1
|
Cai C, Yang D, Cao Y, Peng Z, Wang Y, Xi J, Yan C, Li X. Anticancer potential of active alkaloids and synthetic analogs derived from marine invertebrates. Eur J Med Chem 2024; 279:116850. [PMID: 39270448 DOI: 10.1016/j.ejmech.2024.116850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
In recent years, the number of cancers has soared, becoming one of the leading causes of human death. At the same time, marine anticancer substances have been the focus of marine drug research. Marine alkaloids derived from marine invertebrates like sponges are an important class of secondary metabolites, which have good bioactivities of blocking the cancer cell cycle, inducing autophagy and apoptosis of cancer cells, inhibiting cancer cell invasion and proliferation. They show potential as anticancer drug candidates. Therefore, in this review, we focus on the detailed introduction of bioactive alkaloids and their synthetic analogs from marine invertebrates, such as 4-chloro fascapysin and other 41 kinds of marine alkaloids or marine alkaloid synthetic analogs. They have significant anticancer activities on breast cancer, cervical cancer, colorectal cancer, prostate cancer, lung cancer, liver cancer, and so on. It provides new candidate compounds for anticancer drug research and provides a reference basis for marine drug resources research.
Collapse
Affiliation(s)
- Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yulin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
2
|
Dyshlovoy SA, Mansour WY, Ramm NA, Hauschild J, Zhidkov ME, Kriegs M, Zielinski A, Hoffer K, Busenbender T, Glumakova KA, Spirin PV, Prassolov VS, Tilki D, Graefen M, Bokemeyer C, von Amsberg G. Synthesis and new DNA targeting activity of 6- and 7-tert-butylfascaplysins. Sci Rep 2024; 14:11788. [PMID: 38783016 PMCID: PMC11116464 DOI: 10.1038/s41598-024-62358-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Fascaplysin is a red cytotoxic pigment with anticancer properties isolated from the marine sponge Fascaplysinopsis sp. Recently, structure-activity relationship analysis reported by our group suggested that selective cytotoxicity of fascaplysin derivatives towards tumor cells negatively correlates with their ability to intercalate into DNA. To validate this hypothesis, we synthesized 6- and 7-tert-butylfascaplysins which reveal mitigated DNA-intercalating properties. These derivatives were found to be strongly cytotoxic to drug-resistant human prostate cancer cells, albeit did not demonstrate improved selectivity towards cancer cells when compared to fascaplysin. At the same time, kinome analysis suggested an activation of CHK1/ATR axis in cancer cells shortly after the drug exposure. Further experiments revealed induction of replication stress that is eventually converted to the toxic DNA double-strand breaks, resulting in caspase-independent apoptosis-like cell death. Our observations highlight new DNA-targeting effect of some fascaplysin derivatives and indicate more complex structure-activity relationships within the fascaplysin family, suggesting that cytotoxicity and selectivity of these alkaloids are influenced by multiple factors. Furthermore, combination with clinically-approved inhibitors of ATR/CHK1 as well as testing in tumors particularly sensitive to the DNA damage should be considered in further studies.
Collapse
Affiliation(s)
- Sergey A Dyshlovoy
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Wael Y Mansour
- Department of Radiotherapy and Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Natalia A Ramm
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, Far Eastern Federal University, FEFU Campus, Ajax Bay 10, 690922, Vladivostok, Russky Island, Russian Federation
| | - Jessica Hauschild
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Maxim E Zhidkov
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, Far Eastern Federal University, FEFU Campus, Ajax Bay 10, 690922, Vladivostok, Russky Island, Russian Federation
| | - Malte Kriegs
- Department of Radiotherapy and Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Alexandra Zielinski
- Department of Radiotherapy and Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Konstantin Hoffer
- Department of Radiotherapy and Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Tobias Busenbender
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Ksenia A Glumakova
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991, Moscow, Russian Federation
| | - Pavel V Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991, Moscow, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991, Moscow, Russian Federation
| | - Vladimir S Prassolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991, Moscow, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991, Moscow, Russian Federation
| | - Derya Tilki
- Department of Urology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Department of Urology, Koc University Hospital, 34010, Istanbul, Turkey
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Markus Graefen
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Carsten Bokemeyer
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Gunhild von Amsberg
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
3
|
Fakhri S, Moradi SZ, Faraji F, Kooshki L, Webber K, Bishayee A. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: a comprehensive and critical review. Cancer Metastasis Rev 2024; 43:501-574. [PMID: 37792223 DOI: 10.1007/s10555-023-10136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Tumor cells employ multiple signaling mediators to escape the hypoxic condition and trigger angiogenesis and metastasis. As a critical orchestrate of tumorigenic conditions, hypoxia-inducible factor-1 (HIF-1) is responsible for stimulating several target genes and dysregulated pathways in tumor invasion and migration. Therefore, targeting HIF-1 pathway and cross-talked mediators seems to be a novel strategy in cancer prevention and treatment. In recent decades, tremendous efforts have been made to develop multi-targeted therapies to modulate several dysregulated pathways in cancer angiogenesis, invasion, and metastasis. In this line, natural compounds have shown a bright future in combating angiogenic and metastatic conditions. Among the natural secondary metabolites, we have evaluated the critical potential of phenolic compounds, terpenes/terpenoids, alkaloids, sulfur compounds, marine- and microbe-derived agents in the attenuation of HIF-1, and interconnected pathways in fighting tumor-associated angiogenesis and invasion. This is the first comprehensive review on natural constituents as potential regulators of HIF-1 and interconnected pathways against cancer angiogenesis and metastasis. This review aims to reshape the previous strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA.
| |
Collapse
|
4
|
Xu M, Bai Z, Xie B, Peng R, Du Z, Liu Y, Zhang G, Yan S, Xiao X, Qin S. Marine-Derived Bisindoles for Potent Selective Cancer Drug Discovery and Development. Molecules 2024; 29:933. [PMID: 38474445 DOI: 10.3390/molecules29050933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 03/14/2024] Open
Abstract
Marine-derived bisindoles exhibit structural diversity and exert anti-cancer influence through multiple mechanisms. Comprehensive research has shown that the development success rate of drugs derived from marine natural products is four times higher than that of other natural derivatives. Currently, there are 20 marine-derived drugs used in clinical practice, with 11 of them demonstrating anti-tumor effects. This article provides a thorough review of recent advancements in anti-tumor exploration involving 167 natural marine bisindole products and their derivatives. Not only has enzastaurin entered clinical practice, but there is also a successfully marketed marine-derived bisindole compound called midostaurin that is used for the treatment of acute myeloid leukemia. In summary, investigations into the biological activity and clinical progress of marine-derived bisindoles have revealed their remarkable selectivity, minimal toxicity, and efficacy against various cancer cells. Consequently, they exhibit immense potential in the field of anti-tumor drug development, especially in the field of anti-tumor drug resistance. In the future, these compounds may serve as promising leads in the discovery and development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Mengwei Xu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhaofang Bai
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Baocheng Xie
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
| | - Rui Peng
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Ziwei Du
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China
| | - Yan Liu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Guangshuai Zhang
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Si Yan
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiaohe Xiao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Shuanglin Qin
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| |
Collapse
|
5
|
Zhidkov ME, Sidorova MA, Smirnova PA, Tryapkin OA, Kachanov AV, Kantemirov AV, Dezhenkova LG, Grammatikova NE, Isakova EB, Shchekotikhin AE, Pak MA, Styshova ON, Klimovich AA, Popov AM. Comparative Evaluation of the Antibacterial and Antitumor Activities of 9-Phenylfascaplysin and Its Analogs. Mar Drugs 2024; 22:53. [PMID: 38393024 PMCID: PMC10890213 DOI: 10.3390/md22020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Based on the results of our own preliminary studies, the derivative of the marine alkaloid fascaplysin containing a phenyl substituent at C-9 was selected to evaluate the therapeutic potential in vivo and in vitro. It was shown that this compound has outstandingly high antimicrobial activity against Gram-positive bacteria, including antibiotic-resistant strains in vitro. The presence of a substituent at C-9 of the framework is of fundamental importance, since its replacement to neighboring positions leads to a sharp decrease in the selectivity of the antibacterial action, which indicates the presence of a specific therapeutic target in bacterial cells. On a model of the acute bacterial sepsis in mice, it was shown that the lead compound was more effective than the reference antibiotic vancomycin seven out of nine times. However, ED50 value for 9-phenylfascaplysin (7) was similar for the unsubstituted fascaplysin (1) in vivo, despite the former being significantly more active than the latter in vitro. Similarly, assessments of the anticancer activity of compound 7 against various variants of Ehrlich carcinoma in mice demonstrated its substantial efficacy. To conduct a structure-activity relationship (SAR) analysis and searches of new candidate compounds, we synthesized a series of analogs of 9-phenylfascaplysin with varying aryl substituents. However, these modifications led to the reduced aqueous solubility of fascaplysin derivatives or caused a loss of their antibacterial activity. As a result, further research is required to explore new avenues for enhancing its pharmacokinetic characteristics, the modification of the heterocyclic framework, and optimizing of treatment regimens to harness the remarkable antimicrobial potential of fascaplysin for practical usage.
Collapse
Affiliation(s)
- Maxim E. Zhidkov
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia
| | - Maria A. Sidorova
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia
| | - Polina A. Smirnova
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia
| | - Oleg A. Tryapkin
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia
| | - Andrey V. Kachanov
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia
| | - Alexey V. Kantemirov
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia
| | - Lyubov G. Dezhenkova
- Laboratory of Chemical Transformation of Antibiotics, Gause Institute of New Antibiotics, 119021 Moscow, Russia
| | - Natalia E. Grammatikova
- Laboratory of Chemical Transformation of Antibiotics, Gause Institute of New Antibiotics, 119021 Moscow, Russia
| | - Elena B. Isakova
- Laboratory of Chemical Transformation of Antibiotics, Gause Institute of New Antibiotics, 119021 Moscow, Russia
| | - Andrey E. Shchekotikhin
- Laboratory of Chemical Transformation of Antibiotics, Gause Institute of New Antibiotics, 119021 Moscow, Russia
| | - Marina A. Pak
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia
| | - Olga N. Styshova
- Departments of Biotechnology and Marine Natural Compounds Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of The Russian Academy of Sciences, 690922 Vladivostok, Russia (A.A.K.)
| | - Anna A. Klimovich
- Departments of Biotechnology and Marine Natural Compounds Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of The Russian Academy of Sciences, 690922 Vladivostok, Russia (A.A.K.)
| | - Aleksandr M. Popov
- Departments of Biotechnology and Marine Natural Compounds Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of The Russian Academy of Sciences, 690922 Vladivostok, Russia (A.A.K.)
| |
Collapse
|
6
|
Panada J, Klopava V, Kulahava T, Koran S, Faletrov Y, Frolova N, Fomina E, Shkumatov V. Differential induction of C6 glioma apoptosis and autophagy by 3β-hydroxysteroid-indolamine conjugates. Steroids 2023; 200:109326. [PMID: 37827441 DOI: 10.1016/j.steroids.2023.109326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
In a previous work, we reported the synthesis of four novel indole steroids and their effect on rat C6 glioma proliferation in vitro. The steroid derived from dehydroepiandrosterone and tryptamine (IS-1) was the most active (52 % inhibition at 10 µM), followed by one of the epimers derived from pregnenolone and tryptamine (IS-3, 36 % inhibition at 10 µM). By contrast, the steroid derived from estrone and tryptamine (IS-2) showed negligible activity at 10 µM. No necrosis, increase in intracellular calcium or ROS levels was observed. In this work, the effect of compounds on C6 glioma apoptosis and autophagy is examined by fluorimetry and fluorescent microscopy. The IS-3 epimers disrupt the mitochondrial membrane potential and induce apoptosis in vitro moderately whereas IS-1 and IS-2 do not. However, IS-1 produces a large increase in monodansylcadaverine-positive autophagic vesicles over 24 h. The antiproliferative effect of indole steroids is ameliorated by autophagy inhibitor hydroxychloroquine, suggesting an autophagy-dependent mechanism of cell death.
Collapse
Affiliation(s)
- Jan Panada
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220006, 14 Lieninhradskaja str., Minsk, Belarus
| | - Valeriya Klopava
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220006, 14 Lieninhradskaja str., Minsk, Belarus
| | - Tatsiana Kulahava
- Institute for Nuclear Problems of the Belarusian State University, 220006, 11 Babrujskaja str., Minsk, Belarus
| | - Siarhei Koran
- Republican Research and Practical Center for Epidemiology and Microbiology, 220114, 23 Filimonava str., Minsk, Belarus
| | - Yaroslav Faletrov
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220006, 14 Lieninhradskaja str., Minsk, Belarus; Department of Chemistry, Belarusian State University, 220050, 4 Independence ave., Minsk, Belarus
| | - Nina Frolova
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220006, 14 Lieninhradskaja str., Minsk, Belarus
| | - Elena Fomina
- Republican Research and Practical Center for Epidemiology and Microbiology, 220114, 23 Filimonava str., Minsk, Belarus
| | - Vladimir Shkumatov
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220006, 14 Lieninhradskaja str., Minsk, Belarus; Department of Chemistry, Belarusian State University, 220050, 4 Independence ave., Minsk, Belarus.
| |
Collapse
|
7
|
Ghanem A, Ali MA, Elkady MA, Abdel Mageed SS, El Hassab MA, El-Ashrey MK, Mohammed OA, Doghish AS. Rumex vesicarius L. boosts the effectiveness of sorafenib in triple-negative breast cancer by downregulating BCl2, mTOR, and JNK, and upregulating p21 expression. Pathol Res Pract 2023; 250:154807. [PMID: 37696244 DOI: 10.1016/j.prp.2023.154807] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND/AIM Triple-negative breast cancer (TNBC) is characterized by poor prognosis, rapid progression, serious clinical behavior, an elevated risk of metastasis, and resistance to standard treatments. Traditional medicine practitioners value Rumex vesicarius L. (RMV) for a variety of reasons, including the plant's antioxidant capabilities. Our study's goals were to ascertain the efficacy of RMV alone and in combination with sorafenib (SOR) against the aggressive TNBC cell line (MDA-MB-231) and use in vitro and in silico analysis to deduce the fundamental mechanism of action. METHODS In the current study, molecular operating environment (MOE, 2019.0102) software was used for performing molecular docking. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay was used to determine the cytotoxicity of RMV, SOR or RMV/SOR combination against the TNBC cell line MDA-MB-231 cells. The effects of RMV, SOR, and RMV and SOR combining on mRNAs expressions of the target genes including mTOR, p21, JNK, and BCl2 were evaluated. In TNBC cells, the relative expressions of mRNAs of the genes were examined by using real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS In our experiments, we discovered that both RMV extracts alone and in combination with SOR considerably reduced cancer cell proliferation (IC50 = 0.83 and 0.19 μM, respectively). Additionally, the expression of the tumor suppressor gene p21 was elevated whereas the expression of the invasion and anti-apoptosis genes BCl2, mTOR, and JNK were significantly decreased after treatment with RMV and SOR. Based on in silico analysis, it was found that RMV extract contains bioactive chemicals with a high affinity for inhibiting JNK and VEGFR-2. CONCLUSION In conclusion, in vitro and in silico investigations show that the RMV extract improves the anticancer efficiency of SOR through molecular processes involving the downregulation of mTOR, BCl2, and JNK1 and overexpression of p21 tumor suppressor gene. Finally, we suggest conducting additional in vivo investigations on RMV and its bioactive components to verify their potential in cancer therapy.
Collapse
Affiliation(s)
- Aml Ghanem
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), SouthSinai, Ras Sudr 46612, Egypt
| | - Mohamed K El-Ashrey
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), SouthSinai, Ras Sudr 46612, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| |
Collapse
|
8
|
Durrani IA, Bhatti A, John P. Integrated bioinformatics analyses identifying potential biomarkers for type 2 diabetes mellitus and breast cancer: In SIK1-ness and health. PLoS One 2023; 18:e0289839. [PMID: 37556419 PMCID: PMC10411810 DOI: 10.1371/journal.pone.0289839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/23/2023] [Indexed: 08/11/2023] Open
Abstract
The bidirectional causal relationship between type 2 diabetes mellitus (T2DM) and breast cancer (BC) has been established by numerous epidemiological studies. However, the underlying molecular mechanisms are not yet fully understood. Identification of hub genes implicated in T2DM-BC molecular crosstalk may help elucidate on the causative mechanisms. For this, expression series GSE29231 (T2DM-adipose tissue), GSE70905 (BC- breast adenocarcinoma biopsies) and GSE150586 (diabetes and BC breast biopsies) were extracted from Gene Expression Omnibus (GEO) database, and analyzed to obtain differentially expressed genes (DEGs). The overlapping DEGs were determined using FunRich. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Transcription Factor (TF) analyses were performed on EnrichR software and a protein-protein interaction (PPI) network was constructed using STRING software. The network was analyzed on Cytoscape to determine hub genes and Kaplan-Meier plots were obtained. A total of 94 overlapping DEGs were identified between T2DM and BC samples. These DEGs were mainly enriched for GO terms RNA polymerase II core promoter proximal region sequence and its DNA binding, and cAMP response element binding protein, and KEGG pathways including bladder cancer, thyroid cancer and PI3K-AKT signaling. Eight hub genes were identified: interleukin 6 (IL6), tumor protein 53 (TP53), interleukin 8 (CXCL8), MYC, matrix metalloproteinase 9 (MMP9), beta-catenin 1 (CTNNB1), nitric oxide synthase 3 (NOS3) and interleukin 1 beta (IL1β). MMP9 and MYC associated unfavorably with overall survival (OS) in breast cancer patients, IL6, TP53, IL1β and CTNNB1 associated favorably, whereas NOS3 did not show any correlation with OS. Salt inducible kinase 1 (SIK1) was identified as a significant key DEG for comorbid samples when compared with BC, also dysregulated in T2DM and BC samples (adjusted p <0.05). Furthermore, four of the significant hub genes identified, including IL6, CXCL8, IL1B and MYC were also differentially expressed for comorbid samples, however at p < 0.05. Our study identifies key genes including SIK1, for comorbid state and 8 hub genes that may be implicated in T2DM-BC crosstalk. However, limitations associated with the insilico nature of this study necessitates for subsequent validation in wet lab. Hence, further investigation is crucial to study the molecular mechanisms of action underlying these genes to fully explore their potential as diagnostic and prognostic biomarkers and therapeutic targets for T2DM-BC association.
Collapse
Affiliation(s)
- Ilhaam Ayaz Durrani
- Department of Healthcare Biotechnology, Atta ur Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H12, Islamabad, Islamabad Capital Territory, Pakistan
| | - Attya Bhatti
- Department of Healthcare Biotechnology, Atta ur Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H12, Islamabad, Islamabad Capital Territory, Pakistan
| | - Peter John
- Department of Healthcare Biotechnology, Atta ur Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H12, Islamabad, Islamabad Capital Territory, Pakistan
| |
Collapse
|
9
|
Tryapkin OA, Kantemirov AV, Dyshlovoy SA, Prassolov VS, Spirin PV, von Amsberg G, Sidorova MA, Zhidkov ME. A New Mild Method for Synthesis of Marine Alkaloid Fascaplysin and Its Therapeutically Promising Derivatives. Mar Drugs 2023; 21:424. [PMID: 37623705 PMCID: PMC10455802 DOI: 10.3390/md21080424] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/09/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
Fascaplysin is a marine alkaloid which is considered to be a lead drug candidate due to its diverse and potent biological activity. As an anticancer agent, fascaplysin holds a great potential due to the multiple targets affected by this alkaloid in cancer cells, including inhibition of cyclin-dependent kinase 4 (CDK4) and induction of intrinsic apoptosis. At the same time, the studies on structural optimization are hampered by its rather high toxicity, mainly caused by DNA intercalation. In addition, the number of methods for the syntheses of its derivatives is limited. In the current study, we report a new two-step method of synthesis of fascaplysin derivatives based on low temperature UV quaternization for the synthesis of thermolabile 9-benzyloxyfascaplysin and 6-tert-butylfascaplysin. 9-Benzyloxyfascaplysin was used as the starting compound to obtain 9-hydroxyfascaplysin. However, the latter was found to be chemically highly unstable. 6-tert-Butylfascaplysin revealed a significant decrease in DNA intercalation when compared to fascaplysin, while cytotoxicity was only slightly reduced. Therefore, the impact of DNA intercalation for the cytotoxic effects of fascaplysin and its derivatives needs to be questioned.
Collapse
Affiliation(s)
- Oleg A. Tryapkin
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia; (A.V.K.); (M.A.S.)
| | - Alexey V. Kantemirov
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia; (A.V.K.); (M.A.S.)
| | - Sergey A. Dyshlovoy
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (S.A.D.); (G.v.A.)
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Vladimir S. Prassolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia; (V.S.P.); (P.V.S.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| | - Pavel V. Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia; (V.S.P.); (P.V.S.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (S.A.D.); (G.v.A.)
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Maria A. Sidorova
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia; (A.V.K.); (M.A.S.)
| | - Maxim E. Zhidkov
- Department of Chemistry and Materials, Institute of High Technologies and Advanced Materials, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia; (A.V.K.); (M.A.S.)
| |
Collapse
|
10
|
Wang C, Wang S, Li H, Hou Y, Cao H, Hua H, Li D. Marine-Derived Lead Fascaplysin: Pharmacological Activity, Total Synthesis, and Structural Modification. Mar Drugs 2023; 21:md21040226. [PMID: 37103365 PMCID: PMC10142289 DOI: 10.3390/md21040226] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Fascaplysin is a planar structure pentacyclic alkaloid isolated from sponges, which can effectively induce the apoptosis of cancer cells. In addition, fascaplysin has diverse biological activities, such as antibacterial, anti-tumor, anti-plasmodium, etc. Unfortunately, the planar structure of fascaplysin can be inserted into DNA and such interaction also limits the further application of fascaplysin, necessitating its structural modification. In this review, the biological activity, total synthesis and structural modification of fascaplysin will be summarized, which will provide useful information for pharmaceutical researchers interested in the exploration of marine alkaloids and for the betterment of fascaplysin in particular.
Collapse
|
11
|
Chen Z, Zhang M, Liu Y, Chen Z, Wang L, Wang W, Wang J, He M, Shi B, Wang Y. VEGF-A enhances the cytotoxic function of CD4 + cytotoxic T cells via the VEGF-receptor 1/VEGF-receptor 2/AKT/mTOR pathway. J Transl Med 2023; 21:74. [PMID: 36737819 PMCID: PMC9896805 DOI: 10.1186/s12967-023-03926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND CD4+ cytotoxic T cells (CD4 CTLs) are CD4+ T cells with major histocompatibility complex-II-restricted cytotoxic function. Under pathologic conditions, CD4 CTLs hasten the development of autoimmune disease or viral infection by enhancing cytotoxicity. However, the regulators of the cytotoxicity of CD4 CTLs are not fully understood. METHODS To explore the potential regulators of the cytotoxicity of CD4 CTLs, bulk RNA and single-cell RNA sequencing (scRNA-seq), enzyme-linked immunosorbent assay, flow cytometry, quantitative PCR, and in-vitro stimulation and inhibition assays were performed. RESULTS In this study, we found that VEGF-A promoted the cytotoxicity of CD4 CTLs through scRNA-seq and flow cytometry. Regarding the specific VEGF receptor (R) involved, VEGF-R1/R2 signaling was activated in CD4 CTLs with increased cytotoxicity, and the VEGF-A effects were inhibited when anti-VEGF-R1/R2 neutralizing antibodies were applied. Mechanistically, VEGF-A treatment activated the AKT/mTOR pathway in CD4 CTLs, and the increases of cytotoxic molecules induced by VEGF-A were significantly reduced when the AKT/mTOR pathway was inhibited. CONCLUSION In conclusion, VEGF-A enhances the cytotoxicity of CD4 CTLs through the VEGF-R1/VEGF-R2/AKT/mTOR pathway, providing insights for the development of novel treatments for disorders associated with CD4 CTLs.
Collapse
Affiliation(s)
- Ziyi Chen
- grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meng Zhang
- grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yufeng Liu
- grid.43169.390000 0001 0599 1243MOE Key Lab for Intelligent Networks & Networks Security, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China ,grid.452438.c0000 0004 1760 8119Genome Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China ,grid.452438.c0000 0004 1760 8119BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhe Chen
- grid.452452.00000 0004 1757 9282Department of Spine Surgery, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Ling Wang
- grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenjuan Wang
- grid.452438.c0000 0004 1760 8119Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jincheng Wang
- grid.452438.c0000 0004 1760 8119Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Mingqian He
- grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Yue Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China. .,MOE Key Lab for Intelligent Networks & Networks Security, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China. .,Genome Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
12
|
Chen Z, Li Z, Li C, Li B, Wang H, Nong D, Li X, Huang G, Lin J, Li W. Speckle-type POZ protein could play a potential inhibitory role in human renal cell carcinoma. BMC Cancer 2022; 22:1277. [PMID: 36474188 PMCID: PMC9727862 DOI: 10.1186/s12885-022-10340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Speckle-type POZ protein(SPOP), a substrate adaptor of Cul3 ubiquitin ligase, plays crucial roles in solid neoplasms by promoting the ubiquitination and degradation of substrates. Limited studies have shown that SPOP is overexpressed in human renal cell carcinoma (RCC) tissue. However, the exact role of SPOP in RCC remains unclear and needs to be further elucidated. The present study showed that SPOP was expressed at different levels in different RCC cell lines. The purpose of this study was to explore the roles of SPOP in the biological features of RCC cells and the expression levels of SPOP in human tissue microarray (TMA) and kidney tissues. METHODS Here, SPOP was overexpressed by lentiviral vector transfection in ACHN and Caki-1 cells, and SPOP was knocked down in Caki-2 cells with similar transfection methods. The transfection efficiency was evaluated by quantitative PCR and western blotting analyses. The role of SPOP in the proliferation, migration, invasion and apoptosis of cell lines was determined by the MTT, wound-healing, transwell and flow cytometry assays. Moreover, the cells were treated with different drug concentrations in proliferation and apoptosis assays to investigate the effect of sunitinib and IFN-α2b on the proliferation and apoptosis of SPOP-overexpressing cells and SPOP-knockdown RCC cells. Finally, immunohistochemical staining of SPOP was performed in kidney tissues and TMAs, which included RCC tissues and corresponding adjacent normal tissues. RESULTS Overexpression of SPOP inhibited cell proliferation, migration and invasion and increased cell apoptosis. Interestingly, sunitinib and IFN-α2b at several concentrations increased the proliferation inhibitory rate and total apoptosis rate of cells overexpressing SPOP. The findings of the present study showed that the SPOP protein was significantly expressed at low levels in most clear cell RCC (ccRCC) tissues and at relatively high levels in the majority of adjacent normal tissues and kidney tissues. Kaplan-Meier survival analysis showed that there was no statistically significant difference in cumulative survival based on the data of different SPOP expression levels in TMA and patients. CONCLUSIONS In contrast to previous studies, our findings demonstrated that overexpression of SPOP might suppress the progression of RCC cells, which was supported by cell experiments and immunohistochemical staining. SPOP could be a potential tumour inhibitor in RCC.
Collapse
Affiliation(s)
- Zhi Chen
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy Of Medical Sciences, Nanning, China
| | - Zuan Li
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy Of Medical Sciences, Nanning, China
| | - Chunlin Li
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy Of Medical Sciences, Nanning, China
| | - Bingcai Li
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy Of Medical Sciences, Nanning, China
| | - Haojian Wang
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy Of Medical Sciences, Nanning, China
| | - Deyong Nong
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy Of Medical Sciences, Nanning, China
| | - Ximing Li
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy Of Medical Sciences, Nanning, China
| | - Guihai Huang
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy Of Medical Sciences, Nanning, China
| | - Junhao Lin
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy Of Medical Sciences, Nanning, China
| | - Wei Li
- grid.410652.40000 0004 6003 7358Department of Urology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy Of Medical Sciences, Nanning, China
| |
Collapse
|
13
|
Qin R, You FM, Zhao Q, Xie X, Peng C, Zhan G, Han B. Naturally derived indole alkaloids targeting regulated cell death (RCD) for cancer therapy: from molecular mechanisms to potential therapeutic targets. J Hematol Oncol 2022; 15:133. [PMID: 36104717 PMCID: PMC9471064 DOI: 10.1186/s13045-022-01350-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/03/2022] [Indexed: 12/11/2022] Open
Abstract
Regulated cell death (RCD) is a critical and active process that is controlled by specific signal transduction pathways and can be regulated by genetic signals or drug interventions. Meanwhile, RCD is closely related to the occurrence and therapy of multiple human cancers. Generally, RCD subroutines are the key signals of tumorigenesis, which are contributed to our better understanding of cancer pathogenesis and therapeutics. Indole alkaloids derived from natural sources are well defined for their outstanding biological and pharmacological properties, like vincristine, vinblastine, staurosporine, indirubin, and 3,3′-diindolylmethane, which are currently used in the clinic or under clinical assessment. Moreover, such compounds play a significant role in discovering novel anticancer agents. Thus, here we systemically summarized recent advances in indole alkaloids as anticancer agents by targeting different RCD subroutines, including the classical apoptosis and autophagic cell death signaling pathways as well as the crucial signaling pathways of other RCD subroutines, such as ferroptosis, mitotic catastrophe, necroptosis, and anoikis, in cancer. Moreover, we further discussed the cross talk between different RCD subroutines mediated by indole alkaloids and the combined strategies of multiple agents (e.g., 3,10-dibromofascaplysin combined with olaparib) to exhibit therapeutic potential against various cancers by regulating RCD subroutines. In short, the information provided in this review on the regulation of cell death by indole alkaloids against different targets is expected to be beneficial for the design of novel molecules with greater targeting and biological properties, thereby facilitating the development of new strategies for cancer therapy.
Collapse
|
14
|
Behl A, Sarwalia P, Kumar S, Behera C, Mintoo MJ, Datta TK, Gupta PN, Chhillar AK. Codelivery of Gemcitabine and MUC1 Inhibitor Using PEG-PCL Nanoparticles for Breast Cancer Therapy. Mol Pharm 2022; 19:2429-2440. [PMID: 35639628 DOI: 10.1021/acs.molpharmaceut.2c00175] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In breast cancer therapy, Gemcitabine (Gem) is an antineoplastic antimetabolite with greater anticancer efficacy and tolerability. However, effectiveness of Gem is limited by its off-target effects. The synergistic potential of MUC1 (mucin 1) inhibitors and Gem-loaded polymeric nanoparticles (NPs) was discussed in this work in order to reduce dose-related toxicities and enhance the therapeutic efficacy. The double emulsion solvent evaporation method was used to prepare poly(ethylene glycol) methyl ether-block-poly-caprolactone (PEG-PCL)-loaded Gem and MUC 1 inhibitor NPs. The average size of Gem and MUC 1 inhibitor-loaded NPs was 128 nm, with a spherical shape. Twin-loaded NPs containing Gem and the MUC1 inhibitor decreased IC50 and behaved synergistically. Furthermore, in vitro mechanistic studies, that is, loss of MMP, clonogenic assay, Annexin V FITC assay, and Western blotting to confirm apoptosis with simultaneous induction of autophagy using acridine orange (AO) staining were performed in this study. Furthermore, the investigated NPs upon combination exhibited greater loss of MMP and decreased clonogenic potential with simultaneous induction of autophagy in MCF-7 cells. Annexin V FITC clearly showed the percentage of apoptosis while Western blotting protein expression analysis revealed an increase in caspase-3 activity with simultaneous decrease in Bcl-2 protein expression, a hallmark of apoptosis. The effectiveness of the Ehrlich ascites solid (EAT) mice treated with Gem-MUC1 inhibitor NPs was higher than that of the animals treated alone. Overall, the combined administration of Gem and MUC1 inhibitor-loaded NPs was found to be more efficacious than Gem and MUC1 inhibitor delivered separately.
Collapse
Affiliation(s)
- Akanksha Behl
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124 001, India
| | - Parul Sarwalia
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Sushil Kumar
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Chittaranjan Behera
- PK-PD Tox and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Mubashir Javed Mintoo
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Tirtha Kumar Datta
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Prem N Gupta
- PK-PD Tox and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Anil K Chhillar
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124 001, India
| |
Collapse
|
15
|
Chu T, Dai C, Li X, Gao L, Yin H, Ge J. Extravascular rapamycin film inhibits the endothelial-to-mesenchymal transition through the autophagy pathway to prevent vein graft restenosis. BIOMATERIALS ADVANCES 2022; 137:212836. [PMID: 35929241 DOI: 10.1016/j.bioadv.2022.212836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/17/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Following vein grafting, the vein must adapt to arterial hemodynamics, which can lead to intimal hyperplasia (IH) and restenosis. Moreover, endothelial-to-mesenchymal transition (EndMT) components are highly associated with IH. Therefore, in this study, we aimed to design an extravascular film loaded with rapamycin (extravascular rapamycin film [ERF]) to limit vein graft stenosis. The film exhibited stable physicochemical properties as well as in vivo and in vitro biocompatibility. In vivo, the film inhibited the EndMT by activating the autophagy pathway. Moreover, rapamycin enhanced this biological effect. Collectively, these findings highlighted the applicability of ERF as a new therapeutic target for preventing vein graft restenosis.
Collapse
Affiliation(s)
- Tianshu Chu
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Chun Dai
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiang Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Gao
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, China
| | - Hongyan Yin
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, China
| | - Jianjun Ge
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
16
|
Luo ML, Huang W, Zhu HP, Peng C, Zhao Q, Han B. Advances in indole-containing alkaloids as potential anticancer agents by regulating autophagy. Biomed Pharmacother 2022; 149:112827. [PMID: 35316753 DOI: 10.1016/j.biopha.2022.112827] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 11/02/2022] Open
Abstract
Cancer is a leading cause of death worldwide, and cancer development is often associated with disturbances in the autophagy process. Autophagy is a catabolic process involved in many physiological processes, crucial for cell growth and survival. It is an intracellular lysosomal/vacuolar degradation system. In this system, inner cytoplasmic cell membrane is degraded by lysosomal hydrolases, and the products are released back into the cytoplasm. Indole alkaloids are natural products extensively found in nature and have been proven to possess various pharmacological activities. In recent years, pharmacological studies have demonstrated another potential of indole alkaloids, autophagy regulation. The regulation may contribute to the efficacy of indole alkaloids in preventing and treating cancer. This review summarizes the current understanding of indole alkaloids' effect on tumor cells and autophagy. Then, we focus on mechanisms by which indole alkaloids can target the autophagy process associated with cancer, including the PI3K/Akt/mTOR signaling pathway, MAPK signaling pathway, ROS signaling pathway, Beclin-1, and so on. Literature has been surveyed primarily from 2009 to Nov. 2021, and some semisynthetic or fully synthetic indole derivatives are also discussed.
Collapse
Affiliation(s)
- Meng-Lan Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
17
|
Chhetri BK, Tedbury PR, Sweeney-Jones AM, Mani L, Soapi K, Manfredi C, Sorscher E, Sarafianos SG, Kubanek J. Marine Natural Products as Leads against SARS-CoV-2 Infection. JOURNAL OF NATURAL PRODUCTS 2022; 85:657-665. [PMID: 35290044 PMCID: PMC8936055 DOI: 10.1021/acs.jnatprod.2c00015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Indexed: 05/13/2023]
Abstract
Since early 2020, disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic, causing millions of infections and deaths worldwide. Despite rapid deployment of effective vaccines, it is apparent that the global community lacks multipronged interventions to combat viral infection and disease. A major limitation is the paucity of antiviral drug options representing diverse molecular scaffolds and mechanisms of action. Here we report the antiviral activities of three distinct marine natural products─homofascaplysin A (1), (+)-aureol (2), and bromophycolide A (3)─evidenced by their ability to inhibit SARS-CoV-2 replication at concentrations that are nontoxic toward human airway epithelial cells. These compounds stand as promising candidates for further exploration toward the discovery of novel drug leads against SARS-CoV-2.
Collapse
Affiliation(s)
- Bhuwan Khatri Chhetri
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Philip R. Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Luke Mani
- Institute of Applied Sciences, University of South Pacific, Suva, Fiji
| | - Katy Soapi
- Institute of Applied Sciences, University of South Pacific, Suva, Fiji
| | - Candela Manfredi
- Department of Pediatrics, Division of Pulmonary Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eric Sorscher
- Department of Pediatrics, Division of Pulmonary Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stefan G. Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Julia Kubanek
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
18
|
Sun B, Zhao H. Bioinformatics Analysis of Differential Gene and MicroRNA Expression in Lung Adenocarcinoma: Genetic Effects on Patient Prognosis, as Indicated by the TCGA Database. Cancer Inform 2022; 21:11769351221082020. [PMID: 35342284 PMCID: PMC8943533 DOI: 10.1177/11769351221082020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Objective: To investigate the differential expression of genes and microRNAs (miRNAs) in patients with lung adenocarcinoma and the relationship between such changes and patient prognosis. Methods: We analyzed the expression levels of genes and miRNAs in lung adenocarcinoma tissues and adjacent normal tissues using The Cancer Genome Atlas database (TCGA). We analyzed the function of the differentially expressed genes and miRNAs in a co-expression network. Finally, we performed survival analysis of differential genes and miRNAs in the co-expression network using clinical data from the TCGA database. Results: We successfully identified 6064 differentially expressed genes: 5324 upregulated genes and 740 downregulated genes. And we identified 161 differentially expressed miRNAs: 126 upregulated miRNAs and 35 downregulated miRNAs. We identified several genes that were related to each other in the co-expression network. Further analysis revealed that the high expression levels of G6PC, APOB, F2, PAQR9, and PAQR9-AS1 genes were associated with poor prognosis. However, there was no significant correlation between the expression of hsa-mir-122 with regards to patient prognosis. Conclusions: Our data showed that hsa-mir-122 and a number of related genes may affect the prognosis of patients with lung adenocarcinoma by regulating the cytoskeleton, thus promoting tumor angiogenesis and the metastasis of tumor cells. The high expression levels of some differentially expressed genes was associated with the low survival rate in patients with lung adenocarcinoma. However, the levels of hsa-mir-122 were not correlated with patient prognosis.
Collapse
Affiliation(s)
- Bingqing Sun
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongwen Zhao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Study of Structure–Activity Relationships of the Marine Alkaloid Fascaplysin and Its Derivatives as Potent Anticancer Agents. Mar Drugs 2022; 20:md20030185. [PMID: 35323484 PMCID: PMC8949187 DOI: 10.3390/md20030185] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
Marine alkaloid fascaplysin and its derivatives are known to exhibit promising anticancer properties in vitro and in vivo. However, toxicity of these molecules to non-cancer cells was identified as a main limitation for their clinical use. Here, for the very first time, we synthesized a library of fascaplysin derivatives covering all possible substituent introduction sites, i.e., cycles A, C and E of the 12H-pyrido[1-2-a:3,4-b’]diindole system. Their selectivity towards human prostate cancer versus non-cancer cells, as well as the effects on cellular metabolism, membrane integrity, cell cycle progression, apoptosis induction and their ability to intercalate into DNA were investigated. A pronounced selectivity for cancer cells was observed for the family of di- and trisubstituted halogen derivatives (modification of cycles A and E), while a modification of cycle C resulted in a stronger activity in therapy-resistant PC-3 cells. Among others, 3,10-dibromofascaplysin exhibited the highest selectivity, presumably due to the cytostatic effects executed via the targeting of cellular metabolism. Moreover, an introduction of radical substituents at C-9, C-10 or C-10 plus C-3 resulted in a notable reduction in DNA intercalating activity and improved selectivity. Taken together, our research contributes to understanding the structure–activity relationships of fascaplysin alkaloids and defines further directions of the structural optimization.
Collapse
|
20
|
Bharate SB. Meet the Editorial Board Member. Mini Rev Med Chem 2022. [DOI: 10.2174/138955752202220105110724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Li C, Zhao Z, Zhao S. Annexin A2 promotes development of retinal neovascularization through PI3K/ AKT signaling pathway. Curr Eye Res 2021; 47:579-589. [PMID: 34894941 DOI: 10.1080/02713683.2021.2018467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PURPOSE Retinal Neovascularization (RNV) is a pathological characteristic of ocular diseases. Annexin A2 (ANXA2) plays important roles in RNV while the mechanism remains unclear. The study aimed to explore relationship between ANXA2 and PI3K/AKT signaling pathway in RNV. METHODS We used human retinal vascular endothelial cells (HRECs) and oxygen-induced retinopathy (OIR) mice model to show ANXA2 can promote the development of RNV through PI3K/AKT signaling pathway. We divided HRECs into six groups by infecting lentivirus containing appropriate plasmid and adding corresponding solution. Assays showing ability of HRECs were performed in vitro. Mice were randomly divided into three groups and treated accordingly. RESULTS Expression of ANXA2 and activity of PI3K/AKT signaling pathway in HRECs were detected. RNV and expression of ANXA2 in mice retinas were detected. Results showed that ANXA2 expression is positively related with RNV-forming ability of HRECs in vitro and development of RNV in vivo while low activity of PI3K/AKT signaling pathway could attenuate the role of ANXA2. CONCLUSIONS We can make ANXA2 and PI3K/ AKT signaling pathway as a promising target for the regulation of pathological neovascularization of the retina, which also provides a novel idea for effective prevention and treatment of diseases related to RNV in future.
Collapse
Affiliation(s)
- Chenyue Li
- Department of Ophthalmology, the First Affiliated Hospital, Naval Military Medical University (Second Military Medical University), Shanghai, China
| | - Zichang Zhao
- Department of Ophthalmology, the First Affiliated Hospital, Naval Military Medical University (Second Military Medical University), Shanghai, China
| | - Shihong Zhao
- Department of Ophthalmology, the First Affiliated Hospital, Naval Military Medical University (Second Military Medical University), Shanghai, China.,Nanjing Aier Eye Hospital, Aier School of Ophthalmology, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
22
|
Nathan J, Ramachandran A. Efficacy of marine biomolecules on angiogenesis by targeting hypoxia inducible factor/vascular endothelial growth factor signaling in zebrafish model. J Biochem Mol Toxicol 2021; 36:e22954. [PMID: 34783123 DOI: 10.1002/jbt.22954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/10/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022]
Abstract
Marine resources are notably explored for their unique biomolecules that have been designed to be drug targets for their immense potential against various pathologies. These biomolecules are mostly secondary metabolites from different species that include sponges, tunicates, echinoderms, ascidians, algae, and marine symbionts. Among the various biological activities of the marine biomolecules, antiangiogenic property has gained much significance in alternate therapy for treatment against cancer. Hypoxia inducible factor (HIF) and vascular endothelial growth factor (VEGF) are the prime signaling pathways related to angiogenesis that are exclusively designated as markers for critical selection of novel inhibitors. This is mainly due to their importance in tumor induction and regulatory control over other interlinked pathways involved in cancer. Small molecular drug screening using the zebrafish model has been an advantage in cancer research in recent times. This review addresses the importance of marine biomolecules and their antiangiogenic efficacy by targeting HIF/VEGF pathways experimented in the zebrafish model in the last decade. Thus, it would provide more clear insights into the role of biomolecules in alternative cancer therapy.
Collapse
Affiliation(s)
- Jhansi Nathan
- Zebrafish Developmental Biology Laboratory, AUKBC Research Centre, Anna University, Chennai, India
| | | |
Collapse
|
23
|
Behera C, Kour J, Banjare N, Verma PK, Chashoo G, Sawant SD, Gupta PN. Mechanistic investigation of synergistic interaction of tocopherol succinate with a quinoline-based inhibitor of mammalian target of rapamycin. J Pharm Pharmacol 2021; 74:605-617. [PMID: 34468737 DOI: 10.1093/jpp/rgab122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 08/02/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Cancer monotherapy is associated with various limitations; therefore, combination chemotherapy is widely explored for optimum drug efficacy. In this study, 4-(N-Phenyl-N'-substituted benzenesulfonyl)-6-(4-hydroxyphenyl) quinoline-based mammalian target of rapamycin (mTOR) inhibitor (IIIM-4Q) was investigated in combination with tocopherol succinate (TOS), and the mechanism of cytotoxicity was elucidated. METHODS The cytotoxic potential of IIIM-4Q and TOS was evaluated in five cell lines. Further, to understand the mechanism of cytotoxicity of IIIM-4Q, TOS and their combination, various studies including morphological analysis using scanning electron microscopy and 6-diamidino-2-phenylindole (DAPI) staining, estimation of reactive oxygen species (ROS) level, measurement of mitochondrial membrane potential (MMP), in-vitro cell migration assay, Western blotting and staining with acridine orange (AO) for autophagy detection were performed. KEY FINDINGS Investigated combination was synergistic in nature and exhibited greater oxidative stress and mitochondrial dysfunction in pancreatic cancer cells. The migration potential of MIA PaCa-2 cells was significantly mitigated under the influence of this combination, and morphological changes such as chromatin condensation and nuclear blebbing were observed. Also, poly (adenosine diphosphate-ribose) polymerase cleavage and caspase-3 activation were observed in IIIM-4Q and TOS combination-treated cells. CONCLUSIONS The investigated combination synergistically inhibited proliferation of MIA PaCa-2 cells through simultaneous induction of autophagy followed by apoptosis, and this combination demonstrated potential for further translational studies.
Collapse
Affiliation(s)
- Chittaranjan Behera
- Formulation and Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Jaspreet Kour
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Nagma Banjare
- Formulation and Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Praveen K Verma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Gousia Chashoo
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sanghapal D Sawant
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prem N Gupta
- Formulation and Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
24
|
Spirin P, Shyrokova E, Lebedev T, Vagapova E, Smirnova P, Kantemirov A, Dyshlovoy SA, von Amsberg G, Zhidkov M, Prassolov V. Cytotoxic Marine Alkaloid 3,10-Dibromofascaplysin Induces Apoptosis and Synergizes with Cytarabine Resulting in Leukemia Cell Death. Mar Drugs 2021; 19:md19090489. [PMID: 34564151 PMCID: PMC8468638 DOI: 10.3390/md19090489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 01/24/2023] Open
Abstract
Myeloid leukemia is a hematologic neoplasia characterized by a clonal proliferation of hematopoietic stem cell progenitors. Patient prognosis varies depending on the subtype of leukemia as well as eligibility for intensive treatment regimens and allogeneic stem cell transplantation. Although significant progress has been made in the therapy of patients including novel targeted treatment approaches, there is still an urgent need to optimize treatment outcome. The most common therapy is based on the use of chemotherapeutics cytarabine and anthrayclines. Here, we studied the effect of the recently synthesized marine alkaloid 3,10-dibromofascaplysin (DBF) in myeloid leukemia cells. Unsubstituted fascaplysin was early found to affect cell cycle via inhibiting CDK4/6, thus we compared the activity of DBF and other brominated derivatives with known CDK4/6 inhibitor palbociclib, which was earlier shown to be a promising candidate to treat leukemia. Unexpectedly, the effect DBF on cell cycle differs from palbociclib. In fact, DBF induced leukemic cells apoptosis and decreased the expression of genes responsible for cancer cell survival. Simultaneously, DBF was found to activate the E2F1 transcription factor. Using bioinformatical approaches we evaluated the possible molecular mechanisms, which may be associated with DBF-induced activation of E2F1. Finally, we found that DBF synergistically increase the cytotoxic effect of cytarabine in different myeloid leukemia cell lines. In conclusion, DBF is a promising drug candidate, which may be used in combinational therapeutics approaches to reduce leukemia cell growth.
Collapse
Affiliation(s)
- Pavel Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia; (E.S.); (T.L.); (E.V.); (V.P.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Correspondence:
| | - Elena Shyrokova
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia; (E.S.); (T.L.); (E.V.); (V.P.)
- Moscow Institute of Physics and Technology (National Research University), Institutskiy Per. 9, 141701 Dolgoprudny, Russia
| | - Timofey Lebedev
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia; (E.S.); (T.L.); (E.V.); (V.P.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| | - Elmira Vagapova
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia; (E.S.); (T.L.); (E.V.); (V.P.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| | - Polina Smirnova
- School of Natural Sciences, Far Eastern Federal University, FEFU Campus, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia; (P.S.); (A.K.); (M.Z.)
| | - Alexey Kantemirov
- School of Natural Sciences, Far Eastern Federal University, FEFU Campus, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia; (P.S.); (A.K.); (M.Z.)
| | - Sergey A. Dyshlovoy
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (S.A.D.); (G.v.A.)
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany
- Laboratory of Pharmacology, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo Str. 17, 690041 Vladivostok, Russia
| | - Gunhild von Amsberg
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (S.A.D.); (G.v.A.)
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany
| | - Maxim Zhidkov
- School of Natural Sciences, Far Eastern Federal University, FEFU Campus, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia; (P.S.); (A.K.); (M.Z.)
| | - Vladimir Prassolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia; (E.S.); (T.L.); (E.V.); (V.P.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| |
Collapse
|
25
|
Khotimchenko R, Bryukhovetskiy I, Khotimchenko M, Khotimchenko Y. Bioactive Compounds with Antiglioma Activity from Marine Species. Biomedicines 2021; 9:biomedicines9080886. [PMID: 34440090 PMCID: PMC8389718 DOI: 10.3390/biomedicines9080886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
The search for new chemical compounds with antitumor pharmacological activity is a necessary process for creating more effective drugs for each specific malignancy type. This review presents the outcomes of screening studies of natural compounds with high anti-glioma activity. Despite significant advances in cancer therapy, there are still some tumors currently considered completely incurable including brain gliomas. This review covers the main problems of the glioma chemotherapy including drug resistance, side effects of common anti-glioma drugs, and genetic diversity of brain tumors. The main emphasis is made on the characterization of natural compounds isolated from marine organisms because taxonomic diversity of organisms in seawaters significantly exceeds that of terrestrial species. Thus, we should expect greater chemical diversity of marine compounds and greater likelihood of finding effective molecules with antiglioma activity. The review covers at least 15 classes of organic compounds with their chemical formulas provided as well as semi-inhibitory concentrations, mechanisms of action, and pharmacokinetic profiles. In conclusion, the analysis of the taxonomic diversity of marine species containing bioactives with antiglioma activity is performed noting cytotoxicity indicators and to the tumor cells in comparison with similar indicators of antitumor agents approved for clinical use as antiglioblastoma chemotherapeutics.
Collapse
Affiliation(s)
- Rodion Khotimchenko
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
| | - Igor Bryukhovetskiy
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
| | - Maksim Khotimchenko
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
| | - Yuri Khotimchenko
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
- Laboratory of Pharmacology, A. V. Zhirmunsky National Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690950 Vladivostok, Russia
- Correspondence:
| |
Collapse
|
26
|
Munekata PES, Pateiro M, Conte-Junior CA, Domínguez R, Nawaz A, Walayat N, Movilla Fierro E, Lorenzo JM. Marine Alkaloids: Compounds with In Vivo Activity and Chemical Synthesis. Mar Drugs 2021; 19:374. [PMID: 34203532 PMCID: PMC8306672 DOI: 10.3390/md19070374] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022] Open
Abstract
Marine alkaloids comprise a class of compounds with several nitrogenated structures that can be explored as potential natural bioactive compounds. The scientific interest in these compounds has been increasing in the last decades, and many studies have been published elucidating their chemical structure and biological effects in vitro. Following this trend, the number of in vivo studies reporting the health-related properties of marine alkaloids has been increasing and providing more information about the effects in complex organisms. Experiments with animals, especially mice and zebrafish, are revealing the potential health benefits against cancer development, cardiovascular diseases, seizures, Alzheimer's disease, mental health disorders, inflammatory diseases, osteoporosis, cystic fibrosis, oxidative stress, human parasites, and microbial infections in vivo. Although major efforts are still necessary to increase the knowledge, especially about the translation value of the information obtained from in vivo experiments to clinical trials, marine alkaloids are promising candidates for further experiments in drug development.
Collapse
Affiliation(s)
- Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia No. 4, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia No. 4, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
| | - Carlos A. Conte-Junior
- Centro de Tecnologia, Programa de Pós-Graduação em Ciência de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil;
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia No. 4, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
| | - Asad Nawaz
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China;
| | - Noman Walayat
- Department of Food Science and Engineering, College of Ocean, Zhejiang University of Technology, Hangzhou 310014, China;
| | | | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia No. 4, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
27
|
Zhang D, Feng Y, Pan H, Xuan Z, Yan S, Mao Y, Xiao X, Huang X, Zhang H, Zhou F, Chen B, Chen X, Liu H, Yan X, Liang H, Cui W. 9-Methylfascaplysin exerts anti-ischemic stroke neuroprotective effects via the inhibition of neuroinflammation and oxidative stress in rats. Int Immunopharmacol 2021; 97:107656. [PMID: 33895476 DOI: 10.1016/j.intimp.2021.107656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/23/2021] [Accepted: 04/03/2021] [Indexed: 02/04/2023]
Abstract
OBJECTIVES This study was aimed to investigate the neuroprotective effects of 9-methylfascaplysin, a novel marine derivative derived from sponge, against middle cerebral artery occlusion/reperfusion (MCAO)-induced motor impairments, neuroinflammation and oxidative stress in rats. METHODS Neurological and behavioral tests were used to evaluate behavioral changes. The 2, 3, 5-triphenyltetrazolium chloride staining was used to determine infarct size and edema extent. Activated microglia/macrophage was analyzed by immunohistochemical staining of Iba-1. RT-PCR and ELISA were used to measure the expression of inducible nitric oxide synthase, tumor necrosis factor-α, interleukin-1β, CD16 and CD206. Western blotting analysis was performed to explore the activation of nuclear factor-κB (NF-κB) and NLRP3. The levels of oxidative stress were studied by evaluating the activities of superoxide dismutase, catalase and glutathione peroxidase. RESULTS Post-occlusion intracerebroventricular injection of 9-methylfascaplysin significantly attenuated motor impairments and infarct size in MCAO rats. Moreover, 9-methylfascaplysin reduced the activation of microglia/macrophage in ischemic penumbra as evidenced by the decreased Iba-1-positive area and the reduced expression of pro-inflammatory factors. Furthermore, 9-methylfascaplysin inhibited MCAO-induced oxidative stress and activation of NF-κB and NLRP3 inflammasome. CONCLUSION All the results suggested that 9-methylfascaplysin might produce neuroprotective effects against MCAO via the reduction of oxidative stress and neuroinflammation, simultaneously, possibly via the inhibition of NF-κB and NLRP3 inflammasome.
Collapse
Affiliation(s)
- Difan Zhang
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yi Feng
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Hanbo Pan
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Zhenquan Xuan
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Sicheng Yan
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yuechun Mao
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xiao Xiao
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xinghan Huang
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Hui Zhang
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Fei Zhou
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Bojun Chen
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xiaowei Chen
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Hao Liu
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xiaojun Yan
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Hongze Liang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Wei Cui
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China; Ningbo Kangning Hospital, Ningbo 315020, China.
| |
Collapse
|
28
|
Zou D, Li Z, Lv F, Yang Y, Yang C, Song J, Chen Y, Jin Z, Zhou J, Jiang Y, Ma Y, Jing Z, Tang Y, Zhang Y. Pan-Cancer Analysis of NOS3 Identifies Its Expression and Clinical Relevance in Gastric Cancer. Front Oncol 2021; 11:592761. [PMID: 33747912 PMCID: PMC7969995 DOI: 10.3389/fonc.2021.592761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background:NOS3 (endothelial NOS, eNOS) is a member of the nitric oxide synthase (NOS) enzyme family, mainly participating in nitric oxide (NO) generation. NOS3 has been reported to inhibit apoptosis and promote angiogenesis, proliferation, and invasiveness. However, the expression pattern of NOS3 and its diagnostic and prognostic potential has not been investigated in a pan-cancer perspective. Methods: Data from the Genotype-Tissue Expression (GTEx), the Cancer Genome Atlas (TCGA), the Cancer Cell Line Encyclopedia (CCLE), and the Cancer Therapeutics Response Portal (CTRP) were employed and NOS3 expression was comprehensively analyzed in normal tissues, cancer tissues, and cell lines. Immunohistochemical staining of tissue sections were used to validate the prognostic role of NOS3 in gastric cancer patients. GSVA and GSEA analyses were performed to investigate signaling pathways related to NOS3 expression. Results: In normal tissues, NOS3 was expressed highest in the spleen and lowest in the blood. NOS3 expression was increased in stomach adenocarcinoma (STAD) and significantly associated with poor prognosis of patients. Immunohistochemical staining validated that NOS3 was an independent prognostic factor of gastric cancer. Several canonical cancer-related pathways were found to be correlated with NOS3 expression in STAD. The expression of NOS3 was related to the response to QS-11 and brivinib in STAD. Conclusions:NOS3 was an independent prognostic factor for patients with STAD. Increased expression of NOS3 influenced occurrence and development of STAD through several canonical cancer-related pathways. Drug response analysis reported drugs to suppress NOS3. NOS3 might be a novel target for gastric cancer treatment.
Collapse
Affiliation(s)
- Dan Zou
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Zhi Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Fei Lv
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Yi Yang
- Laboratory Animal Center, China Medical University, Shenyang, China
| | - Chunjiao Yang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Jincheng Song
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China.,Lymphoma and Myeloma Diagnosis and Treatment Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yang Chen
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Zi Jin
- The First Department of Oncology, Shenyang Fifth People's Hospital, Shenyang, China
| | - Jinpeng Zhou
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yang Jiang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China.,Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanju Ma
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, Shenyang, China
| | - Zhitao Jing
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yu Tang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, Shenyang, China
| | - Ye Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
29
|
Dyshlovoy SA, Kaune M, Hauschild J, Kriegs M, Hoffer K, Busenbender T, Smirnova PA, Zhidkov ME, Poverennaya EV, Oh-Hohenhorst SJ, Spirin PV, Prassolov VS, Tilki D, Bokemeyer C, Graefen M, von Amsberg G. Efficacy and Mechanism of Action of Marine Alkaloid 3,10-Dibromofascaplysin in Drug-Resistant Prostate Cancer Cells. Mar Drugs 2020; 18:md18120609. [PMID: 33271756 PMCID: PMC7761490 DOI: 10.3390/md18120609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Efficacy and mechanism of action of marine alkaloid 3,10-dibromofascaplysin (DBF) were investigated in human prostate cancer (PCa) cells harboring different levels of drug resistance. Anticancer activity was observed across all cell lines examined without signs of cross-resistance to androgen receptor targeting agents (ARTA) or taxane based chemotherapy. Kinome analysis followed by functional investigation identified JNK1/2 to be one of the molecular targets of DBF in 22Rv1 cells. In contrast, no activation of p38 and ERK1/2 MAPKs was observed. Inhibition of the drug-induced JNK1/2 activation or of the basal p38 activity resulted in increased cytotoxicity of DBF, whereas an active ERK1/2 was identified to be important for anticancer activity of the alkaloid. Synergistic effects of DBF were observed in combination with PARP-inhibitor olaparib most likely due to the induction of ROS production by the marine alkaloid. In addition, DBF intensified effects of platinum-based drugs cisplatin and carboplatin, and taxane derivatives docetaxel and cabazitaxel. Finally, DBF inhibited AR-signaling and resensitized AR-V7-positive 22Rv1 prostate cancer cells to enzalutamide, presumably due to AR-V7 down-regulation. These findings propose DBF to be a promising novel drug candidate for the treatment of human PCa regardless of resistance to standard therapy.
Collapse
Affiliation(s)
- Sergey A. Dyshlovoy
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (M.K.); (J.H.); (T.B.); (C.B.); (G.v.A.)
- Laboratory of Pharmacology, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo str. 17, 690041 Vladivostok, Russian
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (S.J.O.-H.); (D.T.); (M.G.)
- School of Natural Sciences, Far Eastern Federal University, FEFU Campus, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russian; (P.A.S.); (M.E.Z.)
- Correspondence:
| | - Moritz Kaune
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (M.K.); (J.H.); (T.B.); (C.B.); (G.v.A.)
| | - Jessica Hauschild
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (M.K.); (J.H.); (T.B.); (C.B.); (G.v.A.)
| | - Malte Kriegs
- Department of Radiotherapy & Radiation Oncology, Hubertus Wald Tumorzentrum–University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (M.K.); (K.H.)
- UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum–University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany
| | - Konstantin Hoffer
- Department of Radiotherapy & Radiation Oncology, Hubertus Wald Tumorzentrum–University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (M.K.); (K.H.)
- UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum–University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany
| | - Tobias Busenbender
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (M.K.); (J.H.); (T.B.); (C.B.); (G.v.A.)
| | - Polina A. Smirnova
- School of Natural Sciences, Far Eastern Federal University, FEFU Campus, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russian; (P.A.S.); (M.E.Z.)
| | - Maxim E. Zhidkov
- School of Natural Sciences, Far Eastern Federal University, FEFU Campus, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russian; (P.A.S.); (M.E.Z.)
| | - Ekaterina V. Poverennaya
- Laboratory of Proteoform Interactomics, Institute of Biomedical Chemistry, Pogodinskaya str. 10/8, 119121 Moscow, Russian;
| | - Su Jung Oh-Hohenhorst
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (S.J.O.-H.); (D.T.); (M.G.)
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Pavel V. Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russian; (P.V.S.); (V.S.P.)
| | - Vladimir S. Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russian; (P.V.S.); (V.S.P.)
| | - Derya Tilki
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (S.J.O.-H.); (D.T.); (M.G.)
- Department of Urology, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany
| | - Carsten Bokemeyer
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (M.K.); (J.H.); (T.B.); (C.B.); (G.v.A.)
| | - Markus Graefen
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (S.J.O.-H.); (D.T.); (M.G.)
| | - Gunhild von Amsberg
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (M.K.); (J.H.); (T.B.); (C.B.); (G.v.A.)
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (S.J.O.-H.); (D.T.); (M.G.)
| |
Collapse
|
30
|
Protein kinases as targets for developing anticancer agents from marine organisms. Biochim Biophys Acta Gen Subj 2020; 1865:129759. [PMID: 33038451 DOI: 10.1016/j.bbagen.2020.129759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/03/2020] [Accepted: 10/03/2020] [Indexed: 01/11/2023]
Abstract
Protein kinases play a fundamental role in the intracellular transduction because of their ability to phosphorylate plethora of proteins. Over the past three decades, numerous protein kinase inhibitors have been identified and are being used clinically successfully. The biodiversity of marine organisms provides a rich source for the discovery and development of novel anticancer agents in the treatment of human malignancies and a lot of bioactive ingredients from marine organisms display anticancer effects by affecting the protein kinases-mediated pathways. In the present mini-review, anticancer compounds from marine source were reviewed and discussed in context of their targeted pathways associated with protein kinases and the progress of these compounds as anticancer agents in recent five years were emphasized. The molecular entities and their modes of actions were presented. We focused on protein kinases-mediated signaling pathways including PI3K/Akt/mTOR, p38 MAPK, and EGFR. The marine compounds targeting special pathways of protein kinases were highlighted. We have also discussed the existing challenges and prospects related to design and development of novel protein kinase inhibitors from marine sources.
Collapse
|
31
|
Dyshlovoy SA. Blue-Print Autophagy in 2020: A Critical Review. Mar Drugs 2020; 18:md18090482. [PMID: 32967369 PMCID: PMC7551687 DOI: 10.3390/md18090482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an elegant and complex biological process that has recently attracted much attention from the scientific community. The compounds which are capable of control and modulation of this process have a promising potential as therapeutics for a number of pathological conditions, including cancer and neurodegenerative disorders. At the same time, due to the relatively young age of the field, there are still some pitfalls in the autophagy monitoring assays and interpretation of the experimental data. This critical review provides an overview of the marine natural compounds, which have been reported to affect autophagy. The time period from the beginning of 2016 to the middle of 2020 is covered. Additionally, the published data and conclusions based on the experimental results are re-analyzed with regard to the guidelines developed by Klionsky and colleagues (Autophagy. 2016; 12(1): 1–222), which are widely accepted by the autophagy research community. Remarkably and surprisingly, more than half of the compounds reported to be autophagy activators or inhibitors could not ultimately be assigned to either category. The experimental data reported for those substances could indicate both autophagy activation and inhibition, requiring further investigation. Thus, the reviewed molecules were divided into two groups: having validated and non-validated autophagy modulatory effects. This review gives an analysis of the recent updates in the field and raises an important problem of standardization in the experimental design and data interpretation.
Collapse
Affiliation(s)
- Sergey A Dyshlovoy
- Laboratory of Pharmacology, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
32
|
Wei J, Gou Z, Wen Y, Luo Q, Huang Z. Marine compounds targeting the PI3K/Akt signaling pathway in cancer therapy. Biomed Pharmacother 2020; 129:110484. [PMID: 32768966 DOI: 10.1016/j.biopha.2020.110484] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer is a disease characterized by overproliferation, including that due to transformation, apoptosis disorders, proliferation, invasion, angiogenesis and metastasis, and is one of the deadliest diseases. Currently, conservative chemotherapy is used for cancer treatment due to a lack of effective drugs. The PI3K/Akt signaling pathway plays a very essential role in the pathogenesis of many cancers, and abnormal activation of this pathway leads to abnormal expression of a series of downstream proteins, which ultimately results in the excessive proliferation of cancer cells. Therefore, the PI3K/Akt signaling pathway is a critical target in cancer treatment. Marine drugs have attracted much attention in recent years, and studies have found that many extracts from oceanic animals, plants and microorganisms or their metabolites exert antitumor effects, including antiproliferative effects or the induction of cell cycle arrest, apoptosis or autophagy. However, most anticancer targets and the mechanisms of marine compounds remain unclear. The great potential of the development of marine drugs provides a new direction for cancer treatment. This review focuses on marine compounds that target the PI3K/Akt signaling pathway for the prevention and treatment of cancer and provides comprehensive information for those interested in research on marine drugs.
Collapse
Affiliation(s)
- Jiaen Wei
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Zhanping Gou
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Ying Wen
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Qiaohong Luo
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Zunnan Huang
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, Guangdong 523808, China; Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
33
|
Du D, Shen X, Zhang Y, Yin L, Pu Y, Liang G. Expression of long non-coding RNA SFTA1P and its function in non-small cell lung cancer. Pathol Res Pract 2020; 216:153049. [PMID: 32825934 DOI: 10.1016/j.prp.2020.153049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/23/2020] [Accepted: 06/05/2020] [Indexed: 10/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) is a major type of lung cancer with high morbidity and mortality. Long non-coding RNAs (lncRNAs) have been reported to be important in development and progression of NSCLC. However, the role of lncRNA SFTA1P remains unclear. This study aims to explore the clinical roles, biological function, and mechanism of SFTA1P in NSCLC. SFTA1P expression was estimated by the quantitative real-time polymerase chain reaction (qRT-PCR) of 90 pairs of tissue samples, the Cancer Genome Atlas (TCGA) database and microarray. After overexpressing SFTA1P, NSCLC cell proliferation, cycle, and apoptosis were detected. We found that the expression of SFTA1P was significantly downregulated in NSCLC tissues with high diagnostic value (AUC = 0.87), which was consistent with the results of TCGA and microarray data. For the analysis of clinical features, the results revealed that SFTA1P expression was closely related to the pathological type (P < 0.01). Furthermore, the cell function results suggested that the overexpression of SFTA1P triggered cell cycle arrest in the S-phase (P < 0.05). From a mechanistic perspective, the results showed that the PI3K-AKT signaling pathway was inhibited after overexpression of SFTA1P in NSCLC. Taken together, this work supported that SFTA1P may play a suppressing role in the tumorigenesis of NSCLC by modulating PI3K-AKT signaling pathway to influence cell cycle, which provides a potential and prospective biomarker for NSCLC.
Collapse
Affiliation(s)
- Dandan Du
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Xian Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Yanqiu Zhang
- Department of Environmental Occupational Health, Taizhou Center for Disease Control and Prevention, No.318 Yongtai Road, Hailing District, Taizhou City, Jiangsu Province, PR China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
34
|
Fakhri S, Moradi SZ, Farzaei MH, Bishayee A. Modulation of dysregulated cancer metabolism by plant secondary metabolites: A mechanistic review. Semin Cancer Biol 2020; 80:276-305. [PMID: 32081639 DOI: 10.1016/j.semcancer.2020.02.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Several signaling pathways and basic metabolites are responsible for the control of metabolism in both normal and cancer cells. As emerging hallmarks of cancer metabolism, the abnormal activities of these pathways are of the most noticeable events in cancer. This altered metabolism expedites the survival and proliferation of cancer cells, which have attracted a substantial amount of interest in cancer metabolism. Nowadays, targeting metabolism and cross-linked signaling pathways in cancer has been a hot topic to investigate novel drugs against cancer. Despite the efficiency of conventional drugs in cancer therapy, their associated toxicity, resistance, and high-cost cause limitations in their application. Besides, considering the numerous signaling pathways cross-linked with cancer metabolism, discovery, and development of multi-targeted and safe natural compounds has been a high priority. Natural secondary metabolites have exhibited promising anticancer effects by targeting dysregulated signaling pathways linked to cancer metabolism. The present review reveals the metabolism and cross-linked dysregulated signaling pathways in cancer. The promising therapeutic targets in cancer, as well as the critical role of natural secondary metabolites for significant anticancer enhancements, have also been highlighted to find novel/potential therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
35
|
The Inhibitory Effects of Gold Nanoparticles on VEGF-A-Induced Cell Migration in Choroid-Retina Endothelial Cells. Int J Mol Sci 2019; 21:ijms21010109. [PMID: 31877924 PMCID: PMC6982177 DOI: 10.3390/ijms21010109] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Vascular endothelial growth factor (VEGF) is upregulated by hypoxia and is a crucial stimulator for choroidal neovascularization (CNV) in age-related macular degeneration and pathologic myopia, as well as retinal neovascularization in proliferative diabetic retinopathy. Retinal and choroidal endothelial cells play key roles in the development of retinal and CNV, and subsequent fibrosis. At present, the effects of gold nanoparticles (AuNPs) on the VEGF-induced choroid-retina endothelial (RF/6A) cells are still unknown. In our study, we investigated the effects of AuNPs on RF/6A cell viabilities and cell adhesion to fibronectin, a major ECM protein of fibrovascular membrane. Furthermore, the inhibitory effects of AuNPs on RF/6A cell migration induced by VEGF and its signaling were studied. Methods: The cell viability assay was used to determine the viability of cells treated with AuNPs. The migration of RF/6A cells was assessed by the Transwell migration assay. The cell adhesion to fibronectin was examined by an adhesion assay. The VEGF-induced signaling pathways were determined by western blotting. Results: The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay revealed no cytotoxicity of AuNPs on RF/6A cells. AuNPs inhibited VEGF-induced RF/6A cell migration in a concentration-dependent manner but showed no significant effects on RF/6A cell adhesion to fibronectin. Inhibitory effects of AuNPs on VEGF-induced Akt/eNOS were found. Conclusions: These results suggest that AuNPs are an effective inhibitor of VEGF-induced RF/6A cell migration through the Akt/eNOS pathways, but they have no effects on their cell viabilities and cell adhesion to fibronectin.
Collapse
|
36
|
Abstract
As a double-edged sword, autophagy in cancer cells could either suppress or promote tumorigenesis. Nowadays, more and more natural compounds with autophagy-regulating activities exhibit therapeutic effects against various cancers. N-Heterocycle derivatives plays an important role for discovery new drugs. In this review, we summarize and classify 116 N-heterocycle derivatives with autophagy-regulating activities in the past decade into 12 classes according to structure characteristics. The structural features, bioactivities, mechanism and problems faced in this field are discussed and reported for the first time. Some of these even exhibited outstanding in vivo antitumor activities, including bisaminoquinoline (3), pancratistatin (8), 10-hydroxyevodiamine (18), lycorine (28), piperine (31) and iridium (III) complex (57), which are potential drug candidates for antitumor therapy.
Collapse
|
37
|
Luo K, Bao Y, Liu F, Xiao C, Li K, Zhang C, Huang R, Lin J, Zhang J, Jin Y. Synthesis and biological evaluation of novel benzylidene-succinimide derivatives as noncytotoxic antiangiogenic inhibitors with anticolorectal cancer activity in vivo. Eur J Med Chem 2019; 179:805-827. [DOI: 10.1016/j.ejmech.2019.06.094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/05/2019] [Accepted: 06/30/2019] [Indexed: 02/07/2023]
|
38
|
Total Syntheses and Preliminary Biological Evaluation of Brominated Fascaplysin and Reticulatine Alkaloids and Their Analogues. Mar Drugs 2019; 17:md17090496. [PMID: 31450717 PMCID: PMC6780422 DOI: 10.3390/md17090496] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 01/06/2023] Open
Abstract
A simple approach toward the synthesis of the marine sponge derived pigment fascaplysin was used to obtain the marine alkaloids 3-bromofascaplysin and 3,10-dibromofascaplysin. These compounds were used for first syntheses of the alkaloids 14-bromoreticulatate and 14-bromoreticulatine. Preliminary bioassays showed that 14-bromoreticulatine has a selective antibiotic (to Pseudomonas aeruginosa) activity and reveals cytotoxicity toward human melanoma, colon, and prostate cancer cells. 3,10-Dibromofascaplysin was able to target metabolic activity of the prostate cancer cells, without disrupting cell membrane’s integrity and had a wide therapeutic window amongst the fascaplysin alkaloids.
Collapse
|
39
|
A Systematic Review of Recently Reported Marine Derived Natural Product Kinase Inhibitors. Mar Drugs 2019; 17:md17090493. [PMID: 31450856 PMCID: PMC6780990 DOI: 10.3390/md17090493] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 12/13/2022] Open
Abstract
Protein kinases are validated drug targets for a number of therapeutic areas, as kinase deregulation is known to play an essential role in many disease states. Many investigated protein kinase inhibitors are natural product small molecules or their derivatives. Many marine-derived natural products from various marine sources, such as bacteria and cyanobacteria, fungi, animals, algae, soft corals, sponges, etc. have been found to have potent kinase inhibitory activity, or desirable pharmacophores for further development. This review covers the new compounds reported from the beginning of 2014 through the middle of 2019 as having been isolated from marine organisms and having potential therapeutic applications due to kinase inhibitory and associated bioactivities. Moreover, some existing clinical drugs based on marine-derived natural product scaffolds are also discussed.
Collapse
|
40
|
Autophagy represses fascaplysin-induced apoptosis and angiogenesis inhibition via ROS and p8 in vascular endothelia cells. Biomed Pharmacother 2019; 114:108866. [DOI: 10.1016/j.biopha.2019.108866] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 11/22/2022] Open
|
41
|
Wang QZ, Liu JY, Pan J. [Progress on medication-related osteonecrosis of the jaw]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 36:568-572. [PMID: 30465354 DOI: 10.7518/hxkq.2018.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a severe complication of bisphosphonates (BPs) or other targeted agent therapies. MRONJ appears as exposed bone, pus, and swelling in the oral and maxillofacial regions. However, neither surgery nor conservative therapy can eliminate symptoms thoroughly. In addition to BPs, several antiresorptive and antiangiogenic agents, such as denosumab and bevacizumab, as well as targeted agents, such as sunitinib and temsirolimus, can cause osteonecrosis of the jaw according to the literature. This review aims to summarize the research progress on these new drugs.
Collapse
Affiliation(s)
- Qi-Zhang Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ji-Yuan Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jian Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
42
|
Gao Z, Shi M, Wang Y, Chen J, Ou Y. Apatinib enhanced anti-tumor activity of cisplatin on triple-negative breast cancer through inhibition of VEGFR-2. Pathol Res Pract 2019; 215:152422. [PMID: 31079851 DOI: 10.1016/j.prp.2019.04.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/11/2019] [Accepted: 04/26/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) was known as a fast-growing and an aggressive tumor. Cisplatin is the effective cytotoxic drug used for the treatment of TNBC. In addition, apatinib, a VEGFR2 inhibitor, exhibits antitumor activity in patients with TNBC. However, the effects of combination of apatinib with cisplatin on TNBC remain unclear. Thus, this study aimed to investigate the effects of apatinib in combination with cisplatin on MDA-MB-231 cells. METHODS Immunohistochemistry was used to detect the expression of VEGFR2. In addition, CCK-8, flow cytometric, transwell assays were used to measure the cell proliferation, apoptosis, migration and invasion, respectively. Moreover, western blotting was used to detect the expressions of Bax, active caspase 3, p-VEGFR2, p-Akt and p-mTOR. RESULTS VEGFR2 was significantly upreguated in patients with TNBC. In addition, the inhibitory effects of cisplatin on the proliferation, migration and invasion of MDA-MB-231 cells were enhanced by apatinib. Moreover, apatinib increased cisplatin-induced apoptosis on MDA-MB-231 cells via increasing the level of Bax and active caspase 3 and decreasing the expression of Bcl-2. Importantly, apatinib enhanced anti-tumor effect of cisplatin on MDA-MB-231 cells via inhibiting the levels of p-VEGFR2, p-Akt and p-mTOR. CONCLUSION Our findings indicated that apatinib enhanced the anti-tumor effects of cisplatin on MDA-MB-231 cells via inhibition of VEGFR2. Thus, the combination of apatinib with cisplatin may serve as a potential approach in the treatment of patients with TNBC.
Collapse
Affiliation(s)
- Zhenyuan Gao
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, PR China.
| | - Mohan Shi
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, PR China.
| | - Yaping Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, PR China.
| | - Juan Chen
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, PR China.
| | - Yimei Ou
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, PR China.
| |
Collapse
|
43
|
Exploring the Antiangiogenic Potential of Solomonamide A Bioactive Precursors: In Vitro and in Vivo Evidences of the Inhibitory Activity of Solo F-OH During Angiogenesis. Mar Drugs 2019; 17:md17040228. [PMID: 30991727 PMCID: PMC6520732 DOI: 10.3390/md17040228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022] Open
Abstract
Marine sponges are a prolific source of bioactive compounds. In this work, the putative antiangiogenic potential of a series of synthetic precursors of Solomonamide A, a cyclic peptide isolated from a marine sponge, was evaluated. By means of an in vitro screening, based on the inhibitory activity of endothelial tube formation, the compound Solo F-OH was selected for a deeper characterization of its antiangiogenic potential. Our results indicate that Solo F-OH is able to inhibit some key steps of the angiogenic process, including the proliferation, migration, and invasion of endothelial cells, as well as diminish their capability to degrade the extracellular matrix proteins. The antiangiogenic potential of Solo F-OH was confirmed by means of two different in vivo models: the chorioallantoic membrane (CAM) and the zebrafish yolk membrane (ZFYM) assays. The reduction in ERK1/2 and Akt phosphorylation in endothelial cells treated with Solo F-OH denotes that this compound could target the upstream components that are common to both pathways. Taken together, our results show a new and interesting biological activity of Solo F-OH as an inhibitor of the persistent and deregulated angiogenesis that characterizes cancer and other pathologies.
Collapse
|
44
|
Wang H, Wu B, Wang H. Alpha-hederin induces the apoptosis of oral cancer SCC-25 cells by regulating PI3K/Akt/mTOR signaling pathway. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2018.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
45
|
Sun X, Niu S, Zhang Z, Wang A, Yang C, Guo Z, Hao Y, Li X, Wang X. Aurora kinase inhibitor VX‑680 suppresses the proliferation and migration of HUVECs and angiogenesis. Mol Med Rep 2019; 19:3841-3847. [PMID: 30816538 DOI: 10.3892/mmr.2019.9996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/01/2018] [Indexed: 11/06/2022] Open
Abstract
Angiogenesis serves a key role in tumor growth and metastasis. VX‑680, a potent inhibitor targeting the Aurora kinase family, is widely used in the inhibition of tumor progression. However, the effect of VX‑680 on angiogenesis remains unknown. The present study identified that VX‑680 inhibited human umbilical vein endothelial cell (HUVEC) proliferation and promoted HUVEC apoptosis by inducing the cleavage of PARP and caspase‑3. VX‑680 also markedly decreased the migration and tube formation of HUVECs in a dose‑dependent manner. In addition, VX‑680 significantly suppressed the formation of blood vessels in a dose‑dependent manner confirmed by a chicken embryo chorioallantoic membrane assay in vivo. Furthermore, VX‑680 inhibited the expression levels of vascular endothelial growth factor and phosphorylated RAC‑α serine/threonine‑protein kinase in HUVECs. These results suggested that VX‑680 suppressed angiogenesis and may be a potential novel anti‑angiogenic agent.
Collapse
Affiliation(s)
- Xuejiao Sun
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Shishi Niu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Zhen Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Anyan Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Chengyuan Yang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Zichan Guo
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yuepeng Hao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xiaozhong Li
- Department of Emergency, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Xiaoxia Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
46
|
Qiu H, Liang W, Zhang G, Lin M, Liu W, Gao Z, Wei W, Tang C, Jin H, Liang H, Yan X. Aerobic Oxidation of Methyl‐substituted
β
‐Carbolines Catalyzed by N‐Hydroxyphthalimide and Metal Catalyst. ChemistrySelect 2018. [DOI: 10.1002/slct.201803007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Hongda Qiu
- School of Materials Science and Chemical EngineeringNingbo University, Ningbo Zhejiang 315211 P. R. China
| | - Weida Liang
- School of Materials Science and Chemical EngineeringNingbo University, Ningbo Zhejiang 315211 P. R. China
- Present address: Department of ChemistryPurdue University West Lafayette, IN 47907 USA
| | - Gongjun Zhang
- Ningbo Institute of Industrial TechnologyChinese Academy of Sciences, Ningbo Zhejiang 315201 P. R. China
| | - Miaoman Lin
- School of Materials Science and Chemical EngineeringNingbo University, Ningbo Zhejiang 315211 P. R. China
| | - Wanmin Liu
- School of Materials Science and Chemical EngineeringNingbo University, Ningbo Zhejiang 315211 P. R. China
| | - Zhanghua Gao
- School of Materials Science and Chemical EngineeringNingbo University, Ningbo Zhejiang 315211 P. R. China
| | - Wenting Wei
- School of Materials Science and Chemical EngineeringNingbo University, Ningbo Zhejiang 315211 P. R. China
| | - Chunlan Tang
- School of MedicineNingbo University, Ningbo Zhejiang 315211 P. R. Chinan
| | - Haixiao Jin
- School of Marine SciencesNingbo University, Ningbo Zhejiang 315211 P. R. China
| | - Hongze Liang
- School of Materials Science and Chemical EngineeringNingbo University, Ningbo Zhejiang 315211 P. R. China
| | - Xiaojun Yan
- School of Marine SciencesNingbo University, Ningbo Zhejiang 315211 P. R. China
| |
Collapse
|
47
|
Zhang L, Chen C, Duanmu J, Wu Y, Tao J, Yang A, Yin X, Xiong B, Gu J, Li C, Liu Z. Cryptotanshinone inhibits the growth and invasion of colon cancer by suppressing inflammation and tumor angiogenesis through modulating MMP/TIMP system, PI3K/Akt/mTOR signaling and HIF-1α nuclear translocation. Int Immunopharmacol 2018; 65:429-437. [PMID: 30388517 DOI: 10.1016/j.intimp.2018.10.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022]
Abstract
The aim of this study was to evaluate the pharmacological effects of CPT on CT26 colon cancer cells in vivo and in vitro, and to reveal the potential mechanism. CPT suppressed the proliferation and growth of CT26 colon cancer in vitro and in vivo. CPT inhibited the invasion of CT26 cells in vitro, and decreased the protein expressions of matrix metalloproteinase-2 (MMP-2) and MMP-9 but increased those of tissue inhibitor of metallopeptidase-1 (TIMP-1) and TIMP-2 in vitro and in vivo. It also inhibited tumor cell-induced angiogenesis of endothelial cells in vitro and rat aortic ring angiogenesis ex vivo, and possibly by suppressing angiogenesis-associated factors. CPT suppressed the expressions of inflammatory factors in vivo and in vitro. Mechanism studies showed that CPT inhibited the PI3K/AKT/mTOR signaling pathway, as evidenced by decreased expressions of phospho-PI3K (p-PI3K), p-Akt and p-mTOR. Moreover, CPT significantly suppressed the nuclear expression but increased the cytosolic expression of hypoxia inducible factor-1α (HIF-1α). Collectively, CPT inhibited the growth, invasion, inflammation and angiogenesis in CT26 colon cancer, and at least partly, by regulating the PI3K/Akt/mTOR signaling and the nuclear translocation of HIF-1α.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Chang Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Jiaxin Duanmu
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Yan Wu
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Jinhua Tao
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Aihua Yang
- Department of Clinical Pharmacy, Nantong Maternal and Child Health Hospital Affiliated to Nantong University, Nantong, Jiangsu 226018, China
| | - Xiaoqin Yin
- Department of pharmacy, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Biao Xiong
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Jingya Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Chunling Li
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Zhaoguo Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China.
| |
Collapse
|
48
|
Anticancer Activity of Fascaplysin against Lung Cancer Cell and Small Cell Lung Cancer Circulating Tumor Cell Lines. Mar Drugs 2018; 16:md16100383. [PMID: 30322180 PMCID: PMC6213142 DOI: 10.3390/md16100383] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/04/2018] [Accepted: 10/10/2018] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is a leading cause of tumor-associated mortality. Fascaplysin, a bis-indole of a marine sponge, exhibit broad anticancer activity as specific CDK4 inhibitor among several other mechanisms, and is investigated as a drug to overcome chemoresistance after the failure of targeted agents or immunotherapy. The cytotoxic activity of fascaplysin was studied using lung cancer cell lines, primary Non-Small Cell Lung Cancer (NSCLC) and Small Cell Lung Cancer (SCLC) cells, as well as SCLC circulating tumor cell lines (CTCs). This compound exhibited high activity against SCLC cell lines (mean IC50 0.89 µM), as well as SCLC CTCs as single cells and in the form of tumorospheres (mean IC50 0.57 µM). NSCLC lines showed a mean IC50 of 1.15 µM for fascaplysin. Analysis of signal transduction mediators point to an ATM-triggered signaling cascade provoked by drug-induced DNA damage. Fascaplysin reveals at least an additive cytotoxic effect with cisplatin, which is the mainstay of lung cancer chemotherapy. In conclusion, fascaplysin shows high activity against lung cancer cell lines and spheroids of SCLC CTCs which are linked to the dismal prognosis of this tumor type. Derivatives of fascaplysin may constitute valuable new agents for the treatment of lung cancer.
Collapse
|
49
|
Di Y, Chen XL. Inhibition of LY294002 in retinal neovascularization via down-regulation the PI3K/AKT-VEGF pathway in vivo and in vitro. Int J Ophthalmol 2018; 11:1284-1289. [PMID: 30140630 DOI: 10.18240/ijo.2018.08.06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/08/2018] [Indexed: 01/01/2023] Open
Abstract
AIM To investigate the effects of the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 on retinal neovascularization (RNV) in the oxygen-induced retinopathy (OIR) mouse model and human umbilical vein endothelial cells (HUVECs). METHODS C57BL/6J mice were randomly divided into normoxia-control, OIR-control and LY294002 treatment groups. LY294002 or phosphate-buffered solution was intraperitoneally injected daily into mouse pups from P6 to P9 in LY294002 treatment group or OIR-control group. Morphological and pathological changes in RNV, as well as expression levels of PI3K, serine-threonine kinase (AKT) and vascular endothelial growth factor (VEGF) were observed. HUVECs treating with LY294002 were exposed to hypoxia; the expression of PI3K, AKT and VEGF were examined by Western blot and RT-PCR analyses. RESULTS Compared with the OIR-control group, LY294002 significantly inhibit RNV. Adenosine diphosphatase (ADPase) staining and hematoxylin and eosin staining indicated that the clock hour scores of neovascularization and the nuclei of pre-retinal neovascular cells in the LY294002 treatment group were clearly less than those in the OIR-control group (1.41±0.52 vs 6.20±1.21; 10.50±1.58 vs 22.25±1.82, both P<0.05). Intravitreal injection of LY294002 (in the LY294002 treatment group) markedly decreased PI3K/AKT-VEGF expression compared with the OIR-control group by immunohistochemistry, Western blotting and RT-PCR (all P<0.05). In HUVECs treated with hypoxia, expression of PI3K, AKT and VEGF were downregulated in the hypoxia-LY294002 group (all P<0.05). CONCLUSION The PI3K inhibitor LY294002 can inhibit RNV by downregulating PI3K, AKT, and VEGF expression in vivo and in vitro. LY294002 may provide an effective method for preventing retinopathy of prematurity (ROP).
Collapse
Affiliation(s)
- Yu Di
- Department of Ophthalmology, Shengjing Affiliated Hospital, China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xiao-Long Chen
- Department of Ophthalmology, Shengjing Affiliated Hospital, China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
50
|
Zhang XR, Wang SY, Sun W, Wei C. Isoliquiritigenin inhibits proliferation and metastasis of MKN28 gastric cancer cells by suppressing the PI3K/AKT/mTOR signaling pathway. Mol Med Rep 2018; 18:3429-3436. [PMID: 30066879 DOI: 10.3892/mmr.2018.9318] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 06/19/2018] [Indexed: 11/06/2022] Open
Abstract
Isoliquiritigenin (ISL) is a flavonoid extracted from licorice root, which is known to serve important antitumor roles in numerous types of cancers; however, its effect on gastric cancer remains to be elucidated. The present study aimed to explore the roles and underlying mechanisms of ISL in MKN28 gastric cancer cells. MKN28 cell proliferation was measured using the Cell Counting Kit‑8 (CCK8) assay. A Transwell assay was used to determine the effects of ISL on the migration and invasion of MKN28 cells. Apoptosis was assessed by flow cytometry, and the expression levels of apoptosis‑, autophagy‑ and signaling pathway‑related proteins were detected by western blot analysis. The results of the CCK8 assay demonstrated that ISL significantly inhibited the proliferation of MKN28 cells (P<0.05). Transwell assays demonstrated that the migration and invasion of MKN28 cells were significantly inhibited following treatment with ISL (P<0.05). Flow cytometric analysis indicated that ISL induced apoptosis of MKN28 cells. In addition, western blot analysis revealed that the ratio of microtubule‑associated proteins 1A/1B light chain 3B (LC3)II/LC3I was upregulated, as was Beclin 1 expression; however, p62 was downregulated following ISL pretreatment, thus suggesting that ISL triggered autophagy in MKN28 cells. In addition, the phosphorylation levels of protein kinase B (AKT) and mammalian target of rapamycin (mTOR) were significantly reduced following ISL treatment. These results indicated that ISL may influence apoptosis and autophagy in MKN28 cells by suppressing the phosphoinositide 3‑kinase/AKT/mTOR signaling pathway. In conclusion, the findings of the present study suggested that ISL may inhibit MKN28 cell proliferation, migration and invasion by inducing apoptosis and autophagy, implying potential as a therapeutic agent for gastric cancer.
Collapse
Affiliation(s)
- Xiu-Rong Zhang
- Department of Traditional Chinese Medicine, Maternal and Child Health Care of Shandong Province, Jinan, Shandong 250014, P.R. China
| | - Shi-Yao Wang
- Department of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Wen Sun
- Department of Research, Beijing Splinger Medical Research Institute, Jinan, Shandong 250021, P.R. China
| | - Chao Wei
- Department of Ophthalmology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|