1
|
Wu D, Wang J, Du X, Cao Y, Ping K, Liu D. Cucurbit[8]uril-based supramolecular theranostics. J Nanobiotechnology 2024; 22:235. [PMID: 38725031 PMCID: PMC11084038 DOI: 10.1186/s12951-024-02349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/20/2024] [Indexed: 05/12/2024] Open
Abstract
Different from most of the conventional platforms with dissatisfactory theranostic capabilities, supramolecular nanotheranostic systems have unparalleled advantages via the artful combination of supramolecular chemistry and nanotechnology. Benefiting from the tunable stimuli-responsiveness and compatible hierarchical organization, host-guest interactions have developed into the most popular mainstay for constructing supramolecular nanoplatforms. Characterized by the strong and diverse complexation property, cucurbit[8]uril (CB[8]) shows great potential as important building blocks for supramolecular theranostic systems. In this review, we summarize the recent progress of CB[8]-based supramolecular theranostics regarding the design, manufacture and theranostic mechanism. Meanwhile, the current limitations and corresponding reasonable solutions as well as the potential future development are also discussed.
Collapse
Affiliation(s)
- Dan Wu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jianfeng Wang
- Department of Radiotherapy, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China
| | - Xianlong Du
- Bethune First Clinical Medical College, Jilin University, Changchun, 130012, People's Republic of China
| | - Yibin Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Kunmin Ping
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Dahai Liu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China.
| |
Collapse
|
2
|
Juste-Dolz A, Fernández E, Puchades R, Avella-Oliver M, Maquieira Á. Patterned Biolayers of Protein Antigens for Label-Free Biosensing in Cow Milk Allergy. BIOSENSORS 2023; 13:214. [PMID: 36831980 PMCID: PMC9953870 DOI: 10.3390/bios13020214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
This paper focuses on creating one-dimensional diffractive grooved structures of antigen proteins on glass substrates for the label-free detection of antibodies to dairy allergens. In particular, the fabrication of protein structures is carried out by combining microcontact printing with physisorption, imines coupling, and thiol-ene click chemistry. The work first sets up these patterning methods and discusses and compares the main aspects involved in them (structure, biolayer thickness, functionality, stability). Homogeneous periodic submicron structures of proteins are created and characterized by diffractive measurements, AFM, FESEM, and fluorescence scanning. Then, this patterning method is applied to proteins involved in cow milk allergy, and the resulting structures are implemented as optical transducers to sense specific immunoglobulins G. In particular, gratings of bovine serum albumin, casein, and β-lactoglobulin are created and assessed, reaching limits of detection in the range of 30-45 ng·mL-1 of unlabeled antibodies by diffractive biosensing.
Collapse
Affiliation(s)
- Augusto Juste-Dolz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
| | - Estrella Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
| | - Rosa Puchades
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
- Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Miquel Avella-Oliver
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
- Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Ángel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
- Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
3
|
Cui Z, Chen P, Li C, Deng S, Yang H. Chip-DSF: A rapid screening strategy for drug protein targets. Pharmacol Res 2022; 182:106346. [PMID: 35809766 DOI: 10.1016/j.phrs.2022.106346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/12/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022]
Abstract
Identification of the drug target of lead compounds is an important means for rapid and efficient drug discovery. Protein chips are a high-throughput protein function analysis technology that has been widely used in screening drug protein targets in recent years. However, the verification of the results after high-throughput protein chip screening is still cumbersome. Based on our mature protein chip preparation platform, we prepared a protein chip containing 150 important high-frequency protein targets and used antibodies to prove the availability of the protein chip. To improve the accuracy of target screening, we combined the label-free differential scanning fluorimetry (DSF) with the protein chip, proposing the Chip-DSF strategy. Subsequently, we tested the method with small molecular ginsenoside-Rg2 (Rg2). The Chip-DSF strategy was used to successfully screen the potential target protein KRAS(G12C) of Rg2. Consistently, we found that Rg2 could inhibit NCI-H23 cell proliferation by inducing cell cycle arrest. Also, we found that Rg2 could reduce the amount of KRAS protein and inhibit the phosphorylation of KRAS downstream key signaling protein ERK1, RPS6, and P70S6K in NCI-H23 cells. Collectively, our Chip-DSF strategy could achieve rapid target verification which improved the accuracy and efficiency of target screening of protein chips.
Collapse
Affiliation(s)
- Zhao Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Caifeng Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shiwen Deng
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
4
|
Zhang SY, Zhao J, Ni JJ, Li H, Quan ZZ, Qing H. Application and prospects of high-throughput screening for in vitro neurogenesis. World J Stem Cells 2022; 14:393-419. [PMID: 35949394 PMCID: PMC9244953 DOI: 10.4252/wjsc.v14.i6.393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/07/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Over the past few decades, high-throughput screening (HTS) has made great contributions to new drug discovery. HTS technology is equipped with higher throughput, minimized platforms, more automated and computerized operating systems, more efficient and sensitive detection devices, and rapid data processing systems. At the same time, in vitro neurogenesis is gradually becoming important in establishing models to investigate the mechanisms of neural disease or developmental processes. However, challenges remain in generating more mature and functional neurons with specific subtypes and in establishing robust and standardized three-dimensional (3D) in vitro models with neural cells cultured in 3D matrices or organoids representing specific brain regions. Here, we review the applications of HTS technologies on in vitro neurogenesis, especially aiming at identifying the essential genes, chemical small molecules and adaptive microenvironments that hold great prospects for generating functional neurons or more reproductive and homogeneous 3D organoids. We also discuss the developmental tendency of HTS technology, e.g., so-called next-generation screening, which utilizes 3D organoid-based screening combined with microfluidic devices to narrow the gap between in vitro models and in vivo situations both physiologically and pathologically.
Collapse
Affiliation(s)
- Shu-Yuan Zhang
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Juan Zhao
- Aerospace Medical Center, Aerospace Center Hospital, Beijing 100049, China
| | - Jun-Jun Ni
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hui Li
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhen-Zhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
5
|
Bubble-Patterned Films by Inkjet Printing and Gas Foaming. COATINGS 2022. [DOI: 10.3390/coatings12060806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The micropatterning of thin films represents a challenging task, even for additive manufacturing techniques. In this work, we introduce the use of inkjet-printing technology coupled with a gas-foaming process, to produce patterned porosities on polymeric thin films, to develop a bubble-writing method. Inkjet printing of an aqueous solution of poly (vinyl alcohol) (PVA), a well-known gas-barrier polymer, allows the selective coating of a thin poly (lactic acid) (PLA) film, which is, successively, exposed to a gas-foaming process. The foaming of the thin PLA film is effective, only when PVA is printed on top, since the PVA barrier hinders the premature loss of the gas, thus allowing the formation of cavities (bubbles) in the covered areas; then, removing the PVA coating by water washing forms a bubble pattern. As a proof of concept, the surface-morphology features of the patterned porous PLA films have been proven effective at driving endothelial cell growth. A new technological platform is, hence, introduced in the field of tissue engineering and, in general, in fields involving thin films, where a patterned porous structure may add value.
Collapse
|
6
|
Kim S, Liu N, Shestopalov AA. Contact Printing of Multilayered Thin Films with Shape Memory Polymers. ACS NANO 2022; 16:6134-6144. [PMID: 35353499 PMCID: PMC9047662 DOI: 10.1021/acsnano.1c11607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
This study describes a method for transfer printing microarrays of multilayered organic-inorganic thin films using shape memory printing stamps and microstructured donor substrates. By applying the films on the microstructured donor substrates during physical vapor deposition and modulating the interfacial adhesion using a shape memory elastomer during printing, this method achieves (1) high lateral and feature-edge resolution and (2) high transfer efficiency from the donor to the receiver substrate. For demonstration, polyurethane-acrylate stamps and silicon/silicon oxide donor substrates were used in the large-area transfer printing of organic-inorganic thin-film stacks with micrometer lateral dimensions and sub-200 nm thickness.
Collapse
|
7
|
Kim S, Lakshmanan S, Li J, Anthamatten M, Lambropoulos J, Shestopalov AA. Modulation of Interfacial Adhesion Using Semicrystalline Shape-Memory Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3607-3616. [PMID: 35263106 PMCID: PMC8945391 DOI: 10.1021/acs.langmuir.2c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Semicrystalline shape-memory elastomers are molded into deformable geometrical features to control adhesive interactions between elastomers and a glass substrate. By mechanically and thermally controlling the deformation and phase-behavior of molded features, we can control the interfacial contact area and the interfacial adhesive force. Results indicate that elastic energy is stored in the semicrystalline state of deformed features and can be released to break attractive interfacial forces, automatically separating the glass substrate from the elastomer. Our findings suggest that the shape-memory elastomers can be applied in various contact printing applications to control adhesive forces and delamination mechanics during ink pickup and transfer.
Collapse
Affiliation(s)
- Soyoun Kim
- Department
of Chemical Engineering, University of Rochester, Rochester, New York 14627, United
States
| | - Sanjay Lakshmanan
- Department
of Mechanical Engineering, University of
Rochester, Rochester, New York 14627, United States
| | - Jinhai Li
- Department
of Chemical Engineering, University of Rochester, Rochester, New York 14627, United
States
| | - Mitchell Anthamatten
- Department
of Chemical Engineering, University of Rochester, Rochester, New York 14627, United
States
| | - John Lambropoulos
- Department
of Mechanical Engineering, University of
Rochester, Rochester, New York 14627, United States
| | - Alexander A. Shestopalov
- Department
of Chemical Engineering, University of Rochester, Rochester, New York 14627, United
States
| |
Collapse
|
8
|
Karimian T, Hager R, Karner A, Weghuber J, Lanzerstorfer P. A Simplified and Robust Activation Procedure of Glass Surfaces for Printing Proteins and Subcellular Micropatterning Experiments. BIOSENSORS 2022; 12:140. [PMID: 35323410 PMCID: PMC8946821 DOI: 10.3390/bios12030140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 05/08/2023]
Abstract
Depositing biomolecule micropatterns on solid substrates via microcontact printing (µCP) usually requires complex chemical substrate modifications to initially create reactive surface groups. Here, we present a simplified activation procedure for untreated solid substrates based on a commercial polymer metal ion coating (AnteoBindTM Biosensor reagent) that allows for direct µCP and the strong attachment of proteins via avidity binding. In proof-of-concept experiments, we identified the optimum working concentrations of the surface coating, characterized the specificity of protein binding and demonstrated the suitability of this approach by subcellular micropatterning experiments in living cells. Altogether, this method represents a significant enhancement and simplification of existing µCP procedures and further increases the accessibility of protein micropatterning for cell biological research questions.
Collapse
Affiliation(s)
- Tina Karimian
- School of Engineering, University of Applied Sciences Upper Austria, 4600 Wels, Austria; (T.K.); (R.H.); (J.W.)
| | - Roland Hager
- School of Engineering, University of Applied Sciences Upper Austria, 4600 Wels, Austria; (T.K.); (R.H.); (J.W.)
| | - Andreas Karner
- School of Engineering, University of Applied Sciences Upper Austria, 4020 Linz, Austria;
| | - Julian Weghuber
- School of Engineering, University of Applied Sciences Upper Austria, 4600 Wels, Austria; (T.K.); (R.H.); (J.W.)
- FFoQSI GmbH, Austrian Competence Center for Feed and Food Quality, Safety & Innovation, 3430 Tulln, Austria
| | - Peter Lanzerstorfer
- School of Engineering, University of Applied Sciences Upper Austria, 4600 Wels, Austria; (T.K.); (R.H.); (J.W.)
| |
Collapse
|
9
|
Fruncillo S, Su X, Liu H, Wong LS. Lithographic Processes for the Scalable Fabrication of Micro- and Nanostructures for Biochips and Biosensors. ACS Sens 2021; 6:2002-2024. [PMID: 33829765 PMCID: PMC8240091 DOI: 10.1021/acssensors.0c02704] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since the early 2000s, extensive research has been performed to address numerous challenges in biochip and biosensor fabrication in order to use them for various biomedical applications. These biochips and biosensor devices either integrate biological elements (e.g., DNA, proteins or cells) in the fabrication processes or experience post fabrication of biofunctionalization for different downstream applications, including sensing, diagnostics, drug screening, and therapy. Scalable lithographic techniques that are well established in the semiconductor industry are now being harnessed for large-scale production of such devices, with additional development to meet the demand of precise deposition of various biological elements on device substrates with retained biological activities and precisely specified topography. In this review, the lithographic methods that are capable of large-scale and mass fabrication of biochips and biosensors will be discussed. In particular, those allowing patterning of large areas from 10 cm2 to m2, maintaining cost effectiveness, high throughput (>100 cm2 h-1), high resolution (from micrometer down to nanometer scale), accuracy, and reproducibility. This review will compare various fabrication technologies and comment on their resolution limit and throughput, and how they can be related to the device performance, including sensitivity, detection limit, reproducibility, and robustness.
Collapse
Affiliation(s)
- Silvia Fruncillo
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| | - Xiaodi Su
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
- Department of Chemistry, National University of Singapore, Block S8, Level 3, 3 Science Drive, Singapore 117543, Singapore
| | - Hong Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| | - Lu Shin Wong
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
10
|
Raj V, Jagadish C, Gautam V. Understanding, engineering, and modulating the growth of neural networks: An interdisciplinary approach. BIOPHYSICS REVIEWS 2021; 2:021303. [PMID: 38505122 PMCID: PMC10903502 DOI: 10.1063/5.0043014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/25/2021] [Indexed: 03/21/2024]
Abstract
A deeper understanding of the brain and its function remains one of the most significant scientific challenges. It not only is required to find cures for a plethora of brain-related diseases and injuries but also opens up possibilities for achieving technological wonders, such as brain-machine interface and highly energy-efficient computing devices. Central to the brain's function is its basic functioning unit (i.e., the neuron). There has been a tremendous effort to understand the underlying mechanisms of neuronal growth on both biochemical and biophysical levels. In the past decade, this increased understanding has led to the possibility of controlling and modulating neuronal growth in vitro through external chemical and physical methods. We provide a detailed overview of the most fundamental aspects of neuronal growth and discuss how researchers are using interdisciplinary ideas to engineer neuronal networks in vitro. We first discuss the biochemical and biophysical mechanisms of neuronal growth as we stress the fact that the biochemical or biophysical processes during neuronal growth are not independent of each other but, rather, are complementary. Next, we discuss how utilizing these fundamental mechanisms can enable control over neuronal growth for advanced neuroengineering and biomedical applications. At the end of this review, we discuss some of the open questions and our perspectives on the challenges and possibilities related to controlling and engineering the growth of neuronal networks, specifically in relation to the materials, substrates, model systems, modulation techniques, data science, and artificial intelligence.
Collapse
Affiliation(s)
- Vidur Raj
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | | | - Vini Gautam
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
11
|
Humenik M, Winkler A, Scheibel T. Patterning of protein-based materials. Biopolymers 2020; 112:e23412. [PMID: 33283876 DOI: 10.1002/bip.23412] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 01/03/2023]
Abstract
Micro- and nanopatterning of proteins on surfaces allows to develop for example high-throughput biosensors in biomedical diagnostics and in general advances the understanding of cell-material interactions in tissue engineering. Today, many techniques are available to generate protein pattern, ranging from technically simple ones, such as micro-contact printing, to highly tunable optical lithography or even technically sophisticated scanning probe lithography. Here, one focus is on the progress made in the development of protein-based materials as positive or negative photoresists allowing micro- to nanostructured scaffolds for biocompatible photonic, electronic and tissue engineering applications. The second one is on approaches, which allow a controlled spatiotemporal positioning of a single protein on surfaces, enabled by the recent developments in immobilization techniques coherent with the sensitive nature of proteins, defined protein orientation and maintenance of the protein activity at interfaces. The third one is on progress in photolithography-based methods, which allow to control the formation of protein-repellant/adhesive polymer brushes.
Collapse
Affiliation(s)
- Martin Humenik
- Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, Bayreuth, Germany
| | - Anika Winkler
- Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, Bayreuth, Germany
| | - Thomas Scheibel
- Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, Bayreuth, Germany.,Bayreuth Center for Colloids and Interfaces (BZKG), Universität Bayreuth, Bayreuth, Germany.,Bayreuth Center for Molecular Biosciences (BZMB), Universität Bayreuth, Bayreuth, Germany.,Bayreuth Center for Material Science (BayMAT), Universität Bayreuth, Bayreuth, Germany.,Bavarian Polymer Institute (BPI), Universität Bayreuth, Bayreuth, Germany
| |
Collapse
|
12
|
Jayaraman V, Krishna K, Yang Y, Rajasekaran KJ, Ou Y, Wang T, Bei K, Krishnamurthy HK, Rajasekaran JJ, Rai AJ, Green DA. An ultra-high-density protein microarray for high throughput single-tier serological detection of Lyme disease. Sci Rep 2020; 10:18085. [PMID: 33093502 PMCID: PMC7581523 DOI: 10.1038/s41598-020-75036-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 10/09/2020] [Indexed: 11/14/2022] Open
Abstract
Current serological immunoassays have inherent limitations for certain infectious diseases such as Lyme disease, a bacterial infection caused by Borrelia burgdorferi in North America. Here we report a novel method of manufacturing high-density multiplexed protein microarrays with the capacity to detect low levels of antibodies accurately from small blood volumes in a fully automated system. A panel of multiple serological markers for Lyme disease are measured using a protein microarray system, Lyme Immunochip, in a single step but interpreted adhering to the standard two-tiered testing algorithm (enzyme immunoassay followed by Western blot). Furthermore, an enhanced IgM assay was supplemented to improve the test's detection sensitivity for early Lyme disease. With a training cohort (n = 40) and a blinded validation cohort (n = 90) acquired from CDC, the Lyme Immunochip identified a higher proportion of Lyme disease patients than the two-tiered testing (82.4% vs 70.6% in the training set, 66.7% vs 60.0% in the validation set, respectively). Additionally, the Immunochip improved sensitivity to 100% while having a lower specificity of 95.2% using a set of investigational antigens which are being further evaluated with a large cohort of blinded samples from the CDC and Columbia University. This universal microarray platform provides an unprecedented opportunity to resolve a broad range of issues with diagnostic tests, including multiplexing, workflow simplicity, and reduced turnaround time and cost.
Collapse
Affiliation(s)
| | | | | | | | - Yuzheng Ou
- Vibrant America LLC., San Carlos, CA, USA
| | | | - Kang Bei
- Vibrant Sciences LLC., San Carlos, CA, USA
| | | | | | - Alex J Rai
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Daniel A Green
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
13
|
Sequential binary protein patterning on surface domains of thermo-responsive polymer blends cast by horizontal-dipping. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1477-1484. [DOI: 10.1016/j.msec.2019.02.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/12/2019] [Accepted: 02/21/2019] [Indexed: 12/31/2022]
|
14
|
Mattes DS, Streit B, Bhandari DR, Greifenstein J, Foertsch TC, Münch SW, Ridder B, v. Bojničić‐Kninski C, Nesterov‐Mueller A, Spengler B, Schepers U, Bräse S, Loeffler FF, Breitling F. Combinatorial Synthesis of Peptoid Arrays via Laser‐Based Stacking of Multiple Polymer Nanolayers. Macromol Rapid Commun 2018; 40:e1800533. [DOI: 10.1002/marc.201800533] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/16/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Daniela. S. Mattes
- Institute of Microstructure TechnologyKarlsruhe Institute of Technology Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
- Institute of Organic ChemistryKarlsruhe Institute of Technology Fritz‐Haber‐Weg 6 76131 Karlsruhe Germany
| | - Bettina Streit
- Institute of Microstructure TechnologyKarlsruhe Institute of Technology Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
- Institute of Toxicology and GeneticsKarlsruhe Institute of Technology Hermann‐von Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| | - Dhaka R. Bhandari
- Institute of Inorganic and Analytical ChemistryJustus‐Liebig University Giessen Heinrich‐Buff‐Ring 17 35392 Giessen Germany
| | - Juliane Greifenstein
- Institute of Microstructure TechnologyKarlsruhe Institute of Technology Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| | - Tobias C. Foertsch
- Institute of Microstructure TechnologyKarlsruhe Institute of Technology Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| | - Stephan W. Münch
- Institute of Organic ChemistryKarlsruhe Institute of Technology Fritz‐Haber‐Weg 6 76131 Karlsruhe Germany
| | - Barbara Ridder
- Institute of Organic ChemistryKarlsruhe Institute of Technology Fritz‐Haber‐Weg 6 76131 Karlsruhe Germany
| | - Clemens v. Bojničić‐Kninski
- Institute of Microstructure TechnologyKarlsruhe Institute of Technology Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| | - Alexander Nesterov‐Mueller
- Institute of Microstructure TechnologyKarlsruhe Institute of Technology Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical ChemistryJustus‐Liebig University Giessen Heinrich‐Buff‐Ring 17 35392 Giessen Germany
| | - Ute Schepers
- Institute of Toxicology and GeneticsKarlsruhe Institute of Technology Hermann‐von Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| | - Stefan Bräse
- Institute of Organic ChemistryKarlsruhe Institute of Technology Fritz‐Haber‐Weg 6 76131 Karlsruhe Germany
- Institute of Toxicology and GeneticsKarlsruhe Institute of Technology Hermann‐von Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| | - Felix F. Loeffler
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Frank Breitling
- Institute of Microstructure TechnologyKarlsruhe Institute of Technology Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| |
Collapse
|
15
|
Hadavi E, Leijten J, Brinkmann J, Jonkheijm P, Karperien M, van Apeldoorn A. Fibronectin and Collagen IV Microcontact Printing Improves Insulin Secretion by INS1E Cells. Tissue Eng Part C Methods 2018; 24:628-636. [PMID: 30306836 DOI: 10.1089/ten.tec.2018.0151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
IMPACT STATEMENT This research deals with finding a proper bioengineering strategy for the creation of improved β-cell replacement therapy in type 1 diabetes. It specifically deals with the microenvironment of β-cells and its relationship to their endocrine function.
Collapse
Affiliation(s)
- Elahe Hadavi
- 1 Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente , Enschede, The Netherlands
| | - Jeroen Leijten
- 1 Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente , Enschede, The Netherlands
| | - Jenny Brinkmann
- 2 MESA+ Institute for Nanotechnology, Molecular Nanofabrication Group, University of Twente , Enschede, The Netherlands
| | - Pascal Jonkheijm
- 2 MESA+ Institute for Nanotechnology, Molecular Nanofabrication Group, University of Twente , Enschede, The Netherlands
| | - Marcel Karperien
- 1 Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente , Enschede, The Netherlands
| | - Aart van Apeldoorn
- 1 Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente , Enschede, The Netherlands .,3 Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University , Maastricht, The Netherlands
| |
Collapse
|
16
|
Kumar R, Welle A, Becker F, Kopyeva I, Lahann J. Substrate-Independent Micropatterning of Polymer Brushes Based on Photolytic Deactivation of Chemical Vapor Deposition Based Surface-Initiated Atom-Transfer Radical Polymerization Initiator Films. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31965-31976. [PMID: 30180547 DOI: 10.1021/acsami.8b11525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Precise microscale arrangement of biomolecules and cells is essential for tissue engineering, microarray development, diagnostic sensors, and fundamental research in the biosciences. Biofunctional polymer brushes have attracted broad interest in these applications. However, patterning approaches to creating microstructured biointerfaces based on polymer brushes often involve tedious, expensive, and complicated procedures that are specifically designed for model substrates. We report a substrate-independent, facile, and scalable technique with which to prepare micropatterned biofunctional brushes with the ability to generate binary chemical patterns. Employing chemical vapor deposition (CVD) polymerization, a functionalized polymer coating decorated with 2-bromoisobutyryl groups that act as atom-transfer radical polymerization (ATRP) initiators was prepared and subsequently modified using UV light. The exposure of 2-bromoisobutyryl groups to UV light with wavelengths between 187 and 254 nm resulted in selective debromination, effectively eliminating the initiation of ATRP. In addition, when coatings incorporating both 2-bromoisobutyryl and primary amine groups were irradiated with UV light, the amines retained their functionality after UV treatment and could be conjugated to activated esters, facilitating binary chemical patterns. In contrast, polymer brushes were selectively grown from areas protected from UV treatment, as confirmed by atomic force microscopy, time-of-flight secondary ion mass spectrometry, and imaging ellipsometry. Furthermore, spatial control over biomolecular adhesion was achieved in three ways: (1) patterned nonfouling brushes resulted in nonspecific protein adsorption to areas not covered with polymer brushes; (2) patterned brushes decorated with active binding sides gave rise to specific protein immobilization on areas presenting polymer brushes; (3) and primary amines were co-patterned along with clickable polymer brushes bearing pendant alkyne groups, leading to bifunctional reactivity. Because this novel technique is independent of the original substrate's physicochemical properties, it can be extended to technologically relevant substrates such as polystyrene, polydimethylsiloxane, polyvinyl chloride, and steel. With further work, the photolytic deactivation of CVD-based initiator coatings promises to advance the utility of patterned biofunctional polymer brushes across a spectrum of biomedical applications.
Collapse
|
17
|
Juste-Dolz A, Avella-Oliver M, Puchades R, Maquieira A. Indirect Microcontact Printing to Create Functional Patterns of Physisorbed Antibodies. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3163. [PMID: 30235856 PMCID: PMC6164925 DOI: 10.3390/s18093163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022]
Abstract
Microcontact printing (µCP) is a practical and versatile approach to create nanostructured patterns of biomolecular probes, but it involves conformational changes on the patterned bioreceptors that often lead to a loss on the biological activity of the resulting structures. Herein we introduce indirect µCP to create functional patterns of bioreceptors on solid substrates. This is a simple strategy that relies on physisorbing biomolecular probes of interest in the nanostructured gaps that result after patterning backfilling agents by standard µCP. This study presents the approach, assesses bovine serum albumin as backfilling agent for indirect µCP on different materials, reports the limitations of standard µCP on the functionality of patterned antibodies, and demonstrates the capabilities of indirect µCP to solve this issue. Bioreceptors were herein structured as diffractive gratings and used to measure biorecognition events in label-free conditions. Besides, as a preliminary approach towards sensing biomarkers, this work also reports the implementation of indirect µCP in an immunoassay to detect human immunoglobulin E.
Collapse
Affiliation(s)
- Augusto Juste-Dolz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain.
| | - Miquel Avella-Oliver
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain.
| | - Rosa Puchades
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain.
- Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain.
| | - Angel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain.
- Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain.
| |
Collapse
|
18
|
Cabanas-Danés J, Landman E, Huskens J, Karperien M, Jonkheijm P. Hydrolytically Labile Linkers Regulate Release and Activity of Human Bone Morphogenetic Protein-6. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9298-9306. [PMID: 30005569 PMCID: PMC6143286 DOI: 10.1021/acs.langmuir.8b00853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Release of growth factors while simultaneously maintaining their full biological activity over a period of days to weeks is an important issue in controlled drug delivery and in tissue engineering. In addition, the selected strategy to immobilize growth factors largely determines their biological activity. Silica surfaces derivatized with glycidyloxy propyl trimethoxysilane and poly(glycidyl methacrylate) brushes yielded epoxide-functionalized surfaces onto which human bone morphogenetic protein-6 (hBMP-6) was immobilized giving stable secondary amine bonds. The biological activity of hBMP-6 was unleashed by hydrolysis of the surface siloxane and ester bonds. We demonstrate that this type of labile bonding strategy can be applied to biomaterial surfaces with relatively simple and biocompatible chemistry, such as siloxane, ester, and imine bonds. Our data indicates that the use of differential hydrolytically labile linkers is a versatile method for functionalization of biomaterials with a variety of growth factors providing control over their biological activity.
Collapse
Affiliation(s)
- Jordi Cabanas-Danés
- Bioinspired
Molecular Engineering Laboratory, TechMed Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Ellie Landman
- Developmental
BioEngineering Group, TechMed Centre, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jurriaan Huskens
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Marcel Karperien
- Developmental
BioEngineering Group, TechMed Centre, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Pascal Jonkheijm
- Bioinspired
Molecular Engineering Laboratory, TechMed Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
19
|
Koçer G, Jonkheijm P. About Chemical Strategies to Fabricate Cell-Instructive Biointerfaces with Static and Dynamic Complexity. Adv Healthc Mater 2018; 7:e1701192. [PMID: 29717821 DOI: 10.1002/adhm.201701192] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 02/12/2018] [Indexed: 12/21/2022]
Abstract
Properly functioning cell-instructive biointerfaces are critical for healthy integration of biomedical devices in the body and serve as decisive tools for the advancement of our understanding of fundamental cell biological phenomena. Studies are reviewed that use covalent chemistries to fabricate cell-instructive biointerfaces. These types of biointerfaces typically result in a static presentation of predefined cell-instructive cues. Chemically defined, but dynamic cell-instructive biointerfaces introduce spatiotemporal control over cell-instructive cues and present another type of biointerface, which promises a more biomimetic way to guide cell behavior. Therefore, strategies that offer control over the lateral sorting of ligands, the availability and molecular structure of bioactive ligands, and strategies that offer the ability to induce physical, chemical and mechanical changes in situ are reviewed. Specific attention is paid to state-of-the-art studies on dynamic, cell-instructive 3D materials. Future work is expected to further deepen our understanding of molecular and cellular biological processes investigating cell-type specific responses and the translational steps toward targeted in vivo applications.
Collapse
Affiliation(s)
- Gülistan Koçer
- TechMed Centre and MESA Institute for Nanotechnology; University of Twente; 7500 AE Enschede The Netherlands
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Pascal Jonkheijm
- TechMed Centre and MESA Institute for Nanotechnology; University of Twente; 7500 AE Enschede The Netherlands
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| |
Collapse
|
20
|
Zhang L, Zhang X, Yao Z, Jiang S, Deng J, Li B, Yu Z. Discovery of Fluorogenic Diarylsydnone-Alkene Photoligation: Conversion of ortho-Dual-Twisted Diarylsydnones into Planar Pyrazolines. J Am Chem Soc 2018; 140:7390-7394. [DOI: 10.1021/jacs.8b02493] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Linmeng Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Xiaocui Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Zhuojun Yao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Shichao Jiang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Jiajie Deng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Bo Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Zhipeng Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| |
Collapse
|
21
|
Foncy J, Estève A, Degache A, Colin C, Cau JC, Malaquin L, Vieu C, Trévisiol E. Fabrication of Biomolecule Microarrays for Cell Immobilization Using Automated Microcontact Printing. Methods Mol Biol 2018; 1771:83-95. [PMID: 29633206 DOI: 10.1007/978-1-4939-7792-5_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Biomolecule microarrays are generally produced by conventional microarrayer, i.e., by contact or inkjet printing. Microcontact printing represents an alternative way of deposition of biomolecules on solid supports but even if various biomolecules have been successfully microcontact printed, the production of biomolecule microarrays in routine by microcontact printing remains a challenging task and needs an effective, fast, robust, and low-cost automation process. Here, we describe the production of biomolecule microarrays composed of extracellular matrix protein for the fabrication of cell microarrays by using an automated microcontact printing device. Large scale cell microarrays can be reproducibly obtained by this method.
Collapse
Affiliation(s)
- Julie Foncy
- Laboratory for Analysis and Architecture of Systems (LAAS-CNRS), Université de Toulouse, CNRS, INSA, Toulouse, France
| | - Aurore Estève
- Laboratory for Analysis and Architecture of Systems (LAAS-CNRS), Université de Toulouse, CNRS, INSA, Toulouse, France
| | | | - Camille Colin
- Laboratory for Analysis and Architecture of Systems (LAAS-CNRS), Université de Toulouse, CNRS, INSA, Toulouse, France
| | | | - Laurent Malaquin
- Laboratory for Analysis and Architecture of Systems (LAAS-CNRS), Université de Toulouse, CNRS, INSA, Toulouse, France
| | - Christophe Vieu
- Laboratory for Analysis and Architecture of Systems (LAAS-CNRS), Université de Toulouse, CNRS, INSA, Toulouse, France
| | - Emmanuelle Trévisiol
- Laboratory for Analysis and Architecture of Systems (LAAS-CNRS), Université de Toulouse, CNRS, INSA, Toulouse, France.
| |
Collapse
|
22
|
Zhu C, Taipaleenmäki EM, Zhang Y, Han X, Städler B. Interaction of cells with patterned reactors. Biomater Sci 2018; 6:793-802. [DOI: 10.1039/c7bm00838d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The patterning of subcompartmentalized enzyme-loaded reactors is illustrated and the effect of triggered encapsulated catalysis on adhering cells is reported.
Collapse
Affiliation(s)
- Chuntao Zhu
- State Key Laboratory of Urban Water Resource and Environment
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | | | - Yan Zhang
- Interdisciplinary Nanoscience Center (iNANO)
- Aarhus University
- 8000 Aarhus
- Denmark
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO)
- Aarhus University
- 8000 Aarhus
- Denmark
| |
Collapse
|
23
|
McNitt CD, Cheng H, Ullrich S, Popik VV, Bjerknes M. Multiphoton Activation of Photo-Strain-Promoted Azide Alkyne Cycloaddition “Click” Reagents Enables in Situ Labeling with Submicrometer Resolution. J Am Chem Soc 2017; 139:14029-14032. [DOI: 10.1021/jacs.7b08472] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Hazel Cheng
- Department
of Medicine and Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | - Matthew Bjerknes
- Department
of Medicine and Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
24
|
Buhl M, Traboni S, Körsgen M, Lamping S, Arlinghaus HF, Ravoo BJ. On surface O-glycosylation by catalytic microcontact printing. Chem Commun (Camb) 2017; 53:6203-6206. [DOI: 10.1039/c7cc02505j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbohydrate microarrays are made by microcontact printing of glycosyl donors on hydroxyl terminated substrates.
Collapse
Affiliation(s)
- Moritz Buhl
- Organic Chemistry Institute and Center for Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Serena Traboni
- Department of Chemical Sciences
- University of Naples Federico II
- I-80126 Naples
- Italy
| | - Martin Körsgen
- Physics Institute
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Sebastian Lamping
- Organic Chemistry Institute and Center for Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | | | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| |
Collapse
|
25
|
Fredonnet J, Foncy J, Cau JC, Séverac C, François JM, Trévisiol E. Automated and Multiplexed Soft Lithography for the Production of Low-Density DNA Microarrays. MICROARRAYS (BASEL, SWITZERLAND) 2016; 5:E25. [PMID: 27681742 PMCID: PMC5197944 DOI: 10.3390/microarrays5040025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 01/22/2023]
Abstract
Microarrays are established research tools for genotyping, expression profiling, or molecular diagnostics in which DNA molecules are precisely addressed to the surface of a solid support. This study assesses the fabrication of low-density oligonucleotide arrays using an automated microcontact printing device, the InnoStamp 40(®). This automate allows a multiplexed deposition of oligoprobes on a functionalized surface by the use of a MacroStamp(TM) bearing 64 individual pillars each mounted with 50 circular micropatterns (spots) of 160 µm diameter at 320 µm pitch. Reliability and reuse of the MacroStamp(TM) were shown to be fast and robust by a simple washing step in 96% ethanol. The low-density microarrays printed on either epoxysilane or dendrimer-functionalized slides (DendriSlides) showed excellent hybridization response with complementary sequences at unusual low probe and target concentrations, since the actual probe density immobilized by this technology was at least 10-fold lower than with the conventional mechanical spotting. In addition, we found a comparable hybridization response in terms of fluorescence intensity between spotted and printed oligoarrays with a 1 nM complementary target by using a 50-fold lower probe concentration to produce the oligoarrays by the microcontact printing method. Taken together, our results lend support to the potential development of this multiplexed microcontact printing technology employing soft lithography as an alternative, cost-competitive tool for fabrication of low-density DNA microarrays.
Collapse
Affiliation(s)
- Julie Fredonnet
- ITAV, Université de Toulouse, CNRS, UPS, Toulouse 31000, France.
| | - Julie Foncy
- ITAV, Université de Toulouse, CNRS, UPS, Toulouse 31000, France.
- LISBP, Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, Toulouse F-31077, France.
| | | | | | - Jean Marie François
- ITAV, Université de Toulouse, CNRS, UPS, Toulouse 31000, France.
- LISBP, Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, Toulouse F-31077, France.
- Dendris SAS, 335 Rue du Chêne Vert, Labège 31670, France.
| | - Emmanuelle Trévisiol
- ITAV, Université de Toulouse, CNRS, UPS, Toulouse 31000, France.
- CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France.
- LAAS, Univ de Toulouse, F-31400 Toulouse, France.
| |
Collapse
|
26
|
Coyle BL, Baneyx F. Direct and reversible immobilization and microcontact printing of functional proteins on glass using a genetically appended silica-binding tag. Chem Commun (Camb) 2016; 52:7001-4. [PMID: 27157272 DOI: 10.1039/c6cc02660e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fusion of disulfide-constrained or linear versions of the Car9 dodecapeptide to model fluorescent proteins support their on-contact and oriented immobilization onto unmodified glass. Bound proteins can be released and the surface regenerated by incubation with l-lysine. This noncovalent chemistry enables rapid and reversibe microcontact printing of tagged proteins and speeds up the production of bicontinuous protein patterns.
Collapse
Affiliation(s)
- Brandon L Coyle
- Department of Chemical Engineering, University of Washington, Box 351750, Seattle, WA, USA
| | - François Baneyx
- Department of Chemical Engineering, University of Washington, Box 351750, Seattle, WA, USA
| |
Collapse
|
27
|
An overview of innovations and industrial solutions in Protein Microarray Technology. Proteomics 2016; 16:1297-308. [DOI: 10.1002/pmic.201500429] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 01/12/2023]
|
28
|
Vonhören B, Roling O, Buten C, Körsgen M, Arlinghaus HF, Ravoo BJ. Photochemical Microcontact Printing by Tetrazole Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:2277-2282. [PMID: 26886297 DOI: 10.1021/acs.langmuir.6b00059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We developed a simple method to pattern self-assembled monolayers of tetrazole triethoxylsilane with a variety of different molecules by photochemical microcontact printing. Under irradiation, tetrazoles form highly reactive nitrile imines, which react with alkenes, alkynes, and thiols. The covalent linkage to the surface could be unambiguously demonstrated by fluorescence microscopy, because the reaction product is fluorescent in contrast to tetrazole. The modified surfaces were further analyzed by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), atomic force microscopy (AFM), and contact angle goniometry. Protein-repellent micropatterns, a biotin-streptavidin array, and structured polymer brushes could be fabricated with this straightforward method for surface functionalization.
Collapse
Affiliation(s)
- Benjamin Vonhören
- Organisch-Chemisches Institut, Center for Soft Nanoscience and Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster , Corrensstraße 40, 48149 Münster, Germany
| | - Oliver Roling
- Organisch-Chemisches Institut, Center for Soft Nanoscience and Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster , Corrensstraße 40, 48149 Münster, Germany
| | - Christoph Buten
- Organisch-Chemisches Institut, Center for Soft Nanoscience and Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster , Corrensstraße 40, 48149 Münster, Germany
| | - Martin Körsgen
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Heinrich F Arlinghaus
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Bart Jan Ravoo
- Organisch-Chemisches Institut, Center for Soft Nanoscience and Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster , Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
29
|
Abstract
INTRODUCTION The past decade has witnessed tremendous progress in surface micropatterning techniques for generating arrays of various types of biomolecules. Multiplexed protein micropatterning has tremendous potential for drug discovery providing versatile means for high throughput assays required for target and lead identification as well as diagnostics and functional screening for personalized medicine. However, ensuring the functional integrity of proteins on surfaces has remained challenging, in particular in the case of membrane proteins, the most important class of drug targets. Yet, generic strategies to control functional organization of proteins into micropatterns are emerging. AREAS COVERED This review includes an overview introducing the most common approaches for surface modification and functional protein immobilization. The authors present the key photo and soft lithography techniques with respect to compatibility with functional protein micropatterning and multiplexing capabilities. In the second part, the authors present the key applications of protein micropatterning techniques in drug discovery with a focus on membrane protein interactions and cellular signaling. EXPERT OPINION With the growing importance of target discovery as well as protein-based therapeutics and personalized medicine, the application of protein arrays can play a fundamental role in drug discovery. Yet, important technical breakthroughs are still required for broad application of these approaches, which will include in vitro "copying" of proteins from cDNA arrays into micropatterns, direct protein capturing from single cells as well as protein microarrays in living cells.
Collapse
Affiliation(s)
- Changjiang You
- a Department of Biology, Division of Biophysics , University of Osnabrück , Osnabrück 49076 , Germany
| | - Jacob Piehler
- a Department of Biology, Division of Biophysics , University of Osnabrück , Osnabrück 49076 , Germany
| |
Collapse
|
30
|
Sankaran S, van Weerd J, Voskuhl J, Karperien M, Jonkheijm P. Photoresponsive Cucurbit[8]uril-Mediated Adhesion of Bacteria on Supported Lipid Bilayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:6187-96. [PMID: 26469773 DOI: 10.1002/smll.201502471] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Indexed: 05/16/2023]
Abstract
In this work, the development of a photoresponsive platform for the presentation of bioactive ligands to study receptor-ligand interactions has been described. For this purpose, supramolecular host-guest chemistry and supported lipid bilayers (SLBs) have been combined in a microfluidic device. Quartz crystal microbalance with dissipation monitoring (QCM-D) studies on methyl viologen (MV)-functionalized oligo ethylene glycol-based self-assembled monolayers, gel and liquid-state SLBs have been compared for their nonfouling properties in the case of ConA and bacteria. In combination with bacterial adhesion test, negligible nonspecific bacterial adhesion is observed only in the case of methyl-viologen-modified liquid-state SLBs. Therefore, liquid-state SLBs have been identified as most suitable for studying specific cell interactions when MV is incorporated as a guest on the surface. The photoswitchable supramolecular ternary complex is formed by assembling cucurbit[8]uril (CB[8]) and an azobenzene-mannose conjugate (Azo-Man) onto MV-functionalized liquid-state SLBs and the assembly process has been characterized using QCM-D and fluorescence techniques. Mannose has been found to enable binding of E. coli via cell-surface receptors on the nonfouling supramolecular SLBs. Optical switching of the azobenzene moiety allows us to "erase" the bioactive surface after bacterial binding, providing the potential to develop reusable sensors. Localized photorelease of bacterial cells has also been shown indicating the possibility of optically guiding cellular growth, migration, and intercellular interactions.
Collapse
Affiliation(s)
- Shrikrishnan Sankaran
- Molecular Nanofabrication Group of the MESA+ Institute for Nanotechnology, Bioinspired Molecular Engineering Laboratory of the MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands
| | - Jasper van Weerd
- Molecular Nanofabrication Group of the MESA+ Institute for Nanotechnology, Bioinspired Molecular Engineering Laboratory of the MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands
- Department of Developmental Bioengineering of the MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands
| | - Jens Voskuhl
- Molecular Nanofabrication Group of the MESA+ Institute for Nanotechnology, Bioinspired Molecular Engineering Laboratory of the MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands
| | - Marcel Karperien
- Department of Developmental Bioengineering of the MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands
| | - Pascal Jonkheijm
- Molecular Nanofabrication Group of the MESA+ Institute for Nanotechnology, Bioinspired Molecular Engineering Laboratory of the MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands
| |
Collapse
|
31
|
Knight AS, Zhou EY, Francis MB, Zuckermann RN. Sequence Programmable Peptoid Polymers for Diverse Materials Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:5665-5691. [PMID: 25855478 DOI: 10.1002/adma.201500275] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 02/13/2015] [Indexed: 06/04/2023]
Abstract
Polymer sequence programmability is required for the diverse structures and complex properties that are achieved by native biological polymers, but efforts towards controlling the sequence of synthetic polymers are, by comparison, still in their infancy. Traditional polymers provide robust and chemically diverse materials, but synthetic control over their monomer sequences is limited. The modular and step-wise synthesis of peptoid polymers, on the other hand, allows for precise control over the monomer sequences, affording opportunities for these chains to fold into well-defined nanostructures. Hundreds of different side chains have been incorporated into peptoid polymers using efficient reaction chemistry, allowing for a seemingly infinite variety of possible synthetically accessible polymer sequences. Combinatorial discovery techniques have allowed the identification of functional polymers within large libraries of peptoids, and newly developed theoretical modeling tools specifically adapted for peptoids enable the future design of polymers with desired functions. Work towards controlling the three-dimensional structure of peptoids, from the conformation of the amide bond to the formation of protein-like tertiary structure, has and will continue to enable the construction of tunable and innovative nanomaterials that bridge the gap between natural and synthetic polymers.
Collapse
Affiliation(s)
- Abigail S Knight
- UC Berkeley Chemistry Department, Latimer Hall, Berkeley, CA, 94720, USA
| | - Effie Y Zhou
- UC Berkeley Chemistry Department, Latimer Hall, Berkeley, CA, 94720, USA
| | - Matthew B Francis
- UC Berkeley Chemistry Department, Latimer Hall, Berkeley, CA, 94720, USA
- The Molecular Foundry Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Ronald N Zuckermann
- The Molecular Foundry Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| |
Collapse
|
32
|
Ahmed S, Bui MPN, Abbas A. Paper-based chemical and biological sensors: Engineering aspects. Biosens Bioelectron 2015; 77:249-63. [PMID: 26410389 DOI: 10.1016/j.bios.2015.09.038] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/10/2015] [Accepted: 09/18/2015] [Indexed: 02/07/2023]
Abstract
Remarkable efforts have been dedicated to paper-based chemosensors and biosensors over the last few years, mainly driven by the promise of reaching the best trade-off between performance, affordability and simplicity. Because of the low-cost and rapid prototyping of these sensors, recent research has been focused on providing affordable diagnostic devices to the developing world. The recent progress in sensitivity, multi-functionality and integration of microfluidic paper-based analytical devices (µPADs), increasingly suggests that this technology is not only attractive in resource-limited environments but it also represents a serious challenger to silicon, glass and polymer-based biosensors. This review discusses the design, chemistry and engineering aspects of these developments, with a focus on the past few years.
Collapse
Affiliation(s)
- Snober Ahmed
- Department of Bioproducts and Biosystems Engineering, University of Minnesota Twin Cities, Saint Paul, MN 55108, United States
| | - Minh-Phuong Ngoc Bui
- Department of Bioproducts and Biosystems Engineering, University of Minnesota Twin Cities, Saint Paul, MN 55108, United States
| | - Abdennour Abbas
- Department of Bioproducts and Biosystems Engineering, University of Minnesota Twin Cities, Saint Paul, MN 55108, United States.
| |
Collapse
|
33
|
Tan X, Heureaux J, Liu AP. Cell spreading area regulates clathrin-coated pit dynamics on micropatterned substrate. Integr Biol (Camb) 2015; 7:1033-43. [PMID: 26205141 PMCID: PMC4558397 DOI: 10.1039/c5ib00111k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Clathrin-mediated endocytosis (CME) is the most characterized pathway for the endocytic entry of proteins and lipids at the plasma membrane of eukaryotic cells. Numerous studies have probed the roles of different endocytic accessory proteins in regulating the dynamics of clathrin-coated pit (CCP) assembly. However, it is not completely clear how physical cues regulate CCP dynamics. Here we employ microcontact printing to control cell shape and examine CCP dynamics as a function of cell spreading area for three differently sized cells. Cells with a large spreading area had more short-lived CCPs but a higher CCP initiation rate. Interestingly, we found that fluorescence intensity of CCPs decreased with increasing cell spreading area in a manner that was dependent on the cortical actin network. Our results point to another facet of the regulation of CCP dynamics, suggesting that CME may be modulated while cells change their mechanical state and remodel their actin cytoskeleton during various processes.
Collapse
Affiliation(s)
- Xinyu Tan
- Department of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, Michigan MI 48105, USA.
| | | | | |
Collapse
|
34
|
Sankaran S, de Ruiter M, Cornelissen JJLM, Jonkheijm P. Supramolecular Surface Immobilization of Knottin Derivatives for Dynamic Display of High Affinity Binders. Bioconjug Chem 2015; 26:1972-80. [PMID: 26270829 DOI: 10.1021/acs.bioconjchem.5b00419] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Knottins are known as a robust and versatile class of miniprotein scaffolds for the presentation of high-affinity binding peptides; however, to date their application in biomaterials, biological coatings, and surface applications have not been explored. We have developed a strategy to recombinantly synthesize a β-trypsin inhibitory knottin with supramolecular guest tags that enable it to adhere to self-assembled monolayers of the supramolecular host cucurbit[8]uril (CB[8]). We have described a strategy to easily express knottins in E. coli by conjugating them to a fluorescent protein after which they are cleaved and purified. Knottin constructs that varied in the number and position of the supramolecular tag at either the N- or C-termini or at both ends have been verified for their trypsin inhibitory function and CB[8]-binding properties in solution and on surfaces. All of the knottin constructs showed strong inhibition of trypsin with inhibition constants between 10 and 30 nM. Using microscale thermophoresis, we determined that the supramolecular guest tags on the knottins bind CB[8] with a Kd of ∼6 μM in solution. At the surface, strong divalent binding has been determined with a Kd of 0.75 μM in the case of the knottin with two supramolecular guest tags, whereas only weak monovalent binding occurred when only one guest tag was present. We also show successful supramolecular surface immobilization of the knottin using CB[8] and prove that they can be used to immobilize β-trypsin at the surface.
Collapse
Affiliation(s)
- Shrikrishnan Sankaran
- Bioinspired Molecular Engineering Laboratory of the MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , 7500 AE Enschede, The Netherlands
| | | | | | - Pascal Jonkheijm
- Bioinspired Molecular Engineering Laboratory of the MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , 7500 AE Enschede, The Netherlands
| |
Collapse
|
35
|
Soares da Costa D, Márquez-Posadas MDC, Araujo AR, Yang Y, Merino S, Groth T, Reis RL, Pashkuleva I. Adhesion of adipose-derived mesenchymal stem cells to glycosaminoglycan surfaces with different protein patterns. ACS APPLIED MATERIALS & INTERFACES 2015; 7:10034-10043. [PMID: 25902379 DOI: 10.1021/acsami.5b02479] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Proteins and glycosaminoglycans (GAGs) are the main constituents of the extracellular matrix (ECM). They act in synergism and are equally critical for the development, growth, function, or survival of an organism. In this work, we developed surfaces that display these two classes of biomacromolecules, namely, GAGs and proteins, in a spatially controlled fashion. The generated surfaces can be used as a minimalistic but straightforward model aiding the elucidation of cell-ECM interactions. GAGs (hyaluronic acid and heparin) were covalently bound to amino functionalized surfaces, and albumin or fibronectin was patterned by microcontact printing on top of them. We demonstrate that adipose-derived stem cells (ASCs) can adhere either on the protein or on the GAG pattern as a function of the patterned molecules. ASCs found on the GAG pattern had different morphology and expressed different surface markers than the cells adhered on the protein pattern. ASCs morphology and spreading were also dependent on the size of the pattern. These results show that the developed supports can also be used for ASCs differentiation into different lineages.
Collapse
Affiliation(s)
- Diana Soares da Costa
- †3B's Research Group, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
- ‡ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Maria del Carmen Márquez-Posadas
- §IK4-Tekniker, Micro and Nano Manufacture Unit, Polo Tecnológico De Eibar, C/Iñaki Goenaga 5, 20600 Eibar, Gipuzkoa Spain
- ∥CIC microGUNE, Polo de Innovación Garaia, Goiru kalea 9, 20500 Arrasate-Mondragón, Gipuzkoa Spain
| | - Ana R Araujo
- †3B's Research Group, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
- ‡ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Yuan Yang
- ⊥Biomedical Materials Group, Martin Luther University, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Saxony-Anhalt, Germany
| | - Santos Merino
- §IK4-Tekniker, Micro and Nano Manufacture Unit, Polo Tecnológico De Eibar, C/Iñaki Goenaga 5, 20600 Eibar, Gipuzkoa Spain
- ∥CIC microGUNE, Polo de Innovación Garaia, Goiru kalea 9, 20500 Arrasate-Mondragón, Gipuzkoa Spain
| | - Thomas Groth
- ⊥Biomedical Materials Group, Martin Luther University, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Saxony-Anhalt, Germany
| | - Rui L Reis
- †3B's Research Group, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
- ‡ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Iva Pashkuleva
- †3B's Research Group, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
- ‡ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
36
|
Zhong J, Sun G, He D. Classic, liquid, and matrix-assisted dip-pen nanolithography for materials research. NANOSCALE 2014; 6:12217-12228. [PMID: 25251309 DOI: 10.1039/c4nr04296d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
As a powerful atomic force microscopy-based nanotechnological tool, dip-pen nanolithography (DPN) has provided an ideal direct-write "constructive" lithographic tool that allows materials to be patterned from DPN tips onto a surface with high registration and sub-15 nm resolution. In the past few decades, DPN has been enormously developed for studying the patterning of inorganic, organic, and biological materials onto a variety of substrates. The focus of this review is on the development of three types of DPN: classic, liquid, and matrix-assisted DPN. Such development mainly includes the following aspects: the comparisons of three types of DPN, the effect factors and basic mechanisms of three types of DPN, and the application progress of three types of DPN.
Collapse
Affiliation(s)
- Jian Zhong
- National Engineering Research Center for Nanotechnology, Shanghai 200241, People's Republic of China.
| | | | | |
Collapse
|
37
|
Cumurcu A, Feng X, Ramos LD, Hempenius MA, Schön P, Vancso GJ. Sub-nanometer expansions of redox responsive polymer films monitored by imaging ellipsometry. NANOSCALE 2014; 6:12089-12095. [PMID: 25195609 DOI: 10.1039/c4nr02852j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We describe a novel approach to quantitatively visualize sub nm height changes occurring in thin films of redox active polymers upon reversible electrochemical oxidation/reduction in situ and in real-time with electrochemical imaging ellipsometry (EC-IE). Our approach is based on the utilization of a micro-patterned substrate containing circular patterns of passive (non-redox active) 11-mercapto-1-undecanol (MCU) within a redox-responsive oligoethylene sulfide end-functionalized poly(ferrocenyldimethylsilane) (ES-PFS) film on a gold substrate. The non-redox responsive MCU layer was used as a molecular reference layer for the direct visualization of the minute thickness variations of the ES-PFS film. The ellipsometric microscopy images were recorded in aqueous electrolyte solutions at potentials of -0.1 V and 0.6 V vs. Ag/AgCl corresponding to the reduced and oxidized redox states of ES-PFS, respectively. The ellipsometric contrast images showed a 37 (±2)% intensity increase in the ES-PFS layer upon oxidation. The thickness of the ES-PFS layer reversibly changed between 4.0 (±0.1) nm and 3.4 (±0.1) nm upon oxidation and reduction, respectively, as determined by IE. Additionally, electrochemical atomic force microscopy (EC-AFM) was used to verify the redox controlled thickness variations. The proposed method opens novel avenues to optically visualize minute and rapid height changes occurring e.g. in redox active (and other stimulus responsive) polymer films in a fast and non-invasive manner.
Collapse
Affiliation(s)
- Aysegul Cumurcu
- Department of Materials Science and Technology of Polymers, University of Twente, MESA+ Institute for Nanotechnology, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | | | | | | | | | | |
Collapse
|
38
|
Li G, Zhao X, Zhao W, Zhang L, Wang C, Jiang M, Gu X, Yang Y. Porous chitosan scaffolds with surface micropatterning and inner porosity and their effects on Schwann cells. Biomaterials 2014; 35:8503-13. [DOI: 10.1016/j.biomaterials.2014.05.093] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
|
39
|
Cabanas-Danés J, Rodrigues ED, Landman E, van Weerd J, van Blitterswijk C, Verrips T, Huskens J, Karperien M, Jonkheijm P. A Supramolecular Host–Guest Carrier System for Growth Factors Employing VHH Fragments. J Am Chem Soc 2014; 136:12675-81. [DOI: 10.1021/ja505695w] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jordi Cabanas-Danés
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | | | | | - Jasper van Weerd
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Clemens van Blitterswijk
- Department
of Complex Tissue and Organ Regeneration, MERLN Institute, Maastricht University, Netherlands
| | - Theo Verrips
- Cellular
Architecture and Dynamics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Jurriaan Huskens
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | | | - Pascal Jonkheijm
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| |
Collapse
|
40
|
Brinkmann J, Cavatorta E, Sankaran S, Schmidt B, van Weerd J, Jonkheijm P. About supramolecular systems for dynamically probing cells. Chem Soc Rev 2014; 43:4449-69. [PMID: 24681633 DOI: 10.1039/c4cs00034j] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This article reviews the state of the art in the development of strategies for generating supramolecular systems for dynamic cell studies. Dynamic systems are crucial to further our understanding of cell biology and are consequently at the heart of many medical applications. Increasing interest has therefore been focused recently on rendering systems bioactive and dynamic that can subsequently be employed to engage with cells. Different approaches using supramolecular chemistry are reviewed with particular emphasis on their application in cell studies. We conclude with an outlook on future challenges for dynamic cell research and applications.
Collapse
Affiliation(s)
- Jenny Brinkmann
- MESA+ Institute for Nanotechnology and Department of Science and Technology, Laboratory Group of Bioinspired Molecular Engineering, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | | | | | | | | | | |
Collapse
|
41
|
Voskuhl J, Sankaran S, Jonkheijm P. Optical control over bioactive ligands at supramolecular surfaces. Chem Commun (Camb) 2014; 50:15144-7. [DOI: 10.1039/c4cc03184a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Addressing whole protein and bacterial immobilization and their optical control on a β-cyclodextrin supramolecular platform.
Collapse
Affiliation(s)
- J. Voskuhl
- Laboratory Group Bioinspired Molecular Engineering
- MESA+ Institute for Nanotechnology
- Department of Science and Technology
- University of Twente
- , The Netherlands
| | - S. Sankaran
- Laboratory Group Bioinspired Molecular Engineering
- MESA+ Institute for Nanotechnology
- Department of Science and Technology
- University of Twente
- , The Netherlands
| | - P. Jonkheijm
- Laboratory Group Bioinspired Molecular Engineering
- MESA+ Institute for Nanotechnology
- Department of Science and Technology
- University of Twente
- , The Netherlands
| |
Collapse
|