1
|
Jiao F, Meng L, Du K, Li X. The autophagy-lysosome pathway: a potential target in the chemical and gene therapeutic strategies for Parkinson's disease. Neural Regen Res 2025; 20:139-158. [PMID: 38767483 PMCID: PMC11246151 DOI: 10.4103/nrr.nrr-d-23-01195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/06/2023] [Indexed: 05/22/2024] Open
Abstract
Parkinson's disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such as α-synuclein in neurons. As one of the major intracellular degradation pathways, the autophagy-lysosome pathway plays an important role in eliminating these proteins. Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance of α-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson's disease. Moreover, multiple genes associated with the pathogenesis of Parkinson's disease are intimately linked to alterations in the autophagy-lysosome pathway. Thus, this pathway appears to be a promising therapeutic target for treatment of Parkinson's disease. In this review, we briefly introduce the machinery of autophagy. Then, we provide a description of the effects of Parkinson's disease-related genes on the autophagy-lysosome pathway. Finally, we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy-lysosome pathway and their applications in Parkinson's disease.
Collapse
Affiliation(s)
- Fengjuan Jiao
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Lingyan Meng
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Kang Du
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Xuezhi Li
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong Province, China
| |
Collapse
|
2
|
Calderón-Garcidueñas L, Cejudo-Ruiz FR, Stommel EW, González-Maciel A, Reynoso-Robles R, Torres-Jardón R, Tehuacanero-Cuapa S, Rodríguez-Gómez A, Bautista F, Goguitchaichvili A, Pérez-Guille BE, Soriano-Rosales RE, Koseoglu E, Mukherjee PS. Single-domain magnetic particles with motion behavior under electromagnetic AC and DC fields are a fatal cargo in Metropolitan Mexico City pediatric and young adult early Alzheimer, Parkinson, frontotemporal lobar degeneration and amyotrophic lateral sclerosis and in ALS patients. Front Hum Neurosci 2024; 18:1411849. [PMID: 39246712 PMCID: PMC11377271 DOI: 10.3389/fnhum.2024.1411849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Metropolitan Mexico City (MMC) children and young adults exhibit overlapping Alzheimer and Parkinsons' diseases (AD, PD) and TAR DNA-binding protein 43 pathology with magnetic ultrafine particulate matter (UFPM) and industrial nanoparticles (NPs). We studied magnetophoresis, electron microscopy and energy-dispersive X-ray spectrometry in 203 brain samples from 14 children, 27 adults, and 27 ALS cases/controls. Saturation isothermal remanent magnetization (SIRM), capturing magnetically unstable FeNPs ~ 20nm, was higher in caudate, thalamus, hippocampus, putamen, and motor regions with subcortical vs. cortical higher SIRM in MMC ≤ 40y. Motion behavior was associated with magnetic exposures 25-100 mT and children exhibited IRM saturated curves at 50-300 mT associated to change in NPs position and/or orientation in situ. Targeted magnetic profiles moving under AC/AD magnetic fields could distinguish ALS vs. controls. Motor neuron magnetic NPs accumulation potentially interferes with action potentials, ion channels, nuclear pores and enhances the membrane insertion process when coated with lipopolysaccharides. TEM and EDX showed 7-20 nm NP Fe, Ti, Co, Ni, V, Hg, W, Al, Zn, Ag, Si, S, Br, Ce, La, and Pr in abnormal neural and vascular organelles. Brain accumulation of magnetic unstable particles start in childhood and cytotoxic, hyperthermia, free radical formation, and NPs motion associated to 30-50 μT (DC magnetic fields) are critical given ubiquitous electric and magnetic fields exposures could induce motion behavior and neural damage. Magnetic UFPM/NPs are a fatal brain cargo in children's brains, and a preventable AD, PD, FTLD, ALS environmental threat. Billions of people are at risk. We are clearly poisoning ourselves.
Collapse
Affiliation(s)
| | | | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | | | | | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Francisco Bautista
- Centro de Investigaciones en Geografía Ambiental, Universidad Nacional Autónoma de México, Morelia, Michoacan, Mexico
| | - Avto Goguitchaichvili
- Centro de Investigaciones en Geografía Ambiental, Universidad Nacional Autónoma de México, Morelia, Michoacan, Mexico
| | | | | | - Emel Koseoglu
- Department of Neurology, Erciyes Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| |
Collapse
|
3
|
Sharma N, Kurmi BD, Singh D, Mehan S, Khanna K, Karwasra R, Kumar S, Chaudhary A, Jakhmola V, Sharma A, Singh SK, Dua K, Kakkar D. Nanoparticles toxicity: an overview of its mechanism and plausible mitigation strategies. J Drug Target 2024; 32:457-469. [PMID: 38328920 DOI: 10.1080/1061186x.2024.2316785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Over the last decade, nanoparticles have found great interest among scientists and researchers working in various fields within the realm of biomedicine including drug delivery, gene delivery, diagnostics, targeted therapy and biomarker mapping. While their physical and chemical properties are impressive, there is growing concern about the toxicological potential of nanoparticles and possible adverse health effects as enhanced exposure of biological systems to nanoparticles may result in toxic effects leading to serious contraindications. Toxicity associated with nanoparticles (nanotoxicity) may include the undesired response of several physiological mechanisms including the distressing of cells by external and internal interaction with nanoparticles. However, comprehensive knowledge of nanotoxicity mechanisms and mitigation strategies may be useful to overcome the hazardous situation while treating diseases with therapeutic nanoparticles. With the same objectives, this review discusses various mechanisms of nanotoxicity and provides an overview of the current state of knowledge on the impact of nanotoxicity on biological control systems and organs including liver, brain, kidneys and lungs. An attempt also been made to present various approaches of scientific research and strategies that could be useful to overcome the effect of nanotoxicity during the development of nanoparticle-based systems including coating, doping, grafting, ligation and addition of antioxidants.
Collapse
Affiliation(s)
- Nitin Sharma
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Dilpreet Singh
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Sidharth Mehan
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Kushagra Khanna
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Ritu Karwasra
- Central Council for Research in Unani Medicine, Ministry of AYUSH, Janakpuri, New Delhi, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), Meerut, Uttar Pradesh, India
| | - Amit Chaudhary
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Vikash Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttrakhand, India
| | | | - Sachin Kumar Singh
- School of Pharmacy and Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
| | - Dipti Kakkar
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig SK Mazumdar Marg, Delhi, India
| |
Collapse
|
4
|
Tian T, Pang H, Li X, Ma K, Liu T, Li J, Luo Z, Li M, Hou Q, Hao H, Dong J, Du H, Liu X, Sun Z, Zhao C, Song X, Jin M. The role of DRP1 mediated mitophagy in HT22 cells apoptosis induced by silica nanoparticles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116050. [PMID: 38325272 DOI: 10.1016/j.ecoenv.2024.116050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/19/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
Silica nanoparticles (SiNPs) are widely used in the biomedical field and can enter the central nervous system through the blood-brain barrier, causing damage to hippocampal neurons. However, the specific mechanism remains unclear. In this experiment, HT22 cells were selected as the experimental model in vitro, and the survival rate of cells under the action of SiNPs was detected by MTT method, reactive oxygen species (ROS), lactate dehydrogenase (LDH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and adenosine triphosphate (ATP) were tested by the kit, the ultrastructure of the cells was observed by transmission electron microscope, membrane potential (MMP), calcium ion (Ca2+) and apoptosis rate were measured by flow cytometry, and the expressions of mitochondrial functional protein, mitochondrial dynein, mitochondrial autophagy protein as well as apoptosis related protein were detected by Western blot. The results showed that cell survival rate, SOD, CAT, GSH-Px, ATP and MMP gradually decreased with the increase of SiNPs concentration, while intracellular ROS, Ca2+, LDH and apoptosis rate increased with the increase of SiNPs concentration. In total cellular proteins,the expressions of mitochondrial functional proteins VDAC and UCP2 gradually increased, the expression of mitochondrial dynamic related protein DRP1 increased while the expressions of OPA1 and Mfn2 decreased. The expressions of mitophagy related proteins PINK1, Parkin and LC3Ⅱ/LC3Ⅰ increased and P62 gradually decreased, as well as the expressions of apoptosis related proteins Apaf-1, Cleaved-Caspase-3, Caspase-3, Caspase-9, Bax and Cyt-C. In mitochondrial proteins, the expressions of mitochondrial dynamic related proteins DRP1 and p-DRP1 were increased, while the expressions of OPA1 and Mfn2 were decreased. Expressions of mitochondrial autophagy associated proteins PINK1, Parkin, LC3II/LC3I increased, P62 decreased gradually, as well as the expressions of apoptosis related proteins Cleaved-Caspase-3, Caspase-3, and Caspase-9 increased, and Cyt-C expressions decreased. To further demonstrate the role of ROS and DRP1 in HT22 cell apoptosis induced by SiNPs, we selected the ROS inhibitor N-Acetylcysteine (NAC) and Dynamin-related protein 1 (DRP1) inhibitor Mdivi-1. The experimental results indicated that the above effects were remarkably improved after the use of inhibitors, further confirming that SiNPs induce the production of ROS in cells, activate DRP1, cause excessive mitochondrial division, induce mitophagy, destroy mitochondrial function and eventually lead to apoptosis.
Collapse
Affiliation(s)
- Tiantian Tian
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Huan Pang
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Xinyue Li
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Kai Ma
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Tianxiang Liu
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Jiali Li
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Zhixuan Luo
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Meng Li
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Qiaohong Hou
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Huifang Hao
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Jianfei Dong
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Haiying Du
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Xiaomei Liu
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China
| | - Zhiwei Sun
- School of Public Health, Capital Medical University, Beijing, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China
| | - Chao Zhao
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China.
| | - Xiuling Song
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China.
| | - Minghua Jin
- School of Public Health Jilin University, Changchun, Jilin 130021, PR China.
| |
Collapse
|
5
|
Chen M, Wu T. Nanoparticles and neurodegeneration: Insights on multiple pathways of programmed cell death regulated by nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168739. [PMID: 38008311 DOI: 10.1016/j.scitotenv.2023.168739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Currently, nanoparticles (NPs) are extensively applied in the diagnosis and treatment of neurodegenerative diseases (NDs). With the rapid development and increasing exposure to the public, the potential neurotoxicity associated with NDs caused by NPs has attracted the researchers' attentions but their biosafety assessments are still far behind relevant application studies. Based on recent research, this review aims to conduct a comprehensive and systematic analysis of neurotoxicity induced by NPs. The 191 studies selected according to inclusion and exclusion criteria were imported into the software, and the co-citations and keywords of the included literatures were analyzed to find the breakthrough point of previous studies. According to the available studies, the routes of NPs entering into the normal and injured brain were various, and then to be distributed and accumulated in living bodies. When analyzing the adverse effects induced by NPs, we focused on multiple programmed cell deaths (PCDs), especially ferroptosis triggered by NPs and their tight connection and crosstalk that have been found playing critical roles in the pathogenesis of NDs and their underlying toxic mechanisms. The activation of multiple PCD pathways by NPs provides a scientific basis for the occurrence and development of NDs. Furthermore, the adoption of new methodologies for evaluating the biosafety of NPs would benefit the next generation risk assessment (NGRA) of NPs and their toxic interventions. This would help ensure their safe application and sustainable development in the field of medical neurobiology.
Collapse
Affiliation(s)
- Min Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
6
|
Kwon RY, Youn SM, Choi SJ. Oral Excretion Kinetics of Food-Additive Silicon Dioxides and Their Effect on In Vivo Macrophage Activation. Int J Mol Sci 2024; 25:1614. [PMID: 38338896 PMCID: PMC10855107 DOI: 10.3390/ijms25031614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
A food additive, silicon dioxide (SiO2) is commonly used in the food industry as an anti-caking agent. The presence of nanoparticles (NPs) in commercial food-grade SiO2 has raised concerns regarding their potential toxicity related to nano size. While recent studies have demonstrated the oral absorption and tissue distribution of food-additive SiO2 particles, limited information is available about their excretion behaviors and potential impact on macrophage activation. In this study, the excretion kinetics of two differently manufactured (fumed and precipitated) SiO2 particles were evaluated following repeated oral administration to rats for 28 d. The excretion fate of their intact particles, decomposed forms, or ionic forms was investigated in feces and urine, respectively. Monocyte uptake, Kupffer cell activation, and cytokine release were assessed after the oral administration of SiO2 particles. Additionally, their intracellular fates were determined in Raw 264.7 cells. The results revealed that the majority of SiO2 particles were not absorbed but directly excreted via feces in intact particle forms. Only a small portion of SiO2 was eliminated via urine, predominantly in the form of bioconverted silicic acid and slightly decomposed ionic forms. SiO2 particles were mainly present in particle forms inside cells, followed by ionic and silicic acid forms, indicating their slow conversion into silicic acid after cellular uptake. No effects of the manufacturing method were observed on excretion and fates. Moreover, no in vivo monocyte uptake, Kupffer cell polarization, or cytokine release were induced by orally administered SiO2 particles. These finding contribute to understanding the oral toxicokinetics of food-additive SiO2 and provide valuable insights into its potential toxicity.
Collapse
Affiliation(s)
| | | | - Soo-Jin Choi
- Division of Applied Food System, Major of Food Science & Technology, Seoul Women’s University, Seoul 01797, Republic of Korea; (R.-Y.K.); (S.-M.Y.)
| |
Collapse
|
7
|
Yin H, Gu P, Xie Y, You X, Zhang Y, Yao Y, Yang S, Wang D, Chen W, Ma J. ALKBH5 mediates silica particles-induced pulmonary inflammation through increased m 6A modification of Slamf7 and autophagy dysfunction. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132736. [PMID: 37827106 DOI: 10.1016/j.jhazmat.2023.132736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Silica particles are commonly encountered in natural and industrial activities. Long-term environmental exposure to silica can result in silicosis, which is characterized by chronic inflammation and abnormal tissue repair in lung. To uncover the role of m6A modification in silica-induced pulmonary inflammation, we conducted this study using established mouse and macrophage models. In this study, the aerodynamic diameter of silica particles was approximately 1-2 µm. We demonstrated that silica exposure in mice caused pulmonary inflammation and increased global m6A modification levels, the downregulation of alkB homolog 5 (ALKBH5) might contribute to this alteration. Besides, we found that F4/80, a macrophage-specific biomarker, was co-expressed with ALKBH5 through dual immunofluorescent staining. In vitro studies using MeRIP assays suggested that Slamf7 was a target gene regulated by m6A modification, and specific inhibition of ALKBH5 increased Slamf7 expression. Mechanistically, ALKBH5 promoted m6A modification of Slamf7, which decreased Slamf7 mRNA stability in an m6A-dependent manner, ultimately regulating Slamf7 expression. In addition, silica exposure activated PI3K/AKT and induced macrophage autophagy. Inhibition of Slamf7 promoted autophagy, reduced the secretion of pro-inflammatory cytokines, and improved silica-induced pulmonary inflammation. In summary, ALKBH5 can regulate silica-induced pulmonary inflammation by modulating Slamf7 m6A modification and affecting the function of macrophage autophagy.
Collapse
Affiliation(s)
- Haoyu Yin
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Pei Gu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yujia Xie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaojie You
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yingdie Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuxin Yao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shiyu Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
8
|
Ding R, Li Y, Yu Y, Sun Z, Duan J. Prospects and hazards of silica nanoparticles: Biological impacts and implicated mechanisms. Biotechnol Adv 2023; 69:108277. [PMID: 37923235 DOI: 10.1016/j.biotechadv.2023.108277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
With the thrive of nanotechnology, silica nanoparticles (SiNPs) have been extensively adopted in the agriculture, food, cosmetic, and even biomedical industries. Due to the mass production and use, SiNPs inevitably entered the environment, resulting in ecological toxicity and even posing a threat to human health. Although considerable investigations have been conducted to assess the toxicity of SiNPs, the correlation between SiNPs exposure and consequent health risks remains ambiguous. Since the biological impacts of SiNPs can differ from their design and application, the toxicity assessment for SiNPs may be extremely difficult. This review discussed the application of SiNPs in different fields, especially their biomedical use, and documented their potential release pathways into the environment. Meanwhile, the current process of assessing SiNPs-related toxicity on various model organisms and cell lines was also detailed, thus estimating the health threats posed by SiNPs exposure. Finally, the potential toxic mechanisms of SiNPs were also elaborated based on results obtained from both in vivo and in vitro trials. This review generally summarizes the biological effects of SiNPs, which will build up a comprehensive perspective of the application and toxicity of SiNPs.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
9
|
Pirmoradi L, Shojaei S, Ghavami S, Zarepour A, Zarrabi A. Autophagy and Biomaterials: A Brief Overview of the Impact of Autophagy in Biomaterial Applications. Pharmaceutics 2023; 15:2284. [PMID: 37765253 PMCID: PMC10536801 DOI: 10.3390/pharmaceutics15092284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Macroautophagy (hereafter autophagy), a tightly regulated physiological process that obliterates dysfunctional and damaged organelles and proteins, has a crucial role when biomaterials are applied for various purposes, including diagnosis, treatment, tissue engineering, and targeted drug delivery. The unparalleled physiochemical properties of nanomaterials make them a key component of medical strategies in different areas, such as osteogenesis, angiogenesis, neurodegenerative disease treatment, and cancer therapy. The application of implants and their modulatory effects on autophagy have been known in recent years. However, more studies are necessary to clarify the interactions and all the involved mechanisms. The advantages and disadvantages of nanomaterial-mediated autophagy need serious attention in both the biological and bioengineering fields. In this mini-review, the role of autophagy after biomaterial exploitation and the possible related mechanisms are explored.
Collapse
Affiliation(s)
- Leila Pirmoradi
- Department of Medical Physiology and Pharmacology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj 66177-13446, Iran;
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Saeid Ghavami
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul 34396, Türkiye;
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul 34396, Türkiye;
| |
Collapse
|
10
|
Sharma A, Muresanu DF, Tian ZR, Nozari A, Lafuente JV, Buzoianu AD, Sjöquist PO, Feng L, Wiklund L, Sharma HS. Co-Administration of Nanowired Monoclonal Antibodies to Inducible Nitric Oxide Synthase and Tumor Necrosis Factor Alpha Together with Antioxidant H-290/51 Reduces SiO 2 Nanoparticles-Induced Exacerbation of Pathophysiology of Spinal Cord Trauma. ADVANCES IN NEUROBIOLOGY 2023; 32:195-229. [PMID: 37480462 DOI: 10.1007/978-3-031-32997-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Military personnel are often exposed to silica dust during combat operations across the globe. Exposure to silica dust in US military or service personnel could cause Desert Strom Pneumonitis also referred to as Al Eskan disease causing several organs damage and precipitate autoimmune dysfunction. However, the effects of microfine particles of sand inhalation-induced brain damage on the pathophysiology of traumatic brain or spinal cord injury are not explored. Previously intoxication of silica nanoparticles (50-60 nm size) is shown to exacerbates spinal cord injury induces blood-spinal cord barrier breakdown, edema formation and cellular changes. However, the mechanism of silica nanoparticles-induced cord pathology is still not well known. Spinal cord injury is well known to alter serotonin (5-hydroxytryptamine) metabolism and induce oxidative stress including upregulation of nitric oxide synthase and tumor necrosis factor alpha. This suggests that these agents are involved in the pathophysiology of spinal cord injury. In this review, we examined the effects of combined nanowired delivery of monoclonal antibodies to neuronal nitric oxide synthase (nNOS) together with tumor necrosis factor alpha (TNF-α) antibodies and a potent antioxidant H-290/51 to induce neuroprotection in spinal cord injury associated with silica nanoparticles intoxication. Our results for the first time show that co-administration of nanowired delivery of antibodies to nNOS and TNF-α with H-290/51 significantly attenuated silica nanoparticles-induced exacerbation of spinal cord pathology, not reported earlier.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Dafin F Muresanu
- Department Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Department Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - José Vicente Lafuente
- LaNCE, Department Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan, Hebei Province, China
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
11
|
Calderón-Garcidueñas L, Torres-Jardón R, Greenough GP, Kulesza R, González-Maciel A, Reynoso-Robles R, García-Alonso G, Chávez-Franco DA, García-Rojas E, Brito-Aguilar R, Silva-Pereyra HG, Ayala A, Stommel EW, Mukherjee PS. Sleep matters: Neurodegeneration spectrum heterogeneity, combustion and friction ultrafine particles, industrial nanoparticle pollution, and sleep disorders-Denial is not an option. Front Neurol 2023; 14:1117695. [PMID: 36923490 PMCID: PMC10010440 DOI: 10.3389/fneur.2023.1117695] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/01/2023] [Indexed: 03/02/2023] Open
Abstract
Sustained exposures to ubiquitous outdoor/indoor fine particulate matter (PM2.5), including combustion and friction ultrafine PM (UFPM) and industrial nanoparticles (NPs) starting in utero, are linked to early pediatric and young adulthood aberrant neural protein accumulation, including hyperphosphorylated tau (p-tau), beta-amyloid (Aβ1 - 42), α-synuclein (α syn) and TAR DNA-binding protein 43 (TDP-43), hallmarks of Alzheimer's (AD), Parkinson's disease (PD), frontotemporal lobar degeneration (FTLD), and amyotrophic lateral sclerosis (ALS). UFPM from anthropogenic and natural sources and NPs enter the brain through the nasal/olfactory pathway, lung, gastrointestinal (GI) tract, skin, and placental barriers. On a global scale, the most important sources of outdoor UFPM are motor traffic emissions. This study focuses on the neuropathology heterogeneity and overlap of AD, PD, FTLD, and ALS in older adults, their similarities with the neuropathology of young, highly exposed urbanites, and their strong link with sleep disorders. Critical information includes how this UFPM and NPs cross all biological barriers, interact with brain soluble proteins and key organelles, and result in the oxidative, endoplasmic reticulum, and mitochondrial stress, neuroinflammation, DNA damage, protein aggregation and misfolding, and faulty complex protein quality control. The brain toxicity of UFPM and NPs makes them powerful candidates for early development and progression of fatal common neurodegenerative diseases, all having sleep disturbances. A detailed residential history, proximity to high-traffic roads, occupational histories, exposures to high-emission sources (i.e., factories, burning pits, forest fires, and airports), indoor PM sources (tobacco, wood burning in winter, cooking fumes, and microplastics in house dust), and consumption of industrial NPs, along with neurocognitive and neuropsychiatric histories, are critical. Environmental pollution is a ubiquitous, early, and cumulative risk factor for neurodegeneration and sleep disorders. Prevention of deadly neurological diseases associated with air pollution should be a public health priority.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- College of Health, The University of Montana, Missoula, MT, United States.,Universidad del Valle de México, Mexico City, Mexico
| | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Glen P Greenough
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Randy Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | | | | | | | | | | | | | - Héctor G Silva-Pereyra
- Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosi, Mexico
| | - Alberto Ayala
- Sacramento Metropolitan Air Quality Management District, Sacramento, CA, United States.,Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, United States
| | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| |
Collapse
|
12
|
Slekiene N, Snitka V, Bruzaite I, Ramanavicius A. Influence of TiO 2 and ZnO Nanoparticles on α-Synuclein and β-Amyloid Aggregation and Formation of Protein Fibrils. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7664. [PMID: 36363256 PMCID: PMC9653647 DOI: 10.3390/ma15217664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The most common neurological disorders, i.e., Parkinson's disease (PD) and Alzheimer's disease (AD), are characterized by degeneration of cognitive functions due to the loss of neurons in the central nervous system. The aggregation of amyloid proteins is an important pathological feature of neurological disorders.The aggregation process involves a series of complex structural transitions from monomeric to the formation of fibrils. Despite its potential importance in understanding the pathobiology of PD and AD diseases, the details of the aggregation process are still unclear. Nanoparticles (NPs) absorbed by the human circulatory system can interact with amyloid proteins in the human brain and cause PD. In this work, we report the study of the interaction between TiO2 nanoparticles (TiO2-NPs) and ZnO nanoparticles (ZnO-NPs) on the aggregation kinetics of β-amyloid fragment 1-40 (βA) and α-synuclein protein using surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS). The characterizations of ZnO-NPs and TiO2-NPs were evaluated by X-ray diffraction (XRD) spectrum, atomic force microscopy (AFM), and UV-Vis spectroscopy. The interaction of nanoparticles with amyloid proteins was investigated by SERS. Our study showed that exposure of amyloid protein molecules to TiO2-NPs and ZnO-NPs after incubation at 37 °C caused morphological changes and stimulated aggregation and fibrillation. In addition, significant differences in the intensity and location of active Raman frequencies in the amide I domain were found. The principal component analysis (PCA) results show that the effect of NPs after incubation at 4 °C does not cause changes in βA structure.
Collapse
Affiliation(s)
- Nora Slekiene
- Pharmacy Center, Institute of Biomedical Sciences, Faculty of Medicine, University of Vilnius, M.K. Čiurlionio g. 21/27, LT-03101 Vilnius, Lithuania
| | - Valentinas Snitka
- Research Center for Microsystems and Nanotechnology, Kaunas University of Technology, 65 Studentu Str., LT-51369 Kaunas, Lithuania
| | - Ingrida Bruzaite
- Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Sauletekio Av. 11, LT-10223 Vilnius, Lithuania
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Sauletekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, 24 Naugarduko Str., LT-03225 Vilnius, Lithuania
- Laboratory of Nanotechnology, State Research Institute Centre for Physical Sciences and Technology, Sauletekio Av. 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
13
|
Environmentally Toxic Solid Nanoparticles in Noradrenergic and Dopaminergic Nuclei and Cerebellum of Metropolitan Mexico City Children and Young Adults with Neural Quadruple Misfolded Protein Pathologies and High Exposures to Nano Particulate Matter. TOXICS 2022; 10:toxics10040164. [PMID: 35448425 PMCID: PMC9028025 DOI: 10.3390/toxics10040164] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
Quadruple aberrant hyperphosphorylated tau, beta-amyloid, α-synuclein and TDP-43 neuropathology and metal solid nanoparticles (NPs) are documented in the brains of children and young adults exposed to Metropolitan Mexico City (MMC) pollution. We investigated environmental NPs reaching noradrenergic and dopaminergic nuclei and the cerebellum and their associated ultrastructural alterations. Here, we identify NPs in the locus coeruleus (LC), substantia nigrae (SN) and cerebellum by transmission electron microscopy (TEM) and energy-dispersive X-ray spectrometry (EDX) in 197 samples from 179 MMC residents, aged 25.9 ± 9.2 years and seven older adults aged 63 ± 14.5 years. Fe, Ti, Hg, W, Al and Zn spherical and acicular NPs were identified in the SN, LC and cerebellar neural and vascular mitochondria, endoplasmic reticulum, Golgi, neuromelanin, heterochromatin and nuclear pore complexes (NPCs) along with early and progressive neurovascular damage and cerebellar endothelial erythrophagocytosis. Strikingly, FeNPs 4 ± 1 nm and Hg NPs 8 ± 2 nm were seen predominantly in the LC and SN. Nanoparticles could serve as a common denominator for misfolded proteins and could play a role in altering and obstructing NPCs. The NPs/carbon monoxide correlation is potentially useful for evaluating early neurodegeneration risk in urbanites. Early life NP exposures pose high risk to brains for development of lethal neurologic outcomes. NP emissions sources ought to be clearly recognized, regulated, and monitored; future generations are at stake.
Collapse
|
14
|
Gong JY, Holt MG, Hoet PHM, Ghosh M. Neurotoxicity of four frequently used nanoparticles: a systematic review to reveal the missing data. Arch Toxicol 2022; 96:1141-1212. [DOI: 10.1007/s00204-022-03233-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/20/2022] [Indexed: 12/27/2022]
|
15
|
Jiang P, Gan M, Yen SH, Dickson DW. Nanoparticles With Affinity for α-Synuclein Sequester α-Synuclein to Form Toxic Aggregates in Neurons With Endolysosomal Impairment. Front Mol Neurosci 2021; 14:738535. [PMID: 34744624 PMCID: PMC8565355 DOI: 10.3389/fnmol.2021.738535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases. It is characterized pathologically by the aggregation of α-synuclein (αS) in the form of Lewy bodies and Lewy neurites. A major challenge in PD therapy is poor efficiency of drug delivery to the brain due to the blood-brain barrier (BBB). For this reason, nanomaterials, with significant advantages in drug delivery, have gained attention. On the other hand, recent studies have shown that nanoparticles can promote αS aggregation in salt solution. Therefore, we tested if nanoparticles could have the same effect in cell models. We found that nanoparticle can induce cells to form αS inclusions as shown in immunocytochemistry, and detergent-resistant αS aggregates as shown in biochemical analysis; and nanoparticles of smaller size can induce more αS inclusions. Moreover, the induction of αS inclusions is in part dependent on endolysosomal impairment and the affinity of αS to nanoparticles. More importantly, we found that the abnormally high level of endogenous lysosomotropic biomolecules (e.g., sphingosine), due to impairing the integrity of endolysosomes could be a determinant factor for the susceptibility of cells to nanoparticle-induced αS aggregation; and deletion of GBA1 gene to increase the level of intracellular sphingosine can render cultured cells more susceptible to the formation of αS inclusions in response to nanoparticle treatment. Ultrastructural examination of nanoparticle-treated cells revealed that the induced inclusions contained αS-immunopositive membranous structures, which were also observed in inclusions seeded by αS fibrils. These results suggest caution in the use of nanoparticles in PD therapy. Moreover, this study further supports the role of endolysosomal impairment in PD pathogenesis and suggests a possible mechanism underlying the formation of membrane-associated αS pathology.
Collapse
Affiliation(s)
- Peizhou Jiang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Ming Gan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, United States
| | - Shu-Hui Yen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
16
|
Boukholda K, Gargouri B, Aouey B, Attaai A, Elkodous MA, Najimi M, Fiebich BL, Bouchard M, Fetoui H. Subacute silica nanoparticle exposure induced oxidative stress and inflammation in rat hippocampus combined with disruption of cholinergic system and behavioral functions. NANOIMPACT 2021; 24:100358. [PMID: 35559817 DOI: 10.1016/j.impact.2021.100358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/02/2021] [Accepted: 09/21/2021] [Indexed: 06/15/2023]
Abstract
Increasing environmental exposure to silica nanoparticles (SiNPs) and limited neurotoxicity studies pose a challenge for safety evaluation and management of these materials. This study aimed to explore the adverse effects and underlying mechanisms of subacute exposure to SiNPs by the intraperitoneal route on hippocampus function in rats. Data showed that SiNPs induced a significant increase in oxidative/nitrosative stress markers including reactive oxygen species (ROS), malondialdehyde (MDA), protein oxidation (PCO) and nitrite (NO) production accompanied by reduced antioxidant enzyme activity (catalase, superoxide dismutase, and glutathione peroxidase) and decreased glutathione (GSH). Phenotypically, SiNPs exhibited spatial learning and memory impairment in the Morris water maze (MWM) test, a decrease of the discrimination index in the novel object recognition test (NORT) and higher anxiety-like behavior. SiNPs affected the cholinergic system as reflected by reduced acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity. In addition, SiNPs significantly increased mRNA expression level of genes related to inflammation (TNF-α, IL-1β, IL-6, and COX-2) and decreased mRNA expression level of genes related to cholinergic system including choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT), AChE, muscarinic acetylcholine receptor M1 (m1AChR) and nicotinic acetylcholine receptors (nAChR). Histopathological results further showed an alteration in the hippocampus of treated animals associated with marked vacuolation in different hippocampus areas. These findings provide new insights into the molecular mechanism of SiNPs-induced hippocampal alterations leading to impairment of cognitive and behavioral functions, and implicating oxidative stress and inflammation in the hippocampus, as well as disruption of cholinergic system.
Collapse
Affiliation(s)
- Khadija Boukholda
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
| | - Brahim Gargouri
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia; Neurochemistry and Neuroimmunology Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104 Freiburg, Germany
| | - Bakhta Aouey
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
| | - Abdelraheim Attaai
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Egypt
| | - Mohamed Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Mohamed Najimi
- Bioengineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, 23000 Beni Mellal, Morocco
| | - Bernd L Fiebich
- Neurochemistry and Neuroimmunology Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104 Freiburg, Germany
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U424, P.O. Box 6128, Main Station, Montreal, Quebec, Canada, H3C 3J7
| | - Hamadi Fetoui
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia.
| |
Collapse
|
17
|
Alimohammadi E, Nikzad A, Khedri M, Shafiee S, Miri Jahromi A, Maleki R, Rezaei N. Molecular Tuning of the Nano–Bio Interface: Alpha-Synuclein’s Surface Targeting with Doped Carbon Nanostructures. ACS APPLIED BIO MATERIALS 2021; 4:6073-6083. [DOI: 10.1021/acsabm.1c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ehsan Alimohammadi
- Department of Neurosurgery, Kermanshah University of Medical Sciences, Imam Reza Hospital, 67158-47141 Kermanshah, Iran
| | - Arash Nikzad
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied
Science Lane, Vancouver, British Columbia V6T1Z4, Canada
| | - Mohammad Khedri
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepehr Shafiee
- School of Medicine, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran
| | - Ahmad Miri Jahromi
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Maleki
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, 14167-53955 Tehran, Iran
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran 1419733141, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 14167-53955 Tehran, Iran
| |
Collapse
|
18
|
Jarrar B, Al‐Doaiss A, Shati A, Al‐Kahtani M, Jarrar Q. Behavioural alterations induced by chronic exposure to 10 nm silicon dioxide nanoparticles. IET Nanobiotechnol 2021; 15:221-235. [PMID: 34694701 PMCID: PMC8675786 DOI: 10.1049/nbt2.12041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/02/2020] [Accepted: 09/04/2020] [Indexed: 01/02/2023] Open
Abstract
Silicon dioxide nanoparticles (SiO2 NPs) are widely invested in medicine, industry, agriculture, consuming products, optical imaging agents, cosmetics, and drug delivery. However, the toxicity of these NPs on human health and the ecosystem have not been extensively studied and little information is available about their behavioural toxicities. The current study aimed to find out the behavioural alterations that might be induced by chronic exposure to 10 nm SiO2 NPs. BALB/C mice were subjected to 36 injections of SiO2 NPs (2 mg/kg Bw) and subjected to 11 neurobehavioural tests: elevated plus-maze test, elevated zero-maze test, multiradial maze test, open field test, hole-board test, light-dark box test, forced swimming test, tail-suspension test, Morris water-maze test, Y-maze test and multiple T-maze test. Treated mice demonstrated anxiety-like effect, depression tendency, behavioural despair stress, exploration and locomotors activity reduction with error induction in both reference and working memories. The findings may suggest that silica NPs are anxiogenic and could aggravate depression affecting memory, learning, overall activity and exploratory behaviour. Moreover, the findings may indicate that these nanomaterials (NMs) may induce potential oxidative stress in the body leading to neurobehavioural alterations with possible changes in the vital organ including the central nervous system.
Collapse
Affiliation(s)
- Bashir Jarrar
- Nanobiology UnitDepartment of Biological SciencesCollege of ScienceJerash UniversityJordan
| | - Amin Al‐Doaiss
- Department of BiologyCollege of ScienceKing Khalid UniversitySaudi Arabia
- Department of Anatomy and HistologyFaculty of MedicineSana'a UniversityYemen
| | - Ali Shati
- Department of BiologyCollege of ScienceKing Khalid UniversitySaudi Arabia
| | | | - Qais Jarrar
- Department of Applied Pharmaceutical Sciences and Pharmacy PracticeFaculty of PharmacyIsra UniversityJordan
| |
Collapse
|
19
|
Lyu J, Long X, Xie T, Jiang G, Jiang J, Ye L, Li Q. Copper oxide nanoparticles promote α-synuclein oligomerization and underlying neurotoxicity as a model of Parkinson's disease. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Chang X, Wang X, Li J, Shang M, Niu S, Zhang W, Li Y, Sun Z, Gan J, Li W, Tang M, Xue Y. Silver nanoparticles induced cytotoxicity in HT22 cells through autophagy and apoptosis via PI3K/AKT/mTOR signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111696. [PMID: 33396027 DOI: 10.1016/j.ecoenv.2020.111696] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
With the widespread application and inevitable environmental exposure, silver nanoparticles (AgNPs) can be accumulated in various organs. More serious concerns are raised on the biological safety and potential toxicity of AgNPs in the central nervous system (CNS), especially in the hippocampus. This study aimed to investigate the biological effects and the role of PI3K/AKT/mTOR signaling pathway in AgNPs mediated cytotoxicity using the mouse hippocampal neuronal cell line (HT22 cells). AgNPs reduced cell viability and induced membrane leakage in a dose-dependent manner, determined by the MTT and LDH assay. In doses of 25, 50, 100 μg mL-1 for 24 h, AgNPs promoted the excessive production of reactive oxygen species (ROS) and caused the oxidative stress in HT22 cells. AgNPs induced autophagy, determined by the transmission electron microscopy observation, upregulation of LC3 II/I and downregulation of p62 expression levels. The mechanistic investigation showed that the PI3K/AKT/mTOR signaling pathway was activated by phosphorylation, which was enrolled in an AgNP-induced autophagy process. AgNPs could further trigger the apoptosis by upregulation of caspase-3 and Bax and downregulation of Bcl-2 in HT22 cells. These results revealed AgNP-induced cytotoxicity in HT22 cells, which was mediated by autophagy and apoptosis via the PI3K/AKT/mTOR signaling pathway. The study could provide the experimental evidence and explanation for the potential neurotoxicity triggered by AgNPs in vitro.
Collapse
Affiliation(s)
- Xiaoru Chang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiujuan Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jiangyan Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Mengting Shang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Wenli Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yunjing Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Zuoyi Sun
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Junying Gan
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Wenhua Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
21
|
Pang C, Zhang N, Falahati M. Acceleration of α-synuclein fibril formation and associated cytotoxicity stimulated by silica nanoparticles as a model of neurodegenerative diseases. Int J Biol Macromol 2020; 169:532-540. [PMID: 33352154 DOI: 10.1016/j.ijbiomac.2020.12.130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
A wide range of biophysical and theoretical analysis were employed to explore the formation of (α-syn) amyloid fibril formation as a model of Parkinson's disease in the presence of silica oxide nanoparticles (SiO2 NPs). Also, different cellular and molecular assays such as MTT, LDH, caspase, ROS, and qPCR were performed to reveal the α-syn amyloid fibrils-associated cytotoxicity against SH-SY5Y cells. Fluorescence measurements showed that SiO2 NPs accelerate the α-syn aggregation and exposure of hydrophobic moieties. Congo red absorbance, circular dichroism (CD), and transmission electron microscopy (TEM) analysis depicted the SiO2 NPs accelerated the formation of α-syn amyloid fibrils. Molecular docking study showed that SiO2 clusters preferably bind to the N-terminal of α-syn as the helix folding site. We also realized that SiO2 NPs increase the cytotoxicity of α-syn amyloid fibrils through a significant decrease in cell viability, increase in membrane leakage, activation of caspase-9 and -3, elevation of ROS, and increase in the ratio of Bax/Bcl2 mRNA. The cellular assay indicated that α-syn amyloid fibrils formed in the presence of SiO2 NPs induce their cytotoxic effects through the mitochondrial-mediated intrinsic apoptosis pathway. We concluded that these data may reveal some adverse effects of NPs on the progression of Parkinson's disease.
Collapse
Affiliation(s)
- Chao Pang
- Department of Neurosurgery, the First Affiliated Hospital of China Medical University, Shengyang 110000, China.
| | - Na Zhang
- Medical Education Research Center, Shenyang Medical College, Shenyang 110000, China
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
22
|
Li B, Tang M. Research progress of nanoparticle toxicity signaling pathway. Life Sci 2020; 263:118542. [DOI: 10.1016/j.lfs.2020.118542] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 01/19/2023]
|
23
|
Mohammadipour A, Haghir H, Ebrahimzadeh Bideskan A. A link between nanoparticles and Parkinson's disease. Which nanoparticles are most harmful? REVIEWS ON ENVIRONMENTAL HEALTH 2020; 35:545-556. [PMID: 32681785 DOI: 10.1515/reveh-2020-0043] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, different kinds of nanoparticles (NPs) are produced around the world and used in many fields and products. NPs can enter the body and aggregate in the various organs including brain. They can damage neurons, in particular dopaminergic neurons in the substantia nigra (SN) and striatal neurons which their lesion is associated with Parkinson's disease (PD). So, NPs can have a role in PD induction along with other agents and factors. PD is the second most common neurodegenerative disease in the world, and in patients, its symptoms progressively worsen day by day through different pathways including oxidative stress, neuroinflammation, mitochondrial dysfunction, α-synuclein increasing and aggregation, apoptosis and reduction of tyrosine hydroxylase positive cells. Unfortunately, there is no effective treatment for PD. So, prevention of this disease is very important. On the other hand, without having sufficient information about PD inducers, prevention of this disease would not be possible. Therefore, we need to have sufficient information about things we contact with them in daily life. Since, NPs are widely used in different products especially in consumer products, and they can enter to the brain easily, in this review the toxicity effects of metal and metal oxide NPs have been evaluated in molecular and cellular levels to determine potential of different kinds of NPs in development of PD.
Collapse
Affiliation(s)
- Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetic Research Center (MGRC), Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Haghir
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetic Research Center (MGRC), Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Ebrahimzadeh Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
The Antiaggregative and Antiamyloidogenic Properties of Nanoparticles: A Promising Tool for the Treatment and Diagnostics of Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3534570. [PMID: 33123310 PMCID: PMC7582079 DOI: 10.1155/2020/3534570] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
Due to the progressive aging of the society, the prevalence and socioeconomic burden of neurodegenerative diseases are predicted to rise. The most common neurodegenerative disorders nowadays, such as Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis, can be classified as proteinopathies. They can be either synucleinopathies, amyloidopathies, tauopathies, or TDP-43-related proteinopathies; thus, nanoparticles with a potential ability to inhibit pathological protein aggregation and/or degrade already existing aggregates can be a promising approach in the treatment of neurodegenerative diseases. As it turns out, nanoparticles can be a double-edged sword; they can either promote or inhibit protein aggregation, depending on coating, shape, size, surface charge, and concentration. In this review, we aim to emphasize the need of a breakthrough in the treatment of neurodegenerative disorders and draw attention to nanomaterials, as they can also serve as a diagnostic tool for protein aggregates or can be used in a high-throughput screening for novel antiaggregative compounds.
Collapse
|
25
|
Astrocytes Are More Vulnerable than Neurons to Silicon Dioxide Nanoparticle Toxicity in Vitro. TOXICS 2020; 8:toxics8030051. [PMID: 32751182 PMCID: PMC7560395 DOI: 10.3390/toxics8030051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 11/29/2022]
Abstract
Some studies have shown that silicon dioxide nanoparticles (SiO2-NPs) can reach different regions of the brain and cause toxicity; however, the consequences of SiO2-NPs exposure on the diverse brain cell lineages is limited. We aimed to investigate the neurotoxic effects of SiO2-NP (0–100 µg/mL) on rat astrocyte-rich cultures or neuron-rich cultures using scanning electron microscopy, Attenuated Total Reflection-Fourier Transform Infrared spectroscopy (ATR-FTIR), FTIR microspectroscopy mapping (IQ mapping), and cell viability tests. SiO2-NPs were amorphous particles and aggregated in saline and culture media. Both astrocytes and neurons treated with SiO2-NPs showed alterations in cell morphology and changes in the IR spectral regions corresponding to nucleic acids, proteins, and lipids. The analysis by the second derivative revealed a significant decrease in the signal of the amide I (α-helix, parallel β-strand, and random coil) at the concentration of 10 µg/mL in astrocytes but not in neurons. IQ mapping confirmed changes in nucleic acids, proteins, and lipids in astrocytes; cell death was higher in astrocytes than in neurons (10–100 µg/mL). We conclude that astrocytes were more vulnerable than neurons to SiO2-NPs toxicity. Therefore, the evaluation of human exposure to SiO2-NPs and possible neurotoxic effects must be followed up.
Collapse
|
26
|
Chang X, Li J, Niu S, Xue Y, Tang M. Neurotoxicity of metal‐containing nanoparticles and implications in glial cells. J Appl Toxicol 2020; 41:65-81. [DOI: 10.1002/jat.4037] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/13/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaoru Chang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health Southeast University Nanjing China
| | - Jiangyan Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health Southeast University Nanjing China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health Southeast University Nanjing China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health Southeast University Nanjing China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health Southeast University Nanjing China
| |
Collapse
|
27
|
Tira R, De Cecco E, Rigamonti V, Santambrogio C, Barracchia CG, Munari F, Romeo A, Legname G, Prosperi D, Grandori R, Assfalg M. Dynamic molecular exchange and conformational transitions of alpha-synuclein at the nano-bio interface. Int J Biol Macromol 2020; 154:206-216. [DOI: 10.1016/j.ijbiomac.2020.03.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 10/24/2022]
|
28
|
Jia L, Hao SL, Yang WX. Nanoparticles induce autophagy via mTOR pathway inhibition and reactive oxygen species generation. Nanomedicine (Lond) 2020; 15:1419-1435. [PMID: 32529946 DOI: 10.2217/nnm-2019-0387] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Due to their unique physicochemical properties, nanoparticles (NPs) have been increasingly developed for use in various fields. However, there has been both growing negative concerns with toxicity and positive realization of opportunities in nanomedicine, coming from the growing understanding of the associations between NPs and the human body, particularly relating to their cellular autophagic effects. This review summarizes NP-induced autophagy via the modulation of the mTOR signaling pathway and other associated signals including AMPK and ERK and also demonstrates how reactive oxygen species generation greatly underlies the regulation processes. The perspectives in this review aim to contribute to NP design, particularly in consideration of nanotoxicity and the potential for the precise application of NPs in nanomedicine.
Collapse
Affiliation(s)
- Lu Jia
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Shuang-Li Hao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| |
Collapse
|
29
|
Momtaz S, Memariani Z, El-Senduny FF, Sanadgol N, Golab F, Katebi M, Abdolghaffari AH, Farzaei MH, Abdollahi M. Targeting Ubiquitin-Proteasome Pathway by Natural Products: Novel Therapeutic Strategy for Treatment of Neurodegenerative Diseases. Front Physiol 2020; 11:361. [PMID: 32411012 PMCID: PMC7199656 DOI: 10.3389/fphys.2020.00361] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Misfolded proteins are the main common feature of neurodegenerative diseases, thereby, normal proteostasis is an important mechanism to regulate the neural survival and the central nervous system functionality. The ubiquitin-proteasome system (UPS) is a non-lysosomal proteolytic pathway involved in numerous normal functions of the nervous system, modulation of neurotransmitter release, synaptic plasticity, and recycling of membrane receptors or degradation of damaged and regulatory intracellular proteins. Aberrant accumulation of intracellular ubiquitin-positive inclusions has been implicated to a variety of neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington disease (HD), Amyotrophic Lateral Sclerosis (ALS), and Multiple Myeloma (MM). Genetic mutation in deubiquitinating enzyme could disrupt UPS and results in destructive effects on neuron survival. To date, various agents were characterized with proteasome-inhibitory potential. Proteins of the ubiquitin-proteasome system, and in particular, E3 ubiquitin ligases, may be promising molecular targets for neurodegenerative drug discovery. Phytochemicals, specifically polyphenols (PPs), were reported to act as proteasome-inhibitors or may modulate the proteasome activity. PPs modify the UPS by means of accumulation of ubiquitinated proteins, suppression of neuronal apoptosis, reduction of neurotoxicity, and improvement of synaptic plasticity and transmission. This is the first comprehensive review on the effect of PPs on UPS. Here, we review the recent findings describing various aspects of UPS dysregulation in neurodegenerative disorders. This review attempts to summarize the latest reports on the neuroprotective properties involved in the proper functioning of natural polyphenolic compounds with implication for targeting ubiquitin-proteasome pathway in the neurodegenerative diseases. We highlight the evidence suggesting that polyphenolic compounds have a dose and disorder dependent effects in improving neurological dysfunctions, and so their mechanism of action could stimulate the UPS, induce the protein degradation or inhibit UPS and reduce protein degradation. Future studies should focus on molecular mechanisms by which PPs can interfere this complex regulatory system at specific stages of the disease development and progression.
Collapse
Affiliation(s)
- Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.,Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran
| | - Zahra Memariani
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| | | | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran.,Department of Biomolecular Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Science, Tehran, Iran
| | - Majid Katebi
- Department of Anatomy, Faculty of Medicine, Hormozgan University of Medical Sciences, Hormozgan, Iran
| | - Amir Hossein Abdolghaffari
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.,Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran, Iran.,Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Abdollahi
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Zhu J, Xia R, Liu Z, Shen J, Gong X, Hu Y, Chen H, Yu Y, Gao W, Wang C, Wang SL. Fenvalerate triggers Parkinson-like symptom during zebrafish development through initiation of autophagy and p38 MAPK/mTOR signaling pathway. CHEMOSPHERE 2020; 243:125336. [PMID: 31734597 DOI: 10.1016/j.chemosphere.2019.125336] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Fenvalerate (FEN), one of the most used synthetic pyrethroids, has the potential to interfere with human neural function. However, far too little attention was paid to the mechanism of FEN-induced neurotoxicity. Thus we exposed zebrafish to FEN from 4 to 120 h post fertilization (hpf), and analyzed the morphology and behavior of zebrafish. Our results showed that FEN decreased the survival rate of zebrafish, with increased malformation rates and abnormal behaviors. Furthermore, we found typical parkinson-like symptoms in FEN-exposed zebrafish with increases in parkinson's disease (PD), ubiquitin, and Lewy bodies-relevant genes. We also observed the loss of dopaminergic neurons in both FEN-exposed zebrafish and PC12 cells, which were all associated with PD-like symptoms. Besides, FEN activated autophagy by the enhanced expressions of p-mTOR, and LC3-II but the reduction of p62. Further, FEN initially activated p-p38 MAPK followed by p-mTOR, which triggered the transcription of genes responsible for autophagy process and prompted the Lewy bodies neuron generation leading to the PD-like symptoms. This process was inhibited by both 3-methyladenine (3-MA, an autophagy inhibitor) and SB203580 (a p38 MAPK selective inhibitor) in zebrafish and PC12 cells. These results suggest that FEN might cause parkinson-like symptom during zebrafish development through induction of autophagy and activation of p38 MAPK/mTOR signaling pathway. The study revealed the potential mechanism of FEN-induced neurotoxicity and should give new insights into a significant environmental risk factor of developing parkinson's disease.
Collapse
Affiliation(s)
- Jiansheng Zhu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Rong Xia
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Zhongwei Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, PO Box 9190, 64 Medical Center Drive, Health Sciences Center(South), Room 3302A, Morgantown, WV, 25606, USA
| | - Jiemiao Shen
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Xing Gong
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Yuhuan Hu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Hang Chen
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Yongquan Yu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Weimin Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, PO Box 9190, 64 Medical Center Drive, Health Sciences Center(South), Room 3302A, Morgantown, WV, 25606, USA
| | - Chao Wang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China.
| | - Shou-Lin Wang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China.
| |
Collapse
|
31
|
Li X, Ji X, Wang R, Zhao J, Dang J, Gao Y, Jin M. Zebrafish behavioral phenomics employed for characterizing behavioral neurotoxicity caused by silica nanoparticles. CHEMOSPHERE 2020; 240:124937. [PMID: 31574441 DOI: 10.1016/j.chemosphere.2019.124937] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Nowadays, silica nanoparticles (SiNPs) as one of the most productive nano-powder, has been extensively applied in various filed. The potential harm of SiNPs has previously received severe attention. A bulk of researches have proven the adverse effect of SiNPs on the health of ecological organisms and human. However, neurotoxic impacts of SiNPs, still remain in the stage of exploration. The potential neurotoxic effects of SiNPs need to be further explored. And the toxic mechanism needs comprehensive clarification. Herein, the neurotoxicity of SiNPs of various concentrations (100, 300, 1000 μg/mL) on adult zebrafish was determined by behavioral phenotyping and confirmed by molecular biology techniques such as qPCR. Behavioral phenotype revealed observable effects of SiNPs on disturbing light/dark preference, dampening exploratory behavior, inhibiting memory capability. Furthermore, the relationship between neurotoxic symptom and the transcriptional alteration of autophagy- and parkinsonism-related genes was preliminarily assessed. Importantly, further investigations should be carried out to determine the effects of SiNPs to cause neurodegeneration in the brain as well as to decipher the specific neurotoxic mechanisms. In sum, this work comprehensively evaluated the neurotoxic effect of small-sized SiNPs on overall neurobehavioral profiles and indicated the potential for SiNPs to cause Parkinson's disease, which will provide a solid reference for the research on the neurotoxicity of SiNPs.
Collapse
Affiliation(s)
- Xiang Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, NO. 44 West Culture Road, Ji'nan, 250012, Shandong Province, PR China
| | - Xiuna Ji
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Jinghang Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Jiao Dang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Yan Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| |
Collapse
|
32
|
Cerium Oxide Nanoparticles Rescue α-Synuclein-Induced Toxicity in a Yeast Model of Parkinson's Disease. NANOMATERIALS 2020; 10:nano10020235. [PMID: 32013138 PMCID: PMC7075201 DOI: 10.3390/nano10020235] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/25/2020] [Accepted: 01/26/2020] [Indexed: 12/21/2022]
Abstract
Over the last decades, cerium oxide nanoparticles (CeO2 NPs) have gained great interest due to their potential applications, mainly in the fields of agriculture and biomedicine. Promising effects of CeO2 NPs are recently shown in some neurodegenerative diseases, but the mechanism of action of these NPs in Parkinson's disease (PD) remains to be investigated. This issue is addressed in the present study by using a yeast model based on the heterologous expression of the human α-synuclein (α-syn), the major component of Lewy bodies, which represent a neuropathological hallmark of PD. We observed that CeO2 NPs strongly reduce α-syn-induced toxicity in a dose-dependent manner. This effect is associated with the inhibition of cytoplasmic α-syn foci accumulation, resulting in plasma membrane localization of α-syn after NP treatment. Moreover, CeO2 NPs counteract the α-syn-induced mitochondrial dysfunction and decrease reactive oxygen species (ROS) production in yeast cells. In vitro binding assay using cell lysates showed that α-syn is adsorbed on the surface of CeO2 NPs, suggesting that these NPs may act as a strong inhibitor of α-syn toxicity not only acting as a radical scavenger, but through a direct interaction with α-syn in vivo.
Collapse
|
33
|
Asthana S, Bhattacharyya D, Kumari S, Nayak PS, Saleem M, Bhunia A, Jha S. Interaction with zinc oxide nanoparticle kinetically traps α-synuclein fibrillation into off-pathway non-toxic intermediates. Int J Biol Macromol 2020; 150:68-79. [PMID: 32004598 DOI: 10.1016/j.ijbiomac.2020.01.269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
Abstract
α-Synuclein is an intrinsically disordered amyloidogenic protein associated with Parkinson's disease (PD). The monomeric α-synuclein transition into amyloid fibril involves multiple steps, which are affected by several intrinsic and extrinsic factors. This increases complexities in development of targeted therapeutics against the pathological intermediate(s). Several studies have been dedicated to find an effective molecule to inhibit the detrimental amyloidogenesis. In recent years, metal oxide nanoparticle interfaces have shown direct effects on protein conformation, hence may be adopted as an alternative potential therapeutic approach against amyloidosis. In this context, our study explores the zinc oxide nanoparticle (ZnONP) with negative surface potential interface interaction with α-synuclein, and subsequent impact of the interaction on the protein fibrillation and the fibril-mediated cytotoxicity. N-terminus amphipathic "KA/TKE/QGV" repeating motifs in α-synuclein primarily interact with the ZnONP interface that enthalpically drives initial adsorption of the protein onto the interface. Whereas, subsequent bulk-protein adsorption onto the hard-corona is entropically driven, leading into flocculation of the complex. The flocs appear as amorphous mesh-like morphology in TEM micrographs, as opposed to the typical fibrils formed by the wild-type protein. Interestingly, α-synuclein in complex with ZnONP shows significantly lowered cytotoxicity against the IMR32 and THP-1 cells in-vitro, as compared to fresh α-synuclein.
Collapse
Affiliation(s)
- Shreyasi Asthana
- Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | | | - Swati Kumari
- Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Parth Sarathi Nayak
- Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Mohammed Saleem
- Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India; School of Biological Sciences, National Institute of Science Education and Research, Odisha 752059, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Kolkata 700054, India
| | - Suman Jha
- Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
34
|
Lojk J, Repas J, Veranič P, Bregar VB, Pavlin M. Toxicity mechanisms of selected engineered nanoparticles on human neural cells in vitro. Toxicology 2020; 432:152364. [PMID: 31927068 DOI: 10.1016/j.tox.2020.152364] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/16/2019] [Accepted: 01/05/2020] [Indexed: 02/07/2023]
Abstract
Environmental exposure to nanoparticles (NPs) has significantly increased in the last decades, mostly due to increased environmental pollution and frequent use of NP containing consumer products. Such NPs may enter our body and cause various health-related problems. The brain is a particularly problematic accumulation site due to its physiological and anatomical restrictions. Several mechanisms of NP neurotoxicity have already been identified, however not enough is known especially regarding toxicity of engineered/industrial NPs. The focus of this in vitro study was on analysis of neurotoxicity of different engineered NPs, with which we come into contact in our daily lives; SiO2 NPs, food grade (FG) TiO2 NPs, TiO2 P25 and silver NPs as examples of industrial NPs, and polyacrylic acid (PAA) coated cobalt ferrite NPs as an example of biomedical NPs. All short term exposure experiments (24-72 h) were performed on SH-SY5Y human neuroblastoma cell line in vitro using higher (25-50 μg/ml) as well as lower (2-10 μg/ml), concentrations that are more relevant for in vivo NPs exposure. We show that NPs can cause neurotoxicity through different mechanisms, such as membrane damage, cell cycle interference, ROS formation and accumulation of autophagosomes, depending on their physico-chemical properties and stability in physiological media. Low, in vivo achievable concentrations of NPs induced only minor or no changes in vitro, however prolonged exposure and accumulation in vivo could negatively affect the cells. This was also shown in case of autophagy dysfunction for TiO2 P25 NPs and decrease of cell viability for TiO2 FG NPs, which were only evident after 72 h of incubation.
Collapse
Affiliation(s)
- Jasna Lojk
- Group for nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Repas
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vladimir B Bregar
- Group for nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Pavlin
- Group for nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia; Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
35
|
Lee KI, Lin JW, Su CC, Fang KM, Yang CY, Kuo CY, Wu CC, Wu CT, Chen YW. Silica nanoparticles induce caspase-dependent apoptosis through reactive oxygen species-activated endoplasmic reticulum stress pathway in neuronal cells. Toxicol In Vitro 2019; 63:104739. [PMID: 31756540 DOI: 10.1016/j.tiv.2019.104739] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/07/2019] [Accepted: 11/18/2019] [Indexed: 01/10/2023]
Abstract
Human exposure to silica nanoparticles (SiNPs) has been widely applied as vehicles for drug delivery and cellular manipulations in nanoneuromedicine. SiNPs may cause adverse effects in the brain, but potential mechanisms underlying SiNPs-induced neurotoxicity are remained unclear. Here, we examined cytotoxic effects and the cellular mechanisms of SiNPs-induced neuronal cell death. In this study, the results showed that SiNPs significantly decreased cell viability and induced apoptosis in Neuro-2a cells as evidenced by the increase caspase-3 activity and the activation of caspase cascades and poly (ADP-ribose) polymerase (PARP). In addition, endoplasmic reticulum (ER) stress was triggered as indicated by several key molecules including glucose-regulated protein (GRP)78 and 94, C/EBP homologous protein (CHOP), activation transcription factor (ATF)-4, and caspase-12. Pretreatment of Neuro-2a cells with specific pharmacological inhibitor of ER stress (4-phenylbutyric acid (4-PBA)) effectively alleviated the SiNPs-induced ER stress and apoptotic related signals. Furthermore, 2',7'-Dichlorofluorescein fluorescence as an indicator of reactive oxygen species (ROS) formation after exposure of Neuro-2a cells to SiNPs significantly increased ROS levels. Antioxidant N-acetylcyseine (NAC) effectively reversed SiNPs-induced cellular responses. Taken together, these results suggest that SiNPs exposure exerts its neurotoxicity in cultured neuronal cells by inducing apoptosis via a ROS generation-activated downstream ER stress signaling pathway.
Collapse
Affiliation(s)
- Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Jhe-Wei Lin
- Department of Physiology, Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County 500, Taiwan
| | - Kai-Min Fang
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Ching-Yao Yang
- Department of Surgery, National Taiwan University Hospital, Department of Surgery, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chun-Ying Kuo
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County 500, Taiwan
| | - Chin-Ching Wu
- Department of Public Health, China Medical University, Taichung 404, Taiwan
| | - Cheng-Tien Wu
- Department of Nutrition and Master Program of Food and Drug Safety, China Medical University, Taichung 40402, Taiwan
| | - Ya-Wen Chen
- Department of Physiology, Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
36
|
Calderón-Garcidueñas L, Reynoso-Robles R, González-Maciel A. Combustion and friction-derived nanoparticles and industrial-sourced nanoparticles: The culprit of Alzheimer and Parkinson's diseases. ENVIRONMENTAL RESEARCH 2019; 176:108574. [PMID: 31299618 DOI: 10.1016/j.envres.2019.108574] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/11/2019] [Accepted: 07/02/2019] [Indexed: 05/20/2023]
Abstract
Redox-active, strongly magnetic, combustion and friction-derived nanoparticles (CFDNPs) are abundant in particulate matter air pollution. Urban children and young adults with Alzheimer disease Continuum have higher numbers of brain CFDNPs versus clean air controls. CFDNPs surface charge, dynamic magnetic susceptibility, iron content and redox activity contribute to ROS generation, neurovascular unit (NVU), mitochondria, and endoplasmic reticulum (ER) damage, and are catalysts for protein misfolding, aggregation and fibrillation. CFDNPs respond to external magnetic fields and are involved in cell damage by agglomeration/clustering, magnetic rotation and/or hyperthermia. This review focus in the interaction of CFDNPs, nanomedicine and industrial NPs with biological systems and the impact of portals of entry, particle sizes, surface charge, biomolecular corona, biodistribution, mitochondrial dysfunction, cellular toxicity, anterograde and retrograde axonal transport, brain dysfunction and pathology. NPs toxicity information come from researchers synthetizing particles and improving their performance for drug delivery, drug targeting, magnetic resonance imaging and heat mediators for cancer therapy. Critical information includes how these NPs overcome all barriers, the NPs protein corona changes as they cross the NVU and the complexity of NPs interaction with soluble proteins and key organelles. Oxidative, ER and mitochondrial stress, and a faulty complex protein quality control are at the core of Alzheimer and Parkinson's diseases and NPs mechanisms of action and toxicity are strong candidates for early development and progression of both fatal diseases. Nanoparticle exposure regardless of sources carries a high risk for the developing brain homeostasis and ought to be included in the AD and PD research framework.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- The University of Montana, Missoula, MT, 59812, USA; Universidad Del Valle de México, 04850, Mexico City, Mexico.
| | | | | |
Collapse
|
37
|
Guzman-Ruiz MA, de La Mora MB, Torres X, Meza C, Garcia E, Chavarria A. Oral Silica Nanoparticles Lack of Neurotoxic Effects in a Parkinson's Disease Model: A Possible Nanocarrier? IEEE Trans Nanobioscience 2019; 18:535-541. [PMID: 31398128 DOI: 10.1109/tnb.2019.2934074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Silica nanoparticles (SiO2-NP) are an option as drug carriers due to their biodegradability, biocompatibility, and capacity to bind themselves to other compounds. However, until now, the effect of these particles on the brain when neurodegeneration occurs is unknown. Hence, this work focused on the in vivo evaluation of the neurotoxic effects of SiO2-NP when oxidative and inflammation are present during the development of Parkinson's disease. To determine whether SiO2-NP may act as a non-neurotoxic carrier we evaluated if the intragastric administration (ig) of SiO2-NP of 150 nm (25, 50 and 100 mg/kg administered for five consecutive days) increased neuronal damage induced with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration. SiO2-NP administration did not further decrease cell viability assessed by MTT reduction, nor increased lipid peroxidation measured by TBARS or TNF α levels in the striatum and the substantia nigra in the MPTP model. Furthermore, we observed no additional reduction in striatal dopamine levels. The present results suggest that SiO2-NP of 150 nm are suitable nanocarrier for Parkinson's disease drugs without generating any additional damage.
Collapse
|
38
|
Du Q, Ge D, Mirshafiee V, Chen C, Li M, Xue C, Ma X, Sun B. Assessment of neurotoxicity induced by different-sized Stöber silica nanoparticles: induction of pyroptosis in microglia. NANOSCALE 2019; 11:12965-12972. [PMID: 31259344 DOI: 10.1039/c9nr03756j] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
With the wide application of Stöber silica nanoparticles and their ability to access the brain, it is crucial to evaluate their neurotoxicity. In this study, we used three in vitro model cells, i.e., N9, bEnd.3 and HT22 cells, representing microglia, microendothelial cells and neurons, respectively, to assess the neurotoxicity of Stöber silica nanoparticles with different sizes. We found that Stöber silica nanoparticles almost had no effect on the viability of bEnd.3 and HT22 cells. In contrast, they induced size-dependent toxicity in N9 cells, which represent the residential macrophages of the central nervous system. Further mechanistic study demonstrated that the toxicity in N9 cells was related to their surface silanol display. In addition, we demonstrated that Stöber silica nanoparticles induced the production of mitochondrial ROS, release of IL-1β, cleavage of GSDMD, and occurrence of pyroptosis in N9 cells. Features of pyroptosis were also observed in primary microglia and macrophage J774A.1. In conclusion, these findings were helpful for the safety consideration of Stöber silica nanoparticles considering their wide applications in our daily life.
Collapse
Affiliation(s)
- Qiqi Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China. and School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Dan Ge
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China. and School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Vahid Mirshafiee
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, USA
| | - Chen Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China. and School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Min Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China. and School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Changying Xue
- School of Life Science and Biotechnology, Dalian University of Technology, 116024, Dalian, China
| | - Xuehu Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China. and School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China. and School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| |
Collapse
|
39
|
Ge D, Du Q, Ran B, Liu X, Wang X, Ma X, Cheng F, Sun B. The neurotoxicity induced by engineered nanomaterials. Int J Nanomedicine 2019; 14:4167-4186. [PMID: 31239675 PMCID: PMC6559249 DOI: 10.2147/ijn.s203352] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022] Open
Abstract
Engineered nanomaterials (ENMs) have been widely used in various fields due to their novel physicochemical properties. However, the use of ENMs has led to an increased exposure in humans, and the safety of ENMs has attracted much attention. It is universally acknowledged that ENMs could enter the human body via different routes, eg, inhalation, skin contact, and intravenous injection. Studies have proven that ENMs can cross or bypass the blood-brain barrier and then access the central nervous system and cause neurotoxicity. Until now, diverse in vivo and in vitro models have been developed to evaluate the neurotoxicity of ENMs, and oxidative stress, inflammation, DNA damage, and cell death have been identified as being involved. However, due to various physicochemical properties of ENMs and diverse study models in existing studies, it remains challenging to establish the structure-activity relationship of nanomaterials in neurotoxicity. In this paper, we aimed to review current studies on ENM-induced neurotoxicity, with an emphasis on the molecular and cellular mechanisms involved. We hope to provide a rational material design strategy for ENMs when they are applied in biomedical or other engineering applications.
Collapse
Affiliation(s)
- Dan Ge
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Qiqi Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Bingqing Ran
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Xingyu Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Xin Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Xuehu Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Fang Cheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| |
Collapse
|
40
|
Zhang S, Wu H, Li S, Wang M, Fang L, Liu R. Melatonin Enhances Autophagy and Decreases Apoptosis Induced by nanosilica in RAW264.7 cells. IUBMB Life 2019; 71:1021-1029. [PMID: 31018046 DOI: 10.1002/iub.2055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Shi‐Hai Zhang
- Department of PulmonaryAnhui Geriatric Institute, the First Affiliated Hospital of Anhui Medical University Hefei China
- Anhui Provincial Children's HospitalChildren's Hospital of Anhui Medical University Hefei China
| | - Hui‐Mei Wu
- Department of PulmonaryAnhui Geriatric Institute, the First Affiliated Hospital of Anhui Medical University Hefei China
| | - Shuai Li
- Department of PulmonaryAnhui Geriatric Institute, the First Affiliated Hospital of Anhui Medical University Hefei China
| | - Mu‐Zi Wang
- Department of PulmonaryAnhui Geriatric Institute, the First Affiliated Hospital of Anhui Medical University Hefei China
| | - Lei Fang
- Department of PulmonaryAnhui Geriatric Institute, the First Affiliated Hospital of Anhui Medical University Hefei China
| | - Rong‐Yu Liu
- Department of PulmonaryAnhui Geriatric Institute, the First Affiliated Hospital of Anhui Medical University Hefei China
| |
Collapse
|
41
|
Wiedmer L, Ducray AD, Frenz M, Stoffel MH, Widmer HR, Mevissen M. Silica nanoparticle-exposure during neuronal differentiation modulates dopaminergic and cholinergic phenotypes in SH-SY5Y cells. J Nanobiotechnology 2019; 17:46. [PMID: 30935413 PMCID: PMC6442417 DOI: 10.1186/s12951-019-0482-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/23/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Silica-ε-polycaprolactone-nanoparticles (SiPCL-NPs) represent a promising tool for laser-tissue soldering in the brain. After release of the SiPCL-NPs in the brain, neuronal differentiation might be modulated. The present study was performed to determine effects of SiPCL-NP-exposure at different stages of neuronal differentiation in neuron-like SH-SY5Y cells. The resulting phenotypes were analyzed quantitatively and signaling pathways involved in neuronal differentiation and degeneration were studied. SH-SY5Y cells were differentiated with all-trans retinoic acid or staurosporine to obtain predominantly cholinergic or dopaminergic neurons. The resulting phenotype was analyzed at the end of differentiation with and without the SiPCL-NPs given at various times during differentiation. RESULTS Exposure to SiPCL-NPs before and during differentiation led to a decreased cell viability of SH-SY5Y cells depending on the differentiation protocol used. SiPCL-NPs co-localized with the neuronal marker β-3-tubulin but did not alter the morphology of these cells. A significant decrease in the number of tyrosine hydroxylase (TH) immunoreactive neurons was found in staurosporine-differentiated cells when SiPCL-NPs were added at the end of the differentiation. TH-protein expression was also significantly downregulated when SiPCL-NPs were applied in the middle of differentiation. Protein expression of the marker for the dopamine active transporter (DAT) was not affected by SiPCL-NPs. SiPCL-NP-exposure predominantly decreased the expression of the high-affinity choline transporter 1 (CHT1) when the NPs were given before the differentiation. Pathways involved in neuronal differentiation, namely Akt, MAP-K, MAP-2 and the neurodegeneration-related markers β-catenin and GSK-3β were not altered by NP-exposure. CONCLUSIONS The decrease in the number of dopaminergic and cholinergic cells may implicate neuronal dysfunction, but the data do not provide evidence that pathways relevant for differentiation and related to neurodegeneration are impaired.
Collapse
Affiliation(s)
- Linda Wiedmer
- Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012 Bern, Switzerland
| | - Angélique D. Ducray
- Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012 Bern, Switzerland
| | - Martin Frenz
- Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Michael H. Stoffel
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hans-Rudolf Widmer
- Department of Neurosurgery, Research Unit, Inselspital, University of Bern, Bern, Switzerland
| | - Meike Mevissen
- Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012 Bern, Switzerland
| |
Collapse
|
42
|
Cordani M, Somoza Á. Targeting autophagy using metallic nanoparticles: a promising strategy for cancer treatment. Cell Mol Life Sci 2019; 76:1215-1242. [PMID: 30483817 PMCID: PMC6420884 DOI: 10.1007/s00018-018-2973-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/20/2018] [Indexed: 02/08/2023]
Abstract
Despite the extensive genetic and phenotypic variations present in the different tumors, they frequently share common metabolic alterations, such as autophagy. Autophagy is a self-degradative process in response to stresses by which damaged macromolecules and organelles are targeted by autophagic vesicles to lysosomes and then eliminated. It is known that autophagy dysfunctions can promote tumorigenesis and cancer development, but, interestingly, its overstimulation by cytotoxic drugs may also induce cell death and chemosensitivity. For this reason, the possibility to modulate autophagy may represent a valid therapeutic approach to treat different types of cancers and a variety of clinical trials, using autophagy modulators, are currently employed. On the other hand, recent progress in nanotechnology offers plenty of tools to fight cancer with innovative and efficient therapeutic agents by overcoming obstacles usually encountered with traditional drugs. Interestingly, nanomaterials can modulate autophagy and have been exploited as therapeutic agents against cancer. In this article, we summarize the most recent advances in the application of metallic nanostructures as potent modulators of autophagy process through multiple mechanisms, stressing their therapeutic implications in cancer diseases. For this reason, we believe that autophagy modulation with nanoparticle-based strategies would acquire clinical relevance in the near future, as a complementary therapy for the treatment of cancers and other diseases.
Collapse
Affiliation(s)
- Marco Cordani
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), CNB-CSIC-IMDEA Nanociencia Associated Unit "Unidad de Nanobiotecnología", Madrid, Spain.
- Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), Faraday 9, Office 129, Lab 137 Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), CNB-CSIC-IMDEA Nanociencia Associated Unit "Unidad de Nanobiotecnología", Madrid, Spain.
- Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), Faraday 9, Office 129, Lab 137 Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
43
|
Niu X, Chen J, Gao J. Nanocarriers as a powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: Focus on recent advances. Asian J Pharm Sci 2018; 14:480-496. [PMID: 32104476 PMCID: PMC7032222 DOI: 10.1016/j.ajps.2018.09.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/26/2018] [Accepted: 09/01/2018] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington disease and amyotrophic lateral sclerosis throw a heavy burden on families and society. Related scientific researches make tardy progress. One reason is that the known pathogeny is just the tip of the iceberg. Another reason is that various physiological barriers, especially blood-brain barrier (BBB), hamper effective therapeutic substances from reaching site of action. Drugs in clinical treatment of neurodegenerative diseases are basically administered orally. And generally speaking, the brain targeting efficiency is pretty low. Nano-delivery technology brings hope for neurodegenerative diseases. The use of nanocarriers encapsulating molecules such as peptides and genomic medicine may enhance drug transport through the BBB in neurodegenerative disease and target relevant regions in the brain for regenerative processes. In this review, we discuss BBB composition and applications of nanocarriers -liposomes, nanoparticles, nanomicelles and new emerging exosomes in neurodegenerative diseases. Furthermore, the disadvantages and the potential neurotoxicity of nanocarriers according pharmacokinetics theory are also discussed.
Collapse
Affiliation(s)
- Xiaoqian Niu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiejian Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Cancer Prevention and Intervention, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
44
|
Ye Y, Hui L, Lakpa KL, Xing Y, Wollenzien H, Chen X, Zhao JX, Geiger JD. Effects of silica nanoparticles on endolysosome function in primary cultured neurons 1. Can J Physiol Pharmacol 2018; 97:297-305. [PMID: 30312546 DOI: 10.1139/cjpp-2018-0401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Silica nanoparticles (SiNPs) have been used as vehicles for drug delivery, molecular detection, and cellular manipulations in nanoneuromedicine. SiNPs may cause adverse effects in the brain including neurotoxicity, neuroinflammation, neurodegeneration, and enhancing levels of amyloid beta (Aβ) protein-all pathological hallmarks of Alzheimer's disease. Therefore, the extent to which SiNPs influence Aβ generation and the underlying mechanisms by which this occurs deserve investigation. Our studies were focused on the effects of SiNPs on endolysosomes which uptake, traffic, and mediate the actions of SiNPs. These organelles are also where amyloidogenesis largely originates. We found that SiNPs, in primary cultured hippocampal neurons, accumulated in endolysosomes and caused a rapid and persistent deacidification of endolysosomes. SiNPs significantly reduced endolysosome calcium stores as indicated by a significant reduction in the ability of the lysosomotropic agent glycyl-l-phenylalanine 2-naphthylamide (GPN) to release calcium from endolysosomes. SiNPs increased Aβ1-40 secretion, whereas 2 agents that acidified endolysosomes, ML-SA1 and CGS21680, blocked SiNP-induced deacidification and increased generation of Aβ1-40. Our findings suggest that SiNP-induced deacidification of and calcium release from endolysosomes might be mechanistically linked to increased amyloidogenesis. The use of SiNPs might not be the best nanomaterial for therapeutic strategies against Alzheimer's disease and other neurological disorders linked to endolysosome dysfunction.
Collapse
Affiliation(s)
- Yan Ye
- a Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Liang Hui
- a Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Koffi L Lakpa
- a Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Yuqian Xing
- b Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA
| | - Hannah Wollenzien
- a Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Xuesong Chen
- a Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Julia Xiaojun Zhao
- b Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA
| | - Jonathan D Geiger
- a Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| |
Collapse
|
45
|
Conformational properties of intrinsically disordered proteins bound to the surface of silica nanoparticles. Biochim Biophys Acta Gen Subj 2018; 1862:1556-1564. [DOI: 10.1016/j.bbagen.2018.03.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/12/2018] [Accepted: 03/28/2018] [Indexed: 01/02/2023]
|
46
|
Pellacani C, Costa LG. Role of autophagy in environmental neurotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:791-805. [PMID: 29353798 DOI: 10.1016/j.envpol.2017.12.102] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 12/08/2017] [Accepted: 12/25/2017] [Indexed: 06/07/2023]
Abstract
Human exposure to neurotoxic pollutants (e.g. metals, pesticides and other chemicals) is recognized as a key risk factor in the pathogenesis of neurodegenerative disorders. Emerging evidence indicates that an alteration in autophagic pathways may be correlated with the onset of the neurotoxicity resulting from chronic exposure to these pollutants. In fact, autophagy is a natural process that permits to preserving cell homeostasis, through the seizure and degradation of the cytosolic damaged elements. However, when an excessive level of intracellular damage is reached, the autophagic process may also induce cell death. A correct modulation of specific stages of autophagy is important to maintain the correct balance in the organism. In this review, we highlight the critical role that autophagy plays in neurotoxicity induced by the most common classes of environmental contaminants. The understanding of this mechanism may be helpful to discover a potential therapeutic strategy to reduce side effects induced by these compounds.
Collapse
Affiliation(s)
- C Pellacani
- Dept. of Medicine and Surgery, University of Parma, Parma, Italy.
| | - L G Costa
- Dept. of Medicine and Surgery, University of Parma, Parma, Italy; Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
47
|
SiO 2 nanoparticles modulate the electrical activity of neuroendocrine cells without exerting genomic effects. Sci Rep 2018; 8:2760. [PMID: 29426889 PMCID: PMC5807366 DOI: 10.1038/s41598-018-21157-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 01/15/2018] [Indexed: 01/21/2023] Open
Abstract
Engineered silica nanoparticles (NPs) have attracted increasing interest in several applications, and particularly in the field of nanomedicine, thanks to the high biocompatibility of this material. For their optimal and controlled use, the understanding of the mechanisms elicited by their interaction with the biological target is a prerequisite, especially when dealing with cells particularly vulnerable to environmental stimuli like neurons. Here we have combined different electrophysiological approaches (both at the single cell and at the population level) with a genomic screening in order to analyze, in GT1-7 neuroendocrine cells, the impact of SiO2 NPs (50 ± 3 nm in diameter) on electrical activity and gene expression, providing a detailed analysis of the impact of a nanoparticle on neuronal excitability. We find that 20 µg mL−1 NPs induce depolarization of the membrane potential, with a modulation of the firing of action potentials. Recordings of electrical activity with multielectrode arrays provide further evidence that the NPs evoke a temporary increase in firing frequency, without affecting the functional behavior on a time scale of hours. Finally, NPs incubation up to 24 hours does not induce any change in gene expression.
Collapse
|
48
|
Lovisolo D, Dionisi M, A. Ruffinatti F, Distasi C. Nanoparticles and potential neurotoxicity: focus on molecular mechanisms. AIMS MOLECULAR SCIENCE 2018. [DOI: 10.3934/molsci.2018.1.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
49
|
Calderón-Garcidueñas L, Reynoso-Robles R, Pérez-Guillé B, Mukherjee PS, Gónzalez-Maciel A. Combustion-derived nanoparticles, the neuroenteric system, cervical vagus, hyperphosphorylated alpha synuclein and tau in young Mexico City residents. ENVIRONMENTAL RESEARCH 2017; 159:186-201. [PMID: 28803148 DOI: 10.1016/j.envres.2017.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
Mexico City (MC) young residents are exposed to high levels of fine particulate matter (PM2.5), have high frontal concentrations of combustion-derived nanoparticles (CDNPs), accumulation of hyperphosphorylated aggregated α-synuclein (α-Syn) and early Parkinson's disease (PD). Swallowed CDNPs have easy access to epithelium and submucosa, damaging gastrointestinal (GI) barrier integrity and accessing the enteric nervous system (ENS). This study is focused on the ENS, vagus nerves and GI barrier in young MC v clean air controls. Electron microscopy of epithelial, endothelial and neural cells and immunoreactivity of stomach and vagus to phosphorylated ɑ-synuclein Ser129 and Hyperphosphorylated-Tau (Htau) were evaluated and CDNPs measured in ENS. CDNPs were abundant in erythrocytes, unmyelinated submucosal, perivascular and intramuscular nerve fibers, ganglionic neurons and vagus nerves and associated with organelle pathology. ɑSyn and Htau were present in 25/27 MC gastric,15/26 vagus and 18/27 gastric and 2/26 vagus samples respectively. We strongly suggest CDNPs are penetrating and damaging the GI barrier and reaching preganglionic parasympathetic fibers and the vagus nerve. This work highlights the potential role of CDNPs in the neuroenteric hyperphosphorylated ɑ-Syn and tau pathology as seen in Parkinson and Alzheimer's diseases. Highly oxidative, ubiquitous CDNPs constitute a biologically plausible path into Parkinson's and Alzheimer's pathogenesis.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- The University of Montana, Missoula, MT 59812, USA; Universidad del Valle de México, Mexico City 14370, Mexico.
| | | | | | | | | |
Collapse
|
50
|
Murugadoss S, Lison D, Godderis L, Van Den Brule S, Mast J, Brassinne F, Sebaihi N, Hoet PH. Toxicology of silica nanoparticles: an update. Arch Toxicol 2017; 91:2967-3010. [PMID: 28573455 PMCID: PMC5562771 DOI: 10.1007/s00204-017-1993-y] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/18/2017] [Indexed: 12/18/2022]
Abstract
Large-scale production and use of amorphous silica nanoparticles (SiNPs) have increased the risk of human exposure to SiNPs, while their health effects remain unclear. In this review, scientific papers from 2010 to 2016 were systematically selected and sorted based on in vitro and in vivo studies: to provide an update on SiNPs toxicity and to address the knowledge gaps indicated in the review of Napierska (Part Fibre Toxicol 7:39, 2010). Toxicity of SiNPs in vitro is size, dose, and cell type dependent. SiNPs synthesized by wet route exhibited noticeably different biological effects compared to thermal route-based SiNPs. Amorphous SiNPs (particularly colloidal and stöber) induced toxicity via mechanisms similar to crystalline silica. In vivo, route of administration and physico-chemical properties of SiNPs influences the toxicokinetics. Adverse effects were mainly observed in acutely exposed animals, while no significant signs of toxicity were noted in chronically dosed animals. The correlation between in vitro and in vivo toxicity remains less well established mainly due to improper-unrealistic-dosing both in vitro and in vivo. In conclusion, notwithstanding the multiple studies published in recent years, unambiguous linking of physico-chemical properties of SiNPs types to toxicity, bioavailability, or human health effects is not yet possible.
Collapse
Affiliation(s)
- Sivakumar Murugadoss
- Unit for Lung Toxicology, Katholieke Universiteit Leuven, Herestraat 49, O&N1, Room: 07.702, box 706, 3000 Louvain, Belgium
| | - Dominique Lison
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Université Catholique de Louvain, Avenue E. Mounier 52/B1.52.12, 1200 Brussels, Belgium
| | - Lode Godderis
- Department of Occupational, Environmental and Insurance Medicine, Katholieke Universiteit Leuven, Kapucijnenvoer 35 block d, box 7001, 3000 Louvain, Belgium
| | - Sybille Van Den Brule
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Université Catholique de Louvain, Avenue E. Mounier 52/B1.52.12, 1200 Brussels, Belgium
| | - Jan Mast
- EM-unit, Center for Veterinary and Agrochemical Studies and Research (CODA-CERVA), Groeselenberg 99, Uccle, 1180 Brussels, Belgium
| | - Frederic Brassinne
- EM-unit, Center for Veterinary and Agrochemical Studies and Research (CODA-CERVA), Groeselenberg 99, Uccle, 1180 Brussels, Belgium
| | - Noham Sebaihi
- General Quality and Safety, Metrology Department, National Standards, North Gate-Office 2A29, Bd du Roi Albert II, 16, 1000 Brussels, Belgium
| | - Peter H. Hoet
- Unit for Lung Toxicology, Katholieke Universiteit Leuven, Herestraat 49, O&N1, Room: 07.702, box 706, 3000 Louvain, Belgium
| |
Collapse
|