1
|
Peng T, Qiu F, Qu Y, Yu C, Cheng X, Li L. Current and Future of "Turn-On" Based Small-Molecule Copper Probes for Cuproptosis. ChemistryOpen 2023; 12:e202300078. [PMID: 37705070 PMCID: PMC10499804 DOI: 10.1002/open.202300078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/20/2023] [Indexed: 09/15/2023] Open
Abstract
Increasing evidence shows that abnormal copper (Cu) metabolism is highly related to many diseases, such as Alzheimer's disease, Wilson's disease, hematological malignancies and Menkes disease. Very recently, cuproptosis, a Cu-dependent, programmed cell death was firstly described by Tsvetkov et al. in 2022. Their findings may provide a new perspective for the treatment of related diseases. However, the concrete mechanisms of these diseases, especially cuproptosis, remain completely unclear, the reason of which may be a lack of reliable tools to conduct highly selective, sensitive and high-resolution imaging of Cu in complex life systems. So far, numerous small-molecular fluorescent probes have been designed and utilized to explore the Cu signal pathway. Among them, fluorescence turn-on probes greatly enhance the resolution and accuracy of imaging and may be a promising tool for research of investigation into cuproptosis. This review summarizes the probes developed in the past decade which have the potential to study cuproptosis, focusing on the design strategies, luminescence mechanism and biological-imaging applications. Besides, we put forward some ideas concerning the design of next-generation probes for cuproptosis, aiming to tackle the main problems in this new field. Furthermore, the prospect of cuproptosis in the treatment of corresponding diseases is also highlighted.
Collapse
Affiliation(s)
- Ting‐En Peng
- Key Laboratory of Flexible Electronics (KLOFE) &Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center forAdvanced Materials (SICAM)Nanjing Tech UniversityNanjing211816China
| | - Feng Qiu
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech UniversityNanjing211816China
| | - Yunwei Qu
- The Institute of Flexible Electronics (IFE, Future Technologies)Xiamen UniversityXiamen361005China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) &Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center forAdvanced Materials (SICAM)Nanjing Tech UniversityNanjing211816China
| | - Xiamin Cheng
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech UniversityNanjing211816China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) &Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center forAdvanced Materials (SICAM)Nanjing Tech UniversityNanjing211816China
- The Institute of Flexible Electronics (IFE, Future Technologies)Xiamen UniversityXiamen361005China
| |
Collapse
|
2
|
Pham VN, Chang CJ. Metalloallostery and Transition Metal Signaling: Bioinorganic Copper Chemistry Beyond Active Sites. Angew Chem Int Ed Engl 2023; 62:e202213644. [PMID: 36653724 PMCID: PMC10754205 DOI: 10.1002/anie.202213644] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 01/20/2023]
Abstract
Transition metal chemistry is essential to life, where metal binding to DNA, RNA, and proteins underpins all facets of the central dogma of biology. In this context, metals in proteins are typically studied as static active site cofactors. However, the emergence of transition metal signaling, where mobile metal pools can transiently bind to biological targets beyond active sites, is expanding this conventional view of bioinorganic chemistry. This Minireview focuses on the concept of metalloallostery, using copper as a canonical example of how metals can regulate protein function by binding to remote allosteric sites (e.g., exosites). We summarize advances in and prospects for the field, including imaging dynamic transition metal signaling pools, allosteric inhibition or activation of protein targets by metal binding, and metal-dependent signaling pathways that underlie nutrient vulnerabilities in diseases spanning obesity, fatty liver disease, cancer, and neurodegeneration.
Collapse
Affiliation(s)
- Vanha N Pham
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Investigations of cellular copper metabolism in ovarian cancer cells using a ratiometric fluorescent copper dye. J Biol Inorg Chem 2023; 28:43-55. [PMID: 36469143 DOI: 10.1007/s00775-022-01978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/08/2022] [Indexed: 12/08/2022]
Abstract
Imbalances in metal homeostasis have been implicated in the progression and drug response of cancer cells. Understanding these changes will enable identification of new treatment regimes and precision medicine approaches to cancer treatment. In particular, there has been considerable interest in the interplay between copper homeostasis and response to platinum-based chemotherapeutic agents. Here, we have studied differences in the Cu uptake and distributions in the ovarian cancer cell line, A2780, and its cisplatin resistant form, A2780.CisR, by measuring total Cu content and the bioavailable Cu pool. Atomic absorption spectroscopy (AAS) revealed a lower total Cu uptake in A2780.CisR compared to A2780 cells. Conversely, live-cell confocal microscopy studies with the ratiometric Cu(I)-sensitive fluorescent dye, InCCu1, revealed higher relative cellular content of labile Cu in A2780.CisR cells compared with A2780 cells. These results demonstrate that Cu trafficking, homeostasis and speciation are different in the Pt-sensitive and resistant cells and may be associated with the predominance of different phenotypes for A2780 (epithelial) and A2780.CisR (mesenchymal) cells.
Collapse
|
4
|
Pham VN, Chang CJ. Metalloallostery and Transition Metal Signaling: Bioinorganic Copper Chemistry Beyond Active Sites. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202213644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Vanha N. Pham
- Department of Chemistry University of California Berkeley CA 94720 USA
| | - Christopher J. Chang
- Department of Chemistry University of California Berkeley CA 94720 USA
- Department of Molecular and Cell Biology University of California Berkeley CA 94720 USA
- Helen Wills Neuroscience Institute University of California Berkeley CA 94720 USA
| |
Collapse
|
5
|
Okuda K, Takashima I, Takagi A. Advances in reaction-based synthetic fluorescent probes for studying the role of zinc and copper ions in living systems. J Clin Biochem Nutr 2023; 72:1-12. [PMID: 36777081 PMCID: PMC9899921 DOI: 10.3164/jcbn.22-92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/01/2022] [Indexed: 12/15/2022] Open
Abstract
Recently, the behavior of essential trace metal elements in living organisms has attracted more and more attention as their dynamics have been found to be tightly regulated by metallothionines, transporters, etc. As the physiological and/or pathological roles of such metal elements are critical, there have been many non-invasive methods developed to determine their cellular functions, mainly by small molecule fluorescent probes. In this review, we focus on probes that detect intracellular zinc and monovalent copper. Both zinc and copper act not only as tightly bound cofactors of enzymes and proteins but also as signaling factors as labile or loosely bound species. Many fluorescent probes that detect mobile zinc or monovalent copper are recognition-based probes, whose detection is hindered by the abundance of intracellular chelators such as glutathione which interfere with the interaction between probe and metal. In contrast, reaction-based probes release fluorophores triggered by zinc or copper and avoid interference from such intracellular chelators, allowing the detection of even low concentrations of such metals. Here, we summarize the current status of the cumulative effort to develop such reaction-based probes and discuss the strategies adopted to overcome their shortcomings.
Collapse
Affiliation(s)
- Kensuke Okuda
- Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada-ku, Kobe 658-8558, Japan,To whom correspondence should be addressed. E-mail:
| | - Ippei Takashima
- Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada-ku, Kobe 658-8558, Japan
| | - Akira Takagi
- Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada-ku, Kobe 658-8558, Japan
| |
Collapse
|
6
|
Osman D, Robinson NJ. Protein metalation in a nutshell. FEBS Lett 2023; 597:141-150. [PMID: 36124565 PMCID: PMC10087151 DOI: 10.1002/1873-3468.14500] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 01/14/2023]
Abstract
Metalation, the acquisition of metals by proteins, must avoid mis-metalation with tighter binding metals. This is illustrated by four selected proteins that require different metals: all show similar ranked orders of affinity for bioavailable metals, as described in a universal affinity series (the Irving-Williams series). Crucially, cellular protein metalation occurs in competition with other metal binding sites. The strength of this competition defines the intracellular availability of each metal: its magnitude has been estimated by calibrating a cells' set of DNA-binding, metal-sensing, transcriptional regulators. This has established that metal availabilities (as free energies for forming metal complexes) are maintained to the inverse of the universal series. The tightest binding metals are least available. With these availabilities, correct metalation is achieved.
Collapse
Affiliation(s)
- Deenah Osman
- Department of Biosciences, University of Durham, UK.,Department of Chemistry, University of Durham, UK
| | - Nigel J Robinson
- Department of Biosciences, University of Durham, UK.,Department of Chemistry, University of Durham, UK
| |
Collapse
|
7
|
Liu Y, Zhang X, Lei S, Huang P, Lin J. In vivo ion visualization achieved by activatable organic photoacoustic probes. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Oxidation state-specific fluorescent copper sensors reveal oncogene-driven redox changes that regulate labile copper(II) pools. Proc Natl Acad Sci U S A 2022; 119:e2202736119. [PMID: 36252013 PMCID: PMC9621372 DOI: 10.1073/pnas.2202736119] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Copper is an essential metal nutrient for life that often relies on redox cycling between Cu(I) and Cu(II) oxidation states to fulfill its physiological roles, but alterations in cellular redox status can lead to imbalances in copper homeostasis that contribute to cancer and other metalloplasias with metal-dependent disease vulnerabilities. Copper-responsive fluorescent probes offer powerful tools to study labile copper pools, but most of these reagents target Cu(I), with limited methods for monitoring Cu(II) owing to its potent fluorescence quenching properties. Here, we report an activity-based sensing strategy for turn-on, oxidation state-specific detection of Cu(II) through metal-directed acyl imidazole chemistry. Cu(II) binding to a metal and oxidation state-specific receptor that accommodates the harder Lewis acidity of Cu(II) relative to Cu(I) activates the pendant dye for reaction with proximal biological nucleophiles and concomitant metal ion release, thus avoiding fluorescence quenching. Copper-directed acyl imidazole 649 for Cu(II) (CD649.2) provides foundational information on the existence and regulation of labile Cu(II) pools, including identifying divalent metal transporter 1 (DMT1) as a Cu(II) importer, labile Cu(II) increases in response to oxidative stress induced by depleting total glutathione levels, and reciprocal increases in labile Cu(II) accompanied by decreases in labile Cu(I) induced by oncogenic mutations that promote oxidative stress.
Collapse
|
9
|
Bhardwaj V, Hindocha L, Ashok Kumar SK, Sahoo SK. An aggregation-induced emissive pyridoxal derived tetradentate Schiff base for the fluorescence turn-off sensing of copper( ii) in an aqueous medium. NEW J CHEM 2022. [DOI: 10.1039/d1nj05523b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An aggregation-induced emissive pyridoxal derived tetradentate Schiff base was developed for the fluorescence sensing of copper(ii) and sulphide ions.
Collapse
Affiliation(s)
- Vinita Bhardwaj
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat-395007, Gujarat, India
| | - Lavani Hindocha
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat-395007, Gujarat, India
| | - SK Ashok Kumar
- Materials Chemistry Division, School of Advanced Sciences, VIT University, Vellore-632014, India
| | - Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat-395007, Gujarat, India
| |
Collapse
|
10
|
Cepeda C, Denisov SA, Boturyn D, McClenaghan ND, Sénèque O. Ratiometric Luminescence Detection of Copper(I) by a Resonant System Comprising Two Antenna/Lanthanide Pairs. Inorg Chem 2021; 60:17426-17434. [PMID: 34788035 DOI: 10.1021/acs.inorgchem.1c02985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Selective and sensitive detection of Cu(I) is an ongoing challenge due to its important role in biological systems, for example. Herein, we describe a photoluminescent molecular chemosensor integrating two lanthanide ions (Tb3+ and Eu3+) and respective tryptophan and naphthalene antennas onto a polypeptide backbone. The latter was structurally inspired from copper-regulating biomacromolecules in Gram-negative bacteria and was found to bind Cu+ effectively under pseudobiological conditions (log KCu+ = 9.7 ± 0.2). Ion regulated modulation of lanthanide luminescence in terms of intensity and long, millisecond lifetime offers perspectives in terms of ratiometric and time-gated detection of Cu+. The role of the bound ion in determining the photophysical properties is discussed with the aid of additional model compounds.
Collapse
Affiliation(s)
- Céline Cepeda
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), 38000 Grenoble, France
| | | | - Didier Boturyn
- Univ. Grenoble Alpes, CNRS, DCM (UMR 5250), 38000 Grenoble, France
| | | | - Olivier Sénèque
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), 38000 Grenoble, France
| |
Collapse
|
11
|
Datta A. A Chemical Tool for Guiding Li Therapy. ACS CENTRAL SCIENCE 2021; 7:1783-1786. [PMID: 34841052 PMCID: PMC8614096 DOI: 10.1021/acscentsci.1c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Ankona Datta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
12
|
Foster AW, Young TR, Chivers PT, Robinson NJ. Protein metalation in biology. Curr Opin Chem Biol 2021; 66:102095. [PMID: 34763208 PMCID: PMC8867077 DOI: 10.1016/j.cbpa.2021.102095] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022]
Abstract
Inorganic metals supplement the chemical repertoire of organic molecules, especially proteins. This requires the correct metals to associate with proteins at metalation. Protein mismetalation typically occurs when excesses of unbound metals compete for a binding site ex vivo. However, in biology, excesses of metal-binding sites typically compete for limiting amounts of exchangeable metals. Here, we summarise mechanisms of metal homeostasis that sustain optimal metal availabilities in biology. We describe recent progress to understand metalation by comparing the strength of metal binding to a protein versus the strength of binding to competing sites inside cells.
Collapse
Affiliation(s)
- Andrew W Foster
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK; Department of Chemistry, Durham University, Durham, DH1 3LE, UK
| | - Tessa R Young
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK; Department of Chemistry, Durham University, Durham, DH1 3LE, UK
| | - Peter T Chivers
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK; Department of Chemistry, Durham University, Durham, DH1 3LE, UK
| | - Nigel J Robinson
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK; Department of Chemistry, Durham University, Durham, DH1 3LE, UK.
| |
Collapse
|
13
|
Priessner M, Summers PA, Lewis BW, Sastre M, Ying L, Kuimova MK, Vilar R. Selective Detection of Cu
+
Ions in Live Cells via Fluorescence Lifetime Imaging Microscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Martin Priessner
- Department of Chemistry Imperial College London White City Campus London W12 0BZ UK
| | - Peter A. Summers
- Department of Chemistry Imperial College London White City Campus London W12 0BZ UK
| | - Benjamin W. Lewis
- Department of Chemistry Imperial College London White City Campus London W12 0BZ UK
| | - Magdalena Sastre
- Department of Brain Sciences Imperial College London Hammersmith Campus London W12 0NN UK
| | - Liming Ying
- National Heart and Lung Institute Molecular Sciences Research Hub White City Campus Imperial College London London W12 0BZ UK
| | - Marina K. Kuimova
- Department of Chemistry Imperial College London White City Campus London W12 0BZ UK
| | - Ramon Vilar
- Department of Chemistry Imperial College London White City Campus London W12 0BZ UK
| |
Collapse
|
14
|
Priessner M, Summers PA, Lewis BW, Sastre M, Ying L, Kuimova MK, Vilar R. Selective Detection of Cu + Ions in Live Cells via Fluorescence Lifetime Imaging Microscopy. Angew Chem Int Ed Engl 2021; 60:23148-23153. [PMID: 34379368 PMCID: PMC8596571 DOI: 10.1002/anie.202109349] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/06/2022]
Abstract
Copper is an essential trace element in living organisms with its levels and localisation being carefully managed by the cellular machinery. However, if misregulated, deficiency or excess of copper ions can lead to several diseases. Therefore, it is important to have reliable methods to detect, monitor and visualise this metal in cells. Herein we report a new optical probe based on BODIPY, which shows a switch-on in its fluorescence intensity upon binding to copper(I), but not in the presence of high concentration of other physiologically relevant metal ions. More interestingly, binding to copper(I) leads to significant changes in the fluorescence lifetime of the new probe, which can be used to visualize copper(I) pools in lysosomes of live cells via fluorescence lifetime imaging microscopy (FLIM).
Collapse
Affiliation(s)
- Martin Priessner
- Department of ChemistryImperial College LondonWhite City CampusLondonW12 0BZUK
| | - Peter A. Summers
- Department of ChemistryImperial College LondonWhite City CampusLondonW12 0BZUK
| | - Benjamin W. Lewis
- Department of ChemistryImperial College LondonWhite City CampusLondonW12 0BZUK
| | - Magdalena Sastre
- Department of Brain SciencesImperial College LondonHammersmith CampusLondonW12 0NNUK
| | - Liming Ying
- National Heart and Lung InstituteMolecular Sciences Research HubWhite City CampusImperial College LondonLondonW12 0BZUK
| | - Marina K. Kuimova
- Department of ChemistryImperial College LondonWhite City CampusLondonW12 0BZUK
| | - Ramon Vilar
- Department of ChemistryImperial College LondonWhite City CampusLondonW12 0BZUK
| |
Collapse
|
15
|
Falcone E, Okafor M, Vitale N, Raibaut L, Sour A, Faller P. Extracellular Cu2+ pools and their detection: From current knowledge to next-generation probes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Copper Toxicity Is Not Just Oxidative Damage: Zinc Systems and Insight from Wilson Disease. Biomedicines 2021; 9:biomedicines9030316. [PMID: 33804693 PMCID: PMC8003939 DOI: 10.3390/biomedicines9030316] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Essential metals such as copper (Cu) and zinc (Zn) are important cofactors in diverse cellular processes, while metal imbalance may impact or be altered by disease state. Cu is essential for aerobic life with significant functions in oxidation-reduction catalysis. This redox reactivity requires precise intracellular handling and molecular-to-organismal levels of homeostatic control. As the central organ of Cu homeostasis in vertebrates, the liver has long been associated with Cu storage disorders including Wilson Disease (WD) (heritable human Cu toxicosis), Idiopathic Copper Toxicosis and Endemic Tyrolean Infantile Cirrhosis. Cu imbalance is also associated with chronic liver diseases that arise from hepatitis viral infection or other liver injury. The labile redox characteristic of Cu is often discussed as a primary mechanism of Cu toxicity. However, work emerging largely from the study of WD models suggests that Cu toxicity may have specific biochemical consequences that are not directly attributable to redox activity. This work reviews Cu toxicity with a focus on the liver and proposes that Cu accumulation specifically impacts Zn-dependent processes. The prospect that Cu toxicity has specific biochemical impacts that are not entirely attributable to redox may promote further inquiry into Cu toxicity in WD and other Cu-associated disorders.
Collapse
|
17
|
Das S, Maji S, Ruturaj, Bhattacharya I, Saha T, Naskar N, Gupta A. Retromer retrieves the Wilson disease protein ATP7B from endolysosomes in a copper-dependent manner. J Cell Sci 2020; 133:jcs246819. [PMID: 33268466 PMCID: PMC7611186 DOI: 10.1242/jcs.246819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 11/19/2020] [Indexed: 12/31/2022] Open
Abstract
The Wilson disease protein, ATP7B maintains copper (herein referring to the Cu+ ion) homeostasis in the liver. ATP7B traffics from trans-Golgi network to endolysosomes to export excess copper. Regulation of ATP7B trafficking to and from endolysosomes is not well understood. We investigated the fate of ATP7B after copper export. At high copper levels, ATP7B traffics primarily to acidic, active hydrolase (cathepsin-B)-positive endolysosomes and, upon subsequent copper chelation, returns to the trans-Golgi network (TGN). At high copper, ATP7B colocalizes with endolysosomal markers and with a core member of retromer complex, VPS35. Knocking down VPS35 did not abrogate the copper export function of ATP7B or its copper-responsive anterograde trafficking to vesicles; rather upon subsequent copper chelation, ATP7B failed to relocalize to the TGN, which was rescued by overexpressing wild-type VPS35. Overexpressing mutants of the retromer complex-associated proteins Rab7A and COMMD1 yielded a similar non-recycling phenotype of ATP7B. At high copper, VPS35 and ATP7B are juxtaposed on the same endolysosome and form a large complex that is stabilized by in vivo photoamino acid labeling and UV-crosslinking. We demonstrate that retromer regulates endolysosome to TGN trafficking of copper transporter ATP7B in a manner that is dependent upon intracellular copper.
Collapse
Affiliation(s)
- Santanu Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Saptarshi Maji
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Ruturaj
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Indira Bhattacharya
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Tanusree Saha
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Nabanita Naskar
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
18
|
Pham D, Deter CJ, Reinard MC, Gibson GA, Kiselyov K, Yu W, Sandulache VC, St. Croix CM, Koide K. Using Ligand-Accelerated Catalysis to Repurpose Fluorogenic Reactions for Platinum or Copper. ACS CENTRAL SCIENCE 2020; 6:1772-1788. [PMID: 33145414 PMCID: PMC7596870 DOI: 10.1021/acscentsci.0c00676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 05/03/2023]
Abstract
The development of a fluorescent probe for a specific metal has required exquisite design, synthesis, and optimization of fluorogenic molecules endowed with chelating moieties with heteroatoms. These probes are generally chelation- or reactivity-based. Catalysis-based fluorescent probes have the potential to be more sensitive; however, catalytic methods with a biocompatible fluorescence turn-on switch are rare. Here, we have exploited ligand-accelerated metal catalysis to repurpose known fluorescent probes for different metals, a new approach in probe development. We used the cleavage of allylic and propargylic ethers as platforms that were previously designed for palladium. After a single experiment that combinatorially examined >800 reactions with two variables (metal and ligand) for each ether, we discovered a platinum- or copper-selective method with the ligand effect of specific phosphines. Both metal-ligand systems were previously unknown and afforded strong signals owing to catalytic turnover. The fluorometric technologies were applied to geological, pharmaceutical, serum, and live cell samples and were used to discover that platinum accumulates in lysosomes in cisplatin-resistant cells in a manner that appears to be independent of copper distribution. The use of ligand-accelerated catalysis may present a new blueprint for engineering metal selectivity in probe development.
Collapse
Affiliation(s)
- Dianne Pham
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Carly J. Deter
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Mariah C. Reinard
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Gregory A. Gibson
- Department
of Cell Biology, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, Pennsylvania 15261, United States
| | - Kirill Kiselyov
- Department
of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Wangjie Yu
- Bobby
R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Vlad C. Sandulache
- Bobby
R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Claudette M. St. Croix
- Department
of Cell Biology, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, Pennsylvania 15261, United States
| | - Kazunori Koide
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
19
|
Abstract
Abstract
Transition metals such as zinc, copper and iron play vital roles in maintaining physiological functions and homeostasis of living systems. Molecular imaging, including two-photon imaging (TPI), bioluminescence imaging (BLI) and photoacoustic imaging (PAI), could act as non-invasive toolkits for capturing dynamic events in living cells, tissues and whole animals. Herein, we review the recent progress in the development of molecular probes for essential transition metals and their biological applications. We emphasize the contributions of metallostasis to health and disease, and discuss the future research directions about how to harness the great potential of metal sensors.
Graphic Abstract
Collapse
|
20
|
Lee S, Chung CYS, Liu P, Craciun L, Nishikawa Y, Bruemmer KJ, Hamachi I, Saijo K, Miller EW, Chang CJ. Activity-Based Sensing with a Metal-Directed Acyl Imidazole Strategy Reveals Cell Type-Dependent Pools of Labile Brain Copper. J Am Chem Soc 2020; 142:14993-15003. [PMID: 32815370 PMCID: PMC7877313 DOI: 10.1021/jacs.0c05727] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Copper is a required nutrient for life and particularly important to the brain and central nervous system. Indeed, copper redox activity is essential to maintaining normal physiological responses spanning neural signaling to metabolism, but at the same time copper misregulation is associated with inflammation and neurodegeneration. As such, chemical probes that can track dynamic changes in copper with spatial resolution, especially in loosely bound, labile forms, are valuable tools to identify and characterize its contributions to healthy and disease states. In this report, we present an activity-based sensing (ABS) strategy for copper detection in live cells that preserves spatial information by a copper-dependent bioconjugation reaction. Specifically, we designed copper-directed acyl imidazole dyes that operate through copper-mediated activation of acyl imidazole electrophiles for subsequent labeling of proximal proteins at sites of elevated labile copper to provide a permanent stain that resists washing and fixation. To showcase the utility of this new ABS platform, we sought to characterize labile copper pools in the three main cell types in the brain: neurons, astrocytes, and microglia. Exposure of each of these cell types to physiologically relevant stimuli shows distinct changes in labile copper pools. Neurons display translocation of labile copper from somatic cell bodies to peripheral processes upon activation, whereas astrocytes and microglia exhibit global decreases and increases in intracellular labile copper pools, respectively, after exposure to inflammatory stimuli. This work provides foundational information on cell type-dependent homeostasis of copper, an essential metal in the brain, as well as a starting point for the design of new activity-based probes for metals and other dynamic signaling and stress analytes in biology.
Collapse
Affiliation(s)
| | | | | | | | - Yuki Nishikawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO Innovative Molecular Technology for Neuroscience Project, Japan Science and Technology Agency (JST), Kyoto 615-8530, Japan
| | | | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO Innovative Molecular Technology for Neuroscience Project, Japan Science and Technology Agency (JST), Kyoto 615-8530, Japan
| | | | | | | |
Collapse
|
21
|
Bruemmer KJ, Crossley SWM, Chang CJ. Activity-Based Sensing: A Synthetic Methods Approach for Selective Molecular Imaging and Beyond. Angew Chem Int Ed Engl 2020; 59:13734-13762. [PMID: 31605413 PMCID: PMC7665898 DOI: 10.1002/anie.201909690] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 01/10/2023]
Abstract
Emerging from the origins of supramolecular chemistry and the development of selective chemical receptors that rely on lock-and-key binding, activity-based sensing (ABS)-which utilizes molecular reactivity rather than molecular recognition for analyte detection-has rapidly grown into a distinct field to investigate the production and regulation of chemical species that mediate biological signaling and stress pathways, particularly metal ions and small molecules. Chemical reactions exploit the diverse chemical reactivity of biological species to enable the development of selective and sensitive synthetic methods to decipher their contributions within complex living environments. The broad utility of this reaction-driven approach facilitates application to imaging platforms ranging from fluorescence, luminescence, photoacoustic, magnetic resonance, and positron emission tomography modalities. ABS methods are also being expanded to other fields, such as drug and materials discovery.
Collapse
Affiliation(s)
- Kevin J Bruemmer
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Steven W M Crossley
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
22
|
Hanf L, Diehl M, Kemper LS, Winter M, Nowak S. Accessing copper oxidation states of dissolved negative electrode current collectors in lithium ion batteries. Electrophoresis 2020; 41:1568-1575. [PMID: 32640093 DOI: 10.1002/elps.202000155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 11/09/2022]
Abstract
A novel capillary electrophoresis (CE) method with ultraviolet-visible spectroscopy (UV-Vis) detection for the investigation of dissolved Cu+ and Cu2+ in lithium ion battery (LIB) electrolytes was developed. This method is of relevance, as the current collector at the anode of LIBs may dissolve under certain operation conditions. In order to preserve the actual oxidation states of dissolved copper in the electrolytes and to prevent any precipitation during sample preparation and CE measurements, neocuproine (NC) and ethylenediamine tetraacetic (EDTA) were effectively applied as complexing agents for both ionic copper species. However, precipitation and loss of the Cu+ -NC-complex for quantification occurred in presence of the commonly applied conducting salt lithium hexafluorophosphate (LiPF6 ). Therefore, acetonitrile (ACN) was added to the sample in order to suppress this precipitation. Dissolution experiments with copper-based negative electrode current collectors in a LIB electrolyte were conducted at 60°C under non-oxidizing atmosphere. First findings regarding the copper species via CE revealed dissolved Cu+ and mainly Cu2+ . However, primarily Cu+ dissolved from the passivating oxide layer (Cu2 O and CuO) of the current collector due to the formation of acidic electrolyte decomposition products. Due to the instability of Cu+ in the electrolyte a further disproportionation reaction to Cu0 and Cu2+ occurred. The results show the high potential of this CE method for prospective investigations regarding the current collector stability in new battery electrode formulations and correlations of dissolution events with dissolution mechanisms and battery cell operation conditions.
Collapse
Affiliation(s)
- Lenard Hanf
- MEET Battery Research Center, Institute of Physical Chemistry, University of Münster, Münster, Germany
| | - Marcel Diehl
- MEET Battery Research Center, Institute of Physical Chemistry, University of Münster, Münster, Germany
| | - Lea-Sophie Kemper
- MEET Battery Research Center, Institute of Physical Chemistry, University of Münster, Münster, Germany
| | - Martin Winter
- MEET Battery Research Center, Institute of Physical Chemistry, University of Münster, Münster, Germany.,IEK-12, Forschungszentrum Jülich, Helmholtz-Institute Münster, Münster, Germany
| | - Sascha Nowak
- MEET Battery Research Center, Institute of Physical Chemistry, University of Münster, Münster, Germany
| |
Collapse
|
23
|
Bruemmer KJ, Crossley SWM, Chang CJ. Aktivitätsbasierte Sensorik: ein synthetisch‐methodischer Ansatz für die selektive molekulare Bildgebung und darüber hinaus. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201909690] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kevin J. Bruemmer
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | | | - Christopher J. Chang
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute University of California, Berkeley Berkeley CA 94720 USA
| |
Collapse
|
24
|
Karmakar M, Bhatta SR, Giri S, Thakur A. Oxidation-Induced Differentially Selective Turn-On Fluorescence via Photoinduced Electron Transfer Based on a Ferrocene-Appended Coumarin-Quinoline Platform: Application in Cascaded Molecular Logic. Inorg Chem 2020; 59:4493-4507. [PMID: 32159340 DOI: 10.1021/acs.inorgchem.9b03650] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Differentially selective molecular sensors that exhibit differential response toward multiple analytes are cost-effective and in high demand for various practical applications. A novel, highly differentially selective electrochemical and fluorescent chemosensor, 5, based on a ferrocene-appended coumarin-quinoline platform has been designed and synthesized. Our designed probe is very specific toward Fe3+ via a reversible redox process, whereas it detects Cu2+ via irreversible oxidation. Interestingly, it exhibits differential affinity toward the Cu+ ion via complexation. High-resolution mass spectrometry, 1H NMR titration, and IR spectral studies revealed the formation of a bidentate Cu+ complex involving an O atom of the amide group attached to the quinoline ring and a N atom of imine unit, and this observation was further supported by quantum-chemical calculations. The metal binding responses were further investigated by UV-vis, fluorescence spectroscopy, and electrochemical analysis. Upon the addition of Fe3+ and Cu2+ ions, the fluorescence emission of probe 5 shows a "turn-on" signal due to inhibition of the photoinduced electron transfer (PET) process from a donor ferrocene unit to an excited-state fluorophore. The addition of sodium l-ascorbate (LAS) as a reducing agent causes fluorescence "turn off" for the Fe3+ ion because of reemergence of the PET process but not for the Cu2+ ion because it oxidizes the ferrocene unit to a ferrocenium ion with its concomitant reduction to Cu+, which further complexes with 5. Thermodynamic calculations using the Weller equation along with density functional theory calculations validate the feasibility of the PET process. A unique combination of Fe3+, LAS, and Cu2+ ions has been used to produce a molecular system demonstrating combinational "AND-OR" logic operation.
Collapse
Affiliation(s)
- Manisha Karmakar
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | | | - Santanab Giri
- Department of Chemistry, School of Applied Sciences and Humanities, Haldia Institute of Technology, Haldia 721657, India
| | - Arunabha Thakur
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
25
|
Bhattacharjee A, Ghosh S, Chatterji A, Chakraborty K. Neuron-glia: understanding cellular copper homeostasis, its cross-talk and their contribution towards neurodegenerative diseases. Metallomics 2020; 12:1897-1911. [PMID: 33295934 DOI: 10.1039/d0mt00168f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the years, the mechanism of copper homeostasis in various organ systems has gained importance. This is owing to the involvement of copper in a wide range of genetic disorders, most of them involving neurological symptoms. This highlights the importance of copper and its tight regulation in a complex organ system like the brain. It demands understanding the mechanism of copper acquisition and delivery to various cell types overcoming the limitation imposed by the blood brain barrier. The present review aims to investigate the existing work to understand the mechanism and complexity of cellular copper homeostasis in the two major cell types of the CNS - the neurons and the astrocytes. It investigates the mechanism of copper uptake, incorporation and export by these cell types. Furthermore, it brings forth the common as well as the exclusive aspects of neuronal and glial copper homeostasis including the studies from copper-based sensors. Glia act as a mediator of copper supply between the endothelium and the neurons. They possess all the qualifications of acting as a 'copper-sponge' for supply to the neurons. The neurons, on the other hand, require copper for various essential functions like incorporation as a cofactor for enzymes, synaptogenesis, axonal extension, inhibition of postsynaptic excitotoxicity, etc. Lastly, we also aim to understand the neuronal and glial pathology in various copper homeostasis disorders. The etiology of glial pathology and its contribution towards neuronal pathology and vice versa underlies the complexity of the neuropathology associated with the copper metabolism disorders.
Collapse
Affiliation(s)
- Ashima Bhattacharjee
- Amity Institute of Biotechnology, Amity University, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Rajarhat, Newtown, Kolkata, West Bengal 700135, India.
| | | | | | | |
Collapse
|
26
|
Saeedifard F, Morgan MT, Bacsa J, Fahrni CJ. Preorganized PSP Ligands Yield Monomeric Cu(I) Complexes with Subzeptomolar Cu(I) Dissociation Constants. Inorg Chem 2019; 58:13631-13638. [PMID: 31124662 DOI: 10.1021/acs.inorgchem.9b00965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Unraveling the function of biological copper (Cu) requires tools that can selectively recognize and manipulate this trace nutrient within the complex chemical environment of biological systems. Increasing evidence suggests that cells maintain an exchangeable pool of Cu(I) that is buffered in the high zeptomolar to low attomolar range. While mixed amine-thioether donors have been commonly employed for the design of Cu(I)-selective ligands and probes, their dissociation constants are limited to the pico- to femtomolar range. To address this challenge, we combined our previously devised phosphine sulfide-stabilized phosphine donor motifs with a rigid 1,2-phenylene or 1,8-naphthylene ligand backbone. The resulting ligands, phenPS and naphPS, bind Cu(I) with a 1:1 complex stoichiometry and offer dissociation constants of 0.6 and 0.8 zM, respectively. Concluding from the crystal structures of the free and Cu(I)-bound ligands, the 1,2-phenylene-bridged ligand phenPS provides a high degree of structural preorganization to accommodate the Cu(I) center without large conformational changes, while the 1,8-naphthylene-bridged ligand revealed significant out-of-plane distortions in both the free and Cu(I)-bound states. Both ligands were accessed by palladium-catalyzed cross-coupling reactions from the corresponding arylhalides under mild conditions, an approach that could be readily expanded toward the design of other ligands and probes.
Collapse
Affiliation(s)
- Farzaneh Saeedifard
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , 901 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - M Thomas Morgan
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , 901 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - John Bacsa
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , 901 Atlantic Drive , Atlanta , Georgia 30332 , United States.,X-ray Crystallography Center, Department of Chemistry , Emory University , 1515 Dickey Drive , Atlanta , Georgia 30322 , United States
| | - Christoph J Fahrni
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , 901 Atlantic Drive , Atlanta , Georgia 30332 , United States
| |
Collapse
|
27
|
Iovan DA, Jia S, Chang CJ. Inorganic Chemistry Approaches to Activity-Based Sensing: From Metal Sensors to Bioorthogonal Metal Chemistry. Inorg Chem 2019; 58:13546-13560. [PMID: 31185541 PMCID: PMC8544879 DOI: 10.1021/acs.inorgchem.9b01221] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The complex network of chemical processes that sustain life motivates the development of new synthetic tools to decipher biological mechanisms of action at a molecular level. In this context, fluorescent and related optical probes have emerged as useful chemical reagents for monitoring small-molecule and metal signals in biological systems, enabling visualization of dynamic cellular events with spatial and temporal resolution. In particular, metals occupy a central role in this field as analytes in their own right, while also being leveraged for their unique biocompatible reactivity with small-molecule substrates. This Viewpoint highlights the use of inorganic chemistry principles to develop activity-based sensing platforms mediated by metal reactivity, spanning indicators for metal detection to metal-based reagents for bioorthogonal tracking, and manipulation of small and large biomolecules, illustrating the privileged roles of metals at the interface of chemistry and biology.
Collapse
Affiliation(s)
- Diana A. Iovan
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| | - Shang Jia
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
28
|
Hwang K, Mou Q, Lake RJ, Xiong M, Holland B, Lu Y. Metal-Dependent DNAzymes for the Quantitative Detection of Metal Ions in Living Cells: Recent Progress, Current Challenges, and Latest Results on FRET Ratiometric Sensors. Inorg Chem 2019; 58:13696-13708. [PMID: 31364355 PMCID: PMC7176321 DOI: 10.1021/acs.inorgchem.9b01280] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many different metal ions are involved in various biological functions including metallomics and trafficking, and yet there are currently effective sensors for only a few metal ions, despite the first report of metal sensors for calcium more than 40 years ago. To expand upon the number of metal ions that can be probed in biological systems, we and other laboratories employ the in vitro selection method to obtain metal-specific DNAzymes with high specificity for a metal ion and then convert these DNAzymes into fluorescent sensors for these metal ions using a catalytic beacon approach. In this Forum Article, we summarize recent progress made in developing these DNAzyme sensors to probe metal ions in living cells and in vivo, including several challenges that we were able to overcome for this application, such as DNAzyme delivery, spatiotemporal control, and signal amplification. Furthermore, we have identified a key remaining challenge for the quantitative detection of metal ions in living cells and present a new design and the results of a Förster resonance energy transfer (FRET)-based DNAzyme sensor for the ratiometric quantification of Zn2+ in HeLa cells. By converting existing DNAzyme sensors into a ratiometric readout without compromising the fundamental catalytic function of the DNAzymes, this FRET-based ratiometric DNAzyme design can readily be applied to other DNAzyme sensors as a major advance in the field to develop much more quantitative metal-ion probes for biological systems.
Collapse
Affiliation(s)
- Kevin Hwang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Quanbing Mou
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Ryan J. Lake
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Mengyi Xiong
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Brandalynn Holland
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
29
|
Wu X, Chien H, van Wolferen ME, Kruitwagen HS, Oosterhoff LA, Penning LC. Reduced FXR Target Gene Expression in Copper-Laden Livers of COMMD1-Deficient Dogs. Vet Sci 2019; 6:vetsci6040078. [PMID: 31574998 PMCID: PMC6958483 DOI: 10.3390/vetsci6040078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/29/2022] Open
Abstract
Wilson’s disease (WD), an autosomal recessive disorder, results in copper accumulation in the liver as a consequence of mutations in the gene ATPase copper transporting beta (ATP7B). The disease is characterized by chronic hepatitis, eventually resulting in liver cirrhosis. Recent studies have shown that dysregulation of nuclear receptors (NR) by high hepatic copper levels is an important event in the pathogenesis of liver disease in WD. Intracellular trafficking of ATP7B is mediated by COMMD1 and, in Bedlington terriers, a mutation in the COMMD1 gene results in high hepatic copper levels. Here, we demonstrate a reduced Farnesoid X nuclear receptor (FXR)-activity in liver biopsies of COMMD1-deficient dogs with copper toxicosis, a unique large animal model of WD. FXR-induced target genes, small heterodimer partner (SHP), and apolipoprotein E (ApoE) were down-regulated in liver samples from COMMD1-deficient dogs with hepatic copper accumulation. In contrast, the relative mRNA levels of the two CYP-enzymes (reduced by FXR activity) was similar in both groups. These data are in line with the previously observed reduced FXR activity in livers of ATP7B−/− mice and WD patients. Therefore, these data further corroborate on the importance of the COMMD1-deficient dogs as a large animal model for WD.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Department Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, P.O. BOX 80.154, NL-3508 TD Utrecht, the Netherlands.
| | - Hsiaotzu Chien
- Department Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, P.O. BOX 80.154, NL-3508 TD Utrecht, the Netherlands.
| | - Monique E van Wolferen
- Department Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, P.O. BOX 80.154, NL-3508 TD Utrecht, the Netherlands.
| | - Hedwig S Kruitwagen
- Department Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, P.O. BOX 80.154, NL-3508 TD Utrecht, the Netherlands.
| | - Loes A Oosterhoff
- Department Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, P.O. BOX 80.154, NL-3508 TD Utrecht, the Netherlands.
| | - Louis C Penning
- Department Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, P.O. BOX 80.154, NL-3508 TD Utrecht, the Netherlands.
| |
Collapse
|
30
|
Activity-based ratiometric FRET probe reveals oncogene-driven changes in labile copper pools induced by altered glutathione metabolism. Proc Natl Acad Sci U S A 2019; 116:18285-18294. [PMID: 31451653 DOI: 10.1073/pnas.1904610116] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Copper is essential for life, and beyond its well-established ability to serve as a tightly bound, redox-active active site cofactor for enzyme function, emerging data suggest that cellular copper also exists in labile pools, defined as loosely bound to low-molecular-weight ligands, which can regulate diverse transition metal signaling processes spanning neural communication and olfaction, lipolysis, rest-activity cycles, and kinase pathways critical for oncogenic signaling. To help decipher this growing biology, we report a first-generation ratiometric fluorescence resonance energy transfer (FRET) copper probe, FCP-1, for activity-based sensing of labile Cu(I) pools in live cells. FCP-1 links fluorescein and rhodamine dyes through a Tris[(2-pyridyl)methyl]amine bridge. Bioinspired Cu(I)-induced oxidative cleavage decreases FRET between fluorescein donor and rhodamine acceptor. FCP-1 responds to Cu(I) with high metal selectivity and oxidation-state specificity and facilitates ratiometric measurements that minimize potential interferences arising from variations in sample thickness, dye concentration, and light intensity. FCP-1 enables imaging of dynamic changes in labile Cu(I) pools in live cells in response to copper supplementation/depletion, differential expression of the copper importer CTR1, and redox stress induced by manipulating intracellular glutathione levels and reduced/oxidized glutathione (GSH/GSSG) ratios. FCP-1 imaging reveals a labile Cu(I) deficiency induced by oncogene-driven cellular transformation that promotes fluctuations in glutathione metabolism, where lower GSH/GSSG ratios decrease labile Cu(I) availability without affecting total copper levels. By connecting copper dysregulation and glutathione stress in cancer, this work provides a valuable starting point to study broader cross-talk between metal and redox pathways in health and disease with activity-based probes.
Collapse
|
31
|
Ratiometric two-photon microscopy reveals attomolar copper buffering in normal and Menkes mutant cells. Proc Natl Acad Sci U S A 2019; 116:12167-12172. [PMID: 31160463 DOI: 10.1073/pnas.1900172116] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Copper is controlled by a sophisticated network of transport and storage proteins within mammalian cells, yet its uptake and efflux occur with rapid kinetics. Present as Cu(I) within the reducing intracellular environment, the nature of this labile copper pool remains elusive. While glutathione is involved in copper homeostasis and has been assumed to buffer intracellular copper, we demonstrate with a ratiometric fluorescent indicator, crisp-17, that cytosolic Cu(I) levels are buffered to the vicinity of 1 aM, where negligible complexation by glutathione is expected. Enabled by our phosphine sulfide-stabilized phosphine (PSP) ligand design strategy, crisp-17 offers a Cu(I) dissociation constant of 8 aM, thus exceeding the binding affinities of previous synthetic Cu(I) probes by four to six orders of magnitude. Two-photon excitation microscopy with crisp-17 revealed rapid, reversible increases in intracellular Cu(I) availability upon addition of the ionophoric complex CuGTSM or the thiol-selective oxidant 2,2'-dithiodipyridine (DTDP). While the latter effect was dramatically enhanced in 3T3 cells grown in the presence of supplemental copper and in cultured Menkes mutant fibroblasts exhibiting impaired copper efflux, basal Cu(I) availability in these cells showed little difference from controls, despite large increases in total copper content. Intracellular copper is thus tightly buffered by endogenous thiol ligands with significantly higher affinity than glutathione. The dual utility of crisp-17 to detect normal intracellular buffered Cu(I) levels as well as to probe the depth of the labile copper pool in conjunction with DTDP provides a promising strategy to characterize perturbations of cellular copper homeostasis.
Collapse
|
32
|
Murphy JM, Gaertner AA, Williams T, McMillen CD, Powell BA, Brumaghim JL. Stability constant determination of sulfur and selenium amino acids with Cu(II) and Fe(II). J Inorg Biochem 2019; 195:20-30. [DOI: 10.1016/j.jinorgbio.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 01/14/2023]
|
33
|
Yi XQ, He YF, Cao YS, Shen WX, Lv YY. Porphyrinic Probe for Fluorescence "Turn-On" Monitoring of Cu + in Aqueous Buffer and Mitochondria. ACS Sens 2019; 4:856-864. [PMID: 30868875 DOI: 10.1021/acssensors.8b01240] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A zinc(II) porphyrin derivative (ZPSN) was designed and synthesized, and this probe exhibited rapid, selective and reversible binding to Cu+ for fluorescence monitoring in pure aqueous buffer. The detection mechanism is based on Cu+-activated disruption of axial coordination between the pyridyl ligand and the zinc center, which changes the molecular geometry and inhibits intramolecular electron transfer (ET), leading to fluorescence enhancement of the probe. The proposed sensing mechanism was supported by UV-vis spectroscopy/fluorescence spectral titration, NMR spectroscopy, mass spectrometry, and time-resolved fluorescence decay studies. The dissociation constant was calculated to be 6.53 × 10-11 M. CLSM analysis strongly suggested that ZPSN could penetrate live cells and successfully visualize Cu+ in mitochondria. This strategy may establish a design and offer a potential building block for construction of other metal sensors based on a similar mechanism.
Collapse
Affiliation(s)
- Xiao-Qin Yi
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People’s Republic of China
- College of Pharmacy, Zhejiang University, Hangzhou, Zhejiang 310027, People’s Republic of China
| | - Yuan-Fan He
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People’s Republic of China
| | - Yu-Sheng Cao
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People’s Republic of China
| | - Wang-Xing Shen
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People’s Republic of China
| | - Yuan-Yuan Lv
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People’s Republic of China
| |
Collapse
|
34
|
Guo J, Yuan H, Chen Y, Chen Z, Zhao M, Zou L, Liu Y, Liu Z, Zhao Q, Guo Z, He W. A ratiometric fluorescent sensor for tracking Cu(I) fluctuation in endoplasmic reticulum. Sci China Chem 2019. [DOI: 10.1007/s11426-018-9424-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
A Novel Water Soluble Bipyrazolic Tripod Azoic Dye as Chemosensor for Copper (II) in Aqueous Solution. CHEMISTRY AFRICA 2018. [DOI: 10.1007/s42250-018-0028-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
36
|
Morgan MT, Yang B, Harankhedkar S, Nabatilan A, Bourassa D, McCallum AM, Sun F, Wu R, Forest CR, Fahrni CJ. Stabilization of Aliphatic Phosphines by Auxiliary Phosphine Sulfides Offers Zeptomolar Affinity and Unprecedented Selectivity for Probing Biological Cu I. Angew Chem Int Ed Engl 2018; 57:9711-9715. [PMID: 29885022 PMCID: PMC6105516 DOI: 10.1002/anie.201804072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/01/2018] [Indexed: 01/06/2023]
Abstract
Full elucidation of the functions and homeostatic pathways of biological copper requires tools that can selectively recognize and manipulate this trace nutrient within living cells and tissues, where it exists primarily as CuI . Buffered at attomolar concentrations, intracellular CuI is, however, not readily accessible to commonly employed amine and thioether-based chelators. Herein, we reveal a chelator design strategy in which phosphine sulfides aid in CuI coordination while simultaneously stabilizing aliphatic phosphine donors, producing a charge-neutral ligand with low-zeptomolar dissociation constant and 1017 -fold selectivity for CuI over ZnII , FeII , and MnII . As illustrated by reversing ATP7A trafficking in cells and blocking long-term potentiation of neurons in mouse hippocampal brain tissue, the ligand is capable of intercepting copper-dependent processes. The phosphine sulfide-stabilized phosphine (PSP) design approach, which confers resistance towards protonation, dioxygen, and disulfides, could be readily expanded towards ligands and probes with tailored properties for exploring CuI in a broad range of biological systems.
Collapse
Affiliation(s)
- M. Thomas Morgan
- Prof. Dr. C.J. Fahrni, Prof. Dr. R. Wu, Dr. M.T. Morgan, Dr. S Harankhedkar, A. Nabatilan, Dr. D. Bourassa, Dr. A.M. McCallum, F. Sun School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology 901 Atlantic Drive, Atlanta, GA 30332, USA,
| | - Bo Yang
- Prof. Dr. C.R. Forest, Dr. B. Yang G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology 315 Ferst Drive, Atlanta, GA 30332, USA,
| | - Shefali Harankhedkar
- Prof. Dr. C.J. Fahrni, Prof. Dr. R. Wu, Dr. M.T. Morgan, Dr. S Harankhedkar, A. Nabatilan, Dr. D. Bourassa, Dr. A.M. McCallum, F. Sun School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology 901 Atlantic Drive, Atlanta, GA 30332, USA,
| | - Arielle Nabatilan
- Prof. Dr. C.J. Fahrni, Prof. Dr. R. Wu, Dr. M.T. Morgan, Dr. S Harankhedkar, A. Nabatilan, Dr. D. Bourassa, Dr. A.M. McCallum, F. Sun School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology 901 Atlantic Drive, Atlanta, GA 30332, USA,
| | - Daisy Bourassa
- Prof. Dr. C.J. Fahrni, Prof. Dr. R. Wu, Dr. M.T. Morgan, Dr. S Harankhedkar, A. Nabatilan, Dr. D. Bourassa, Dr. A.M. McCallum, F. Sun School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology 901 Atlantic Drive, Atlanta, GA 30332, USA,
| | - Adam M. McCallum
- Prof. Dr. C.J. Fahrni, Prof. Dr. R. Wu, Dr. M.T. Morgan, Dr. S Harankhedkar, A. Nabatilan, Dr. D. Bourassa, Dr. A.M. McCallum, F. Sun School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology 901 Atlantic Drive, Atlanta, GA 30332, USA,
| | - Fangxu Sun
- Prof. Dr. C.J. Fahrni, Prof. Dr. R. Wu, Dr. M.T. Morgan, Dr. S Harankhedkar, A. Nabatilan, Dr. D. Bourassa, Dr. A.M. McCallum, F. Sun School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology 901 Atlantic Drive, Atlanta, GA 30332, USA,
| | - Ronghu Wu
- Prof. Dr. C.J. Fahrni, Prof. Dr. R. Wu, Dr. M.T. Morgan, Dr. S Harankhedkar, A. Nabatilan, Dr. D. Bourassa, Dr. A.M. McCallum, F. Sun School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology 901 Atlantic Drive, Atlanta, GA 30332, USA,
| | - Craig R. Forest
- Prof. Dr. C.R. Forest, Dr. B. Yang G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology 315 Ferst Drive, Atlanta, GA 30332, USA,
| | - Christoph J. Fahrni
- Prof. Dr. C.J. Fahrni, Prof. Dr. R. Wu, Dr. M.T. Morgan, Dr. S Harankhedkar, A. Nabatilan, Dr. D. Bourassa, Dr. A.M. McCallum, F. Sun School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology 901 Atlantic Drive, Atlanta, GA 30332, USA,
| |
Collapse
|
37
|
Jia S, Ramos-Torres KM, Kolemen S, Ackerman CM, Chang CJ. Tuning the Color Palette of Fluorescent Copper Sensors through Systematic Heteroatom Substitution at Rhodol Cores. ACS Chem Biol 2018; 13:1844-1852. [PMID: 29112372 PMCID: PMC6370296 DOI: 10.1021/acschembio.7b00748] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Copper is an essential nutrient for sustaining life, and emerging data have expanded the roles of this metal in biology from its canonical functions as a static enzyme cofactor to dynamic functions as a transition metal signal. At the same time, loosely bound, labile copper pools can trigger oxidative stress and damaging events that are detrimental if misregulated. The signal/stress dichotomy of copper motivates the development of new chemical tools to study its spatial and temporal distributions in native biological contexts such as living cells. Here, we report a family of fluorescent copper sensors built upon carbon-, silicon-, and phosphorus-substituted rhodol dyes that enable systematic tuning of excitation/emission colors from orange to near-infrared. These probes can detect changes in labile copper levels in living cells upon copper supplementation and/or depletion. We demonstrate the ability of the carbon-rhodol based congener, Copper Carbo Fluor 1 (CCF1), to identify elevations in labile copper pools in the Atp7a-/- fibroblast cell model of the genetic copper disorder Menkes disease. Moreover, we showcase the utility of the red-emitting phosphorus-rhodol based dye Copper Phosphorus Fluor 1 (CPF1) in dual-color, dual-analyte imaging experiments with the green-emitting calcium indicator Calcium Green-1 to enable simultaneous detection of fluctuations in copper and calcium pools in living cells. The results provide a starting point for advancing tools to study the contributions of copper to health and disease and for exploiting the rapidly growing palette of heteroatom-substituted xanthene dyes to rationally tune the optical properties of fluorescent indicators for other biologically important analytes.
Collapse
Affiliation(s)
- Shang Jia
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Karla M. Ramos-Torres
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Safacan Kolemen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, Koc University, Rumelifeneri Yolu, 34450, Sariyer, Istanbul, Turkey
| | - Cheri M. Ackerman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
38
|
Morgan MT, Yang B, Harankhedkar S, Nabatilan A, Bourassa D, McCallum AM, Sun F, Wu R, Forest CR, Fahrni CJ. Stabilization of Aliphatic Phosphines by Auxiliary Phosphine Sulfides Offers Zeptomolar Affinity and Unprecedented Selectivity for Probing Biological Cu
I. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- M. Thomas Morgan
- School of Chemistry and Biochemistry Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| | - Bo Yang
- G. W. Woodruff School of Mechanical Engineering Georgia Institute of Technology 315 Ferst Drive Atlanta GA 30332 USA
| | - Shefali Harankhedkar
- School of Chemistry and Biochemistry Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| | - Arielle Nabatilan
- School of Chemistry and Biochemistry Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| | - Daisy Bourassa
- School of Chemistry and Biochemistry Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| | - Adam M. McCallum
- School of Chemistry and Biochemistry Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| | - Fangxu Sun
- School of Chemistry and Biochemistry Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| | - Craig R. Forest
- G. W. Woodruff School of Mechanical Engineering Georgia Institute of Technology 315 Ferst Drive Atlanta GA 30332 USA
| | - Christoph J. Fahrni
- School of Chemistry and Biochemistry Petit Institute for Bioengineering and Bioscience Georgia Institute of Technology 901 Atlantic Drive Atlanta GA 30332 USA
| |
Collapse
|
39
|
Zheng W, Li H, Chen W, Zhang J, Wang N, Guo X, Jiang X. Rapid Detection of Copper in Biological Systems Using Click Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703857. [PMID: 29493873 DOI: 10.1002/smll.201703857] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/11/2018] [Indexed: 06/08/2023]
Abstract
A fast (1 min), straightforward but efficient, click chemistry-based system that enables the rapid detection of free copper (Cu) ions in either biological fluids or living cells without tedious pretreatment is provided. Cu can quickly induce the conjugation between graphene oxide (GO) and a fluorescent dye via click reaction. On the basis of the high specificity of bioorthogonal reaction and the effective quenching ability of GO, the assay studied in this paper can respond to Cu ions in less than 1 min with excellent selectivity and sensitivity, which is the fastest sensor for Cu as far as it is known. In addition, the application of this system is verified by performing assays in living cells and untreated urine samples from patients suffering from Wilson's Disease. Such a Cu detection system shows great promises in both fundamental research and routine clinical diagnostics.
Collapse
Affiliation(s)
- Wenshu Zheng
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, P. R. China
- Sino-Danish College University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Huiling Li
- Department of Occupational Medicine and Clinical Toxicology, Beijing Chao-yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, P. R. China
| | - Wenwen Chen
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, P. R. China
- Sino-Danish College University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
- Department of Biomedical Engineering, Medical school, Shenzhen University, Guangdong, 518020, P. R. China
| | - Jiangjiang Zhang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, P. R. China
- Sino-Danish College University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Nuoxin Wang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, P. R. China
- Sino-Danish College University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Xuefeng Guo
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, P. R. China
- Sino-Danish College University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| |
Collapse
|
40
|
Bhattacharjee A, Chakraborty K, Shukla A. Cellular copper homeostasis: current concepts on its interplay with glutathione homeostasis and its implication in physiology and human diseases. Metallomics 2018; 9:1376-1388. [PMID: 28675215 DOI: 10.1039/c7mt00066a] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper is a trace element essential for almost all living organisms. But the level of intracellular copper needs to be tightly regulated. Dysregulation of cellular copper homeostasis leading to various diseases demonstrates the importance of this tight regulation. Copper homeostasis is regulated not only within the cell but also within individual intracellular compartments. Inactivation of export machinery results in excess copper being redistributed into various intracellular organelles. Recent evidence suggests the involvement of glutathione in playing an important role in regulating copper entry and intracellular copper homeostasis. Therefore interplay of both homeostases might play an important role within the cell. Similar to copper, glutathione balance is tightly regulated within individual cellular compartments. This review explores the existing literature on the role of glutathione in regulating cellular copper homeostasis. On the one hand, interplay of glutathione and copper homeostasis performs an important role in normal physiological processes, for example neuronal differentiation. On the other hand, perturbation of the interplay might play a key role in the pathogenesis of copper homeostasis disorders.
Collapse
|
41
|
Acevedo KM, Hayne DJ, McInnes LE, Noor A, Duncan C, Moujalled D, Volitakis I, Rigopoulos A, Barnham KJ, Villemagne VL, White AR, Donnelly PS. Effect of Structural Modifications to Glyoxal-bis(thiosemicarbazonato)copper(II) Complexes on Cellular Copper Uptake, Copper-Mediated ATP7A Trafficking, and P-Glycoprotein Mediated Efflux. J Med Chem 2018; 61:711-723. [DOI: 10.1021/acs.jmedchem.7b01158] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Angela Rigopoulos
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia
| | | | - Victor L. Villemagne
- Centre for PET, Department of Molecular Imaging & Therapy, Austin Health, 145 Studley Road, Heidelberg, Victoria 3084, Australia
| | | | | |
Collapse
|
42
|
Roux A, Isaac M, Chabert V, Denisov SA, McClenaghan ND, Sénèque O. Influence of amino acid sequence in a peptidic Cu+-responsive luminescent probe inspired by the copper chaperone CusF. Org Biomol Chem 2018; 16:5626-5634. [DOI: 10.1039/c8ob01044g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Amino acid sequence influences the luminescence behavior of a family of bio-inspired Cu+-responsive probes.
Collapse
Affiliation(s)
- A. Roux
- Univ. Grenoble Alpes
- CNRS
- CEA
- BIG
- LCBM (UMR 5249)
| | - M. Isaac
- Univ. Grenoble Alpes
- CNRS
- CEA
- BIG
- LCBM (UMR 5249)
| | - V. Chabert
- Univ. Grenoble Alpes
- CNRS
- CEA
- BIG
- LCBM (UMR 5249)
| | | | | | - O. Sénèque
- Univ. Grenoble Alpes
- CNRS
- CEA
- BIG
- LCBM (UMR 5249)
| |
Collapse
|
43
|
Au-Yeung HY, Chan CY, Tong KY, Yu ZH. Copper-based reactions in analyte-responsive fluorescent probes for biological applications. J Inorg Biochem 2017; 177:300-312. [DOI: 10.1016/j.jinorgbio.2017.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/29/2017] [Accepted: 07/01/2017] [Indexed: 02/04/2023]
|
44
|
Osman D, Foster AW, Chen J, Svedaite K, Steed JW, Lurie-Luke E, Huggins TG, Robinson NJ. Fine control of metal concentrations is necessary for cells to discern zinc from cobalt. Nat Commun 2017; 8:1884. [PMID: 29192165 PMCID: PMC5709419 DOI: 10.1038/s41467-017-02085-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022] Open
Abstract
Bacteria possess transcription factors whose DNA-binding activity is altered upon binding to specific metals, but metal binding is not specific in vitro. Here we show that tight regulation of buffered intracellular metal concentrations is a prerequisite for metal specificity of Zur, ZntR, RcnR and FrmR in Salmonella Typhimurium. In cells, at non-inhibitory elevated concentrations, Zur and ZntR, only respond to Zn(II), RcnR to cobalt and FrmR to formaldehyde. However, in vitro all these sensors bind non-cognate metals, which alters DNA binding. We model the responses of these sensors to intracellular-buffered concentrations of Co(II) and Zn(II) based upon determined abundances, metal affinities and DNA affinities of each apo- and metalated sensor. The cognate sensors are modelled to respond at the lowest concentrations of their cognate metal, explaining specificity. However, other sensors are modelled to respond at concentrations only slightly higher, and cobalt or Zn(II) shock triggers mal-responses that match these predictions. Thus, perfect metal specificity is fine-tuned to a narrow range of buffered intracellular metal concentrations.
Collapse
Affiliation(s)
- Deenah Osman
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK.,Department of Chemistry, Durham University, Durham, DH1 3LE, UK
| | - Andrew W Foster
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK.,Department of Chemistry, Durham University, Durham, DH1 3LE, UK
| | - Junjun Chen
- Procter and Gamble, Mason Business Center, Cincinnati, OH, 45040, USA
| | - Kotryna Svedaite
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK.,Department of Chemistry, Durham University, Durham, DH1 3LE, UK
| | | | - Elena Lurie-Luke
- Procter and Gamble, Singapore Innovation Center, Singapore, 138589, Singapore
| | - Thomas G Huggins
- Procter and Gamble, Mason Business Center, Cincinnati, OH, 45040, USA
| | - Nigel J Robinson
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK. .,Department of Chemistry, Durham University, Durham, DH1 3LE, UK.
| |
Collapse
|
45
|
Morgan MT, Nguyen LAH, Hancock HL, Fahrni CJ. Glutathione limits aquacopper(I) to sub-femtomolar concentrations through cooperative assembly of a tetranuclear cluster. J Biol Chem 2017; 292:21558-21567. [PMID: 29101230 DOI: 10.1074/jbc.m117.817452] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/27/2017] [Indexed: 11/06/2022] Open
Abstract
The tripeptide glutathione (GSH) is a crucial intracellular reductant and radical scavenger, but it may also coordinate the soft Cu(I) cation and thereby yield pro-oxidant species. The GSH-Cu(I) interaction is thus a key consideration for both redox and copper homeostasis in cells. However, even after nearly four decades of investigation, the nature and stability of the GSH-Cu(I) complexes formed under biologically relevant conditions remain controversial. Here, we revealed the unexpected predominance of a tetranuclear [Cu4(GS)6] cluster that is sufficiently stable to limit the effective free aquacopper(I) concentration to the sub-femtomolar regime. Combined spectrophotometric-potentiometric titrations at biologically realistic GSH/Cu(I) ratios, enabled by our recently developed Cu(I) affinity standards and corroborated by low-temperature phosphorescence studies, established cooperative assembly of [Cu4(GS)6] as the dominant species over a wide pH range, from 5.5 to 7.5. Our robust model for the glutathione-Cu(I) equilibrium system sets a firm upper limit on the thermodynamic availability of intracellular copper that is 3 orders of magnitude lower than previously estimated. Taking into account their ability to catalyze the production of deleterious superoxide, the formation of Cu(I)-glutathione complexes might be avoided under normal physiological conditions. The actual intracellular Cu(I) availability may thus be regulated a further 3 orders of magnitude below the GSH/Cu(I) affinity limit, consistent with the most recent affinity determinations of Cu(I) chaperones.
Collapse
Affiliation(s)
- M Thomas Morgan
- From the School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Lily Anh H Nguyen
- From the School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Haylie L Hancock
- From the School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Christoph J Fahrni
- From the School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| |
Collapse
|
46
|
Abstract
Transition metals have been recognized and studied primarily in the context of their essential roles as structural and metabolic cofactors for biomolecules that compose living systems. More recently, an emerging paradigm of transition-metal signaling, where dynamic changes in transitional metal pools can modulate protein function, cell fate, and organism health and disease, has broadened our view of the potential contributions of these essential nutrients in biology. Using copper as a canonical example of transition-metal signaling, we highlight key experiments where direct measurement and/or visualization of dynamic copper pools, in combination with biochemical, physiological, and behavioral studies, have deciphered sources, targets, and physiological effects of copper signals.
Collapse
Affiliation(s)
| | - Christopher J Chang
- Departments of Chemistry, Berkeley, California 94720-1460; Molecular and Cell Biology, Berkeley, California 94720-1460; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California 94720-1460; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720.
| |
Collapse
|
47
|
The zinc paradigm for metalloneurochemistry. Essays Biochem 2017; 61:225-235. [DOI: 10.1042/ebc20160073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/10/2017] [Accepted: 03/28/2017] [Indexed: 01/06/2023]
Abstract
Neurotransmission and sensory perception are shaped through metal ion–protein interactions in various brain regions. The term "metalloneurochemistry" defines the unique field of bioinorganic chemistry focusing on these processes, and zinc has been the leading target of metalloneurochemists in the almost 15 years since the definition was introduced. Zinc in the hippocampus interacts with receptors that dictate ion flow and neurotransmitter release. Understanding the intricacies of these interactions is crucial to uncovering the role that zinc plays in learning and memory. Based on receptor similarities and zinc-enriched neurons (ZENs) in areas of the brain responsible for sensory perception, such as the olfactory bulb (OB), and dorsal cochlear nucleus (DCN), zinc participates in odor and sound perception. Development and improvement of methods which allow for precise detection and immediate manipulation of zinc ions in neuronal cells and in brain slices will be critical in uncovering the synaptic action of zinc and, more broadly, the bioinorganic chemistry of cognition.
Collapse
|
48
|
Ackerman CM, Lee S, Chang CJ. Analytical Methods for Imaging Metals in Biology: From Transition Metal Metabolism to Transition Metal Signaling. Anal Chem 2017; 89:22-41. [PMID: 27976855 PMCID: PMC5827935 DOI: 10.1021/acs.analchem.6b04631] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cheri M. Ackerman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Sumin Lee
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
49
|
Heffern MC, Park HM, Au-Yeung HY, Van de Bittner GC, Ackerman CM, Stahl A, Chang CJ. In vivo bioluminescence imaging reveals copper deficiency in a murine model of nonalcoholic fatty liver disease. Proc Natl Acad Sci U S A 2016; 113:14219-14224. [PMID: 27911810 PMCID: PMC5167165 DOI: 10.1073/pnas.1613628113] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Copper is a required metal nutrient for life, but global or local alterations in its homeostasis are linked to diseases spanning genetic and metabolic disorders to cancer and neurodegeneration. Technologies that enable longitudinal in vivo monitoring of dynamic copper pools can help meet the need to study the complex interplay between copper status, health, and disease in the same living organism over time. Here, we present the synthesis, characterization, and in vivo imaging applications of Copper-Caged Luciferin-1 (CCL-1), a bioluminescent reporter for tissue-specific copper visualization in living animals. CCL-1 uses a selective copper(I)-dependent oxidative cleavage reaction to release d-luciferin for subsequent bioluminescent reaction with firefly luciferase. The probe can detect physiological changes in labile Cu+ levels in live cells and mice under situations of copper deficiency or overload. Application of CCL-1 to mice with liver-specific luciferase expression in a diet-induced model of nonalcoholic fatty liver disease reveals onset of hepatic copper deficiency and altered expression levels of central copper trafficking proteins that accompany symptoms of glucose intolerance and weight gain. The data connect copper dysregulation to metabolic liver disease and provide a starting point for expanding the toolbox of reactivity-based chemical reporters for cell- and tissue-specific in vivo imaging.
Collapse
Affiliation(s)
- Marie C Heffern
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Hyo Min Park
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720
| | - Ho Yu Au-Yeung
- Department of Chemistry, University of California, Berkeley, CA 94720
| | | | - Cheri M Ackerman
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Andreas Stahl
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720;
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, CA 94720;
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| |
Collapse
|
50
|
Shen C, Kolanowski JL, Tran CMN, Kaur A, Akerfeldt MC, Rahme MS, Hambley TW, New EJ. A ratiometric fluorescent sensor for the mitochondrial copper pool. Metallomics 2016; 8:915-9. [PMID: 27550322 DOI: 10.1039/c6mt00083e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Copper plays a key role in the modulation of cellular function, defence, and growth. Here we present InCCu1, a ratiometric fluorescent sensor for mitochondrial copper, which changes from red to blue emission in the presence of Cu(i). Employing this probe in microscopy and flow cytometry, we show that cisplatin-treated cells have an impaired ability to accumulate copper in the mitochondria.
Collapse
Affiliation(s)
- Clara Shen
- School of Chemistry, The University of Sydney, NSW 2006, Australia.
| | | | | | | | | | | | | | | |
Collapse
|