1
|
Abdelmawgood IA, Kotb MA, Hassan HS, Badr AM, Mahana NA, Mohamed AS, Khalaf ML, Mostafa NK, Diab BE, Ahmed NN, Alamudddin ZA, Soliman LA, Fahim MK, Abdelkader AE. 4-Hydroxychalcone attenuates ovalbumin-induced allergic airway inflammation and oxidative stress by activating Nrf2/GPx4 pathway. Respir Physiol Neurobiol 2024; 331:104348. [PMID: 39260757 DOI: 10.1016/j.resp.2024.104348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Asthma is a lung condition characterized by impaired respiratory function and an apparent infiltration of inflammatory cells. Chalcones are substances that have attracted considerable interest in the disciplines of pharmaceutical chemistry and drug discovery due to their diverse biochemical processes, such as antioxidant, anti-inflammatory, anticancer, antibacterial, and others, but whether they can be used in asthma treatment has yet to be investigated. This study aimed to investigate the immunomodulatory effect of 4 hydroxychalcone (4-HC) against allergic asthma in mice. In this research, we investigated how 4-HC affected asthmatic behavior, leukocyte infiltration, histopathological alterations, oxidative stress, immunoglobulin E (IgE) production, and airway inflammation. Moreover, ELISA and immunohistochemistry (IHC) were used to measure the expression of Nrf2 and GPx4. 4-HC treatment significantly decreased lung oxidative stress, inflammatory cell infiltration, and IgE levels. According to our findings, we imply that 4-HC may be utilized as an anti-asthmatic agent through the upregulation of Nrf2/GPx4 signaling pathway.
Collapse
Affiliation(s)
| | - Mohamed A Kotb
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | | - Abeer Mahmoud Badr
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Noha A Mahana
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | | | | | | - Basant Ehab Diab
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Nada Nasser Ahmed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | | | | | | | |
Collapse
|
2
|
Subali D, Kurniawan R, Surya R, Lee IS, Chung S, Ko SJ, Moon M, Choi J, Park MN, Taslim NA, Hardinsyah H, Nurkolis F, Kim B, Kim KI. Revealing the mechanism and efficacy of natural products on treating the asthma: Current insights from traditional medicine to modern drug discovery. Heliyon 2024; 10:e32008. [PMID: 38882318 PMCID: PMC11176852 DOI: 10.1016/j.heliyon.2024.e32008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Asthma remains a significant global health challenge, demanding innovative approaches to treatment. Traditional medicine has a rich history of using natural products to alleviate asthmatic symptoms. However, transitioning from these traditional remedies to modern drug discovery approaches has provided fresh insights into the mechanisms and effectiveness of these natural products. This study provides our comprehensive review, which examines the current state of knowledge in the treatment of asthma. It delves into the mechanisms through which natural products ameliorate asthma symptoms, and it discusses their potential in the development of novel therapeutic interventions. Our analysis reveals that natural products, traditionally employed for asthma relief, exhibit diverse mechanisms of action. These include anti-inflammatory, bronchodilatory, immunomodulatory effects, and reducing gene expression. In the context of modern drug discovery, these natural compounds serve as valuable candidates for the development of novel asthma therapies. The transition from traditional remedies to modern drug discovery represents a promising avenue for asthma treatment. Our review highlights the substantial efficacy of natural products in managing asthma symptoms, underpinned by well-defined mechanisms of action. By bridging the gap between traditional and contemporary approaches, we contribute to the growing body of knowledge in the field, emphasizing the potential of natural products in shaping the future of asthma therapy.
Collapse
Affiliation(s)
- Dionysius Subali
- Department of Biotechnology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, 12930, Indonesia
| | - Rudy Kurniawan
- Diabetes Connection Care, Eka Hospital Bumi Serpong Damai, Tangerang, 15321, Indonesia
| | - Reggie Surya
- Department of Food Technology, Faculty of Engineering, Bina Nusantara University, Jakarta, 11480, Indonesia
| | - In-Seon Lee
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Acupuncture & Meridian Science Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sanghyun Chung
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Kyung Hee Myungbo Clinic of Korean Medicine, Hwaseong-si, 18466, Republic of Korea
| | - Seok-Jae Ko
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, 05253, Republic of Korea
| | - Myunghan Moon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jinwon Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Nurpudji Astuti Taslim
- Division of Clinical Nutrition, Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, 90245, Indonesia
| | - Hardinsyah Hardinsyah
- Division of Applied Nutrition, Department of Community Nutrition, Faculty of Human Ecology, IPB University, Bogor, 16680, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, Faculty of Sciences and Technology, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, 55281, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kwan-Il Kim
- Division of Allergy, Immune and Respiratory System, Department of Internal Medicine, College of Korean Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Dai R, Xiang Y, Fang R, Zheng HH, Zhao QS, Wang Y. Lonicerin alleviates ovalbumin-induced asthma of mice via inhibiting enhancer of zeste homolog 2/nuclear factor-kappa B signaling pathway. Exp Anim 2024; 73:154-161. [PMID: 37952975 PMCID: PMC11091354 DOI: 10.1538/expanim.23-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
Asthma is the most common chronic disease in the respiratory system of children caused by abnormal immunity that responses to common antigens. Lonicerin exerts anti-inflammatory activity in other inflammatory models through targeting enhancer of zeste homolog 2 (EZH2) that is related to asthma. We sought to explore the role and mechanism of lonicerin in regulating allergic airway inflammation. Mice were intraperitoneally injected 10 µg ovalbumin (OVA) on postnatal day 5 (P5) and P10, and then inhaled 3% aerosolized OVA for 10 min every day on P18-20, to establish asthmatic mice model. Lonicerin (10 or 30 mg/kg) was given to mice by intragastric administration on P16-P20. Notably, the administration of lonicerin amended infiltration of inflammatory cells and mucus hypersecretion. OVA-specific IgE level, inflammatory cell count and inflammatory cytokines in asthmatic mice were reduced after lonicerin treatment. Moreover, it suppressed the activity of EZH2 and activation of nuclear factor-kappa B (NF-κB) as evidenced by decreasing tri-methylation of histone H3 at lysine 27 and reducing nuclear translocation of NF-κB p65. In a word, Lonicerin may attenuate asthma by inhibiting EZH2/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Rui Dai
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei 230601, Anhui, P.R. China
| | - Yun Xiang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei 230601, Anhui, P.R. China
| | - Rui Fang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei 230601, Anhui, P.R. China
| | - Hai-Han Zheng
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei 230601, Anhui, P.R. China
| | - Qing-Song Zhao
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei 230601, Anhui, P.R. China
| | - Yan Wang
- Department of Pediatrics, The Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei 230601, Anhui, P.R. China
| |
Collapse
|
4
|
Su B, Li R, Song F, Liu M, Sun X. S14G-Humanin ameliorates ovalbumin-induced airway inflammation in asthma mediated by inhibition of toll-like receptor 4 (TLR4) expression and the nuclear factor κ-B (NF-κB)/early growth response protein-1 (Egr-1) pathway. Aging (Albany NY) 2023; 15:6822-6833. [PMID: 37451839 PMCID: PMC10415557 DOI: 10.18632/aging.204874] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023]
Abstract
Asthma is a chronic inflammatory disease with a high morbidity rate in children and significantly impacts their healthy growth. It is reported that Th2 cell-mediated airway inflammation and activated oxidative stress are involved in the pathogenesis of asthma. S14G-humanin (HNG) is a derivative of Humanin with higher activity. The present study proposes to explore the potential treating property of HNG on asthma. An asthma model was constructed in mice using ovalbumin (OVA), the mice were treated with 2.5 mg/kg and 5 mg/kg HNG for 16 days. Dramatically increased lung weight index, elevated number of monocytes, eosinophils, and neutrophils, promoted production of Th2 cytokines including interleukin-4 (IL-4), interleukin-5 (IL-5), and interleukin-13 (IL-13), and severe histological pathology were observed in OVA-challenged mice, all of which were extremely alleviated by 2.5 mg/kg and 5 mg/kg HNG. Furthermore, the increased malondialdehyde (MDA) level and declined superoxide dismutase (SOD) activity in OVA-challenged mice were abolished by 2.5 mg/kg and 5 mg/kg HNG. Lastly, the upregulated TLR4, p-NF-κB p65, and early growth response 1 (Egr-1) in lung tissues of OVA-challenged mice were pronouncedly downregulated by 2.5 mg/kg and 5 mg/kg HNG. Collectively, our data suggested that HNG ameliorated airway inflammation in asthma partially due to NF-κB and Egr-1-mediated responses.
Collapse
Affiliation(s)
- Bo Su
- Department of Pediatrics, Jinan City People’s Hospital, Jinan 250102, Shandong, China
| | - Ran Li
- Department of Pediatrics, Jinan City People’s Hospital, Jinan 250102, Shandong, China
| | - Fuxing Song
- Department of Pediatrics, Jinan City People’s Hospital, Jinan 250102, Shandong, China
| | - Min Liu
- Department of Pediatrics, Jinan City People’s Hospital, Jinan 250102, Shandong, China
| | - Xianjun Sun
- Department of Pediatrics, Jinan City People’s Hospital, Jinan 250102, Shandong, China
| |
Collapse
|
5
|
Khaleel A, El-Sheakh AR, Suddek GM. Celecoxib abrogates concanavalin A-induced hepatitis in mice: Possible involvement of Nrf2/HO-1, JNK signaling pathways and COX-2 expression. Int Immunopharmacol 2023; 121:110442. [PMID: 37352567 DOI: 10.1016/j.intimp.2023.110442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/25/2023]
Abstract
Concanavalin A (ConA) is an established model for inducing autoimmune hepatitis (AIH) in mice, mimicking clinical features in human. The aimof the current study is to explore the possible protective effect of celecoxib, a cyclooxygenase-2 inhibitor,on immunological responses elicited in the ConA model of acute hepatitis. ConA (20 mg/kg) was administered intravenously to adult male mice for 6 h. Prior to ConA intoxication, mice in the treatedgroups received daily doses of celecoxib (30 and 60 mg/kg in CMC) for 7 days. Results revealed that administration of celecoxib 60 mg/kg for 7 days significantly protected the liver from ConA-induced liver damage revealed by significant decrease in ALT and AST serum levels. Celecoxib 30 and 60 mg/kg pretreatment enhanced oxidant/antioxidant hemostasis by significantreduction of MDA and NO content and increase hepatic GSH contents and SOD activity. In addition, celecoxib 30 and 60 mg/kg caused significant increase in hepatic nuclear factor erythroid 2-related factor 2 (Nrf2) and the stress protein heme oxygenase-1 (HO-1) levels. Moreover, celecoxib 30 and 60 mg/kg inhibited the release of proinflammatory markers including IL-1β and TNF-α along with significant decrease in p-JNK, AKT phosphorylation ratio and caspase-3 expression. Besides, Con A was correlated to high expression of cyclooxygenase COX-2 and this increasing was improved by administration of celecoxib. These changes were in good agreement with improvement in histological deterioration. The protective effect of celecoxib was also associated with significant reduction of autophagy biomarkers (Beclin-1 and LC3II). In conclusion, celecoxib showed antioxidant, anti-inflammatory, anti-apoptotic and anti-autophagy activity against Con A-induced immune-mediated hepatitis. These effects could be produced by modulation of Nrf2/HO-1, IL-1B /p-JNK/p-AKT, JNK/caspase-3, and Beclin-1/LC3II signaling pathways.
Collapse
Affiliation(s)
- Aya Khaleel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed R El-Sheakh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, Egypt; Future Studies and Risks Management' National Committee of Drugs, Academy of Scientific Research, Ministry of Higher Education, Elsayeda Zeinab, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
6
|
Makled MN, El-Sheakh AR. Fingolimod attenuates ovalbumin-induced airway inflammation via inhibiting MAPK/ERK signaling in mice. J Biochem Mol Toxicol 2023; 37:e23266. [PMID: 36468814 DOI: 10.1002/jbt.23266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/06/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
The current study was designed to investigate the potential anti-inflammatory and antioxidant effects of fingolimod against Ovalbumin (Ova)-induced allergic airway inflammation compared to dexamethasone. Fingolimod was given (0.5 mg/kg/day, p.o.) for sensitized mice 1 h before Ova challenge from Days 19 to 24. Fingolimod significantly inhibited Ova-induced elevation of inflammatory cells and eosinophils numbers in bronchoalveolar lavage fluid (BALF) and reduced concentrations of immunoglobulin E in serum and of sphingosine-1-phosphate, interleukin (IL)-4, and IL-13 in BALF. Fingolimod inhibited microvascular leakage and edema as reflected by the decreased lung/body weight index. These findings were supported by histopathological examination results showing that fingolimod substantially decreased perivascular edema and inflammatory cell infiltration. Fingolimod also attenuated Ova-induced oxidative stress as evidenced by decreased malondialdehyde concentration along with increasing concentrations of reduced glutathione and superoxide dismutase in lung tissues. Fingolimod also significantly decreased monocyte chemoattractant protein-1 (MCP-1), p-ERK, and p-P38 in lung tissues of Ova-challenged mice. In conclusion, the current study demonstrated the anti-inflammatory and antioxidant effects of fingolimod in allergic airway inflammation that might be associated with the downregulation of mitogen activated kinases signaling to decrease T helper 2 cytokine secretion (IL-4 and IL-13) and MCP-1 expression, along with the inhibition of oxidative stress.
Collapse
Affiliation(s)
- Mirhan N Makled
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed R El-Sheakh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Future Studies and Risks Management & National Committee of Drugs, Academy of Scientific Research, Ministry of Higher Education, ElSayeda Zeinab, Egypt
| |
Collapse
|
7
|
Riaz K, Butt MS, Sharif MK, Faisal MN. Therapeutic efficacy of spirulina against ovalbumin and cigarette smoke-induced asthma-specific stress biomarkers in Sprague-Dawley rats. Food Sci Nutr 2023; 11:972-982. [PMID: 36789047 PMCID: PMC9922124 DOI: 10.1002/fsn3.3132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/29/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the high prevalence of allergies and asthma, awareness about allergens and therapeutic use of functional foods and nutraceuticals have gained immense attention. Spirulina powder is being used as health-boosting and antioxidant agent against several ailments owing to its unique nutritional profile. Considering its antioxidant role, the current study was focused on exploring therapeutic role of spirulina against stress biomarkers in asthmatic model. To assess the therapeutic efficacy of spirulina against allergic asthma-specific oxidative stress biomarkers, a model feed trial was conducted and rats were divided into four groups (n = 10). G0-I (negative control), G0-II (positive control), whereas GI (spirulina) and G2 (salbutamol) served as treatment groups. Salbutamol is a chemical compound which is used in several antiallergic medicines because it works as bronchodilator. G2 group was given salbutamol for comparison of results. For asthma induction, rats were given intraperitoneal injection of ovalbumin on 7th, 14th, and 21st day. Treatment groups were given spirulina powder (500 mg/kg body weight) and salbutamol (1 mg/kg), respectively, after the induction of asthma. All three asthmatic groups were also exposed to cigarette smoke daily along with respective treatment for 4 weeks. Asthma induction caused an increase in total cell count in bronchioalveolar fluid (BALF), while spirulina treatment reduced total cells in BALF by 33.50% and salbutamol by 41.7%. Level of interleukins (IL) like IL-4 decreased by 33.32% & 48.56% in G1 and G2. Similarly, IL-5 and IL-13 levels reduced by 40.9% & 49.9% and 18.62% & 38.02%, respectively, in G1 and G2. Serum levels of Immunoglobin-E (Ig-E) declined by 29.70% and 52.82%, while histamine levels were 26.23% & 45.58% less at the end of study in comparison to positive control. Moreover, histological analysis of lung tissue revealed that both spirulina and salbutamol effectively reduced ovalbumin and cigarette smoke-induced moderate to severe necrosis, architectural changes, and congestion. It was concluded that salbutamol showed better results however, spirulina also effectively reduced mild to moderate allergic symptoms in dose-dependent manner. Nutraceutical and functional foods are considered helpful in mitigating oxidative stress-mediated health problems. Spirulina has its unique nutritional profile including phycobiliproteins, phytochemicals, and antioxidant vitamins which make it useful against several ailments. Considering its antioxidant role, current study was focused on exploring therapeutic efficacy of spirulina against stress biomarkers in asthmatic model. Outcomes of present research also demonstrated beneficial effect of spirulina in modulating allergic symptoms. In this regard, ancient concept of "medicine food homology" can be implemented and spirulina can be incorporated in food for additional benefits. However, further research regarding safety aspects is needed for its use in clinical practice for humans.
Collapse
Affiliation(s)
- Khadija Riaz
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home SciencesUniversity of AgricultureFaisalabadPakistan
| | - Masood Sadiq Butt
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home SciencesUniversity of AgricultureFaisalabadPakistan
| | - Mian Kamran Sharif
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home SciencesUniversity of AgricultureFaisalabadPakistan
| | - Muhammad Naeem Faisal
- Faculty of Veterinary Science, Institute of Physiology and PharmacologyUniversity of AgricultureFaisalabadPakistan
| |
Collapse
|
8
|
Elsayed FF, Elshenawy WM, Khalifa EM, Rizq MR, Abdelaziz RR. Ameliorative effect of flavocoxid on cyclophosphamide-induced cardio and neurotoxicity via targeting the GM-CSF/NF-κB signaling pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69635-69651. [PMID: 35576032 PMCID: PMC9512761 DOI: 10.1007/s11356-022-20441-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/21/2022] [Indexed: 06/12/2023]
Abstract
Cyclophosphamide (Cyclo) is a chemotherapeutic agent used as an immunosuppressant and as a treatment for many cancerous diseases. Many previous pieces of literature proved the marked cardio and neurotoxicity of the drug. Thus, this research provides evidence on the alleviative effect of flavocoxid on the cardiac and brain toxicity of cyclophosphamide in mice and determines its underlying mechanisms. Flavocoxid (Flavo) is a potent antioxidant and anti-inflammatory agent that inhibits the peroxidase activity of cyclooxygenase (COX-1 and COX-2) enzymes and 5-lipooxygenase (5-LOX). Flavo was administered orally (20 mg/kg) for 2 weeks, followed by Cyclo (100 mg/kg, i.p.) on day 14. Higher heart and brain weight indices, serum lactate dehydrogenase (LDH), creatine kinase (CK-MB), and nitric oxide (NO) were mitigated following Flavo administration. Flavo modulated oxidative stress biomarkers (malonaldehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD)), tumor necrosis factor-α (TNF-α), and interleukin (IL)-1β. Additionally, cardiac troponin I (cTn-I), nuclear factor kappa B (NF-κB), brain amyloid precursor protein (APP), and granulocyte macrophage colony-stimulating factor (GM-CSF) were decreased by Flavo administration. Moreover, Flavo ameliorated heart and brain histopathological changes and caspase-3 levels. Collectively, Flavo (20 mg/kg) for 14 days showed significant cardio and neuroprotective effects due to its antioxidant, anti-inflammatory, and antiapoptotic activities via modulation of oxidative stress, inflammation, and the GM-CSF/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Fatma F Elsayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Waad M Elshenawy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Eman M Khalifa
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed R Rizq
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Rania R Abdelaziz
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
9
|
Polystichum braunii ameliorates airway inflammation by attenuation of inflammatory and oxidative stress biomarkers, and pulmonary edema by elevation of aquaporins in ovalbumin-induced allergic asthmatic mice. Inflammopharmacology 2022; 30:639-653. [PMID: 35257281 DOI: 10.1007/s10787-022-00944-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/09/2022] [Indexed: 11/05/2022]
Abstract
Asthma is a chronic inflammation of pulmonary airways associated with bronchial hyper-responsiveness. The study was aimed to validate the folkloric use of Polystichum braunii (PB) against ovalbumin (OVA)-induced asthmatic and chemical characterization OF both extracts. Allergic asthma was developed by intraperitoneal sensitization with an OVA on days 1 and 14 followed by intranasal challenge. Mice were treated with PB methanolic (PBME) and aqueous extract (PBAE) orally at 600, 300, and 150 mg/kg and using dexamethasone (2 mg/kg) as standard from day 15 to 26. High performance liquid chromatography-diode array detector analysis revealed the presence of various bioactive compounds such as catechin, vanillic acid, and quercetin. The PBME and PBAE profoundly (p < 0.0001-0.05) declined immunoglobulin E level, lungs wet/dry weight ratio, and total and differential leukocyte count in blood and bronchial alveolar lavage fluid of treated mice in contrast to disease control. Histopathological examination showed profoundly decreased inflammatory cell infiltration and goblet cell hyperplasia in treated groups. Both extracts caused significant (p < 0.0001-0.05) diminution of IL-4, IL-5, IL-13, IL-6, IL-1β, TNF-α, and NF-κB and upregulation of aquaporins (1 and 5), which have led to the amelioration of pulmonary inflammation and attenuation of lung edema in treated mice. Both extracts profoundly (p < 0.0001-0.05) restored the activities of SOD, CAT, GSH and reduced the level of MDA dose dependently. Both extracts possessed significant anti-asthmatic action mainly PBME 600 mg/kg might be due to phenols and flavonoids and could be used as a potential therapeutic option in the management of allergic asthma.
Collapse
|
10
|
Bai D, Sun T, Lu F, Shen Y, Zhang Y, Zhang B, Yu G, Li H, Hao J. Eupatilin Suppresses OVA-Induced Asthma by Inhibiting NF-κB and MAPK and Activating Nrf2 Signaling Pathways in Mice. Int J Mol Sci 2022; 23:ijms23031582. [PMID: 35163503 PMCID: PMC8836136 DOI: 10.3390/ijms23031582] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 12/10/2022] Open
Abstract
To investigate the effect of eupatilin in asthma treatment, we evaluated its therapeutic effect and related signal transduction in OVA-induced asthmatic mice and LPS-stimulated RAW264.7 cells. The BALF was tested for changes in lung inflammatory cells. Th2 cytokines in the BALF and OVA-IgE in the serum were measured by ELISA. H&E and PAS staining were used to evaluate histopathological changes in mouse lungs. The key proteins NF-κB, MAPK, and Nrf2 in lung tissues were quantitatively analyzed by Western blotting. Finally, we evaluated the effect of eupatilin on cytokines and related protein expression in LPS-stimulated RAW 264.7 cells in vitro. In OVA-induced asthmatic mice, eupatilin reduced the numbers of inflammatory cells, especially neutrophils and eosinophils. Eupatilin also decreased the levels of IL-5, IL-13 in the BALF and OVA-IgE in the serum. Furthermore, eupatilin inhibited the activation of NF-κB and MAPK pathways and increased the expression of Nrf2 in OVA-induced asthmatic mice. In vitro, eupatilin significantly reduced LPS-stimulated NO, IL-6, and ROS production. Additionally, the NF-κB, MAPK, and Nrf2 protein expression in LPS-stimulated RAW264.7 cells was consistent with that in OVA-induced asthmatic lung tissues. In summary, eupatilin attenuated OVA-induced asthma by regulating NF-κB, MAPK, and Nrf2 signaling pathways. These results suggest the utility of eupatilin as an anti-inflammatory drug for asthma treatment.
Collapse
Affiliation(s)
- Donghui Bai
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (D.B.); (T.S.); (F.L.); (Y.S.); (Y.Z.); (B.Z.); (G.Y.)
| | - Tianxiao Sun
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (D.B.); (T.S.); (F.L.); (Y.S.); (Y.Z.); (B.Z.); (G.Y.)
| | - Fang Lu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (D.B.); (T.S.); (F.L.); (Y.S.); (Y.Z.); (B.Z.); (G.Y.)
| | - Yancheng Shen
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (D.B.); (T.S.); (F.L.); (Y.S.); (Y.Z.); (B.Z.); (G.Y.)
| | - Yan Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (D.B.); (T.S.); (F.L.); (Y.S.); (Y.Z.); (B.Z.); (G.Y.)
| | - Bo Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (D.B.); (T.S.); (F.L.); (Y.S.); (Y.Z.); (B.Z.); (G.Y.)
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (D.B.); (T.S.); (F.L.); (Y.S.); (Y.Z.); (B.Z.); (G.Y.)
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Haihua Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (D.B.); (T.S.); (F.L.); (Y.S.); (Y.Z.); (B.Z.); (G.Y.)
- Correspondence: (H.L.); (J.H.); Tel./Fax: +86-532-8203-1913 (J.H.)
| | - Jiejie Hao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (D.B.); (T.S.); (F.L.); (Y.S.); (Y.Z.); (B.Z.); (G.Y.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- Correspondence: (H.L.); (J.H.); Tel./Fax: +86-532-8203-1913 (J.H.)
| |
Collapse
|
11
|
Mohamed NI, El-Kashef DH, Suddek GM. Flavocoxid halts both intestinal and extraintestinal alterations in acetic acid-induced colitis in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:5945-5959. [PMID: 34431056 DOI: 10.1007/s11356-021-16092-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Ulcerative colitis (UC) is an idiopathic chronic inflammatory disorder mainly affecting the colon and rectum. The present investigation was undertaken to evaluate the potential protective effect of flavocoxid, a dual COX and LOX inhibitor, in colitis model in rats. UC was induced by instillation of 2 ml of 4% acetic acid (AA) into the colon using a pediatric catheter in rats, and flavocoxid (10 and 20 mg·kg-1) was given once daily for 7 days before induction of colitis. Rats were sacrificed; sera were collected; colons and livers were isolated and then analyzed by biochemical, macroscopic, and histopathological examination. Pretreatment with flavocoxid (10 and 20 mg·kg-1) significantly reduced serum levels of alanine transaminase (ALT) (43.7 ± 7 and 76.2 ± 7.3 vs. 288.7 ± 31.4 in AA group) and aspartate transaminase (AST) (179.5 ± 22.2 and 200.5 ± 14 vs. 392.7 ± 35.6 in AA group) (p>0.05). Also, it decreased malondialdehyde (MDA) and nitric oxide (NOx) levels in both colonic and hepatic tissues. Moreover, flavocoxid effectively elevated colonic and hepatic reduced glutathione (GSH) level and superoxide dismutase (SOD) activity when compared to AA group (p>0.05). Additionally, flavocoxid significantly decreased levels of tumor necrosis factor-α (TNF-α) (878.2 ± 13.4 and 560.1 ± 2.9 vs. 1378.1 ± 31 in AA group) in colonic tissues and (701 ± 6.9 and 442.5 ± 8.2 vs. 1501 ± 9.4 in AA group) in hepatic tissues, nuclear factor kappa B (NF-κBp65) (493.8 ± 6.8 and 368.7 ± 3.1 vs. 659.2 ± 9.4 in AA group) in colonic tissues and (358 ± 5.1 and 163.5 ± 7.8 vs. 732.5 ± 4.5 in AA group) in hepatic tissues, myeloperoxidase (MPO) (15.7 ± 0.3 and 13 ± 0.2 vs. 20.9 ± 0.5 in AA group) in colonic tissues and (20.4 ± 0.3 and 16.3 ± 0.3 vs. 23.9 ± 1.2 in AA group) in hepatic tissues, and inducible nitric oxide synthase (iNOS) (12.5 ± 0.3 and 10 ± 0.2 vs. 16 ± 0.1 in AA group) in colonic tissues and (14.1 ± 0.04 and 11.5 ± 0.08 vs. 17.8 ± 0.1 in AA group) in hepatic tissues (p>0.05). Furthermore, it down-regulated Bax and caspase-3 expression in colonic and hepatic tissues upon comparison with AA group. Collectively, flavocoxid conferred a protective impact against acetic acid-induced colitis in rats via attenuating oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Nagwa I Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
12
|
Wang J, Gao S, Zhang J, Li C, Li H, Lin J. Interleukin-22 attenuates allergic airway inflammation in ovalbumin-induced asthma mouse model. BMC Pulm Med 2021; 21:385. [PMID: 34836520 PMCID: PMC8620641 DOI: 10.1186/s12890-021-01698-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Allergic asthma is a chronic airway inflammatory disease with a number of cytokines participating in its pathogenesis and progress. Interleukin (IL)-22, which is derived from lymphocytes, acts on epithelial cells and play a role in the chronic airway inflammation. However, the actual role of IL-22 in allergic asthma is still unclear. Therefore, we explored the effect of IL-22 on allergic airway inflammation and airway hyperresponsiveness (AHR) in an ovalbumin (OVA)-induced asthma mouse model. METHODS To evaluate the effect of IL-22 in an allergic asthma model, BALB/c mice were sensitized and challenged with OVA; then the recombinant mouse IL-22 was administered intranasally 24 h prior to each challenge. The IL-22 levels in lung homogenates and bronchoalveolar lavage fluid (BALF) were measured by enzyme linked immunosorbent assay, respectively. AHR was evaluated through indicators including airways resistance (Rrs), elastance (Ers) and compliance (Crs); the inflammatory cell infiltration was assessed by quantification of differential cells counts in BALF and lung tissues stained by hematoxylin and eosin (H&E); IL-22 specific receptors were determined by immunohistochemistry staining. RESULTS The concentration of IL-22 was significantly elevated in the OVA-induced mice compared with the control mice in lung homogenates and BALF. In the OVA-induced mouse model, IL-22 administration could significantly attenuate AHR, including Rrs, Ers and Crs, decrease the proportion of eosinophils in BALF and reduce inflammatory cell infiltration around bronchi and their concomitant vessels, compared with the OVA-induced group. In addition, the expression of IL-22RA1 and IL-10RB in the lung tissues of OVA-induced mice was significantly increased compared with the control mice, while it was dramatically decreased after the treatment with IL-22, but not completely attenuated in the IL-22-treated mice when compared with the control mice. CONCLUSION Interleukin-22 could play a protective role in an OVA-induced asthma model, by suppressing the inflammatory cell infiltration around bronchi and their concomitant vessels and airway hyperresponsiveness, which might associate with the expression of its heterodimer receptors. Thus, IL-22 administration might be an effective strategy to attenuate allergic airway inflammation.
Collapse
Affiliation(s)
- Jingru Wang
- Peking University China-Japan Friendship School of Clinical Medicine, No. 2, East Yinghua Road, Chaoyang Disteict, Beijing, 100029 China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Shengnan Gao
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029 China
- Department of Pulmonary and Critical Care Medicine, Graduate School of Chinese Academy of Medical Sciences, Peking Union Medical College, China-Japan Friendship Hospital, Beijing, 100730 China
| | - Jingyuan Zhang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029 China
- Department of Pulmonary and Critical Care Medicine, Graduate School of Chinese Academy of Medical Sciences, Peking Union Medical College, China-Japan Friendship Hospital, Beijing, 100730 China
| | - Chunxiao Li
- Peking University China-Japan Friendship School of Clinical Medicine, No. 2, East Yinghua Road, Chaoyang Disteict, Beijing, 100029 China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Hongwen Li
- Peking University China-Japan Friendship School of Clinical Medicine, No. 2, East Yinghua Road, Chaoyang Disteict, Beijing, 100029 China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Jiangtao Lin
- Peking University China-Japan Friendship School of Clinical Medicine, No. 2, East Yinghua Road, Chaoyang Disteict, Beijing, 100029 China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, 100029 China
| |
Collapse
|
13
|
Amer AE, Shehatou GSG, El-Kashef HA, Nader MA, El-Sheakh AR. Flavocoxid Ameliorates Aortic Calcification Induced by Hypervitaminosis D 3 and Nicotine in Rats Via Targeting TNF-α, IL-1β, iNOS, and Osteogenic Runx2. Cardiovasc Drugs Ther 2021; 36:1047-1059. [PMID: 34309798 DOI: 10.1007/s10557-021-07227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE This research was designed to investigate the effects and mechanisms of flavocoxid (FCX) on vascular calcification (VC) in rats. METHODS Vitamin D3 and nicotine were administered to Wistar rats, which then received FCX (VC-FCX group) or its vehicle (VC group) for 4 weeks. Control and FCX groups served as controls. Systolic (SBP) and diastolic (DBP) blood pressures, heart rate (HR), and left ventricular weight (LVW)/BW were measured. Serum concentrations of calcium, phosphate, creatinine, uric acid, and alkaline phosphatase were determined. Moreover, aortic calcium content and aortic expression of runt-related transcription factor (Runx2), osteopontin (OPN), Il-1β, α-smooth muscle actin (α-SMA), matrix metalloproteinase-9 (MMP-9), inducible nitric oxide synthase (iNOS), and tumor necrosis factor-α (TNF-α) were assessed. Oxidative status in aortic homogenates was investigated. RESULTS Compared to untreated VC rats, FCX treatment prevented body weight loss, reduced aortic calcium deposition, restored normal values of SBP, DBP, and HR, and attenuated LV hypertrophy. FCX also improved renal function and ameliorated serum levels of phosphorus, calcium, and ALP in rats with VC. FCX abolished aortic lipid peroxidation in VC rats. Moreover, VC-FCX rats showed marked reductions in aortic levels of Il-1β and osteogenic marker (Runx2) and attenuated aortic expression of TNF-α, iNOS, and MMP-9 proteins compared to untreated VC rats. The expression of the smooth muscle lineage marker α-SMA was greatly enhanced in aortas from VC rats upon FCX treatment. CONCLUSION These findings demonstrate FCX ability to attenuate VDN-induced aortic calcinosis in rats, suggesting its potential for preventing arteiocalcinosis in diabetic patients and those with chronic kidney disease.
Collapse
Affiliation(s)
- Ahmed E Amer
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Dakahliya, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt
| | - George S G Shehatou
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Dakahliya, Egypt.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt.
| | - Hassan A El-Kashef
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Dakahliya, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt
| | - Ahmed R El-Sheakh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahliya, Egypt
| |
Collapse
|
14
|
Adam-Bonci TI, Bonci EA, Pârvu AE, Herdean AI, Moț A, Taulescu M, Ungur A, Pop RM, Bocșan C, Irimie A. Vitamin D Supplementation: Oxidative Stress Modulation in a Mouse Model of Ovalbumin-Induced Acute Asthmatic Airway Inflammation. Int J Mol Sci 2021; 22:7089. [PMID: 34209324 PMCID: PMC8268667 DOI: 10.3390/ijms22137089] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/15/2023] Open
Abstract
Asthma oxidative stress disturbances seem to enable supplementary proinflammatory pathways, thus contributing to disease development and severity. The current study analyzed the impact of two types of oral vitamin D (VD) supplementation regimens on the redox balance using a murine model of acute ovalbumin-induced (OVA-induced) asthmatic inflammation. The experimental prevention group received a long-term daily dose of 50 µg/kg (total dose of 1300 µg/kg), whereas the rescue group underwent a short-term daily dose of 100 µg/kg (total dose of 400 µg/kg). The following oxidative stress parameters were analyzed in serum, bronchoalveolar lavage fluid (BALF) and lung tissue homogenate (LTH): total oxidative status, total antioxidant response, oxidative stress index, malondialdehyde and total thiols. Results showed that VD significantly reduced oxidative forces and increased the antioxidant capacity in the serum and LTH of treated mice. There was no statistically significant difference between the two types of VD supplementation. VD also exhibited an anti-inflammatory effect in all treated mice, reducing nitric oxide formation in serum and the expression of nuclear factor kappa B p65 in the lung. In conclusion, VD supplementation seems to exhibit a protective role in oxidative stress processes related to OVA-induced acute airway inflammation.
Collapse
Affiliation(s)
- Teodora-Irina Adam-Bonci
- Department of Pathophysiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (T.-I.A.-B.); (A.-E.P.)
| | - Eduard-Alexandru Bonci
- Department of Oncological Surgery and Gynecologic Oncology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
| | - Alina-Elena Pârvu
- Department of Pathophysiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (T.-I.A.-B.); (A.-E.P.)
| | - Andrei-Ioan Herdean
- Department of Anatomy and Embryology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Augustin Moț
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, “Babeș-Bolyai” University, 400028 Cluj-Napoca, Romania;
| | - Marian Taulescu
- Department of Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.T.); (A.U.)
- Synevovet Laboratory, 81 Pache Protopopescu, 021408 Bucharest, Romania
| | - Andrei Ungur
- Department of Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.T.); (A.U.)
| | - Raluca-Maria Pop
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.-M.P.); (C.B.)
| | - Corina Bocșan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (R.-M.P.); (C.B.)
| | - Alexandru Irimie
- Department of Oncological Surgery and Gynecologic Oncology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
| |
Collapse
|
15
|
El-Laithy HM, Youssef A, El-Husseney SS, El Sayed NS, Maher A. Enhanced alveo pulmonary deposition of nebulized ciclesonide for attenuating airways inflammations: a strategy to overcome metered dose inhaler drawbacks. Drug Deliv 2021; 28:826-843. [PMID: 33928836 PMCID: PMC8812587 DOI: 10.1080/10717544.2021.1905747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ciclesonide (CIC), an inhaled corticosteroid for bronchial asthma is currently available as metered dose inhaler (CIC–MDI) which possesses a major challenge in the management of the elderly, critically ill patients and children. In this work, nebulized CIC nano-structure lipid particles (CIC-NLPs) were prepared and evaluated for their deep pulmonary delivery and cytotoxicity to provide additional clinical benefits to patients in controlled manner and lower dose. The bio-efficacy following nebulization in ovalbumin (OVA) induced asthma Balb/c mice compared to commercial (CIC–MDI) was also assessed. The developed NLPs of 222.6 nm successfully entrapped CIC (entrapment efficiency 93.3%) and exhibited favorable aerosolization efficiency (mass median aerodynamic diameter (MMAD) 2.03 μm and fine particle fraction (FPF) of 84.51%) at lower impactor stages indicating deep lung deposition without imparting any cytotoxic effect up to a concentration of 100 μg/ml. The nebulization of 40 µg dose of the developed CIC-NLPs revealed significant therapeutic impact in the mitigation of the allergic airways inflammations when compared to 80 µg dose of the commercial CIC–MDI inhaler (Alvesco®). Superior anti-inflammatory and antioxidative stress effects characterized by significant decrease (p< .0001) in inflammatory cytokines IL-4 and 13, serum IgE levels, malondialdehyde (MDA), nitric oxide (NO), TNF-α, and activated nuclear factor-κB (NF-κB) activity were obvious with concomitant increase in superoxide dismutase (SOD) activity. Histological examination with inhibition of inflammatory cell infiltration in the respiratory tract was correlated well with observed biochemical improvement.
Collapse
Affiliation(s)
- Hanan M El-Laithy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| | - Amal Youssef
- Department of Pharmaceutics, Egyptian Drug Authority, Cairo, Egypt
| | | | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed Maher
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| |
Collapse
|
16
|
Liu JX, Zhang Y, Yuan HY, Liang J. The treatment of asthma using the Chinese Materia Medica. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113558. [PMID: 33186702 DOI: 10.1016/j.jep.2020.113558] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/12/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asthma is a costly global health problem that negatively influences the quality of life of patients. The Chinese Materia Medica (CMM) contains remedies that have been used for the treatment of asthma for millennia. This article strives to systematically summarize the current research progress so that more comprehensive examinations of various databases related to CMM anti-asthma drugs, can be performed, so as to sequentially provide effective basic data for development and application of anti-asthma drugs based on the CMM. MATERIALS AND METHODS The research data published over the past 20 years for asthma treatment based on traditional CMM remedies were retrieved and collected from libraries and online databases (PubMed, ScienceDirect, Elsevier, Spring Link, Web of Science, PubChem Compound, Wan Fang, CNKI, Baidu, and Google Scholar). Information was also added from classic CMM, literature, conference papers on classic herbal formulae, and dissertations (PhD or Masters) based on traditional Chinese medicine. RESULTS This review systematically summarizes the experimental studies on the treatment of asthma with CMM, covering the effective chemical components, typical asthma models, important mechanisms and traditional anti-asthma CMM formulae. The therapy value of the CMM for anti-asthma is clarified, and the original data and theoretical research foundation are provided for the development of new anti-asthmatic data and research for the CMM. CONCLUSIONS Substantial progress against asthma has been made through relevant experimental research based on the CMM. These advances improved the theoretical basis of anti-asthma drugs for CMM and provided a theoretical basis for the application of a asthma treatment that is unique. By compiling these data, it is expected that the CMM will now contain a clearer mechanism of action and a greater amount of practical data that can be used for future anti-asthma drug research.
Collapse
Affiliation(s)
- Jun-Xi Liu
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China; Department of Pharmacy, Heilongjiang Nursing College, 209 Academy Road, Harbin, 150086, PR China
| | - Yang Zhang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China
| | - Hong-Yu Yuan
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China
| | - Jun Liang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China.
| |
Collapse
|
17
|
Oxidation specific epitopes in asthma: New possibilities for treatment. Int J Biochem Cell Biol 2020; 129:105864. [PMID: 33069787 DOI: 10.1016/j.biocel.2020.105864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 11/20/2022]
Abstract
Oxidative stress is an important feature of asthma pathophysiology that is not currently targeted by any of our frontline treatments. Reactive oxygen species, generated during times of heightened oxidative stress, can damage cellular lipids causing the production of oxidation specific epitopes (OSE). OSEs are elevated in chronic inflammatory diseases and promoting their clearance by the body, through pattern recognition receptors and IgM antibodies, prevents and resolves inflammation and tissue damage in animal models. Current research on OSEs in asthma is limited. Although they are present in the lungs of people with asthma during periods of exacerbation or allergen exposure, we do not know if they are linked with disease pathobiology. This article reviews our current understanding of OSEs in asthma and explores whether targeting OSE clearance mechanisms may be a novel therapeutic intervention for asthma.
Collapse
|
18
|
Shi J, Chen M, Ouyang L, Wang Q, Guo Y, Huang L, Jiang S. miR-142-5p and miR-130a-3p regulate pulmonary macrophage polarization and asthma airway remodeling. Immunol Cell Biol 2020; 98:715-725. [PMID: 32524675 DOI: 10.1111/imcb.12369] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/04/2020] [Accepted: 06/09/2020] [Indexed: 01/12/2023]
Abstract
Macrophages are key regulators of the development and progression of asthma, facilitating deleterious airway remodeling in affected patients. Immune cell function is tightly regulated by microRNAs (miRNAs), but how these miRNAs impact macrophage-mediated airway remodeling in the context of asthma remains to be determined. In this study, we utilized an ovalbumin (OVA)-based murine model of asthma to evaluate the importance of miRNAs within these macrophages. We found that macrophages from mice that had been sensitized with and exposed to OVA expressed higher levels of M2-like phenotypic markers and exhibited significantly altered expression of both miR-142-5p and miR-130a-3p. When these isolated pulmonary macrophages were cultured in vitro, we determined that transfecting them with miR-142-5p antisense oligonucleotide (ASO) or miR-130a-3p mimics was sufficient to inhibit the ability of interleukin-4 to induce M2 cytokine production. We additionally confirmed the in vivo relevance of these miRNAs in a Ccr2-/- murine model system mimicking asthma. Specifically, we determined that transfecting monocytes with miR-142-5p ASO and/or miR-130a-3p mimics was sufficient to disrupt the ability of these cells to promote airway remodeling. As such, these findings reveal that miR-142-5p and miR-130a-3p dysregulation are important factors governing the polarization of macrophages and associated airway remodeling in OVA-sensitized mice.
Collapse
Affiliation(s)
- Jianting Shi
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Chen
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lihua Ouyang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiujie Wang
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yimin Guo
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Linjie Huang
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shanping Jiang
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Effects of Pelargonium sidoides and Coptis Rhizoma 2 : 1 Mixed Formula (PS + CR) on Ovalbumin-Induced Asthma in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9135637. [PMID: 32190091 PMCID: PMC7066403 DOI: 10.1155/2020/9135637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/23/2020] [Accepted: 02/08/2020] [Indexed: 11/18/2022]
Abstract
Pelargonium sidoides (PS) is traditionally used to treat respiratory and gastrointestinal infections, dysmenorrhea, and hepatic disorders in South Africa. Coptis Rhizoma (CR) is used to treat gastroenteric disorders, cardiovascular diseases, and cancer in East Asia. In the present study, we intended to observe the possible beneficial antiasthma effects of PS and CR on the ovalbumin- (OVA-) induced asthma C57BL/6J mice. Asthma in mice was induced by OVA sensitization and subsequent boosting. PS + CR (300 and 1,000 mg/kg; PO) or dexamethasone (IP) was administered once a day for 16 days. The changes in the body weight and gains, lung weights and gross inspections, total and differential cell counts of leukocytes in bronchoalveolar lavage fluid (BALF), serum OVA-specific immunoglobulin E (OVA-sIgE) levels, interleukin-4 (IL-4) and IL-5 levels in BALF and lung tissue homogenate, and IL-4 and IL-5 mRNA levels in lung tissue homogenates were analyzed with lung histopathology: mean alveolar surface area (ASA), alveolar septal thickness, numbers of inflammatory cells, mast cells, and eosinophils infiltrated in the alveolar regions, respectively. Significant increases in lung weights, total and differential cell counts of leukocytes in BALF, serum OVA-sIgE levels, and IL-4 and IL-5 levels in BALF and lung tissue homogenate were observed in OVA control as compared to those of intact control. In addition, OVA control showed a significant decrease in mean ASA and increases in alveolar septal thickness, numbers of inflammatory cells, mast cells, and eosinophils infiltrated in alveolar regions. However, these allergic and inflammatory asthmatic changes were significantly inhibited by PS + CR in a dose-dependent manner. In this study, PS + CR showed dose-dependent beneficial effects on OVA-induced asthma in mice through anti-inflammatory and antiallergic activities. Therefore, it is expected that PS + CR have enough potential as a new therapeutic agent or as an ingredient of a medicinal agent for various allergic and inflammatory respiratory diseases including asthma.
Collapse
|
20
|
Kertys M, Grendar M, Kosutova P, Mokra D, Mokry J. Plasma based targeted metabolomic analysis reveals alterations of phosphatidylcholines and oxidative stress markers in guinea pig model of allergic asthma. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165572. [PMID: 31672552 DOI: 10.1016/j.bbadis.2019.165572] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/17/2019] [Accepted: 10/15/2019] [Indexed: 01/03/2023]
Abstract
Bronchial asthma is one of the most common, chronic respiratory diseases, characterized by reversible airway obstruction, eosinophil and Th2 infiltration, airway hyperresponsiveness and airway remodelling; with many cells and mediators involved. Metabolomics is a relatively new field in "omics" sciences enabling the identification of metabolome for better diagnostics and studying of diseases phenotype. The aim of this study was to investigate the role of targeted metabolomics study for better understanding of the bronchial asthma pathophysiology and finding potential biomarkers in experimental models of eosinophilic inflammation. Plasma level of 185 metabolites was measured with the AbsoluteIDQ™ p180 kit in guinea pigs with experimentally-induced allergic inflammation (n = 15) compared to naïve non-sensitised and non-challenged controls (n = 18). Of the 185 metabolites identified in plasma, 22 were significantly different and changed in ovalbumin sensitised animals. Plasma level of 13 phosphatidylcholines with saturated and unsaturated long-chain fatty acids, total phosphatidylcholines count, carnitine, symmetric dimethylarginine and its ratio to total unmodified arginine, and kynurenine to tryptophan ratio were found to be decreased, while phospholipase A2 activity indicator, tryptophan, taurine and ratio of methionine sulfoxide to unmodified methionine were found to be increased in sensitised guinea pigs compared to naïve controls. Targeted metabolomic analysis revealed significant differences in plasma metabolome of sensitised guinea pigs. Our observations point to the activation of inflammatory and immune pathways, as well as the involvement of oxidative stress.
Collapse
Affiliation(s)
- Martin Kertys
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Marian Grendar
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Petra Kosutova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
21
|
Beneficial Effects of Neurotensin in Murine Model of Hapten-Induced Asthma. Int J Mol Sci 2019; 20:ijms20205025. [PMID: 31614422 PMCID: PMC6834300 DOI: 10.3390/ijms20205025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/20/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
Neurotensin (NT) demonstrates ambiguous activity on inflammatory processes. The present study was undertaken to test the potential anti-inflammatory activity of NT in a murine model of non-atopic asthma and to establish the contribution of NTR1 receptors. Asthma was induced in BALB/c mice by skin sensitization with dinitrofluorobenzene followed by intratracheal hapten provocation. The mice were treated intraperitoneally with NT, SR 142948 (NTR1 receptor antagonist) + NT or NaCl. Twenty-four hours after the challenge, airway responsiveness to nebulized methacholine was measured. Bronchoalveolar lavage fluid (BALF) and lungs were collected for biochemical and immunohistological analysis. NT alleviated airway hyperreactivity and reduced the number of inflammatory cells in BALF. These beneficial effects were inhibited by pretreatment with the NTR1 antagonist. Additionally, NT reduced levels of IL-13 and TNF-α in BALF and IL-17A, IL12p40, RANTES, mouse mast cell protease and malondialdehyde in lung homogenates. SR 142948 reverted only a post-NT TNF-α decrease. NT exhibited anti-inflammatory activity in the hapten-induced asthma. Reduced leukocyte accumulation and airway hyperresponsiveness indicate that this beneficial NT action is mediated through NTR1 receptors. A lack of effect by the NTR1 blockade on mast cell activation, oxidative stress marker and pro-inflammatory cytokine production suggests that other pathways can be involved, which requires further research.
Collapse
|
22
|
Lin SC, Shi LS, Ye YL. Advanced Molecular Knowledge of Therapeutic Drugs and Natural Products Focusing on Inflammatory Cytokines in Asthma. Cells 2019; 8:cells8070685. [PMID: 31284537 PMCID: PMC6678278 DOI: 10.3390/cells8070685] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
Asthma is a common respiratory disease worldwide. Cytokines play a crucial role in the immune system and the inflammatory response to asthma. Abnormal cytokine expression may lead to the development of asthma, which may contribute to pathologies of this disease. As cytokines exhibit pleiotropy and redundancy characteristics, we summarized them according to their biologic activity in asthma development. We classified cytokines in three stages as follows: Group 1 cytokines for the epithelial environment stage, Group 2 cytokines for the Th2 polarization stage, and Group 3 cytokines for the tissue damage stage. The recent cytokine-targeting therapy for clinical use (anti-cytokine antibody/anti-cytokine receptor antibody) and traditional medicinal herbs (pure compounds, single herb, or natural formula) have been discussed in this review. Studies of the Group 2 anti-cytokine/anti-cytokine receptor therapies are more prominent than the studies of the other two groups. Anti-cytokine antibodies/anti-cytokine receptor antibodies for clinical use can be applied for patients who did not respond to standard treatments. For traditional medicinal herbs, anti-asthmatic bioactive compounds derived from medicinal herbs can be divided into five classes: alkaloids, flavonoids, glycosides, polyphenols, and terpenoids. However, the exact pathways targeted by these natural compounds need to be clarified. Using relevant knowledge to develop more comprehensive strategies may provide appropriate treatment for patients with asthma in the future.
Collapse
Affiliation(s)
- Sheng-Chieh Lin
- Division of Allergy, Asthma and Immunology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Li-Shian Shi
- Department of Biotechnology, National Formosa University, Yunlin 63201, Taiwan
| | - Yi-Ling Ye
- Department of Biotechnology, National Formosa University, Yunlin 63201, Taiwan.
| |
Collapse
|