016/j.drudis.2022.103349] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/27/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022]
Abstract
Sulfotransferases (SULTs) are Phase II drug-metabolizing enzymes (DMEs) catalyzing the sulfation of a variety of endogenous compounds, natural products, and drugs. Various drugs, such as nonsteroidal anti-inflammatory drugs (NSAIDS) can inhibit SULTs, affecting drug-drug interactions. Several polymorphisms have been identified for SULTs that might be crucial for interindividual variability in drug response and toxicity or for increased disease risk. Here, we review current knowledge on non-synonymous single nucleotide polymorphisms (nsSNPs) of human SULTs, focusing on the coded SULT allozymes and molecular mechanisms explaining their variable activity, which is essential for personalized medicine. We discuss the structural and dynamic bases of key amino acid (AA) variants implicated in the impacts on drug metabolism in the case of SULT1A1, as revealed by molecular modeling approaches.
Collapse
Affiliation(s)
- Adriana Isvoran
- Department of Biology-Chemistry and Advanced Environmental Research Laboratories, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
| | - Yunhui Peng
- INSERM U1268 Medicinal Chemistry and Translational Research, CiTCoM UMR 8038 CNRS - Université Paris Cité, 75006 Paris, France
| | - Silvana Ceauranu
- Department of Biology-Chemistry and Advanced Environmental Research Laboratories, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
| | - Leon Schmidt
- Department of Biology-Chemistry and Advanced Environmental Research Laboratories, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
| | - Arnaud B Nicot
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France.
| | - Maria A Miteva
- INSERM U1268 Medicinal Chemistry and Translational Research, CiTCoM UMR 8038 CNRS - Université Paris Cité, 75006 Paris, France.
| |
Collapse
|
28
|
Xie C, Hu W, Gan L, Fu B, Zhao X, Tang D, Liao R, Ye L. Sulfation and Its Effect on the Bioactivity of Magnolol, the Main Active Ingredient of Magnolia Officinalis. Metabolites 2022; 12:870. [PMID: 36144273 PMCID: PMC9505486 DOI: 10.3390/metabo12090870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Magnolol, the main active ingredient of Magnolia officinalis, has been reported to display anti-inflammatory activity. Sulfation plays an important role in the metabolism of magnolol. The magnolol sulfated metabolite was identified by the ultra-performance liquid chromatography to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and a proton nuclear magnetic resonance (1H-NMR). The magnolol sulfation activity of seven major recombinant sulfotransferases (SULTs) isoforms (SULT1A1*1, SULT1A1*2, SULT1A2, SULT1A3, SULT1B1, SULT1E1, and SULT2A1) was analyzed. The metabolic profile of magnolol was investigated in liver S9 fractions from human (HLS9), rat (RLS9), and mouse (MLS9). The anti-inflammatory effects of magnolol and its sulfated metabolite were evaluated in RAW264.7 cells stimulated by lipopolysaccharide (LPS). Magnolol was metabolized into a mono-sulfated metabolite by SULTs. Of the seven recombinant SULT isoforms examined, SULT1B1 exhibited the highest magnolol sulfation activity. In liver S9 fractions from different species, the CLint value of magnolol sulfation in HLS9 (0.96 µL/min/mg) was similar to that in RLS9 (0.99 µL/min/mg) but significantly higher than that in MLS9 (0.30 µL/min/mg). Magnolol and its sulfated metabolite both significantly downregulated the production of inflammatory mediators (IL-1β, IL-6 and TNF-α) stimulated by LPS (p < 0.001). These results indicated that SULT1B1 was the major enzyme responsible for the sulfation of magnolol and that the magnolol sulfated metabolite exhibited potential anti-inflammatory effects.
Collapse
Affiliation(s)
- Cong Xie
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wanyu Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lili Gan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bingxuan Fu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaojie Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Dafu Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Rongxin Liao
- TCM-Integrated Hospital, Southern Medical University, Guangzhou 510315, China
| | - Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- TCM-Integrated Hospital, Southern Medical University, Guangzhou 510315, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
29
|
Pedersen LC, Yi M, Pedersen LG, Kaminski AM. From Steroid and Drug Metabolism to Glycobiology, Using Sulfotransferase Structures to Understand and Tailor Function. Drug Metab Dispos 2022; 50:1027-1041. [PMID: 35197313 PMCID: PMC10753775 DOI: 10.1124/dmd.121.000478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022] Open
Abstract
Sulfotransferases are ubiquitous enzymes that transfer a sulfo group from the universal cofactor donor 3'-phosphoadenosine 5'-phosphosulfate to a broad range of acceptor substrates. In humans, the cytosolic sulfotransferases are involved in the sulfation of endogenous compounds such as steroids, neurotransmitters, hormones, and bile acids as well as xenobiotics including drugs, toxins, and environmental chemicals. The Golgi associated membrane-bound sulfotransferases are involved in post-translational modification of macromolecules from glycosaminoglycans to proteins. The sulfation of small molecules can have profound biologic effects on the functionality of the acceptor, including activation, deactivation, or enhanced metabolism and elimination. Sulfation of macromolecules has been shown to regulate a number of physiologic and pathophysiological pathways by enhancing binding affinity to regulatory proteins or binding partners. Over the last 25 years, crystal structures of these enzymes have provided a wealth of information on the mechanisms of this process and the specificity of these enzymes. This review will focus on the general commonalities of the sulfotransferases, from enzyme structure to catalytic mechanism as well as providing examples into how structural information is being used to either design drugs that inhibit sulfotransferases or to modify the enzymes to improve drug synthesis. SIGNIFICANCE STATEMENT: This manuscript honors Dr. Masahiko Negishi's contribution to the understanding of sulfotransferase mechanism, specificity, and roles in biology by analyzing the crystal structures that have been solved over the last 25 years.
Collapse
Affiliation(s)
- Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory (L.C.P., L.G.P., A.M.K.) and Reproductive and Developmental Biology Laboratory (M.Y.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (L.G.P.)
| | - MyeongJin Yi
- Genome Integrity and Structural Biology Laboratory (L.C.P., L.G.P., A.M.K.) and Reproductive and Developmental Biology Laboratory (M.Y.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (L.G.P.)
| | - Lee G Pedersen
- Genome Integrity and Structural Biology Laboratory (L.C.P., L.G.P., A.M.K.) and Reproductive and Developmental Biology Laboratory (M.Y.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (L.G.P.)
| | - Andrea M Kaminski
- Genome Integrity and Structural Biology Laboratory (L.C.P., L.G.P., A.M.K.) and Reproductive and Developmental Biology Laboratory (M.Y.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (L.G.P.)
| |
Collapse
|
30
|
Igreja C, Sommer RJ. The Role of Sulfation in Nematode Development and Phenotypic Plasticity. Front Mol Biosci 2022; 9:838148. [PMID: 35223994 PMCID: PMC8869759 DOI: 10.3389/fmolb.2022.838148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 12/25/2022] Open
Abstract
Sulfation is poorly understood in most invertebrates and a potential role of sulfation in the regulation of developmental and physiological processes of these organisms remains unclear. Also, animal model system approaches did not identify many sulfation-associated mechanisms, whereas phosphorylation and ubiquitination are regularly found in unbiased genetic and pharmacological studies. However, recent work in the two nematodes Caenorhabditis elegans and Pristionchus pacificus found a role of sulfatases and sulfotransferases in the regulation of development and phenotypic plasticity. Here, we summarize the current knowledge about the role of sulfation in nematodes and highlight future research opportunities made possible by the advanced experimental toolkit available in these organisms.
Collapse
Affiliation(s)
- Catia Igreja
- *Correspondence: Catia Igreja, ; Ralf J. Sommer,
| | | |
Collapse
|
31
|
Vansell NR. Mechanisms by Which Inducers of Drug Metabolizing Enzymes Alter Thyroid Hormones in Rats. Drug Metab Dispos 2022; 50:508-517. [DOI: 10.1124/dmd.121.000498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022] Open
|
32
|
Järvinen E, Deng F, Kiander W, Sinokki A, Kidron H, Sjöstedt N. The Role of Uptake and Efflux Transporters in the Disposition of Glucuronide and Sulfate Conjugates. Front Pharmacol 2022; 12:802539. [PMID: 35095509 PMCID: PMC8793843 DOI: 10.3389/fphar.2021.802539] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Glucuronidation and sulfation are the most typical phase II metabolic reactions of drugs. The resulting glucuronide and sulfate conjugates are generally considered inactive and safe. They may, however, be the most prominent drug-related material in the circulation and excreta of humans. The glucuronide and sulfate metabolites of drugs typically have limited cell membrane permeability and subsequently, their distribution and excretion from the human body requires transport proteins. Uptake transporters, such as organic anion transporters (OATs and OATPs), mediate the uptake of conjugates into the liver and kidney, while efflux transporters, such as multidrug resistance proteins (MRPs) and breast cancer resistance protein (BCRP), mediate expulsion of conjugates into bile, urine and the intestinal lumen. Understanding the active transport of conjugated drug metabolites is important for predicting the fate of a drug in the body and its safety and efficacy. The aim of this review is to compile the understanding of transporter-mediated disposition of phase II conjugates. We review the literature on hepatic, intestinal and renal uptake transporters participating in the transport of glucuronide and sulfate metabolites of drugs, other xenobiotics and endobiotics. In addition, we provide an update on the involvement of efflux transporters in the disposition of glucuronide and sulfate metabolites. Finally, we discuss the interplay between uptake and efflux transport in the intestine, liver and kidneys as well as the role of transporters in glucuronide and sulfate conjugate toxicity, drug interactions, pharmacogenetics and species differences.
Collapse
Affiliation(s)
- Erkka Järvinen
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Feng Deng
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wilma Kiander
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Alli Sinokki
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Heidi Kidron
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
33
|
Huang H, Lan BD, Zhang YJ, Fan XJ, Hu MC, Qin GQ, Wang FG, Wu Y, Zheng T, Liu JH. Inhibition of Human Sulfotransferases by Phthalate Monoesters. Front Endocrinol (Lausanne) 2022; 13:868105. [PMID: 35528018 PMCID: PMC9072656 DOI: 10.3389/fendo.2022.868105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the inhibition of human important phase II metabolic enzyme sulfotransferases (SULTs) by phthalate monoesters, which are important metabolites of phthalate esters (PAEs). METHOD Recombinant SULT-catalyzed metabolism of p-nitrophenol (PNP) was employed as the probe reactions of SULTs to investigate the inhibition of 8 kinds of phthalate monoesters towards SULT isoforms. An in vitro incubation system was utilized for preliminary screening, and 100 μM of phthalate monoesters was used. Inhibition kinetics were carried out to determine the inhibition of SULTs by phthalate monoesters. RESULT Multiple phthalate monoesters have been demonstrated to exert strong inhibition potential towards SULT1A1, SULT1B1, and SULT1E1, and no significant inhibition of phthalate monoesters towards SULT1A3 was found. The activity of SULT1A1 was strongly inhibited by mono-hexyl phthalate (MHP), mono-octyl phthalate (MOP), mono-benzyl phthalate (MBZP), and mono-ethylhexyl phthalate (MEHP). Monobutyl phthalate (MBP), MHP, MOP, mono-cyclohexyl phthalate (MCHP), and MEHP significantly inhibited the activity of SULT1B1. MHP, MOP, and MEHP significantly inhibited the activity of SULT1E1. MOP was chosen as the representative phthalate monoester to determine the inhibition kinetic parameters (Ki) towards SULT1B1 and SULT1E1. The inhibition kinetic parameters (Ki) were calculated to be 2.23 μM for MOP-SULT1B1 and 5.54 μM for MOP-SULT1E1. In silico docking method was utilized to understand the inhibition mechanism of SULT1B1 by phthalate monoesters. CONCLUSIONS All these information will be beneficial for understanding the risk of phthalate monoester exposure from a new perspective.
Collapse
Affiliation(s)
- Hui Huang
- Department of Cardiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Bei-Di Lan
- Department of CardioMetabolic Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yu-Jing Zhang
- Department of Cardiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiao-Juan Fan
- Department of CardioMetabolic Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Min-Cui Hu
- Tianjin Life Science Research Center, Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Guo-Qiang Qin
- Human Resources Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Fei-Ge Wang
- Human Resources Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yue Wu
- Department of CardioMetabolic Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tao Zheng
- Department of CardioMetabolic Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Tao Zheng, ; Jun-Hui Liu,
| | - Jun-Hui Liu
- Department of CardioMetabolic Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Tao Zheng, ; Jun-Hui Liu,
| |
Collapse
|
34
|
Maiti S, MaitiDutta S, Chen G. Regulations of expressions of rat/human sulfotransferases by anticancer drug, nolatrexed, and micronutrients. Anticancer Drugs 2022; 33:e525-e533. [PMID: 34387600 DOI: 10.1097/cad.0000000000001155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cancer is related to the cellular proliferative state. Increase in cell-cycle regulatory function augments cellular folate pool. This pathway is therapeutically targeted. A number of drugs influences this metabolism, that is, folic acid, folinic acid, nolatrexed, and methotrexate. Our previous study showed methotrexate influences on rat/human sulfotransferases. Present study explains the effect of nolatrexed (widely used in different cancers) and some micronutrients on the expressions of rat/human sulfotransferases. Female Sprague-Dawley rats were treated with nolatrexed (01-100 mg/kg) and rats of both sexes were treated to folic acid (100, 200, or 400 mg/kg) for 2-weeks and their aryl sulfotransferase-IV (AST-IV; β-napthol sulfation) and sulfotransferase (STa; DHEA sulfation) activities, protein expression (western blot) and mRNA expression (RT-PCR) were tested. In human-cultured hepatocarcinoma (HepG2) cells nolatrexed (1 nM-1.2 mM) or folinic acid (10 nM-10 μM) were applied for 10 days. Folic acid (0-10 μM) was treated to HepG2 cells. PPST (phenol catalyzing), MPST (dopamine and monoamine), DHEAST (dehydroepiandrosterone and DHEA), and EST (estradiol sulfating) protein expressions (western-blot) were tested in HepG2 cells. Present results suggest that nolatrexed significantly increased sulfotransferases expressions in rat (protein, STa, F = 4.87, P < 0.05/mRNA, AST-IV, F = 6.702, P < 0.014; Student's t test, P < 0.01-0.05) and HepG2 cells. Folic acid increased sulfotransferases activity/protein in gender-dependant manner. Both folic and folinic acid increased several human sulfotransferases isoforms with varied level of significance (least or no increase at highest dose) in HepG2 cells pointing its dose-dependent multiphasic responses. The clinical importance of this study may be furthered in the verification of sulfation metabolism of several exogenous/endogenous molecules, drug-drug interaction and their influences on cancer pathophysiological processes. Further studies are necessary.
Collapse
Affiliation(s)
- Smarajit Maiti
- Cell and Molecular Therapeutics Laboratory, Department of Biochemistry and Biotechnology, Oriental Institute of Science and Technology
- Epidemiology and Human Health Division, Founder and Secretary, Agricure Biotech Research Society
| | - Sangita MaitiDutta
- Department of Biological Sciences, Midnapore City College, Midnapore, West Bengal, India
| | - Guangping Chen
- Venture I OSU Laboratory, Oklahoma Technology & Research Park, Innovation Way, Stillwater, Oklahoma, USA
| |
Collapse
|
35
|
Jia RY, Zhang ZP, Qin GQ, Zhang W, Yang K, Liu YZ, Jiang C, Fang ZZ. Inhibition of hydroxylated polychlorinated biphenyls (OH-PCBs) on sulfotransferases (SULTs). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118214. [PMID: 34740292 DOI: 10.1016/j.envpol.2021.118214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Polychlorinated biphenyls (PCBs) have been demonstrated as a kind of the persistent organic pollutants (POPs) that could exert complicated influences towards metabolism in human bodies. Since hydroxylated polychlorinated biphenyls (OH-PCBs) are important metabolites of PCBs, our study focuses on investigating the potential inhibitory capability of OH-PCBs on four human sulfotransferase (SULT) isoforms. P-nitrophenol (PNP) was utilized as nonselective probe substrate for this study, and recombinant SULT isoforms were utilized as the enzyme resources. Ultra-performance liquid chromatography (UPLC)-UV detecting system was used to analyze PNP and its metabolite PNP-sulfate. As result, 100 μM of most tested OH-PCBs significantly inhibited the activity of four SULT isoforms. Concentration-dependent inhibition of OH-PCBs towards SULTs was found, and half inhibition concentration values (IC50) of some inhibition processes were determined. Inhibition kinetics (inhibition kinetic type and parameters) were determined using 4'-OH-PCB106 as the representative OH-PCB, SULT1B1 and SULT1E1 as representative SULT isoforms. The inhibition kinetic parameters (Ki) were 1.73 μM and 1.81 μM for the inhibition of 4'-OH-PCB106 towards SULT1B1 and SULT1E1, respectively. In silico docking simulation was utilized to analyze the inhibition capability of 2'-OH-PCB5, 4'-OH-PCB9, 2'-OH-PCB12 towards SULT1A3.All these results obtained in this study are helpful for further understanding the toxicity of PCBs.
Collapse
Affiliation(s)
- Ruo-Yong Jia
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Zhi-Peng Zhang
- Department of Surgery, Peking University Third Hospital, Beijing, China
| | - Guo-Qiang Qin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Wei Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Kun Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yong-Zhe Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Zhong-Ze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China; National Demonstration Center for Experimental Preventive Medicine Education, Tianjin Medical University, Tianjin, 300070, China; Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China.
| |
Collapse
|
36
|
Lessigiarska I, Peng Y, Tsakovska I, Alov P, Lagarde N, Jereva D, Villoutreix BO, Nicot AB, Pajeva I, Pencheva T, Miteva MA. Computational Analysis of Chemical Space of Natural Compounds Interacting with Sulfotransferases. Molecules 2021; 26:molecules26216360. [PMID: 34770768 PMCID: PMC8588419 DOI: 10.3390/molecules26216360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/04/2023] Open
Abstract
The aim of this study was to investigate the chemical space and interactions of natural compounds with sulfotransferases (SULTs) using ligand- and structure-based in silico methods. An in-house library of natural ligands (hormones, neurotransmitters, plant-derived compounds and their metabolites) reported to interact with SULTs was created. Their chemical structures and properties were compared to those of compounds of non-natural (synthetic) origin, known to interact with SULTs. The natural ligands interacting with SULTs were further compared to other natural products for which interactions with SULTs were not known. Various descriptors of the molecular structures were calculated and analyzed. Statistical methods (ANOVA, PCA, and clustering) were used to explore the chemical space of the studied compounds. Similarity search between the compounds in the different groups was performed with the ROCS software. The interactions with SULTs were additionally analyzed by docking into different experimental and modeled conformations of SULT1A1. Natural products with potentially strong interactions with SULTs were outlined. Our results contribute to a better understanding of chemical space and interactions of natural compounds with SULT enzymes and help to outline new potential ligands of these enzymes.
Collapse
Affiliation(s)
- Iglika Lessigiarska
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.L.); (I.T.); (P.A.); (D.J.); (I.P.)
| | - Yunhui Peng
- INSERM U1268 “Medicinal Chemistry and Translational Research”, CiTCoM UMR 8038 CNRS—Université de Paris, 75006 Paris, France;
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Ivanka Tsakovska
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.L.); (I.T.); (P.A.); (D.J.); (I.P.)
| | - Petko Alov
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.L.); (I.T.); (P.A.); (D.J.); (I.P.)
| | - Nathalie Lagarde
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et Métiers, 2 Rue Conté, Hésam Université, 75003 Paris, France;
| | - Dessislava Jereva
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.L.); (I.T.); (P.A.); (D.J.); (I.P.)
| | | | - Arnaud B. Nicot
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, F-44000 Nantes, France;
| | - Ilza Pajeva
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.L.); (I.T.); (P.A.); (D.J.); (I.P.)
| | - Tania Pencheva
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.L.); (I.T.); (P.A.); (D.J.); (I.P.)
- Correspondence: (T.P.); (M.A.M.)
| | - Maria A. Miteva
- INSERM U1268 “Medicinal Chemistry and Translational Research”, CiTCoM UMR 8038 CNRS—Université de Paris, 75006 Paris, France;
- Correspondence: (T.P.); (M.A.M.)
| |
Collapse
|
37
|
Chen B, Tong X, Zhang X, Gui W, Ai G, Huang L, Ding D, Zhang J, Kang L. Sulfation modification of dopamine in brain regulates aggregative behavior of animals. Natl Sci Rev 2021; 9:nwab163. [PMID: 35530433 PMCID: PMC9072122 DOI: 10.1093/nsr/nwab163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
Behavioral plasticity and the underlying neuronal plasticity represent a fundamental capacity of animals to cope with environmental stimuli. Behavioral plasticity is controlled by complex molecular networks that act under different layers of regulation. While various molecules have been found to be involved in the regulation of plastic behaviors across species, less is known about how organisms orchestrate the activity of these molecules as part of a coherent behavioral response to varying environments. Here we discover a mechanism for the regulation of animal behavioral plasticity involving molecular sulfation in the brain, a modification of substrate molecules by sulfotransferase (ST)-catalyzed addition of a sulfonate group (SO3) from an obligate donor, 3′-phosphoadenosine 5′-phosphosulfate (PAPS) to the substrates. We investigated aggregation behaviors of migratory locusts, which are well-known for extreme phase change plasticity triggered by population density. The processes of PAPS biosynthesis acted efficiently on induction of locust behavioral transition: Inhibition of PAPS synthesis solicited a behavioral shift from gregarious to solitarious states; external PAPS dosage, by contrast, promoted aggregation in solitarious locusts. Genetic or pharmacological intervention in the sulfation catalyzation resulted into pronounced solitarizing effects. Analysis of substrate-specific STs suggests a widespread involvement of sulfated neurotransmitters in the behavioral response. Dopamine in the brain was finally identified to be actively sulfate conjugated, and the sulfate conjugation enhanced the free DA-mediated behavioral aggregation. Similar results in Caenorhabditis elegans and mice indicate that sulfation may be involved more broadly in the modulation of animal aggregation. These findings reveal a general mechanism that effectively regulates animal social-like behavioral plasticity, possibly through sulfation-mediated modification of neural networks.
Collapse
Affiliation(s)
- Bing Chen
- School of Life Science, Institutes of Life Science and Green Development, Hebei University, Baoding 071002, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiwen Tong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Xia Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wanying Gui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoming Ai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lihua Huang
- School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Ding Ding
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiangxu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Le Kang
- School of Life Science, Institutes of Life Science and Green Development, Hebei University, Baoding 071002, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
38
|
Xu X, Meng X, Zhang N, Jiang H, Ge H, Qian K, Wang J. The cytosolic sulfotransferase gene TcSULT1 is involved in deltamethrin tolerance and regulated by CncC in Tribolium castaneum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 177:104905. [PMID: 34301366 DOI: 10.1016/j.pestbp.2021.104905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/06/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
The sulfuryl transfer reaction catalyzed by cytosolic sulfotransferase (SULT) is one of the major conjugating pathways responsible for the detoxification and subsequent elimination of xenobiotics, however, functional characterization of insect SULTs is still limited. In this study, cDNA encoding a cytosolic sulfotransferase, named TcSULT1, was cloned from the red flour beetle, Tribolium castaneum. Sequence analysis revealed that TcSULT1 had the conserved signature sequences of SULTs, and shared moderate amino acid identities with Bombyx mori and Drosophila SULTs. Analysis of the transcription level showed that TcSULT1 was highly expressed in head, epidermis and malpighian tube, and upregulated at 4 h after exposure to deltamethrin. Knockdown of TcSULT1 significantly increased the susceptibility of beetles to deltamethrin. Both RNAi and dual-luciferase assay revealed that the transcription factor TcCncC regulates the expression of TcSULT1. These data provides insights into the function and regulatory mechanism of insect SULTs.
Collapse
Affiliation(s)
- Xin Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiangkun Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Nan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Heng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Huichen Ge
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
39
|
Schuler G. Steroid sulfates in domestic mammals and laboratory rodents. Domest Anim Endocrinol 2021; 76:106622. [PMID: 33765496 DOI: 10.1016/j.domaniend.2021.106622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 12/15/2022]
Abstract
Historically steroid sulfates have been considered predominantly as inactive metabolites. It was later discovered that by cleavage of the sulfate residue by steroid sulfatase (STS), they can be (re-)converted into active forms or into precursors for the local production of active steroids. This sulfatase pathway is now a very active field of research, which has gained considerable interest particularly in connection with the steroid metabolism of human steroid hormone-dependent cancer tissue. In comparison, there is much less information available on the occurrence of the sulfatase pathway in physiological settings, where the targeted uptake of steroid sulfates by specific transporters and their hydrolysis could serve to limit steroid effects to a subgroup of potentially steroid responsive cells. In humans, steroid sulfates of adrenal origin circulate in intriguingly high concentrations throughout most of life. Thus, ample substrate is available for the sulfatase pathway regardless of sex. However, the abundant adrenal output of steroid sulfates is a specific feature of select primates. Compared to humans, in our domestic mammals (dogs, cats, domestic ungulates) and laboratory rodents (mouse, rat) research into the biology of steroid sulfates is still in its infancy and information on the subject has so far been largely limited to punctual observations, which indicate considerable species-specific peculiarities. The aim of this overview is to provide a summary of the relevant information available in the above-mentioned species, predominantly taking into account data on concentrations of steroid sulfates in blood as well as the expression patterns and activities of relevant sulfotransferases and STS.
Collapse
Affiliation(s)
- G Schuler
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Faculty of Veterinary Medicine, Justus-Liebig-University, 35392 Giessen, Germany.
| |
Collapse
|
40
|
Metabolism of 2,3-Dehydrosilybin A and 2,3-Dehydrosilybin B: A Study with Human Hepatocytes and Recombinant UDP-Glucuronosyltransferases and Sulfotransferases. Antioxidants (Basel) 2021; 10:antiox10060954. [PMID: 34198653 PMCID: PMC8232340 DOI: 10.3390/antiox10060954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022] Open
Abstract
2,3-Dehydrosilybin A and 2,3-dehydrosilybin B are a pair of enantiomers formed by the oxidation of the natural flavonolignans silybin A and silybin B, respectively. However, the antioxidant activity of 2,3-dehydrosilybin molecules is much stronger than that of their precursors. Here, we investigated the biotransformation of pure 2,3-dehydrosilybin A and 2,3-dehydrosilybin B in isolated human hepatocytes, and we also aimed to identify human UDP-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs) with activity toward their respective enantiomers. After incubation with hepatocytes, both 2,3-dehydrosilybin A and 2,3-dehydrosilybin B were converted to hydroxyl derivatives, methylated hydroxyl derivatives, methyl derivatives, sulfates, and glucuronides. The products of direct conjugations predominated over those of oxidative metabolism, and glucuronides were the most abundant metabolites. Furthermore, we found that recombinant human UGTs 1A1, 1A3, 1A7, 1A8, 1A9, and 1A10 were capable of catalyzing the glucuronidation of both 2,3-dehydrosilybin A and 2,3-dehydrosilybin B. UGTs 1A1 and 1A7 showed the highest activity toward 2,3-dehydrosilybin A, and UGT1A9 showed the highest activity toward 2,3-dehydrosilybin B. The sulfation of 2,3-dehydrosilybin A and B was catalyzed by SULTs 1A1*1, 1A1*2, 1A2, 1A3, 1B1, 1C2, 1C4, and 1E1, of which SULT1A3 exhibited the highest activity toward both enantiomers. We conclude that 2,3-dehydrosilybin A and B are preferentially metabolized by conjugation reactions, and that several human UGT and SULT enzymes may play a role in these conjugations.
Collapse
|
41
|
Dhuria NV, Haro B, Kapadia A, Lobo KA, Matusow B, Schleiff MA, Tantoy C, Sodhi JK. Recent developments in predicting CYP-independent metabolism. Drug Metab Rev 2021; 53:188-206. [PMID: 33941024 DOI: 10.1080/03602532.2021.1923728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
As lead optimization efforts have successfully reduced metabolic liabilities due to cytochrome P450 (CYP)-mediated metabolism, there has been an increase in the frequency of involvement of non-CYP enzymes in the metabolism of investigational compounds. Although there have been numerous notable advancements in the characterization of non-CYP enzymes with respect to their localization, reaction mechanisms, species differences and identification of typical substrates, accurate prediction of non-CYP-mediated clearance, with a particular emphasis with the difficulties in accounting for any extrahepatic contributions, remains a challenge. The current manuscript comprehensively summarizes the recent advancements in the prediction of drug metabolism and the in vitro to in vitro extrapolation of clearance for substrates of non-CYP drug metabolizing enzymes.
Collapse
Affiliation(s)
- Nikhilesh V Dhuria
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bianka Haro
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Amit Kapadia
- California Poison Control Center, University of California San Francisco, San Diego, CA, USA
| | | | - Bernice Matusow
- Department of Drug Metabolism and Pharmacokinetics, Plexxikon Inc, Berkeley, CA, USA
| | - Mary A Schleiff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Christina Tantoy
- Department of Drug Metabolism and Pharmacokinetics, Plexxikon Inc, Berkeley, CA, USA
| | - Jasleen K Sodhi
- Department of Drug Metabolism and Pharmacokinetics, Plexxikon Inc, Berkeley, CA, USA.,Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
42
|
Mei X, Gohal SA, Alatwi ES, Hui Y, Yang C, Song Y, Zhou C, Liu MC. Sulfation of Quercitrin, Epicatechin and Rutin by Human Cytosolic Sulfotransferases (SULTs): Differential Effects of SULT Genetic Polymorphisms. PLANTA MEDICA 2021; 87:498-506. [PMID: 33572003 DOI: 10.1055/a-1351-0618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Radix Bupleuri is one of the most widely used herbal medicines in China for the treatment of fever, pain, and/or chronic inflammation. Quercitrin, epicatechin, and rutin, the flavonoids present in Radix Bupleuri, have been reported to display anti-inflammatory, antitumor, and antioxidant biological activities among others. Sulfation has been reported to play an important role in the metabolism of flavonoids. In this study, we aimed to systematically identify the human cytosolic sulfotransferase enzymes that are capable of catalyzing the sulfation of quercitrin, epicatechin, and rutin. Of the thirteen known human cytosolic sulfotransferases, three (cytosolic sulfotransferase 1A1, cytosolic sulfotransferase 1C2, and cytosolic sulfotransferase 1C4) displayed sulfating activity toward quercitrin, three (cytosolic sulfotransferase 1A1, cytosolic sulfotransferase 1A3, and cytosolic sulfotransferase 1C4) displayed sulfating activity toward epicatechin, and six (cytosolic sulfotransferase 1A1, cytosolic sulfotransferase 1A2, cytosolic sulfotransferase 1A3, cytosolic sulfotransferase 1B1, cytosolic sulfotransferase 1C4, and cytosolic sulfotransferase 1E1) displayed sulfating activity toward rutin. The kinetic parameters of the cytosolic sulfotransferases that showed the strongest sulfating activities were determined. To investigate the effects of genetic polymorphisms on the sulfation of quercitrin, epicatechin, and rutin, individual panels of cytosolic sulfotransferase allozymes previously prepared were analyzed and shown to display differential sulfating activities toward each of the three flavonoids. Taken together, these results provided a biochemical basis underlying the metabolism of quercitrin, epicatechin, and rutin through sulfation in humans.
Collapse
Affiliation(s)
- Xue Mei
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, USA
- School of Pharmacy, Institute of Material Medica, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Saud A Gohal
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, USA
| | - Eid S Alatwi
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, USA
| | - Ying Hui
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, USA
- Department of Obstetrics and Gynecology, Beijing Hospital, Beijing, China
| | - Chunyan Yang
- School of Pharmacy, Institute of Material Medica, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yongyan Song
- School of Basic Medical Science, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Chunyang Zhou
- School of Pharmacy, Institute of Material Medica, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ming-Cheh Liu
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH, USA
| |
Collapse
|
43
|
A simple method to measure sulfonation in man using paracetamol as probe drug. Sci Rep 2021; 11:9036. [PMID: 33907224 PMCID: PMC8079418 DOI: 10.1038/s41598-021-88393-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/25/2021] [Indexed: 11/26/2022] Open
Abstract
Sulfotransferase enzymes (SULT) catalyse sulfoconjugation of drugs, as well as endogenous mediators, gut microbiota metabolites and environmental xenobiotics. To address the limited evidence on sulfonation activity from clinical research, we developed a clinical metabolic phenotyping method using paracetamol as a probe substrate. Our aim was to estimate sulfonation capability of phenolic compounds and study its intraindividual variability in man. A total of 36 healthy adult volunteers (12 men, 12 women and 12 women on oral contraceptives) received paracetamol in a 1 g-tablet formulation on three separate occasions. Paracetamol and its metabolites were measured in plasma and spot urine samples using liquid chromatography-high resolution mass spectrometry. A metabolic ratio (Paracetamol Sulfonation Index—PSI) was used to estimate phenol SULT activity. PSI showed low intraindividual variability, with a good correlation between values in plasma and spot urine samples. Urinary PSI was independent of factors not related to SULT activity, such as urine pH or eGFR. Gender and oral contraceptive intake had no impact on PSI. Our SULT phenotyping method is a simple non-invasive procedure requiring urine spot samples, using the safe and convenient drug paracetamol as a probe substrate, and with low intraindividual coefficient of variation. Although it will not give us mechanistic information, it will provide us an empirical measure of an individual’s sulfonator status. To the best of our knowledge, our method provides the first standardised in vivo empirical measure of an individual’s phenol sulfonation capability and of its intraindividual variability. EUDRA-CT 2016-001395-29, NCT03182595 June 9, 2017.
Collapse
|
44
|
Yang L, Xin L, Shi J, Li W, Tian M, Hu Z, Peng Y, Zheng J. Metabolic Activation and Cytotoxicity of Labetalol Hydrochloride Mediated by Sulfotransferases. Chem Res Toxicol 2021; 34:1612-1618. [PMID: 33872499 DOI: 10.1021/acs.chemrestox.1c00060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Labetalol hydrochloride (LHCl), an α- and β-adrenoreceptor blocker, is widely used for the treatment of hypertension as well as angina pectoris. Previous reports have demonstrated the adverse events during clinical application of LHCl, such as liver injury and acute renal failure. The present study aimed to investigate metabolic activation of LHCl to initiate the elucidation of the mechanisms of its liver toxicity. One glutathione (GSH) conjugate was detected in rat and human primary hepatocytes as well as bile of rats after exposure to LHCl. The GSH conjugate was chemically synthesized and characterized by Q-TOF and 1H NMR. Pretreatment of 2,6-dichloro-4-nitrophenol (DCNP), a broad-spectrum sulfotransferase (SULT) inhibitor, significantly attenuated the formation of the GSH conjugate in LHCl-treated hepatocytes and animals, indicating the participation of SULTs in metabolic activation of LHCl. Moreover, pretreatment with DCNP displayed significant protection against the observed cytotoxicity in rat primary hepatocytes, which suggests a correlation of the bioactivation of LHCl mediated by SULTs with LHCl-induced hepatotoxicity.
Collapse
Affiliation(s)
- Lan Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Lihua Xin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Junzu Shi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Wei Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Min Tian
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Zixia Hu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| |
Collapse
|
45
|
Wang K, Chan YC, So PK, Liu X, Feng L, Cheung WT, Lee SST, Au SWN. Structure of mouse cytosolic sulfotransferase SULT2A8 provides insight into sulfonation of 7α-hydroxyl bile acids. J Lipid Res 2021; 62:100074. [PMID: 33872606 PMCID: PMC8134075 DOI: 10.1016/j.jlr.2021.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022] Open
Abstract
Cytosolic sulfotransferases (SULTs) catalyze the transfer of a sulfonate group from the cofactor 3'-phosphoadenosine 5'-phosphosulfate to a hydroxyl (OH) containing substrate and play a critical role in the homeostasis of endogenous compounds, including hormones, neurotransmitters, and bile acids. In human, SULT2A1 sulfonates the 3-OH of bile acids; however, bile acid metabolism in mouse is dependent on a 7α-OH sulfonating SULT2A8 via unknown molecular mechanisms. In this study, the crystal structure of SULT2A8 in complex with adenosine 3',5'-diphosphate and cholic acid was resolved at a resolution of 2.5 Å. Structural comparison with human SULT2A1 reveals different conformations of substrate binding loops. In addition, SULT2A8 possesses a unique substrate binding mode that positions the target 7α-OH of the bile acid close to the catalytic site. Furthermore, mapping of the critical residues by mutagenesis and enzyme activity assays further highlighted the importance of Lys44 and His48 for enzyme catalysis and Glu237 in loop 3 on substrate binding and stabilization. In addition, limited proteolysis and thermal shift assays suggested that the cofactor and substrates have protective roles in stabilizing SULT2A8 protein. Together, the findings unveil the structural basis of bile acid sulfonation targeting 7α-OH and shed light on the functional diversity of bile acid metabolism across species.
Collapse
Affiliation(s)
- Kai Wang
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Yan-Chun Chan
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Pui-Kin So
- University Research Facility in Life Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Xing Liu
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Lu Feng
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wing-Tai Cheung
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Susanna Sau-Tuen Lee
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Shannon Wing-Ngor Au
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong; Center for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
46
|
Yin M, Lu J, Guo Z, Zhang Y, Liu J, Wu T, Guo K, Luo T, Guo Z. Reduced SULT2B1b expression alleviates ox-LDL-induced inflammation by upregulating miR-148-3P via inhibiting the IKKβ/NF-κB pathway in macrophages. Aging (Albany NY) 2021; 13:3428-3442. [PMID: 33428590 PMCID: PMC7906218 DOI: 10.18632/aging.202273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 11/06/2020] [Indexed: 01/27/2023]
Abstract
Atherosclerosis is a lipid-driven chronic inflammatory disease in which lipid-laden macrophage foam cells lead to inflamed lesions in arteries. Previous studies have proven that sulfotransferase 2B1b (SULT2B1b) has several roles in the regulation of lipid metabolism and the inflammatory response. However, little is known about the functions of SULT2B1b in ox-LDL-induced inflammation in macrophages. In this study, after treatment with either ox-LDL alone or combined with transfection of siRNAs targeting SULT2B1b, IL-6, TNF-α, NF-κB, IKKβ and IκB mRNA and protein expression were determined in Raw264.7 cells by real-time PCR and Western blot, respectively. The proliferative capacity was determined by EdU staining and Cell Counting Kit-8. Our data demonstrated that SULT2B1b knockdown could reduce phosphorylated NF-κB levels and downregulate IKKβ protein levels. Additionally, IκB levels were increased and the proliferation of ox-LDL stimulated cells was inhibited after SULT2B1b silencing. Downregulation of SULT2B1b expression was found to upregulate miR-148a-3p expression by microarray assay, while IKKβ was a miR-148a-3p target gene. Our study suggests that SULT2B1b knockdown could promote miR148a-3p expression and inhibit activation of the IKKβ/NF-κB signalling pathway, which suppressed the inflammatory response in macrophages. Therefore, targeting the SULT2B1b gene might be potentially beneficial for atherosclerosis prevention by decreasing the inflammatory response.
Collapse
Affiliation(s)
- Mengzhuo Yin
- Department of Cardiology, Huiqiao Medical Centre, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jianwen Lu
- Department of Endocrinology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, People's Republic of China
| | - Zhongzhou Guo
- Department of Cardiology, Huiqiao Medical Centre, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Yanan Zhang
- Department of Cardiology, Huiqiao Medical Centre, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jichen Liu
- Department of Cardiology, Huiqiao Medical Centre, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Tongwei Wu
- Department of Cardiology, Huiqiao Medical Centre, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Kai Guo
- Department of Cardiology, Huiqiao Medical Centre, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Tiantian Luo
- Department of Cardiology, Huiqiao Medical Centre, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Zhigang Guo
- Department of Cardiology, Huiqiao Medical Centre, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| |
Collapse
|
47
|
Abstract
The cytosolic sulfotransferase (SULT) enzymes are found in human liver, kidney, intestine, and other tissues. These enzymes catalyze the transfer of the -SO3 group from 3'-phospho-adenosyl-5'-phosphosulfate (PAPS) to a nucleophilic hydroxyl or amine group in a drug substrate. SULTs are stable as dimers, with a highly conserved dimerization domain near the C-terminus of the protein. Crystal structures have revealed flexible loop regions in the native proteins, one of which, located near the dimerization domain, is thought to form a gate that changes position once PAPS is bound to the PAPS-binding site and modulates substrate access and enzyme properties. There is also evidence that oxidation and reduction of certain cysteine residues reversibly regulate the binding of the substrate and PAPS or PAP to the enzyme thus modulating sulfonation. Because SULT enzymes have two substrates, the drug and PAPS, it is common to report apparent kinetic constants with either the drug or the PAPS varied while the other is kept at a constant concentration. The kinetics of product formation can follow classic Michaelis-Menten kinetics, typically over a narrow range of substrate concentrations. Over a wide range of substrate concentrations, it is common to observe partial or complete substrate inhibition with SULT enzymes. This chapter describes the function, tissue distribution, structural features, and properties of the human SULT enzymes and presents examples of enzyme kinetics with different substrates.
Collapse
Affiliation(s)
- Margaret O James
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
48
|
Dai Z, Zhao F, Li Y, Xu J, Liu Z. The Environmental Pollutant Bromophenols Interfere With Sulfotransferase That Mediates Endocrine Hormones. Front Endocrinol (Lausanne) 2021; 12:814373. [PMID: 35069453 PMCID: PMC8777265 DOI: 10.3389/fendo.2021.814373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Bromophenols (BPs), known as an important environmental contaminant, can cause endocrine disruption and other chronic toxicity. The study aimed to investigate the potential inhibitory capability of BPs on four human sulfotransferase isoforms (SULT1A1, SULT1A3, SULT1B1 and SULT1E1) and interpret how to interfere with endocrine hormone metabolism. P-nitrophenol(PNP) was utilized as a nonselective probe substrate, and recombinant SULT isoforms were utilized as the enzyme resources. PNP and its metabolite PNP-sulfate were analyzed using a UPLC-UV detecting system. SULT1A1 and SULT1B1 were demonstrated to be the most vulnerable SULT isoforms towards BPs' inhibition. To determine the inhibition kinetics, 2,4,6-TBP and SULT1A3 were selected as the representative BPs and SULT isoform respectively. The competitive inhibition of 2,4,6-TBP on SULT1A3. The fitting equation was y=90.065x+1466.7, and the inhibition kinetic parameter (Ki) was 16.28 µM. In vitro-in vivo extrapolation (IVIVE) showed that the threshold concentration of 2,4,6-TBP to induce inhibition of SULT1A3 was 1.628 µM. In silico docking, the method utilized indicated that more hydrogen bonds formation contributed to the stronger inhibition of 3,5-DBP than 3-BP. In conclusion, our study gave the full description of the inhibition of BPs towards four SULT isoforms, which may provide a new perspective on the toxicity mechanism of BPs and further explain the interference of BPs on endocrine hormone metabolism.
Collapse
Affiliation(s)
- Zhihong Dai
- Department of Urology, Second Hospital of Dalian Medical University, Dalian, China
| | - Furong Zhao
- Research Department, Dalian Innovation Center of Laboratory Medicine Mass Spectrometry Technology, Dalian, China
- Research Department, Clinical Mass Spectrometry Profession Technology Innovation Center of Liaoning Province, Jinzhou, China
| | - Ying Li
- Research Department, Clinical Mass Spectrometry Profession Technology Innovation Center of Liaoning Province, Jinzhou, China
| | - Jing Xu
- Research Department, Dalian Innovation Center of Laboratory Medicine Mass Spectrometry Technology, Dalian, China
- Research Department, Clinical Mass Spectrometry Profession Technology Innovation Center of Liaoning Province, Jinzhou, China
| | - Zhiyu Liu
- Department of Urology, Second Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Zhiyu Liu,
| |
Collapse
|
49
|
Jaskiw GE, Obrenovich ME, Kundrapu S, Donskey CJ. Changes in the Serum Metabolome of Patients Treated With Broad-Spectrum Antibiotics. Pathog Immun 2020; 5:382-418. [PMID: 33474520 PMCID: PMC7810407 DOI: 10.20411/pai.v5i1.394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022] Open
Abstract
Background: The gut microbiome (GMB) generates numerous small chemicals that can be absorbed by the host and variously biotransformed, incorporated, or excreted. The resulting metabolome can provide information about the state of the GMB, of the host, and of their relationship. Exploiting this information in the service of biomarker development is contingent on knowing the GMB-sensitivity of the individual chemicals comprising the metabolome. In this regard, human studies have lagged far behind animal studies. Accordingly, we tested the hypothesis that serum levels of chemicals unequivocally demonstrated to be GMB-sensitive in rodent models would also be affected in a clinical patient sample treated with broad spectrum antibiotics. Methods: We collected serum samples from 20 hospitalized patients before, during, and after treatment with broad-spectrum antibiotics. We also collected samples from 5 control patients admitted to the hospital but not prescribed antibiotics. We submitted the samples for a non-targeted metabolomic analysis and then focused on chemicals known to be affected both by germ-free status and by antibiotic treatment in the mouse and/or rat. Results: Putative identification was obtained for 499 chemicals in human serum. An aggregate analysis did not show any time x treatment interactions. However, our literature search identified 10 serum chemicals affected both by germ-free status and antibiotic treatment in the mouse or rat. Six of those chemicals were measured in our patient samples and additionally met criteria for inclusion in a focused analysis. Serum levels of 5 chemicals (p-cresol sulfate, phenol sulfate, hippurate, indole propionate, and indoxyl sulfate) declined significantly in our group of antibiotic-treated patients but did not change in our patient control group. Conclusions: Broad-spectrum antibiotic treatment in patients lowered serum levels of selected chemicals previously demonstrated to be GMB-sensitive in rodent models. Interestingly, all those chemicals are known to be uremic solutes that can be derived from aromatic amino acids (L-phenylalanine, L-tyrosine, or L-tryptophan) by anaerobic bacteria, particularly Clostridial species. We conclude that judiciously selected serum chemicals can reliably detect antibiotic-induced suppression of the GMB in man and thus facilitate further metabolome-based biomarker development.
Collapse
Affiliation(s)
- George E Jaskiw
- Psychiatry Service, Veterans Affairs Northeast Ohio Healthcare System (VANEOHS), Cleveland, Ohio.,School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Mark E Obrenovich
- Pathology and Laboratory Medicine Service, VANEOHS, Cleveland, Ohio.,Research Service, VANEOHS, Cleveland, Ohio.,Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | - Sirisha Kundrapu
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Curtis J Donskey
- School of Medicine, Case Western Reserve University, Cleveland, Ohio.,Geriatric Research, Education and Clinical Center, VANEOHS, Cleveland, Ohio
| |
Collapse
|
50
|
Abstract
Significance: In humans, imbalances in the reduction-oxidation (redox) status of cells are associated with many pathological states. In addition, many therapeutics and prophylactics used as interventions for diverse pathologies either directly modulate oxidant levels or otherwise influence endogenous cellular redox systems. Recent Advances: The cellular machineries that maintain redox homeostasis or that function within antioxidant defense systems rely heavily on the regulated reactivities of sulfur atoms either within or derived from the amino acids cysteine and methionine. Recent advances have substantially advanced our understanding of the complex and essential chemistry of biological sulfur-containing molecules. Critical Issues: The redox machineries that maintain cellular homeostasis under diverse stresses can consume large amounts of energy to generate reducing power and/or large amounts of sulfur-containing nutrients to replenish or sustain intracellular stores. By understanding the metabolic pathways underlying these responses, one can better predict how to protect cells from specific stresses. Future Directions: Here, we summarize the current state of knowledge about the impacts of different stresses on cellular metabolism of sulfur-containing molecules. This analysis suggests that there remains more to be learned about how cells use sulfur chemistry to respond to stresses, which could in turn lead to advances in therapeutic interventions for some exposures or conditions.
Collapse
Affiliation(s)
- Colin G Miller
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana, USA
| | - Edward E Schmidt
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|