1
|
Yan H, Zhao Z, Li W. Nitrite exposure leads to glycolipid metabolic disorder via the heme-HO pathway in teleost. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116653. [PMID: 38964066 DOI: 10.1016/j.ecoenv.2024.116653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Nitrite is the most common nitrogen-containing compound in nature. It is widely used in food processing like in pickled foods so it has caused widespread public concern about the safety of nitrites due to the formation of nitrosamine, a carcinogen, during the food process. Recent research has shown nitrite has therapeutic potential for cardiovascular disease due to its similar function to NO, yet the safety of oral nitrite and the physiological and biochemical responses induced after oral administration still require further validation. In addition, the relationship between nitrite and glycolipid metabolism still needs to be elucidated. As aquatic animals, fish are more susceptible to nitrite compared to mammals. Herein, we utilized tilapia (Oreochromis niloticus) as an animal model to explore the relationship between nitrite and glycolipid metabolism in organisms. In the present study, we found that nitrite elicited a hypoxic metabolic response in tilapia and deepened this metabolic response under the co-stress of the pathogenic bacterium S.ag (Streptococcus agalactiae). In addition, nitrite-induced elevation of MetHb (Methemoglobin) and its by-product heme was involved in the metabolic response to nitrite-induced hypoxia through the HO/CO pathway, which has not yet been mentioned in previous studies. Moreover, heme affected hepatic metabolic responses through the ROS-ER stress-VLDL pathway. These findings, for the first time, reveal that nitrite exposure leads to glycolipid metabolic disorder via the heme-HO pathway in teleost. It not only provides new insights into the results of nitrite on the body but also is beneficial for developing healthy strategies for fish farming.
Collapse
Affiliation(s)
- Haijun Yan
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zaoya Zhao
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
2
|
Wohlfahrt P, Jenča D, Melenovský V, Jarolím P, Dlouhá D, Šramko M, Kotrč M, Želízko M, Mrázková J, Piťha J, Adámková V, Kautzner J. Attenuation of Hypocretin/Orexin Signaling Is Associated With Increased Mortality After Myocardial Infarction. J Am Heart Assoc 2023; 12:e028987. [PMID: 36892078 PMCID: PMC10111544 DOI: 10.1161/jaha.122.028987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/26/2023] [Indexed: 03/10/2023]
Abstract
Background The hypocretin/orexin system has been shown to play a role in heart failure. Whether it also influences myocardial infarction (MI) outcomes is unknown. We evaluated the effect of the rs7767652 minor allele T associated with decreased transcription of the hypocretin/orexin receptor-2 and circulating orexin A concentrations on mortality risk after MI. Methods and Results Data from a single-center, prospectively designed registry of consecutive patients hospitalized for MI at a large tertiary cardiology center were analyzed. Patients without previous history of MI or heart failure were included. A random population sample was used to compare allele frequencies in the general population. Out of 1009 patients (aged 64±12 years, 74.6% men) after MI, 6.1% were homozygotes (TT) and 39.4% heterozygotes (CT) for minor allele. Allele frequencies in the MI group did not differ from 1953 subjects from general population (χ2 P=0.62). At index hospitalization, MI size was the same, but ventricular fibrillation and the need for cardiopulmonary resuscitation were more prevalent in the TT allele variant. Among patients with ejection fraction ≤40% at discharge, the TT variant was associated with a lower increase in left ventricular ejection fraction during follow-up (P=0.03). During the 27-month follow-up, there was a statistically significant association of the TT variant with increased mortality risk (hazard ratio [HR], 2.83; P=0.001). Higher circulating orexin A was associated with a lower mortality risk (HR, 0.41; P<0.05). Conclusions Attenuation of hypocretin/orexin signaling is associated with increased mortality risk after MI. This effect may be partially explained by the increased arrhythmic risk and the effect on the left ventricular systolic function recovery.
Collapse
Affiliation(s)
- Peter Wohlfahrt
- Department of Preventive CardiologyInstitute for Clinical and Experimental Medicine (IKEM)PragueCzech Republic
- First Medical SchoolCharles UniversityPragueCzech Republic
| | - Dominik Jenča
- Department of CardiologyInstitute for Clinical and Experimental Medicine (IKEM)PragueCzech Republic
- Third Medical SchoolCharles UniversityPragueCzech Republic
| | - Vojtěch Melenovský
- Department of CardiologyInstitute for Clinical and Experimental Medicine (IKEM)PragueCzech Republic
| | - Petr Jarolím
- Department of PathologyBrigham and Women’s HospitalBostonMA
| | - Dana Dlouhá
- Experimental Medicine CentreInstitute for Clinical and Experimental Medicine (IKEM)PragueCzech Republic
| | - Marek Šramko
- First Medical SchoolCharles UniversityPragueCzech Republic
- Department of CardiologyInstitute for Clinical and Experimental Medicine (IKEM)PragueCzech Republic
| | - Martin Kotrč
- Department of CardiologyInstitute for Clinical and Experimental Medicine (IKEM)PragueCzech Republic
| | - Michael Želízko
- Department of CardiologyInstitute for Clinical and Experimental Medicine (IKEM)PragueCzech Republic
| | | | - Jan Piťha
- Department of CardiologyInstitute for Clinical and Experimental Medicine (IKEM)PragueCzech Republic
| | - Věra Adámková
- Department of Preventive CardiologyInstitute for Clinical and Experimental Medicine (IKEM)PragueCzech Republic
| | - Josef Kautzner
- Department of CardiologyInstitute for Clinical and Experimental Medicine (IKEM)PragueCzech Republic
- Medical and Dentistry SchoolPalacký UniversityOlomoucCzech Republic
| |
Collapse
|
3
|
Obstructive Sleep Apnea, Circadian Clock Disruption, and Metabolic Consequences. Metabolites 2022; 13:metabo13010060. [PMID: 36676985 PMCID: PMC9863434 DOI: 10.3390/metabo13010060] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a chronic disorder characterized by recurrent episodes of apnea and hypopnea during sleep. It is associated with various cardiovascular and metabolic complications, including type 2 diabetes mellitus (T2DM) and obesity. Many pathways can be responsible for T2DM development in OSA patients, e.g., those related to HIF-1 and SIRT1 expression. Moreover, epigenetic mechanisms, such as miRNA181a or miRNA199, are postulated to play a pivotal role in this link. It has been proven that OSA increases the occurrence of circadian clock disruption, which is also a risk factor for metabolic disease development. Circadian clock disruption impairs the metabolism of glucose, lipids, and the secretion of bile acids. Therefore, OSA-induced circadian clock disruption may be a potential, complex, underlying pathway involved in developing and exacerbating metabolic diseases among OSA patients. The current paper summarizes the available information pertaining to the relationship between OSA and circadian clock disruption in the context of potential mechanisms leading to metabolic disorders.
Collapse
|
4
|
Ramser A, Dridi S. Avian Orexin: Feed Intake Regulator or Something Else? Vet Sci 2022; 9:vetsci9030112. [PMID: 35324840 PMCID: PMC8950792 DOI: 10.3390/vetsci9030112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Originally named for its expression in the posterior hypothalamus in rats and after the Greek word for “appetite”, hypocretin, or orexin, as it is known today, gained notoriety as a neuropeptide regulating feeding behavior, energy homeostasis, and sleep. Orexin has been proven to be involved in both central and peripheral control of neuroendocrine functions, energy balance, and metabolism. Since its discovery, its ability to increase appetite as well as regulate feeding behavior has been widely explored in mammalian food production animals such as cattle, pigs, and sheep. It is also linked to neurological disorders, leading to its intensive investigation in humans regarding narcolepsy, depression, and Alzheimer’s disease. However, in non-mammalian species, research is limited. In the case of avian species, orexin has been shown to have no central effect on feed-intake, however it was found to be involved in muscle energy metabolism and hepatic lipogenesis. This review provides current knowledge and summarizes orexin’s physiological roles in livestock and pinpoints the present lacuna to facilitate further investigations.
Collapse
Affiliation(s)
- Alison Ramser
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
- Cell and Molecular Biology Program, Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
- Cell and Molecular Biology Program, Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
- Correspondence: ; Tel.: +1-(479)-575-2583; Fax: +1-(479)-575-7139
| |
Collapse
|
5
|
Wang B, Paullada-Salmerón JA, Vergès-Castillo A, Gómez A, Muñoz-Cueto JA. Signaling pathways activated by sea bass gonadotropin-inhibitory hormone peptides in COS-7 cells transfected with their cognate receptor. Front Endocrinol (Lausanne) 2022; 13:982246. [PMID: 36051397 PMCID: PMC9424679 DOI: 10.3389/fendo.2022.982246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Results of previous studies provided evidence for the existence of a functional gonadotropin-inhibitory hormone (GnIH) system in the European sea bass, Dicentrarchus labrax, which exerted an inhibitory action on the brain-pituitary-gonadal axis of this species. Herein, we further elucidated the intracellular signaling pathways mediating in sea bass GnIH actions and the potential interactions with sea bass kisspeptin (Kiss) signaling. Although GnIH1 and GnIH2 had no effect on basal CRE-luc activity, they significantly decreased forskolin-elicited CRE-luc activity in COS-7 cells transfected with their cognate receptor GnIHR. Moreover, an evident increase in SRE-luc activity was noticed when COS-7 cells expressing GnIHR were challenged with both GnIH peptides, and this stimulatory action was significantly reduced by two inhibitors of the PKC pathway. Notably, GnIH2 antagonized Kiss2-evoked CRE-luc activity in COS-7 cells expressing GnIHR and Kiss2 receptor (Kiss2R). However, GnIH peptides did not alter NFAT-RE-luc activity and ERK phosphorylation levels. These data indicate that sea bass GnIHR signals can be transduced through the PKA and PKC pathways, and GnIH can interfere with kisspeptin actions by reducing its signaling. Our results provide additional evidence for the understanding of signaling pathways activated by GnIH peptides in teleosts, and represent a starting point for the study of interactions with multiple neuroendocrine factors on cell signaling.
Collapse
Affiliation(s)
- Bin Wang
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - José A. Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
- Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Cádiz, Spain
- The European University of the Seas (SEA-EU), Cádiz, Spain
| | - Alba Vergès-Castillo
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
- Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Cádiz, Spain
- The European University of the Seas (SEA-EU), Cádiz, Spain
| | - Ana Gómez
- Institute of Aquaculture of Torre de la Sal, CSIC, Castellón, Spain
| | - José A. Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
- Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Cádiz, Spain
- The European University of the Seas (SEA-EU), Cádiz, Spain
- *Correspondence: José A. Muñoz-Cueto,
| |
Collapse
|
6
|
Couvineau A, Voisin T, Nicole P, Gratio V, Blais A. Orexins: A promising target to digestive cancers, inflammation, obesity and metabolism dysfunctions. World J Gastroenterol 2021; 27:7582-7596. [PMID: 34908800 PMCID: PMC8641057 DOI: 10.3748/wjg.v27.i44.7582] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/22/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023] Open
Abstract
Hypothalamic neuropeptides named hypocretin/orexins which were identified in 1998 regulate critical functions such as wakefulness in the central nervous system. These past 20 years had revealed that orexins/receptors system was also present in the peripheral nervous system where they participated to the regulation of multiple functions including blood pressure regulation, intestinal motility, hormone secretion, lipolyze and reproduction functions. Associated to these peripheral functions, it was found that orexins and their receptors were involved in various diseases such as acute/chronic inflammation, metabolic syndrome and cancers. The present review suggests that orexins or the orexin neural circuitry represent potential therapeutic targets for the treatment of multiple pathologies related to inflammation including intestinal bowel disease, multiple sclerosis and septic shock, obesity and digestive cancers.
Collapse
Affiliation(s)
- Alain Couvineau
- INSERM UMR1149/Inflammation Research Center, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale contre le Cancer”, University of Paris, DHU UNITY, Paris 75018, France
| | - Thierry Voisin
- INSERM UMR1149/Inflammation Research Center, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale contre le Cancer”, University of Paris, DHU UNITY, Paris 75018, France
| | - Pascal Nicole
- INSERM UMR1149/Inflammation Research Center, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale contre le Cancer”, University of Paris, DHU UNITY, Paris 75018, France
| | - Valerie Gratio
- INSERM UMR1149/Inflammation Research Center, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale contre le Cancer”, University of Paris, DHU UNITY, Paris 75018, France
| | - Anne Blais
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, Paris 75005, France
| |
Collapse
|
7
|
Jeong H, Yang D, Zhao J, Seo JH, Shin DG, Cha JD, Lim CW, Kim JW, Kim B. Ethanol Extract of Orostachys japonicus A. Berger (Crassulaceae) Protects Against Type 2 Diabetes by Reducing Insulin Resistance and Hepatic Inflammation in Mice. J Med Food 2021; 24:464-478. [PMID: 34009023 DOI: 10.1089/jmf.2020.4790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes (T2D) is a threaten human health problem, and accompanied by hyperglycemia and disorder of insulin secretion, is a major cause of abnormalities in maintaining blood glucose homeostasis. Also, low-grade inflammation, as well as insulin resistance (IR), is a common feature in patients with T2D. Numerous causes of the outbreak of T2D have been suggested by researchers, who indicate that genetic background and epigenetic predisposition, such as overnutrition and deficient physical activity, hasten the promotion of T2D milieu. Orostachys japonicus A. Berger (O. japonicus) is a herbal and remedial plant whose various activities include hemostatic, antidotal, febrile, and anti-inflammatory. Hence, we designed to evaluate the antidiabetic efficacy of ethanol extracts of O. japonicus (OJE). Six-week-old C57BL/Ksj-db/db (db/db) mice were used. The results showed that mice given various concentrations of OJE (0, 50, 100, and 200 mg/kg per day) for 8 weeks showed significantly reduced hyperglycemia, IR, and liver injury, confirmed by measuring diabetic parameters, serum, and hepatic biochemicals. Furthermore, the treatment of OJE markedly decreased the mRNA levels of proinflammatory cytokines, lipid accumulation, and gluconeogenesis-related genes. Consistently, western blot analysis indicated that mice treated with OJE showed increased levels of phospho-c-Jun N-terminal kinase, phospho-Akt, glucose transporters 2 and 4 (GLUT2 and GLUT4) in T2D mice. Likewise, much the same results were obtained in in vitro experiments. Taken together, OJE had hopeful advantage in sustaining the glucose homeostasis and diminishing IR, and could be a safe alternative remedy for treating T2D.
Collapse
Affiliation(s)
- Hyuneui Jeong
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Jeollabuk-do, Korea
| | - Daram Yang
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Jeollabuk-do, Korea
| | - Jing Zhao
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Jeollabuk-do, Korea
| | - Jeong Hun Seo
- Research & Development Center of General Bio Co., Ltd, Namwon-si, Jeollabuk-do, Korea
| | - Dong Gue Shin
- Research & Development Center of General Bio Co., Ltd, Namwon-si, Jeollabuk-do, Korea
| | - Jeong-Dan Cha
- Research & Development Center of General Bio Co., Ltd, Namwon-si, Jeollabuk-do, Korea
| | - Chae Woong Lim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Jeollabuk-do, Korea
| | - Jong-Won Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Jeollabuk-do, Korea
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Jeollabuk-do, Korea
| |
Collapse
|
8
|
Ye W, Yan Y, Tang Y, Dong X, Chen G, Kang J, Huang L, Xiong Q, Feng Z. Orexin-A Attenuates Inflammatory Responses in Lipopolysaccharide-Induced Neural Stem Cells by Regulating NF-KB and Phosphorylation of MAPK/P38/Erk Pathways. J Inflamm Res 2021; 14:2007-2017. [PMID: 34040413 PMCID: PMC8140926 DOI: 10.2147/jir.s308078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/14/2021] [Indexed: 11/23/2022] Open
Abstract
Background Neuronal damage is the main cause of neurological diseases. Neural stem cells (NSCs) have the functions of cell repair and replacement of neurons, secretion of neurotrophic factors, and immune regulation of the neural microenvironment. Objective Previous study found that Orexin-A had a protective effect on neurons in the central nervous system, but it is lacking in making great efforts on the function of Orexin-A on NSCs. This study aimed to investigate the anti-inflammatory responses and signaling mechanisms of Orexin-A on lipopolysaccharide (LPS)-induced NSCs. Methods Quantitative real-time polymerase chain reaction was used to detect the mRNA level. Signaling pathway-related protein expression was detected by Western blot. The proliferation and migration of NSCs were investigated by Cell Counting Kit-8 (CCK-8) detection kit and transwell assay. Besides, the staining of hematoxylin and eosin (HE) was performed to study the morphology of cell. Results Orexin-A decreased the pro-inflammatory cytokines of IL-1β, TNF-α, and IL-6 induced by LPS by regulating nuclear factor-k-gene binding (NF-kB) and phosphorylation of P38/Erk-mitogen-activated protein kinases (MAPKs) pathways, but not p-JNK signaling. Conclusion Our findings indicate that Orexin-A can alleviate the inflammatory response of NSC. It can provide beneficial help in neural stem cell therapy applications.
Collapse
Affiliation(s)
- Wen Ye
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Yan Yan
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Yunliang Tang
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Xiaoyang Dong
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Gengfa Chen
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Junwei Kang
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Lianghua Huang
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Qi Xiong
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Zhen Feng
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| |
Collapse
|
9
|
Adeghate E, Lotfy M, D'Souza C, Alseiari SM, Alsaadi AA, Qahtan SA. Hypocretin/orexin modulates body weight and the metabolism of glucose and insulin. Diabetes Metab Res Rev 2020; 36:e3229. [PMID: 31655012 DOI: 10.1002/dmrr.3229] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 08/16/2019] [Accepted: 10/06/2019] [Indexed: 12/18/2022]
Abstract
The hypocretin/orexin (Hcrt/orexin) unit affects the functions of the nervous, cardiovascular, gastrointestinal, and reproductive systems. Hcrt/orexin ligands and receptors have been localized to different parts of the central and peripheral nervous systems, cerebrospinal fluid and blood, exocrine (pancreas, salivary, lacrimal) as well as endocrine (pancreatic islets, pituitary, adrenal) glands. Several factors including stress, glucagon-like peptide-1 agonists, glutamate, nicotine, glucose, and hypoglycaemia stimulate the expression of Hcrt/orexin system, but it is inhibited by ageing, bone morphogenetic protein, hypoxia/hypercapnia, melanocortin receptor accessory protein 2, and glucagon. Literature reports show that Hcrt/orexin can significantly increase insulin secretion from normal and diabetic rat pancreata. Hcrt/orexin decreases blood glucose concentration and reduces insulin resistance partly via increased tissue expression of glucose transporter type 4. It reduces obesity by increasing browning of fat cells and energy expenditure. Taken together, Hcrt/orexin modulates obesity and the metabolism of glucose and insulin. The Hcrt/orexin system may thus be a target in the development of new therapies for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed Lotfy
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Crystal D'Souza
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Saleh Meqbel Alseiari
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdulla Ali Alsaadi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Saif Abdo Qahtan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
10
|
Wang L, He T, Wan B, Wang X, Zhang L. Orexin A ameliorates HBV X protein-induced cytotoxicity and inflammatory response in human hepatocytes. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2003-2009. [PMID: 31106596 DOI: 10.1080/21691401.2019.1614014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Li Wang
- Department of Hepatopancreatobiliary Surgery, He’nan Tumor Hospital, Affiliated to Zhengzhou University, Zhengzhou, China
| | - Tao He
- Department of Hepatopancreatobiliary Surgery, He’nan Tumor Hospital, Affiliated to Zhengzhou University, Zhengzhou, China
| | - Baishun Wan
- Department of Hepatopancreatobiliary Surgery, He’nan Tumor Hospital, Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaoqian Wang
- Department of Hepatopancreatobiliary Surgery, He’nan Tumor Hospital, Affiliated to Zhengzhou University, Zhengzhou, China
| | - Ling Zhang
- Department of Hepatopancreatobiliary Surgery, He’nan Tumor Hospital, Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Wang S, Wang B, Chen S. Spexin in the half-smooth tongue sole (Cynoglossus semilaevis): molecular cloning, expression profiles, and physiological effects. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:829-839. [PMID: 29404821 DOI: 10.1007/s10695-018-0472-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
Spexin (SPX), a novel neuropeptide discovered by the bioinformatics approach, has been shown to exert pleiotropic functions in mammals. However, little information regarding the physiological role of SPX is available in teleosts. As a first step, we cloned the spexin gene from a flatfish, the half-smooth tongue sole. The open reading frame (ORF) of tongue sole spexin contained 363 nucleotides encoding a 120 amino acid (aa) preprohormone with a calculated molecular mass and isoelectric point of 14.06 kDa and 5.86, respectively. The tongue sole SPX precursor contained a 27 aa signal peptide and a 14 aa mature peptide flanked by two dibasic protein cleavage sites (RR and GRR). Tissue distribution analysis showed that spexin mRNA could be detected in various tissues, notably in the brain. In addition, fasting stimulated the hypothalamic expression of spexin mRNA. Intraperitoneal injection of SPX increased gnih and gnrh3 mRNA levels in the hypothalamus; however, SPX inhibited the pituitary expression of gh, fshβ, and gthα mRNAs. Overall, our results reveal the existence of a functional SPX in the tongue sole, which could represent an important factor in the neuroendocrine control of flatfish reproduction and growth, and the spexin mRNA expression is regulated by feeding status.
Collapse
Affiliation(s)
- Shengpeng Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, China
- Laboratory for Marine Fisheries and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, China
- Laboratory for Marine Fisheries and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Songlin Chen
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106 Nanjing Road, Qingdao, 266071, China.
- Laboratory for Marine Fisheries and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|