1
|
Kalezic A, Korac A, Korac B, Jankovic A. l-Arginine Induces White Adipose Tissue Browning-A New Pharmaceutical Alternative to Cold. Pharmaceutics 2022; 14:pharmaceutics14071368. [PMID: 35890263 PMCID: PMC9324995 DOI: 10.3390/pharmaceutics14071368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/17/2022] [Accepted: 06/25/2022] [Indexed: 12/10/2022] Open
Abstract
The beneficial effects of l-arginine supplementation in obesity and type II diabetes involve white adipose tissue (WAT) reduction and increased substrate oxidation. We aimed to test the potential of l-arginine to induce WAT browning. Therefore, the molecular basis of browning was investigated in retroperitoneal WAT (rpWAT) of rats exposed to cold or treated with 2.25% l-arginine for 1, 3, and 7 days. Compared to untreated control, levels of inducible nitric oxide (NO) synthase protein expression and NO signaling increased in both cold-exposed and l-arginine-treated groups. These increases coincided with the appearance of multilocular adipocytes and increased expression levels of uncoupling protein 1 (UCP1), thermogenic and beige adipocyte-specific genes (Cidea, Cd137, and Tmem26), mitochondriogenesis markers (peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α, mitochondrial DNA copy number), nuclear respiratory factor 1, PPARα and their respective downstream lipid oxidation enzymes after l-arginine treatment. Such browning phenotype in the l-arginine-treated group was concordant with end-course decreases in leptinaemia, rpWAT mass, and body weight. In conclusion, l-arginine mimics cold-mediated increases in NO signaling in rpWAT and induces molecular and structural fingerprints of rpWAT browning. The results endorse l-arginine as a pharmaceutical alternative to cold exposure, which could be of great interest in obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Andjelika Kalezic
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (A.K.); (B.K.)
| | - Aleksandra Korac
- Faculty of Biology, Center for Electron Microscopy, University of Belgrade, 11060 Belgrade, Serbia;
| | - Bato Korac
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (A.K.); (B.K.)
| | - Aleksandra Jankovic
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (A.K.); (B.K.)
- Correspondence: ; Tel.: +381-11-2078-307
| |
Collapse
|
2
|
Ferroptosis in Different Pathological Contexts Seen through the Eyes of Mitochondria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5537330. [PMID: 34211625 PMCID: PMC8205588 DOI: 10.1155/2021/5537330] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/08/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022]
Abstract
Ferroptosis is a recently described form of regulated cell death characterized by intracellular iron accumulation and severe lipid peroxidation due to an impaired cysteine-glutathione-glutathione peroxidase 4 antioxidant defence axis. One of the hallmarks of ferroptosis is a specific morphological phenotype characterized by extensive ultrastructural changes of mitochondria. Increasing evidence suggests that mitochondria play a significant role in the induction and execution of ferroptosis. The present review summarizes existing knowledge about the mitochondrial impact on ferroptosis in different pathological states, primarily cancer, cardiovascular diseases, and neurodegenerative diseases. Additionally, we highlight pathologies in which the ferroptosis/mitochondria relation remains to be investigated, where the process of ferroptosis has been confirmed (such as liver- and kidney-related pathologies) and those in which ferroptosis has not been studied yet, such as diabetes. We will bring attention to avenues that could be followed in future research, based on the use of mitochondria-targeted approaches as anti- and proferroptotic strategies and directed to the improvement of existing and the development of novel therapeutic strategies.
Collapse
|
3
|
Drinking Molecular Hydrogen Water Is Beneficial to Cardiovascular Function in Diet-Induced Obesity Mice. BIOLOGY 2021; 10:biology10050364. [PMID: 33922704 PMCID: PMC8146054 DOI: 10.3390/biology10050364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/10/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022]
Abstract
Molecular hydrogen (MH) reportedly exerts therapeutic effects against inflammatory diseases as a suppressor of free radical chain reactions. Here, the cardiovascular protective effects of the intake of molecular hydrogen water (MHW) were investigated using high-fat diet-induced obesity (DIO) mice. MHW was prepared using supplier sticks and degassed water as control. MHW intake for 2 weeks did not improve blood sugar or body weight but decreased heart weight in DIO mice. Moreover, MHW intake improved cardiac hypertrophy, shortened the width of cardiomyocytes, dilated the capillaries and arterioles, activated myocardial eNOS-Ser-1177 phosphorylation, and restored left ventricular function in DIO mice. MHW intake promoted the histological conversion of hypertrophy to hyperplasia in white and brown adipose tissues (WAT and BAT) with the upregulation of thermogenic and cardiovascular protective genes in BAT (i.e., Ucp-1, Vegf-a, and eNos). Furthermore, the results of a colony formation assay of bone-marrow-derived endothelial progenitor cells (EPCs) indicated that MHW activated the expansion, differentiation, and mobilization of EPCs to maintain vascular homeostasis. These findings indicate that the intake of MHW exerts cardiovascular protective effects in DIO mice. Hence, drinking MHW is a potential prophylactic strategy against cardiovascular disorders in metabolic syndrome.
Collapse
|
4
|
The Unity of Redox and Structural Remodeling of Brown Adipose Tissue in Hypothyroidism. Antioxidants (Basel) 2021; 10:antiox10040591. [PMID: 33921249 PMCID: PMC8068806 DOI: 10.3390/antiox10040591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022] Open
Abstract
Brown adipose tissue (BAT) is important for maintaining whole-body metabolic and energy homeostasis. However, the effects of hypothyroidism, one of the most common diseases worldwide, which increases the risk of several metabolic disorders, on BAT redox and metabolic homeostasis remain mostly unknown. We aimed to investigate the dynamics of protein expression, enzyme activity, and localization of antioxidant defense (AD) enzymes in rat interscapular BAT upon induction of hypothyroidism by antithyroid drug methimazole for 7, 15, and 21 days. Our results showed an increased protein expression of CuZn- and Mn-superoxide dismutase, catalase, glutamyl-cysteine ligase, thioredoxin, total glutathione content, and activity of catalase and thioredoxin reductase in hypothyroid rats, compared to euthyroid control. Concomitant with the increase in AD, newly established nuclear, mitochondrial, and peroxisomal localization of AD enzymes was found. Hypothyroidism also potentiated associations between mitochondria, peroxisomes, and lipid bodies, creating specific structural-functional units. Moreover, hypothyroidism induced protein expression and nuclear translocation of a master regulator of redox-metabolic homeostasis, nuclear factor erythroid 2-related factor 2 (Nrf2), and an increased amount of 4-hydroxynonenal (4-HNE) protein adducts. The results indicate that spatiotemporal overlap in the remodeling of AD is orchestrated by Nrf2, implicating the role of 4-HNE in this process and suggesting the potential mechanism of redox-structural remodeling during BAT adaptation in hypothyroidism.
Collapse
|
5
|
Ceddia RP, Collins S. A compendium of G-protein-coupled receptors and cyclic nucleotide regulation of adipose tissue metabolism and energy expenditure. Clin Sci (Lond) 2020; 134:473-512. [PMID: 32149342 PMCID: PMC9137350 DOI: 10.1042/cs20190579] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand-receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein-coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.
Collapse
Affiliation(s)
- Ryan P Ceddia
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| |
Collapse
|
6
|
Guilherme A, Henriques F, Bedard AH, Czech MP. Molecular pathways linking adipose innervation to insulin action in obesity and diabetes mellitus. Nat Rev Endocrinol 2019; 15:207-225. [PMID: 30733616 PMCID: PMC7073451 DOI: 10.1038/s41574-019-0165-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adipose tissue comprises adipocytes and many other cell types that engage in dynamic crosstalk in a highly innervated and vascularized tissue matrix. Although adipose tissue has been studied for decades, it has been appreciated only in the past 5 years that extensive arborization of nerve fibres has a dominant role in regulating the function of adipose tissue. This Review summarizes the latest literature, which suggests that adipocytes signal to local sensory nerve fibres in response to perturbations in lipolysis and lipogenesis. Such adipocyte signalling to the central nervous system causes sympathetic output to distant adipose depots and potentially other metabolic tissues to regulate systemic glucose homeostasis. Paracrine factors identified in the past few years that mediate such adipocyte-neuron crosstalk are also reviewed. Similarly, immune cells and endothelial cells within adipose tissue communicate with local nerve fibres to modulate neurotransmitter tone, blood flow, adipocyte differentiation and energy expenditure, including adipose browning to produce heat. This understudied field of neurometabolism related to adipose tissue biology has great potential to reveal new mechanistic insights and potential therapeutic strategies for obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Felipe Henriques
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alexander H Bedard
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
7
|
Vujović KS, Vučković S, Đurović A, Knežević NN, Prostran M. Inhibition of neuronal nitric oxide synthase attenuate the hypothermic effect of ketamine-magnesium sulfate combination in rats. J Therm Biol 2018; 74:1-5. [DOI: 10.1016/j.jtherbio.2018.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/26/2018] [Accepted: 02/28/2018] [Indexed: 11/30/2022]
|
8
|
Jankovic A, Otasevic V, Stancic A, Buzadzic B, Korac A, Korac B. Physiological regulation and metabolic role of browning in white adipose tissue. Horm Mol Biol Clin Investig 2017; 31:hmbci-2017-0034. [PMID: 28862984 DOI: 10.1515/hmbci-2017-0034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/24/2017] [Indexed: 04/25/2024]
Abstract
Great progress has been made in our understanding of the browning process in white adipose tissue (WAT) in rodents. The recognition that i) adult humans have physiologically inducible brown adipose tissue (BAT) that may facilitate resistance to obesity and ii) that adult human BAT molecularly and functionally resembles beige adipose tissue in rodents, reignited optimism that obesity and obesity-related diabetes type 2 can be battled by controlling the browning of WAT. In this review the main cellular mechanisms and molecular mediators of browning of WAT in different physiological states are summarized. The relevance of browning of WAT in metabolic health is considered primarily through a modulation of biological role of fat tissue in overall metabolic homeostasis.
Collapse
Affiliation(s)
- Aleksandra Jankovic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Vesna Otasevic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Ana Stancic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Biljana Buzadzic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Aleksandra Korac
- Faculty of Biology, Center for Electron Microscopy, University of Belgrade, Belgrade, Serbia
| | - Bato Korac
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia, Phone: (381-11)-2078-307, Fax: (381-11)-2761-433
| |
Collapse
|
9
|
Jankovic A, Golic I, Markelic M, Stancic A, Otasevic V, Buzadzic B, Korac A, Korac B. Two key temporally distinguishable molecular and cellular components of white adipose tissue browning during cold acclimation. J Physiol 2015; 593:3267-80. [PMID: 26096127 DOI: 10.1113/jp270805] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/08/2015] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS White to brown adipose tissue conversion and thermogenesis can be ignited by different conditions or agents and its sustainability over the long term is still unclear. Browning of rat retroperitoneal white adipose tissue (rpWAT) during cold acclimation involves two temporally apparent components: (1) a predominant non-selective browning of most adipocytes and an initial sharp but transient induction of uncoupling protein 1, peroxisome proliferator-activated receptor (PPAR) coactivator-1α, PPARγ and PPARα expression, and (2) the subsistence of relatively few thermogenically competent adipocytes after 45 days of cold acclimation. The different behaviours of two rpWAT beige/brown adipocyte subsets control temporal aspects of the browning process, and thus regulation of both components may influence body weight and the potential successfulness of anti-obesity therapies. ABSTRACT Conversion of white into brown adipose tissue may have important implications in obesity resistance and treatment. Several browning agents or conditions ignite thermogenesis in white adipose tissue (WAT). To reveal the capacity of WAT to function in a brownish/burning mode over the long term, we investigated the progression of the rat retroperitoneal WAT (rpWAT) browning during 45 days of cold acclimation. During the early stages of cold acclimation, the majority of rpWAT adipocytes underwent multilocularization and thermogenic-profile induction, as demonstrated by the presence of a multitude of uncoupling protein 1 (UCP1)-immunopositive paucilocular adipocytes containing peroxisome proliferator-activated receptor (PPAR) coactivator-1α (PGC-1α) and PR domain-containing 16 (PRDM16) in their nuclei. After 45 days, all adipocytes remained PRDM16 immunopositive, but only a few multilocular adipocytes rich in mitochondria remained UCP1/PGC-1α immunopositive. Molecular evidence showed that thermogenic recruitment of rpWAT occurred following cold exposure, but returned to starting levels after cold acclimation. Compared with controls (22 ± 1 °C), levels of UCP1 mRNA increased in parallel with PPARγ (PPARα from days 1 to 7 and PGC-1α on day 1). Transcriptional recruitment of rpWAT was followed by an increase in UCP1 protein content (from days 1 to 21). Results clearly showed that most of the adipocytes within rpWAT underwent transient brown-fat-like thermogenic recruitment upon stimulation, but only a minority of cells retained a brown adipose tissue-like phenotype after the attainment of cold acclimation. Therefore, browning of WAT is dependent on both maintaining the thermogenic response and retaining enough brown-like thermogenically competent adipocytes in the long-term. Both aspects of browning could be important for long-term energy homeostasis and body-weight regulation.
Collapse
Affiliation(s)
- Aleksandra Jankovic
- Department of Physiology, Institute for Biological Research 'Sinisa Stankovic', University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Igor Golic
- Faculty of Biology, Center for Electron Microscopy, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia
| | - Milica Markelic
- Faculty of Biology, Center for Electron Microscopy, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia
| | - Ana Stancic
- Department of Physiology, Institute for Biological Research 'Sinisa Stankovic', University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Vesna Otasevic
- Department of Physiology, Institute for Biological Research 'Sinisa Stankovic', University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Biljana Buzadzic
- Department of Physiology, Institute for Biological Research 'Sinisa Stankovic', University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Aleksandra Korac
- Faculty of Biology, Center for Electron Microscopy, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia
| | - Bato Korac
- Department of Physiology, Institute for Biological Research 'Sinisa Stankovic', University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| |
Collapse
|
10
|
Buzadzic B, Vucetic M, Jankovic A, Stancic A, Korac A, Korac B, Otasevic V. New insights into male (in)fertility: the importance of NO. Br J Pharmacol 2014; 172:1455-67. [PMID: 24601995 DOI: 10.1111/bph.12675] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/31/2014] [Accepted: 03/03/2014] [Indexed: 01/19/2023] Open
Abstract
Infertility is a global problem that is on the rise, especially during the last decade. Currently, infertility affects approximately 10-15% of the population worldwide. The frequency and origin of different forms of infertility varies. It has been shown that reactive oxygen and nitrogen species (ROS and RNS) are involved in the aetiology of infertility, especially male infertility. Various strategies have been designed to remove or decrease the production of ROS and RNS in spermatozoa, in particular during in vitro fertilization. However, in recent years it has been shown that spermatozoa naturally produce a variety of ROS/RNS, including superoxide anion radical (O2 (⋅-)), hydrogen peroxide and NO. These reactive species, in particular NO, are essential in regulating sperm capacitation and the acrosome reaction, two processes that need to be acquired by sperm in order to achieve fertilization potential. In addition, it has recently been shown that mitochondrial function is positively correlated with human sperm fertilization potential and quality and that NO and NO precursors increase sperm motility by increasing energy production in mitochondria. We will review the new link between sperm NO-driven redox regulation and infertility herein. A special emphasis will be placed on the potential implementation of new redox-active substances that modulate the content of NO in spermatozoa to increase fertility and promote conception.
Collapse
Affiliation(s)
- B Buzadzic
- Department of Physiology, Institute for Biological Research 'Sinisa Stankovic', University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
11
|
Velickovic K, Cvoro A, Srdic B, Stokic E, Markelic M, Golic I, Otasevic V, Stancic A, Jankovic A, Vucetic M, Buzadzic B, Korac B, Korac A. Expression and subcellular localization of estrogen receptors α and β in human fetal brown adipose tissue. J Clin Endocrinol Metab 2014; 99:151-9. [PMID: 24217905 DOI: 10.1210/jc.2013-2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CONTEXT Brown adipose tissue (BAT) has the unique ability of generating heat due to the expression of mitochondrial uncoupling protein 1 (UCP1). A recent discovery regarding functional BAT in adult humans has increased interest in the molecular pathways of BAT development and functionality. An important role for estrogen in white adipose tissue was shown, but the possible role of estrogen in human fetal BAT (fBAT) is unclear. OBJECTIVE The objective of this study was to determine whether human fBAT expresses estrogen receptor α (ERα) and ERβ. In addition, we examined their localization as well as their correlation with crucial proteins involved in BAT differentiation, proliferation, mitochondriogenesis and thermogenesis including peroxisome proliferator-activated receptor γ (PPARγ), proliferating cell nuclear antigen (PCNA), PPARγ-coactivator-1α (PGC-1α), and UCP1. DESIGN The fBAT was obtained from 4 human male fetuses aged 15, 17, 20, and 23 weeks gestation. ERα and ERβ expression was assessed using Western blotting, immunohistochemistry, and immunocytochemistry. Possible correlations with PPARγ, PCNA, PGC-1α, and UCP1 were examined by double immunofluorescence. RESULTS Both ERα and ERβ were expressed in human fBAT, with ERα being dominant. Unlike ERβ, which was present only in mature brown adipocytes, we detected ERα in mature adipocytes, preadipocytes, mesenchymal and endothelial cells. In addition, double immunofluorescence supported the notion that differentiation in fBAT probably involves ERα. Immunocytochemical analysis revealed mitochondrial localization of both receptors. CONCLUSION The expression of both ERα and ERβ in human fBAT suggests a role for estrogen in its development, primarily via ERα. In addition, our results indicate that fBAT mitochondria could be targeted by estrogens and pointed out the possible role of both ERs in mitochondriogenesis.
Collapse
Affiliation(s)
- Ksenija Velickovic
- University of Belgrade (K.V., M.M., I.G., A.K.), Faculty of Biology, Center for Electron Microscopy, and Department of Physiology (V.O., A.S., A.J., M.V., B.B., B.K.), Institute for Biological Research "Sinisa Stankovic," University of Belgrade, 11000 Belgrade, Serbia; Department of Genomic Medicine (A.C.), The Methodist Hospital Research Institute, Houston, Texas 77030; Department of Anatomy (B.S.), Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; and Department of Endocrinology (E.S.), Institute of Internal Disease, Clinical Center Vojvodina, 21000 Novi Sad, Serbia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Smorlesi A, Frontini A, Giordano A, Cinti S. The adipose organ: white-brown adipocyte plasticity and metabolic inflammation. Obes Rev 2012; 13 Suppl 2:83-96. [PMID: 23107262 DOI: 10.1111/j.1467-789x.2012.01039.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
White adipocytes can store energy, whereas brown adipocytes dissipate energy for thermogenesis. These two cell types with opposing functions are contained in multiple fat depots forming the adipose organ. In this review, we outline the plasticity of this organ in physiological (cold exposure, physical exercise and lactation) and pathological conditions (obesity). We also highlight molecules and signalling pathways involved in the browning phenomena of white adipose tissue. This phenotypic change has proved to be effective in the protection against the metabolic disorders associated to obesity and diabetes, not only because brown adipocytes are more 'healthy' than white adipocytes, but also because the simple size reduction of white adipocytes that characterizes the first steps of transdifferentiation can be useful in determining how to avoid triggering death based on critical size and the consequent chronic low-grade inflammation due to macrophage infiltration. Thus, a better understanding of the molecular mechanisms at the basis of white-brown transdifferentiation can be extremely useful to exploit new therapeutic strategies to combat the increasing incidence of metabolic diseases.
Collapse
Affiliation(s)
- A Smorlesi
- Department of Experimental and Clinical Medicine, University of Ancona (Politecnica delle Marche), Via Tronto 10/A, Ancona, Italy
| | | | | | | |
Collapse
|
13
|
Wu Z, Satterfield MC, Bazer FW, Wu G. Regulation of brown adipose tissue development and white fat reduction by L-arginine. Curr Opin Clin Nutr Metab Care 2012; 15:529-38. [PMID: 23075933 DOI: 10.1097/mco.0b013e3283595cff] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Brown adipose tissue (BAT), which is present in humans, plays an important role in oxidation of fatty acids and glucose. The purpose of this review is to highlight an important role for L-arginine in regulating BAT growth and development, thereby reducing obesity in mammals. RECENT FINDINGS Dietary supplementation with L-arginine reduces white adipose tissue in genetically or diet-induced obese rats, obese pregnant sheep, and obese humans with type II diabetes. L-arginine treatment enhances BAT growth in both fetuses and postnatal animals. At molecular and cellular levels, L-arginine stimulates expression of peroxisome proliferator-activated receptor-γ coactivator 1 (the master regulator of mitochondrial biogenesis), nitric oxide synthase, heme oxygenase, and adenosine monophosphate-activated protein kinase. At the whole body level, L-arginine increases blood flow to insulin-sensitive tissues, adipose tissue lipolysis, and the catabolism of glucose and fatty acids, but inhibits fatty acid synthesis and ameliorates oxidative stress, thereby improving metabolic profile. SUMMARY L-arginine increases mammalian BAT growth and development via mechanisms involving gene expression, nitric oxide signaling, and protein synthesis. This enhances the oxidation of energy substrates and, thus, reduces white fat accretion in the body. L-arginine holds great promise in preventing and treating obesity in humans.
Collapse
Affiliation(s)
- Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | | | | |
Collapse
|
14
|
Protein expression of ubiquitin in interscapular brown adipose tissue during acclimation of rats to cold: the impact of (∙)NO. Mol Cell Biochem 2012; 368:189-93. [PMID: 22729739 DOI: 10.1007/s11010-012-1359-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
In this study, the effects of L-arginine-nitric-oxide ((∙)NO)-producing pathway on protein content of ubiquitin, as an important component of ubiquitin-proteasome system for protein removal, were investigated. We showed that L-arginine markedly decreased ubiquitin protein content in interscapular brown adipose tissue, both in thermogenic inactive (at room temperature) and thermogenic active (on cold) states; while in L-NAME-treated groups this effect was abolished. This result suggests that nitric oxide ((∙)NO), besides well established roles, is involved in this aspect of structure remodeling, as well.
Collapse
|
15
|
Abstract
Thermogenesis in brown adipose tissue (BAT) is well characterized as being under the control of the sympathetic nervous system. The energy-burning capacity of BAT makes it an attractive target for anti-obesity therapies. However, previous attempts to manipulate BAT's sympathetic activation have lacked specificity. In this issue of the JCI, Bordicchia et al. provide new data indicating that cardiac natriuretic peptides (NPs) are also able to activate thermogenic machinery in adipose tissue. Their findings suggest a novel strategy to increase energy dissipation in adipose tissue, independent of adrenergic receptors.
Collapse
Affiliation(s)
- Andrew J Whittle
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, UK
| | | |
Collapse
|
16
|
Arginine nutrition and fetal brown adipose tissue development in diet-induced obese sheep. Amino Acids 2012; 43:1593-603. [DOI: 10.1007/s00726-012-1235-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 01/28/2012] [Indexed: 12/16/2022]
|
17
|
Astapova O, Leff T. Adiponectin and PPARγ: cooperative and interdependent actions of two key regulators of metabolism. VITAMINS AND HORMONES 2012; 90:143-62. [PMID: 23017715 DOI: 10.1016/b978-0-12-398313-8.00006-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent advances in the understanding of adiponectin and other adipokines have highlighted the role of adipose tissue as an active endocrine organ. One of the central regulators of adipocyte biology is peroxisome proliferator-activated receptor gamma (PPARγ), a transcription factor that induces the adipogenic gene expression program during development, promotes adipose remodeling, and regulates the functions of adipocytes in lipid storage, adipokine secretion, and energy homeostasis. Activation of PPARγ results in increased insulin sensitivity in skeletal muscle and liver and improves the secretory profile of adipose tissue, favoring release of insulin-sensitizing adipokines, such as adiponectin, and reducing inflammatory cytokines. Increased adiponectin production is likely a significant mediator of the systemic effects of PPARγ activation. This chapter will review the interplay between PPARγ and adiponectin in regulating metabolism, presenting evidence that PPARγ regulates adiponectin gene expression, processing, and secretion and that the two proteins have overlapping effects on downstream metabolic pathways.
Collapse
Affiliation(s)
- Olga Astapova
- Department of Pathology, The Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | |
Collapse
|
18
|
Interscapular brown adipose tissue metabolic reprogramming during cold acclimation: Interplay of HIF-1α and AMPKα. Biochim Biophys Acta Gen Subj 2011; 1810:1252-61. [DOI: 10.1016/j.bbagen.2011.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/25/2011] [Accepted: 09/09/2011] [Indexed: 11/16/2022]
|