1
|
Banaee M, Zeidi A, Mikušková N, Faggio C. Assessing Metal Toxicity on Crustaceans in Aquatic Ecosystems: A Comprehensive Review. Biol Trace Elem Res 2024; 202:5743-5761. [PMID: 38472509 DOI: 10.1007/s12011-024-04122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/10/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
Residual concentrations of some trace elements and lightweight metals, including cadmium, copper, lead, mercury, silver, zinc, nickel, chromium, arsenic, gallium, indium, gold, cobalt, polonium, and thallium, are widely detected in aquatic ecosystems globally. Although their origin may be natural, human activities significantly elevate their environmental concentrations. Metals, renowned pollutants, threaten various organisms, particularly crustaceans. Due to their feeding habits and habitat, crustaceans are highly exposed to contaminants and are considered a crucial link in xenobiotic transfer through the food chain. Moreover, crustaceans absorb metals via their gills, crucial pathways for metal uptake in water. This review summarises the adverse effects of well-studied metals (Cd, Cu, Pb, Hg, Zn, Ni, Cr, As, Co) and synthesizes knowledge on the toxicity of less-studied metals (Ag, Ga, In, Au, Pl, Tl), their presence in waters, and impact on crustaceans. Bibliometric analysis underscores the significance of this topic. In general, the toxic effects of the examined metals can decrease survival rates by inducing oxidative stress, disrupting biochemical balance, causing histological damage, interfering with endocrine gland function, and inducing cytotoxicity. Metal exposure can also result in genotoxicity, reduced reproduction, and mortality. Despite current toxicity knowledge, there remains a research gap in this field, particularly concerning the toxicity of rare earth metals, presenting a potential future challenge.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Amir Zeidi
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Nikola Mikušková
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno, d'Alcontres 31, 98166, Messina, Italy
- Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
2
|
Latief L, Gilbert BM, Avenant-Oldewage A. Effects of water quality on fish parasite biodiversity and physiological responses in the host fish Clarias gariepinus from a eutrophic lake subjected to acid mine drainage in South Africa. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1539-1553. [PMID: 38131523 DOI: 10.1002/ieam.4885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/08/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Elevated concentrations of contaminants have negative impacts on aquatic organisms and their parasites. Changes in parasite infections have been proposed as a technique for monitoring the health of aquatic ecosystems. Furthermore, alterations in physiological responses (biomarkers) of organisms have also been used to delineate ecosystem quality. Lake Heritage is situated along the Crocodile River in Muldersdrift, Gauteng, South Africa, and is subject to contamination by acid mine drainage. Clarias gariepinus is a well-studied bioindicator species and host to numerous endoparasites and ectoparasites. The aims of this study were to delineate the health status of Lake Heritage through a multifaceted approach by comparing the water quality, biomarker responses, and parasite biodiversity of C. gariepinus, compared to unexposed laboratory-reared fish. Physical and chemical water quality parameters were determined using a hand-held probe, test kits, and element analysis with inductively coupled plasma-mass spectrometry. Biomarker responses in the gill, liver, and muscle tissues from C. gariepinus were assessed for total protein, metallothioneins, superoxide dismutase (SOD), and reduced glutathione (GSH) concentrations and activities of acetylcholinesterase and catalase. Results for water quality variables showed higher pH, nitrate, hardness, and copper levels compared with the South African Target Water Quality Guidelines. Catalase activity and concentrations of SOD and reduced GSH showed a response in C. gariepinus to the water quality. Ectoparasites had lower prevalence and mean intensity than endoparasites. However, there were no differences in the physiological responses between infected and uninfected hosts. The study shows that the eutrophic conditions in Lake Heritage cause biomarker responses in the host when compared to host fish in laboratory conditions. Integr Environ Assess Manag 2024;20:1539-1553. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Lutfiyya Latief
- Department of Zoology, University of Johannesburg, Auckland Park, South Africa
| | - Beric M Gilbert
- Department of Zoology, University of Johannesburg, Auckland Park, South Africa
| | | |
Collapse
|
3
|
Flores-Sauceda MA, Leyva-Carrillo L, Camacho-Jiménez L, Gómez-Jiménez S, Peregrino-Uriarte AB, Yepiz-Plascencia G. Two hexokinases of the shrimp Penaeus (Litopenaeus) vannamei are differentially expressed during oxygen limited conditions. Comp Biochem Physiol A Mol Integr Physiol 2024; 293:111637. [PMID: 38583741 DOI: 10.1016/j.cbpa.2024.111637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/20/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
The white shrimp Penaeus (Litopenaeus) vannamei is the most cultivated shrimp worldwide. Compared to other shrimp species, it has higher resistance to adverse conditions. During hypoxia, the shrimp reduces oxygen consumption and adjusts energy metabolism via anaerobic glycolysis, among other strategies. Hexokinase (HK) is the first enzyme of glycolysis and a key regulation point. In mammals and other vertebrates, there are several tissue-specific HK isoforms with differences in expression and enzyme activity. In contrast, crustacean HKs have been relatively little studied. We studied the P. vannamei HK isoforms during hypoxia and reoxygenation. We cloned two HK1 sequences named HK1-long (1455 bp) and HK1-short (1302 bp), and one HK2 (1344 bp). In normoxia, total HK1 expression is higher in hepatopancreas, while HK2 is higher in gills. Severe hypoxia (1 mg/L of DO) after 12 h exposure and 1 h of reoxygenation increased HK1 expression in both organs, but HK2 expression changed differentially. In hepatopancreas, HK2 expression increased in 6 and 12 h of hypoxia but diminished to normoxia levels after reoxygenation. In gills, HK2 expression decreased after 12 h of hypoxia. HK activity increased in hepatopancreas after 12 h hypoxia, opposite to gills. These results indicate that shrimp HK isoforms respond to hypoxia and reoxygenation in a tissue-specific manner. Intracellular glucose levels did not change in any case, showing the shrimp ability to maintain glucose homeostasis during hypoxia.
Collapse
Affiliation(s)
- Marissa A Flores-Sauceda
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C. Carretera Gustavo Enrique Astiazarán Rosas No. 46, Hermosillo, Sonora 83304, Mexico
| | - Lilia Leyva-Carrillo
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C. Carretera Gustavo Enrique Astiazarán Rosas No. 46, Hermosillo, Sonora 83304, Mexico
| | - Laura Camacho-Jiménez
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C. Carretera Gustavo Enrique Astiazarán Rosas No. 46, Hermosillo, Sonora 83304, Mexico
| | - Silvia Gómez-Jiménez
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C. Carretera Gustavo Enrique Astiazarán Rosas No. 46, Hermosillo, Sonora 83304, Mexico
| | - Alma B Peregrino-Uriarte
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C. Carretera Gustavo Enrique Astiazarán Rosas No. 46, Hermosillo, Sonora 83304, Mexico.
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C. Carretera Gustavo Enrique Astiazarán Rosas No. 46, Hermosillo, Sonora 83304, Mexico.
| |
Collapse
|
4
|
Zeidi A, Sayadi MH, Rezaei MR, Banaee M, Gholamhosseini A, Pastorino P, Multisanti CR, Faggio C. Single and combined effects of CuSO 4 and polyethylene microplastics on biochemical endpoints and physiological impacts on the narrow-clawed crayfish Pontastacusleptodactylus. CHEMOSPHERE 2023; 345:140478. [PMID: 37865200 DOI: 10.1016/j.chemosphere.2023.140478] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/27/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
This study investigated the toxicity of polyethylene microplastics (MPs; <0.02 mm) and CuSO4, alone and in combination, on the freshwater crayfish Pontastacus leptodactylus. In this study, the crayfish were exposed to PE-MPs (0.0, 0.5, and 1 mg L-1) and CuSO4·5H2O (0.0, 0.5, and 1 mg L-1) for a period of 28 days. Next, multi-biomarkers, including biochemical, immunological, and oxidative stress indicators were analyzed. Results showed that co-exposure to PE-MPs and CuSO4 resulted in increased aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and decreased alkaline phosphatase (ALP), butyrylcholinesterase (BChE), and gamma-glutamyl-transferase (GGT). Triglycerides, cholesterol, glucose, and albumin content also increased. Although no significant change was observed in lysozyme and phenoloxidase activities in crayfish co-exposed to 0.5 mg L-1 MPs and 0.5 mg L-1 CuSO4, their activities were significantly decreased in other experimental groups. Oxidative stress parameters in hepatopancreas indicated increased superoxide dismutase (SOD), glutathione peroxidase (GPx), and in malondialdehyde (MDA) levels, but decreased catalase (CAT), glucose 6-phosphate dehydrogenase (G6PDH), and cellular total antioxidant (TAC). Results showed that the sub-chronic toxicity of CuSO4 was confirmed. The study confirmed the toxicity of CuSO4 and found that higher concentrations led to more severe effects. Co-exposure to PE-MPs and CuSO4 primarily compromised the endpoints, showing increased toxicity when both pollutants were present in higher concentrations. The activities of POX, LYZ, ALP, GGT, LDH, and CAT were suppressed by both CuSO4 and MPs. However, a synergistic increase was observed in other measured biomarkers in crayfish co-exposed to CuSO4 and MPs.
Collapse
Affiliation(s)
- Amir Zeidi
- Aquaculture Department, Faculty of Natural Resources and Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Mohammad Hossein Sayadi
- Department of Agriculture, Faculty of Natural Resources and Environment, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Mohammad Reza Rezaei
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran.
| | - Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Amin Gholamhosseini
- Division of Aquatic Animal Health & Diseases, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Torino, Italy.
| | - Cristiana Roberta Multisanti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
5
|
Sun Z, Shao Y, Yan K, Yao T, Liu L, Sun F, Wu J, Huang Y. The Link between Trace Metal Elements and Glucose Metabolism: Evidence from Zinc, Copper, Iron, and Manganese-Mediated Metabolic Regulation. Metabolites 2023; 13:1048. [PMID: 37887373 PMCID: PMC10608713 DOI: 10.3390/metabo13101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Trace metal elements are of vital importance for fundamental biological processes. They function in various metabolic pathways after the long evolution of living organisms. Glucose is considered to be one of the main sources of biological energy that supports biological activities, and its metabolism is tightly regulated by trace metal elements such as iron, zinc, copper, and manganese. However, there is still a lack of understanding of the regulation of glucose metabolism by trace metal elements. In particular, the underlying mechanism of action remains to be elucidated. In this review, we summarize the current concepts and progress linking trace metal elements and glucose metabolism, particularly for the trace metal elements zinc, copper, manganese, and iron.
Collapse
Affiliation(s)
- Zhendong Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yuzhuo Shao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Kunhao Yan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tianzhao Yao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Lulu Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Feifei Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jiarui Wu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yunpeng Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
6
|
Shao S, Mo N, Yang Y, Cui Z, Bao C. Identifying sex-differential gene expression in the antennal gland of the swimming crab by transcriptomic analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 46:101087. [PMID: 37178607 DOI: 10.1016/j.cbd.2023.101087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/23/2023] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
The antennal glands (AnGs) are recognized as an important organ that functions in ion regulation and excretion in decapods. Previously, many studies had explored this organ at the biochemical, physiological, and ultrastructural levels but had few molecular resources. In this study, the transcriptomes of the male and female AnGs of Portunus trituberculatus were sequenced using RNA sequencing (RNA-Seq) technology. Genes involved in osmoregulation and organic/inorganic solute transport were identified. This suggests that AnGs might be involved in these physiological functions as versatile organs. A total of 469 differentially expressed genes (DEGs) were further identified between male and female transcriptomes and found to be male-biased. Enrichment analysis showed that females were enriched in amino acid metabolism and males were enriched in nucleic acid metabolism. These results suggested differences in possible metabolic patterns between males and females. Furthermore, two transcription factors related to reproduction, namely AF4/FMR2 family members Lilli (Lilli) and Virilizer (Vir), were identified in DEGs. Lilli was found to be specifically expressed in the male AnGs, whereas Vir showed high expression levels in the female AnGs. The expression of up-regulated metabolism and sexual development-related genes in three males and six females was verified by qRT-PCR and the pattern was found to be consistent with the transcriptome expression pattern. Our results suggest that although the AnG is a unified somatic tissue composed of individual cells, it still demonstrates distinct sex-specific expression patterns. These results provide foundational knowledge of the function and differences between male and female AnGs in P. trituberculatus.
Collapse
Affiliation(s)
- Shucheng Shao
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Nan Mo
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Yanan Yang
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Chenchang Bao
- School of Marine Sciences, Ningbo University, Ningbo 315020, China..
| |
Collapse
|
7
|
Medeiros IPM, Souza MM. Cell volume maintenance capacity of the sea anemone Bunodosoma cangicum: the effect of copper. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50057-50066. [PMID: 36787068 DOI: 10.1007/s11356-023-25834-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/09/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
Cell volume regulation is an essential strategy for the maintenance of life under unfavorable osmotic conditions. Mechanisms aimed at minimizing the physiological challenges caused by environmental changes are crucial in anisosmotic environments. However, aquatic ecosystems experience multiple stressors, including variations in salinity and heavy metal pollution. The accumulation of heavy metals in aquatic ecosystems has a significant effect on the biota, leading to impaired function. The aim of this study was to investigate the capacity of volume regulation in isolated cells of the sea anemone Bunodosoma cangicum exposed to nominal copper (Cu) concentrations of 5 and 50 µg L-1, associated or not with hypoosmotic (15‰) or hyperosmotic (45‰) shock for 15 min. In the absence of the metal, our results showed volume maintenance in all osmotic conditions. Our results showed that cell volume was maintained under all osmotic conditions in the absence of Cu. Similarly, no significant differences were observed in cell volumes under isosmotic and hyperosmotic conditions in the presence of both Cu concentrations. A similar homeostatic response was observed under the hypoosmotic condition with 5 µg L-1 Cu. Our results showed an increase in cell volume with exposure of the cells to the hypoosmotic condition and 50 µg L-1 Cu. The response could be associated with the increased bioavailability of Cu, reduced ability to resist multixenobiotics and their efflux pathways, and the impairment of water efflux in specialized transmembrane proteins. Therefore, B. cangicum pedal disk cells can tolerate osmotic variations in aquatic ecosystems. However, the capacity to regulate cell volume under hypoosmotic conditions can be affected by the presence of a metal contaminant (50 µg L-1 Cu), which could be due to the inhibition of water channels.
Collapse
Affiliation(s)
- Isadora Porto Martins Medeiros
- Programa de Pós-Graduação Em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande Do Sul, Brazil.
| | - Marta Marques Souza
- Programa de Pós-Graduação Em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande Do Sul, Brazil.,Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande Do Sul, Brazil
| |
Collapse
|
8
|
Bednarek PT, Orłowska R, Mańkowski DR, Oleszczuk S, Zebrowski J. Structural Equation Modeling (SEM) Analysis of Sequence Variation and Green Plant Regeneration via Anther Culture in Barley. Cells 2021; 10:2774. [PMID: 34685752 PMCID: PMC8534894 DOI: 10.3390/cells10102774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
The process of anther culture involves numerous abiotic stresses required for cellular reprogramming, microspore developmental switch, and plant regeneration. These stresses affect DNA methylation patterns, sequence variation, and the number of green plants regenerated. Recently, in barley (Hordeum vulgare L.), mediation analysis linked DNA methylation changes, copper (Cu2+) and silver (Ag+) ion concentrations, sequence variation, β-glucans, green plants, and duration of anther culture (Time). Although several models were used to explain particular aspects of the relationships between these factors, a generalized complex model employing all these types of data was not established. In this study, we combined the previously described partial models into a single complex model using the structural equation modeling approach. Based on the evaluated model, we demonstrated that stress conditions (such as starvation and darkness) influence β-glucans employed by cells for glycolysis and the tricarboxylic acid cycle. Additionally, Cu2+ and Ag+ ions affect DNA methylation and induce sequence variation. Moreover, these ions link DNA methylation with green plants. The structural equation model also showed the role of time in relationships between parameters included in the model and influencing plant regeneration via anther culture. Utilization of structural equation modeling may have both scientific and practical implications, as it demonstrates links between biological phenomena (e.g., culture-induced variation, green plant regeneration and biochemical pathways), and provides opportunities for regulating these phenomena for particular biotechnological purposes.
Collapse
Affiliation(s)
- Piotr Tomasz Bednarek
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute—National Research Institute, 05-870 Błonie, Poland;
| | - Renata Orłowska
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute—National Research Institute, 05-870 Błonie, Poland;
| | - Dariusz Rafał Mańkowski
- Department of Seed Science and Technology, Plant Breeding and Acclimatization Institute—National Research Institute, 05-870 Błonie, Poland;
| | - Sylwia Oleszczuk
- Department of Plant Biotechnology and Cytogenetics, Plant Breeding and Acclimatization Institute—National Research Institute, 05-870 Błonie, Poland;
| | - Jacek Zebrowski
- Institute of Biology and Biotechnology, University of Rzeszow, 35-959 Rzeszow, Poland;
| |
Collapse
|
9
|
Wang X, Qin Y, Li X, Yan B, Martyniuk CJ. Comprehensive Interrogation of Metabolic and Bioenergetic Responses of Early-Staged Zebrafish ( Danio rerio) to a Commercial Copper Hydroxide Nanopesticide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13033-13044. [PMID: 34553928 DOI: 10.1021/acs.est.1c04431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/13/2023]
Abstract
The use of copper hydroxide nanopesticide can pose exposure risks to aquatic organisms. In this study, the toxicity of a copper hydroxide nanopesticide, compared to conventional copper sulfate at environmentally relevant doses, was evaluated using metabolomics and bioenergetic assays in embryonic zebrafish. At a copper concentration of 100 μg/L, the nanopesticide caused higher mortality and deformity compared to copper ions alone; despite higher copper accumulation, increased metallothionein and elevated ATP-binding cassette (ABC) transporter activity in zebrafish exposed to copper ions were observed. Both nanopesticide and copper ions reduced the abundance of metabolites of glycolysis and induced energetic stress in zebrafish. The nanopesticide also increased concentrations of several organic acids involved in the tricarboxylic acid (TCA) cycle and elevated the activity of isocitrate dehydrogenase and α-ketoglutarate dehydrogenase, suggesting enhanced TCA cycle activity. Nanopesticide exposure depleted both glutamate and glutamine parallel to the upregulation of the TCA cycle. In addition, zebrafish exposed to the nanopesticide appeared to shift metabolism toward amino acid catabolism and lipid accumulation based upon altered expression profiles of glutaminase, glutamate dehydrogenase, fatty acid synthase, and acetyl-CoA carboxylase. Lastly, the ability of the ions to increase oxidative phosphorylation to alleviate energetic stress was reduced in the case of the nanopesticide. We hypothesize that, unlike copper ions alone, the nanopesticide induces higher toxicity to zebrafish because of increased protein catabolism. This study provides a comprehensive understanding of the risks of copper hydroxide nanopesticide exposure in relation to metabolic activity and mitochondrial function.
Collapse
Affiliation(s)
- Xiaohong Wang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yingju Qin
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaoyu Li
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences in Neuroscience, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
10
|
Lode T, Heuschele J, Andersen T, Titelman J, Hylland K, Borgå K. Density-Dependent Metabolic Costs of Copper Exposure in a Coastal Copepod. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2538-2546. [PMID: 34133786 DOI: 10.1002/etc.5141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/14/2021] [Revised: 07/31/2020] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Traditional ecotoxicology methods involving copepods have focused on exposure of pooled individuals and averaged responses, but there is increasing awareness of the importance of individual variation. Many biological traits are density dependent, and decisions to use single-individual or pooled exposure may affect responses to anthropogenic stressors. We investigated how conspecific density as a biotic stressor affects behavioral and respiratory responses to copper (Cu) exposure in the coastal copepod Tigriopus brevicornis. Adults were incubated at densities of 1, 2, or 4 individuals per replicate in 3.2 mL of exposure medium (23 µg Cu L-1 or control). Our results show an interaction of Cu exposure and density on respiration. The Cu exposure increased respiration, but this effect diminished with increasing density. We also found reduced swimming activity with increasing density. We propose 2 nonexclusive alternative explanations for the density-dependent respiratory increase of Cu exposure: 1) a behavioral stress response to low conspecific density, or 2) increased Cu exposure due to increased swimming activity. We emphasize the importance of considering density-dependency in responses when designing and interpreting ecotoxicology studies. Environ Toxicol Chem 2021;40:2538-2546. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Torben Lode
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jan Heuschele
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Tom Andersen
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Ketil Hylland
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Katrine Borgå
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Başalan Över S, Guven C, Taskin E, Çakmak A, Piner Benli P, Sevgiler Y. Effects of Different Ammonia Levels on Tribenuron Methyl Toxicity in Daphnia magna. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 81:46-57. [PMID: 33864096 DOI: 10.1007/s00244-021-00841-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/02/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
The present study investigates the toxicity of the herbicide tribenuron methyl (TBM) as an anthropogenic agent and ammonia as an abiotic factor on Daphnia magna at environmentally relevant concentrations. These stressors may coexist in surface waters in agricultural regions. To achieve this objective, D. magna were exposed to TBM at a nominal concentration of 0.81 μg/L in association with a low ammonia (LA) concentration of 0.65 mg/L and a high ammonia (HA) concentration of 1.61 mg/L in acute toxicity tests of 96-h duration and chronic toxicity tests of 21-day duration. The D. magna also were exposed to TBM, HA, and LA singly. The D. magna were analysed for various biomarkers of sublethal toxicity. Glutathione peroxidase (GPx), glutathione S-transferase (GST), cholinesterase (ChE) enzyme activities, and levels of thiobarbituric acid reactive substances (TBARS) and total protein were determined spectrophotometrically. Mitochondrial membrane potential (MMP) was analysed by microscopy with fluorescence staining. Cytochrome c and 5' AMP-activated protein kinase (AMPK) were analysed by Western blotting. Morphometric properties were examined microscopically. This is the first study in which AMPK, an indicator of intracellular energy, was measured in D. magna. GST and ChE enzyme activities and TBARS and total protein levels did not change during acute exposures (i.e., 96 h) in all treatments. GPx activity increased in D. magna from the HA + TBM treatment compared with single-exposure groups. The level of cytochrome c protein was elevated in D. magna from the LA and LA + TBM treatments. AMPK protein levels increased in all treatments with daphnids, except in the LA group. MMP was depolarised in D. magna from all treatments, whereas the most notable change was observed in HA + TBM mixture group in chronic exposures. The results show that GST and ChE may not be sensitive biomarkers for evaluating the sublethal toxic effects to D. magna exposed to environmentally relevant concentrations of ammonia and TBM. Acute and chronic exposure to ammonia and TBM probably caused an energetic crisis in D. magna. Therefore, AMPK and MMP are promising biomarkers for these toxicants.
Collapse
Affiliation(s)
- Sevgi Başalan Över
- Department of Biology, Institute of Natural and Applied Sciences, Adıyaman University, 02040, Adıyaman, Turkey
| | - Celal Guven
- Department of Biophysics, Faculty of Medicine, Niğde Ömer Halisdemir University, 51240, Niğde, Turkey
| | - Eylem Taskin
- Department of Physiology, Faculty of Medicine, Niğde Ömer Halisdemir University, 51240, Niğde, Turkey
| | - Arif Çakmak
- Department of Biology, Institute of Natural and Applied Sciences, Adıyaman University, 02040, Adıyaman, Turkey
| | - Petek Piner Benli
- Department of Veterinary Pharmacology and Toxicology, Faculty of Ceyhan Veterinary Medicine, Çukurova University, Adana, Turkey
| | - Yusuf Sevgiler
- Department of Biology, Faculty of Science and Letters, Adıyaman University, 02040, Adıyaman, Turkey.
| |
Collapse
|
12
|
Scola S, Blasco J, Campana O. "Nanosize effect" in the metal-handling strategy of the bivalve Scrobicularia plana exposed to CuO nanoparticles and copper ions in whole-sediment toxicity tests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143886. [PMID: 33340740 DOI: 10.1016/j.scitotenv.2020.143886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/09/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
To date, the occurrence, fate and toxicity of metal-based NPs in the environment is under investigated. Their unique physicochemical, biological and optical properties, responsible for their advantageous application, make them intrinsically different from their bulk counterpart, raising the issue of their potential toxic specificity or "nanosize effect". The aim of this study was to investigate copper bioaccumulation, subcellular distribution and toxic effect in the marine benthic species Scrobicularia plana exposed to two forms of sediment-associated copper, as nanoparticles (CuO NPs) and as soluble ions (CuCl2). Results showed that the exposure to different copper forms activated specific organism's metal handling strategies. Clams bioaccumulated soluble copper at higher concentrations than those exposed to sediment spiked with CuO NPs. Moreover, CuO NPs exposure elicited a stronger detoxification response mediated by a prompt mobilization of CuO NPs to metal-containing granules as well as a delayed induction of MT-like proteins, which conversely, sequestered soluble copper since the beginning of the exposure at levels significantly different from the control. Eventually, exposure to high concentrations of either copper form led to the same acute toxic effect (100% mortality) but the outcome was delayed in bivalves exposed to CuO NPs suggesting that the mechanisms underlying toxicity were copper form-specific. Indeed, while most of soluble copper was associated to the mitochondrial fraction suggesting an impairment of the ATP synthesis capacity at mitochondrial level, CuO NPs toxicity was most likely caused by the oxidative stress mediated by their bioaccumulation in the enzymatic and mitochondrial metabolically available fractions.
Collapse
Affiliation(s)
- Silvia Scola
- Departamento de Ecología y Gestión Costera - Instituto sde Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510 Puerto Real, Cádiz, Spain
| | - Julián Blasco
- Departamento de Ecología y Gestión Costera - Instituto sde Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510 Puerto Real, Cádiz, Spain
| | - Olivia Campana
- Universidad de Cádiz, INMAR, Campus Rio San Pedro, 11510 Puerto Real, Spain.
| |
Collapse
|
13
|
Orłowska R, Zimny J, Bednarek PT. Copper Ions Induce DNA Sequence Variation in Zygotic Embryo Culture-Derived Barley Regenerants. FRONTIERS IN PLANT SCIENCE 2021; 11:614837. [PMID: 33613587 PMCID: PMC7889974 DOI: 10.3389/fpls.2020.614837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/12/2020] [Accepted: 12/22/2020] [Indexed: 05/18/2023]
Abstract
In vitro tissue culture could be exploited to study cellular mechanisms that induce sequence variation. Altering the metal ion composition of tissue culture medium affects biochemical pathways involved in tissue culture-induced variation. Copper ions are involved in the mitochondrial respiratory chain and Yang cycle. Copper ions may participate in oxidative mutations, which may contribute to DNA sequence variation. Silver ions compete with copper ions to bind to the complex IV subunit of the respiratory chain, thus affecting the Yang cycle and DNA methylation. The mechanisms underlying somaclonal variation are unknown. In this study, we evaluated embryo-derived barley regenerants obtained from a single double-haploid plant via embryo culture under varying copper and silver ion concentrations and different durations of in vitro culture. Morphological variation among regenerants and the donor plant was not evaluated. Methylation-sensitive Amplified Fragment Length Polymorphism analysis of DNA samples showed DNA methylation pattern variation in CG and CHG (H = A, C, or T) sequence contexts. Furthermore, modification of in vitro culture conditions explained DNA sequence variation, demethylation, and de novo methylation in the CHG context, as indicated by analysis of variance. Linear regression indicated that DNA sequence variation was related to de novo DNA methylation in the CHG context. Mediation analysis showed the role of copper ions as a mediator of sequence variation in the CHG context. No other contexts showed a significant sequence variation in mediation analysis. Silver ions did not act as a mediator between any methylation contexts and sequence variation. Thus, incorporating copper ions in the induction medium should be treated with caution.
Collapse
Affiliation(s)
- Renata Orłowska
- Plant Breeding and Acclimatization Institute–National Research Institute, Błonie, Poland
| | | | | |
Collapse
|
14
|
Nazarenko A, Zaiko O, Korotkevich O, Konovalova T, Osintseva L. Correlation of the iron level in the bristles of Kemerovo pigs with macro- and essential microelements. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213606032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022] Open
Abstract
Correlation data analysis of the iron content with macro- and essential microelements, as well as on the group of chemical elements interrelated with the Fe level in pig bristles are presented. The studies were carried out of the Kemerovo region on six-month-old pigs of the Kemerovo breed. Chemical analysis of swine bristle samples was carried out using atomic absorption spectrometry. The data were processed using of the program R. Only positive relationships were established between the iron content and the chemical elements of the bristle, as well as the group of chemical elements associated with the Fe level in the bristle. Most of the connections are explained by comparing the data obtained with the research of other scientists on the topic.
Collapse
|
15
|
Lode T, Heuschele J, Andersen T, Titelman J, Hylland K, Borgå K. Contrasting Effects of Predation Risk and Copper on Copepod Respiration Rates. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1765-1773. [PMID: 32557750 DOI: 10.1002/etc.4804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/10/2020] [Revised: 03/13/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Natural biotic and anthropogenic stressors can interact to alter contaminant toxicity. Energetic restrictions are potential mechanisms causing this pattern. To identify processes underlying observed effects of predation risk and copper (Cu) on delayed copepod age at maturity, we examined how these 2 stressors affect respiration rates. We tested 2 very different copepod species: the large, pelagic calanoid Calanus finmarchicus and the small, semibenthic harpacticoid Tigriopus brevicornis. Adult individuals were exposed for 12 h to the treatments: predation risk, Cu (23 µg L-1 ), combined predation risk and Cu (23 µg L-1 ), or control. Oxygen concentrations were monitored continuously. The 2 species differed in their responses. We found no clear effects of either stressor in C. finmarchicus. In T. brevicornis, predation risk increased respiration rates, whereas Cu alone had little impact. In contrast, combined exposure to predation risk and Cu interacted to reduce respiration rates to less than expected. We further observed an effect of sex because female-biased T. brevicornis replicates were more sensitive to both predation risk (increased respiration rates) and Cu exposure (reduced respiration rates). The present study provides further evidence that predation risk can interact with copepod responses toward Cu exposure. Interactive effects of biotic stressors ought to be considered to improve future marine environmental monitoring. Environ Toxicol Chem 2020;39:1765-1773. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Torben Lode
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jan Heuschele
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Tom Andersen
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Ketil Hylland
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Katrine Borgå
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Bednarek PT, Orłowska R. CG Demethylation Leads to Sequence Mutations in an Anther Culture of Barley Due to the Presence of Cu, Ag Ions in the Medium and Culture Time. Int J Mol Sci 2020; 21:E4401. [PMID: 32575771 PMCID: PMC7353013 DOI: 10.3390/ijms21124401] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/13/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
During plant tissue cultures the changes affecting regenerants have a broad range of genetic and epigenetic implications. These changes can be seen at the DNA methylation and sequence variation levels. In light of the latest studies, DNA methylation change plays an essential role in determining doubled haploid (DH) regenerants. The present study focuses on exploring the relationship between DNA methylation in CG and CHG contexts, and sequence variation, mediated by microelements (CuSO4 and AgNO3) supplemented during barley anther incubation on induction medium. To estimate such a relationship, a mediation analysis was used based on the results previously obtained through metAFLP method. Here, an interaction was observed between DNA demethylation in the context of CG and the time of culture. It was also noted that the reduction in DNA methylation was associated with a total decrease in the amount of Cu and Ag ions in the induction medium. Moreover, the total increase in Cu and Ag ions increased sequence variation. The importance of the time of tissue culture in the light of the observed changes resulted from the grouping of regenerants obtained after incubation on the induction medium for 28 days. The present study demonstrated that under a relatively short time of tissue culture (28 days), the multiplication of the Cu2+ and Ag+ ion concentrations ('Cu*Ag') acts as a mediator of demethylation in CG context. Change (increase) in the demethylation in CG sequence results in the decrease of 'Cu*Ag', and that change induces sequence variation equal to the value of the indirect effect. Thus, Cu and Ag ions mediate sequence variation. It seems that the observed changes at the level of methylation and DNA sequence may accompany the transition from direct to indirect embryogenesis.
Collapse
Affiliation(s)
- Piotr T. Bednarek
- Plant Breeding and Acclimatization Institute—National Research Institute, 05–870 Błonie, Radzików, Poland;
| | | |
Collapse
|
17
|
Menezes EJD, Cruz BP, Martins CDMG, Maciel FE. Copper exposure alters the metabolism of the blue crab Callinectes sapidus submitted to osmotic shock. MARINE POLLUTION BULLETIN 2020; 150:110743. [PMID: 31910517 DOI: 10.1016/j.marpolbul.2019.110743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/24/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Copper (Cu) is an essential metal capable to alter many metabolic and physiological processes in animal species, depending on the environmental concentration and salinity. The present study evaluated the effects of Cu exposure on the metabolism of the blue crab Callinectes sapidus under different osmotic situations. Crabs were acclimated at two different salinities conditions (30 and 2). Subsequently, they were exposed to Cu during 96 h at each salinity and under hypo-osmotic shock. Results demonstrated that Cu exposure increased whole-body oxygen consumption. In addition, the activity of LDH decreased while citrate synthase increased in anterior gills from animals submitted to hypo-osmotic shock. This scenario indicates extra stress caused by sudden environmental osmotic changes, as commonly observed in estuarine environments, when combined with copper exposure. Therefore, the activity of LDH and citrate synthase enzymes might be sensitive indicators for aquatic toxicology studies approaching Cu contamination in estuarine environments.
Collapse
Affiliation(s)
| | | | - Camila de Martinez Gaspar Martins
- Programa de Pós-Graduação em Ciências Fisiológicas, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96201-900 Rio Grande, RS, Brazil
| | - Fábio Everton Maciel
- Programa de Pós-Graduação em Ciências Fisiológicas, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96201-900 Rio Grande, RS, Brazil.
| |
Collapse
|
18
|
Sahlmann A, Lode T, Heuschele J, Borgå K, Titelman J, Hylland K. Genotoxic Response and Mortality in 3 Marine Copepods Exposed to Waterborne Copper. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2224-2232. [PMID: 31343775 DOI: 10.1002/etc.4541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/27/2019] [Revised: 04/05/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Copper (Cu) is an essential trace metal, but may also be toxic to aquatic organisms. Although many studies have investigated the cytotoxicity of Cu, little is known about the in vivo genotoxic potential of Cu in marine invertebrates. We investigated the genotoxicity of Cu in 2 pelagic calanoid copepods, Acartia tonsa and Temora longicornis, and the intertidal harpacticoid copepod Tigriopus brevicornis by exposing them for 6 and 72 h to waterborne Cu (0, 6, and 60 µg Cu/L). A subsequent 24-h period in filtered seawater was used to investigate delayed effects or recovery. Genotoxicity was evaluated as DNA strand breaks in individual copepods using the comet assay. Copper did not increase DNA strand breaks in any of the species at any concentration or time point. The treatment did, however, cause 100% mortality in A. tonsa following exposure to 60 µg Cu/L. Acartia tonsa and T. longicornis were more susceptible to Cu-induced mortality than the benthic harpacticoid T. brevicornis, which appeared to be unaffected by the treatments. The results show major differences in Cu susceptibility among the 3 copepods and also that acute toxicity of Cu to A. tonsa is not directly associated with genotoxicity. We also show that the comet assay can be used to quantify genotoxicity in individual copepods. Environ Toxicol Chem 2019;38:2224-2232. © 2019 SETAC.
Collapse
Affiliation(s)
| | - Torben Lode
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jan Heuschele
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Katrine Borgå
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Ketil Hylland
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Gümrükçüoğlu A, Topaloğlu Y, Mermer A, Demirbaş N, Demirbaş A, Ocak M, Ocak Ü. 4-Quinolone-Carboxamide and Carbothioamide Compounds as Fluorescent Sensors. New Fluorimetric Methods for Cu 2+ and Fe 3+ Determination in Tap Water and Soil. J Fluoresc 2019; 29:921-931. [PMID: 31273533 DOI: 10.1007/s10895-019-02404-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/08/2019] [Accepted: 06/10/2019] [Indexed: 11/29/2022]
Abstract
Ion sensor properties of the carboxamide and carbothioamide compounds carrying 4-quinolone group were investigated by means of emission spectrometry in methanol-water (1:1). The compounds were selectively complexed with Cu2+, Pd2+, and Fe3+ among many metal ions. The complex stoichiometry and the stability constant were determined by fluorimetric measurements. The carboxamide compound having phenyl group (QPO) showed sensitivity for Fe3+ ion with a linear range between 0.1 and 0.7 mg/L. The new method was applied in the determination of iron in the spiked tap water samples and the sandy-soil reference material. A modified standard addition method was used to remove the matrix effect. Limit of detection was 0.03 mg/L for the Fe3+ determination method. The carboxamide compound with benzyl group (QBO) showed sensitivity for Cu2+ ion with linear range 0-0.4 mg/L. There was no matrix effect for copper determination in the spiked tap water samples. The detection limit of the method for Cu2+ ion was 0.05 mg/L. The quantification limits of the methods were low enough to determine iron and copper amount in drinking water samples according to EPA.
Collapse
Affiliation(s)
- Abidin Gümrükçüoğlu
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Yeşim Topaloğlu
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Arif Mermer
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Neslihan Demirbaş
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Ahmet Demirbaş
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Miraç Ocak
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Ümmühan Ocak
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey.
| |
Collapse
|
20
|
Fernandes FA, Dutra BK, Mosele F, Araujo ASR, Ferreira GD, Belló-Klein A, Kucharski LC, Vinagre AS, Da Silva RSM. Redox and metabolic strategies developed by anterior and posterior gills of the crab Neohelice granulata after short periods of hypo- or hyper-osmotic stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:457-464. [PMID: 29800839 DOI: 10.1016/j.scitotenv.2018.05.162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/28/2018] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to identify the response pattern of redox balance, Na+/K+ATPase activity and HSP70 expression in the posterior and anterior gills of the crab Neohelice granulata submitted to hypo- or hyper-osmotic stress for 1 h and 6 h. After 1 h of either type of osmotic stress, there was an increase in catalase activity, but a decrease in GSSG/GSH ratio (oxidized to reduced glutathione ratio) and Na+/K+ATPase activity in both gill sets. H2O2 levels decreased only in the posterior gills. H2O2 levels and Na+/K+ATPase activity remained reduced after 6 h of exposure to either type of osmotic stress in both gill sets. The GSSG/GSH ratio returned to initial levels after 6 h of hyper-osmotic stress, whereas it increased 10 times in both gill sets after hypo-osmotic stress. Furthermore, HSP70 protein expression increased in posterior gills after 6 h of hypo-osmotic stress. H2O2 levels in tank water decreased after hypo-osmotic challenge and increased after 6 h of hyper-osmotic stress, indicating increased H2O2 excretion. Therefore, N. granulata gills have redox, metabolic and molecular strategies to deal with rapid osmotic challenges, an important environmental parameter that influences juvenile and adult crab distribution and abundance within different populations.
Collapse
Affiliation(s)
- F A Fernandes
- Laboratório de Metabolismo e Endocrinologia Comparada (LAMEC), Departamento de Fisiologia, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Brazil; Laboratório de Ictiologia, Instituto Federal de Educação, Ciência e Tecnologia Farroupilha - Campus São Vicente do Sul (IFFAR), Brazil
| | - B K Dutra
- Laboratório de Ictiologia, Instituto Federal de Educação, Ciência e Tecnologia Farroupilha - Campus São Vicente do Sul (IFFAR), Brazil
| | - F Mosele
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, ICBS, UFRGS, Brazil
| | - A S R Araujo
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, ICBS, UFRGS, Brazil
| | - G D Ferreira
- Departamento de Fisiologia, Federal University of Pelotas (UFPEL), Brazil
| | - A Belló-Klein
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, ICBS, UFRGS, Brazil
| | - L C Kucharski
- Laboratório de Metabolismo e Endocrinologia Comparada (LAMEC), Departamento de Fisiologia, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Brazil
| | - A S Vinagre
- Laboratório de Metabolismo e Endocrinologia Comparada (LAMEC), Departamento de Fisiologia, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Brazil.
| | - R S M Da Silva
- Laboratório de Metabolismo e Endocrinologia Comparada (LAMEC), Departamento de Fisiologia, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Brazil
| |
Collapse
|
21
|
Pigneret M, Roussel D, Hervant F. Anaerobic end-products and mitochondrial parameters as physiological biomarkers to assess the impact of urban pollutants on a key bioturbator. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:27225-27234. [PMID: 30030757 DOI: 10.1007/s11356-018-2756-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/04/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
The impact of long-term exposure (6 months) to highly or slightly polluted sediments on the energy metabolism of an ecosystem engineer (the oligochaete Limnodrilus hoffmeisteri) was investigated in laboratory conditions. We evaluated some mitochondrial parameters (respiratory chain activity and ATP production rate) and the accumulation of anaerobic end-products (lactate, alanine, succinate, and propionate). The sediments were collected from stormwater infiltration basins and presented high levels of heavy metals and polycyclic aromatic hydrocarbons (PAHs). These compounds had been drained by the runoff water on impervious surfaces of urban areas during rainfall events. A decrease in the activity of the mitochondrial electron transport chain was observed in worms exposed to the most polluted sediment. Urban contaminants disrupted both aerobic metabolism and mitochondrial functioning, forcing organisms to shift from aerobic to anaerobic metabolism (which is characteristic of a situation of functional hypoxia). Although L. hoffmeisteri is very tolerant to urban pollutants, long-term exposure to high concentrations can cause disruption in mitochondrial activity and therefore energy production. Finally, this study demonstrated that anaerobic end-products could be used as biomarkers to evaluate the impact of a mixture of urban pollutants on invertebrates.
Collapse
Affiliation(s)
- Mathilde Pigneret
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), UMR CNRS 5023, Université de Lyon, Université Lyon 1, ENTPE, 6 rue Raphael Dubois, 69622, Villeurbanne, France.
| | - Damien Roussel
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), UMR CNRS 5023, Université de Lyon, Université Lyon 1, ENTPE, 6 rue Raphael Dubois, 69622, Villeurbanne, France
| | - Frédéric Hervant
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), UMR CNRS 5023, Université de Lyon, Université Lyon 1, ENTPE, 6 rue Raphael Dubois, 69622, Villeurbanne, France
| |
Collapse
|
22
|
Bertucci A, Pierron F, Thébault J, Klopp C, Bellec J, Gonzalez P, Baudrimont M. Transcriptomic responses of the endangered freshwater mussel Margaritifera margaritifera to trace metal contamination in the Dronne River, France. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27145-27159. [PMID: 28963680 DOI: 10.1007/s11356-017-0294-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/20/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
The freshwater pearl mussel Margaritifera margaritifera is one of the most threatened freshwater bivalves worldwide. In this study, we aimed (i) to study the processes by which water quality might affect freshwater mussels in situ and (ii) to provide insights into the ecotoxicological significance of water pollution to natural populations in order to provide necessary information to enhance conservation strategies. M. margaritifera specimens were sampled in two close sites located upstream or downstream from an illegal dumping site. The renal transcriptome of these animals was assembled and gene transcription determined by RNA-seq. Correlations between transcription levels of each single transcript and the bioaccumulation of nine trace metals, age (estimated by sclerochronology), and condition index were determined in order to identify genes likely to respond to a specific factor. Amongst the studied metals, Cr, Zn, Cd, and Ni were the main factors correlated with transcription levels, with effects on translation, apoptosis, immune response, response to stimulus, and transport pathways. However, the main factor explaining changes in gene transcription appeared to be the age of individuals with a negative correlation with the transcription of retrotransposon-related genes. To investigate this effect further, mussels were classified into three age classes. In young, middle-aged and old animals, transcription levels were mainly explained by Cu, Zn and age, respectively. This suggests differences in the molecular responses of this species to metals during its lifetime that must be better assessed in future ecotoxicology studies.
Collapse
Affiliation(s)
| | - Fabien Pierron
- Univ. Bordeaux, UMR EPOC CNRS 5805, 33615, Pessac, France
| | - Julien Thébault
- Université de Brest, Institut Universitaire Européen de la Mer, Laboratoire des sciences de l'environnement marin (LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer), 29280, Plouzané, France
| | - Christophe Klopp
- Plate-forme bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRA, 31326, Castanet-Tolosan, France
| | - Julie Bellec
- Université de Brest, Institut Universitaire Européen de la Mer, Laboratoire des sciences de l'environnement marin (LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer), 29280, Plouzané, France
| | | | | |
Collapse
|
23
|
Díaz-de-Alba M, Canalejo Raya A, Granado-Castro MD, Oliva Ramírez M, El Mai B, Córdoba García F, Troyano-Montoro M, Espada-Bellido E, Torronteras Santiago R, Galindo-Riaño MD. Biomarker responses of Cu-induced toxicity in European seabass Dicentrarchus labrax: Assessing oxidative stress and histopathological alterations. MARINE POLLUTION BULLETIN 2017; 124:336-348. [PMID: 28756850 DOI: 10.1016/j.marpolbul.2017.07.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/02/2017] [Revised: 06/04/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
A comprehensive approach to chemical accumulation and biological effects of short-term Cu exposure in juveniles of European seabass (Dicentrarchus labrax) has been achieved. Fish were exposed to 0.01-10mgL-1 nominal Cu concentrations for 24-96h. Metal concentrations in water and gills, liver, muscle and brain tissues were studied along with oxidative stress biomarkers (superoxide dismutase, catalase, glutathione peroxidase, lipid peroxidation). Induction of oxidative damage was observed in all the organs with differential antioxidant responses; gills appearing as the most sensitive from low environmentally water Cu concentrations as 0.01mgL-1. Histopathological alterations were also observed in liver and gills, even without a significant Cu accumulation. The results show that the combination of oxidative stress parameters, particularly lipid peroxidation and glutathione peroxidase activities, and histopathological alterations provide a good model fish and reliable early biomarkers for monitoring Cu pollution in seawater and might call for the protection agencies to revise the Cu environmental standards.
Collapse
Affiliation(s)
- M Díaz-de-Alba
- Department of Analytical Chemistry, Institute of Biomolecules (INBIO), Faculty of Sciences, CEI-MAR, University of Cadiz, Campus Rio San Pedro, ES-11510 Puerto Real, Cadiz, Spain
| | - A Canalejo Raya
- Department of Integrated Sciences, Faculty of Experimental Sciences, CEI-MAR, University of Huelva, Avda. Fuerzas Armadas, ES-21071 Huelva, Spain
| | - M D Granado-Castro
- Department of Analytical Chemistry, Institute of Biomolecules (INBIO), Faculty of Sciences, CEI-MAR, University of Cadiz, Campus Rio San Pedro, ES-11510 Puerto Real, Cadiz, Spain
| | - M Oliva Ramírez
- Department of Biology, Faculty of Sea and Environmental Sciences, CEI-MAR, University of Cadiz, Campus Rio San Pedro, ES-11510 Puerto Real, Cadiz, Spain
| | - B El Mai
- Department of Analytical Chemistry, Institute of Biomolecules (INBIO), Faculty of Sciences, CEI-MAR, University of Cadiz, Campus Rio San Pedro, ES-11510 Puerto Real, Cadiz, Spain
| | - F Córdoba García
- Department of Integrated Sciences, Faculty of Experimental Sciences, CEI-MAR, University of Huelva, Avda. Fuerzas Armadas, ES-21071 Huelva, Spain
| | - M Troyano-Montoro
- Department of Biology, Faculty of Sea and Environmental Sciences, CEI-MAR, University of Cadiz, Campus Rio San Pedro, ES-11510 Puerto Real, Cadiz, Spain
| | - E Espada-Bellido
- Department of Analytical Chemistry, Institute of Biomolecules (INBIO), Faculty of Sciences, CEI-MAR, University of Cadiz, Campus Rio San Pedro, ES-11510 Puerto Real, Cadiz, Spain
| | - R Torronteras Santiago
- Department of Integrated Sciences, Faculty of Experimental Sciences, CEI-MAR, University of Huelva, Avda. Fuerzas Armadas, ES-21071 Huelva, Spain
| | - M D Galindo-Riaño
- Department of Analytical Chemistry, Institute of Biomolecules (INBIO), Faculty of Sciences, CEI-MAR, University of Cadiz, Campus Rio San Pedro, ES-11510 Puerto Real, Cadiz, Spain.
| |
Collapse
|
24
|
Molecular Cloning and Functional Characterization of a Hexokinase from the Oriental River Prawn Macrobrachium nipponense in Response to Hypoxia. Int J Mol Sci 2017; 18:ijms18061256. [PMID: 28608798 PMCID: PMC5486078 DOI: 10.3390/ijms18061256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 01/02/2023] Open
Abstract
Metabolic adjustment to hypoxia in Macrobrachium nipponense (oriental river prawn) implies a shift to anaerobic metabolism. Hexokinase (HK) is a key glycolytic enzyme in prawns. The involvement of HK in the hypoxia inducible factors (HIFs) pathway is unclear in prawns. In this study, the full-length cDNA for HK (MnHK) was obtained from M. nipponense, and its properties were characterized. The full-length cDNA (2385 bp) with an open reading frame of 1350 bp, encoded a 450-amino acid protein. MnHK contained highly conserved amino acids in the glucose, glucose-6-phosphate, ATP, and Mg+2 binding sites. Quantitative real-time reverse transcription PCR assays revealed the tissue-specific expression pattern of MnHK, with abundant expression in the muscle, and gills. Kinetic studies validated the hexokinase activity of recombinant HK. Silencing of HIF-1α or HIF-1β subunit genes blocked the induction of HK and its enzyme activities during hypoxia in muscles. The results suggested that MnHK is a key factor that increases the anaerobic rate, and is probably involved in the HIF-1 pathway related to highly active metabolism during hypoxia.
Collapse
|
25
|
Cao C, Wang WX. Copper-induced metabolic variation of oysters overwhelmed by salinity effects. CHEMOSPHERE 2017; 174:331-341. [PMID: 28183059 DOI: 10.1016/j.chemosphere.2017.01.150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/05/2016] [Revised: 01/24/2017] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
In estuarine environments, Cu (copper) contamination is simultaneously coupled with salinity variation. In this study, 1H NMR was applied to investigate the metabolic disturbance of estuarine oysters Crassostrea hongkongensis under both Cu and salinity stresses. Oysters were exposed to dissolved Cu (50 μg L-1) at different salinities (10, 15 and 25 psu) for six weeks, and the Cu accumulation in the oyster tissues was higher at lowered salinity. Based on the NMR-metabolomics results, disturbances induced by Cu and salinity was mainly related to osmotic regulation, energy metabolism and glycerophospholipid metabolism, as indicated by the alteration of important metabolic biomarkers such as alanine, citrate, glucose, glycogen, betaine, taurine, hypotaurine and homarine in the gills. At lower salinity, oysters accumulated higher energy related compounds (e.g., glucose and glycogen) and amino acids (e.g., aspartate, dimethylglycine and lysine), with the enhancement of ATP/ADP production and accumulation of oxidizable amino acids catabolized from protein breakdown. With Cu exposure, the synthesis from glycine to dimethylglycine was observed to cope with severe osmotic stress, together with the elevation of lysine and homarine. The effects induced by Cu were much similar for each salinity treatment, but the combination of Cu and salinity turned out to be consistent with the singular salinity effects. Therefore, salinity played a dominant role in affecting the metabolites of oysters when combined with Cu exposure. This study indicated that salinity should be taken into consideration in order to predict the Cu toxicity in estuarine organisms.
Collapse
Affiliation(s)
- Chen Cao
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong
| | - Wen-Xiong Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong.
| |
Collapse
|
26
|
Cao C, Wang WX. Bioaccumulation and metabolomics responses in oysters Crassostrea hongkongensis impacted by different levels of metal pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:156-165. [PMID: 27262129 DOI: 10.1016/j.envpol.2016.05.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/01/2016] [Revised: 05/18/2016] [Accepted: 05/18/2016] [Indexed: 06/05/2023]
Abstract
Jiulong River Estuary, located in southern China, was heavily contaminated by metal pollution. In this study, the estuarine oysters Crassostrea hongkongensis were transplanted to two sites with similar hydrological conditions but different levels of metal pollution in Jiulong River Estuary over a six-month period. We characterized the time-series change of metal bioaccumulation and final metabolomics responses of oysters. Following transplantation, all metals (Cd, Cu, Cr, Ni, Pb, and Zn) in the oyster digestive glands had elevated concentrations over time. By the end of six-month exposure, Cu, Zn and Cd were the main metals significantly differentiating the two sites. Using (1)H NMR metabolite approach, we further demonstrated the disturbance in osmotic regulation, energy metabolism, and glycerophospholipid metabolism induced by metal contaminations. Six months later, the oysters transplanted in the two sites showed a similar metabolite variation pattern when compared with the initial oysters regardless of different metal levels in the tissues. Interestingly, by comparing the oysters from two sites, the more severely polluted oysters accumulated significantly higher amounts of osmolytes (betaine and homarine) and lower energy storage compounds (glycogen) than the less polluted oysters; these changes could be the potential biomarkers for different levels of metal pollution. Our study demonstrated the complexity of biological effects under field conditions, and NMR metabolomics provides an important approach to detect sensitive variation of oyster inner status.
Collapse
Affiliation(s)
- Chen Cao
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong; HKUST Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wen-Xiong Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong; HKUST Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
27
|
Rivera-Ingraham GA, Barri K, Boël M, Farcy E, Charles AL, Geny B, Lignot JH. Osmoregulation and salinity-induced oxidative stress: is oxidative adaptation determined by gill function? ACTA ACUST UNITED AC 2015; 219:80-9. [PMID: 26567341 DOI: 10.1242/jeb.128595] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/15/2015] [Accepted: 10/30/2015] [Indexed: 12/23/2022]
Abstract
Osmoregulating decapods such as the Mediterranean green crab Carcinus aestuarii possess two groups of spatially segregated gills: anterior gills serve mainly respiratory purposes, while posterior gills contain osmoregulatory structures. The co-existence of similar tissues serving different functions allows the study of differential adaptation, in terms of free radical metabolism, upon salinity change. Crabs were immersed for 2 weeks in seawater (SW, 37 ppt), diluted SW (dSW, 10 ppt) and concentrated SW (cSW, 45 ppt). Exposure to dSW was the most challenging condition, elevating respiration rates of whole animals and free radical formation in hemolymph (assessed fluorometrically using C-H2DFFDA). Further analyses considered anterior and posterior gills separately, and the results showed that posterior gills are the main tissues fueling osmoregulatory-related processes because their respiration rates in dSW were 3.2-fold higher than those of anterior gills, and this was accompanied by an increase in mitochondrial density (citrate synthase activity) and increased levels of reactive oxygen species (ROS) formation (1.4-fold greater, measured through electron paramagnetic resonance). Paradoxically, these posterior gills showed undisturbed caspase 3/7 activity, used here as a marker for apoptosis. This may only be due to the high antioxidant protection that posterior gills benefit from [superoxide dismutase (SOD) in posterior gills was over 6 times higher than in anterior gills]. In conclusion, osmoregulating posterior gills are better adapted to dSW exposure than respiratory anterior gills because they are capable of controlling the deleterious effects of the ROS production resulting from this salinity-induced stress.
Collapse
Affiliation(s)
- Georgina A Rivera-Ingraham
- Groupe fonctionnel AEO (Adaptation Ecophysiologique et Ontogenèse), Université de Montpellier, UMR 9190 MARBEC, Place Eugène Bataillon, Montpellier 34095, France
| | - Kiam Barri
- Groupe fonctionnel AEO (Adaptation Ecophysiologique et Ontogenèse), Université de Montpellier, UMR 9190 MARBEC, Place Eugène Bataillon, Montpellier 34095, France
| | - Mélanie Boël
- Groupe fonctionnel AEO (Adaptation Ecophysiologique et Ontogenèse), Université de Montpellier, UMR 9190 MARBEC, Place Eugène Bataillon, Montpellier 34095, France
| | - Emilie Farcy
- Groupe fonctionnel AEO (Adaptation Ecophysiologique et Ontogenèse), Université de Montpellier, UMR 9190 MARBEC, Place Eugène Bataillon, Montpellier 34095, France
| | - Anne-Laure Charles
- EA 3072, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, 11 rue Humann, Strasbourg 67000, France
| | - Bernard Geny
- EA 3072, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, 11 rue Humann, Strasbourg 67000, France
| | - Jehan-Hervé Lignot
- Groupe fonctionnel AEO (Adaptation Ecophysiologique et Ontogenèse), Université de Montpellier, UMR 9190 MARBEC, Place Eugène Bataillon, Montpellier 34095, France
| |
Collapse
|
28
|
Ivanina AV, Sokolova IM. Interactive effects of pH and metals on mitochondrial functions of intertidal bivalves Crassostrea virginica and Mercenaria mercenaria. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 144-145:303-309. [PMID: 24211794 DOI: 10.1016/j.aquatox.2013.10.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/20/2013] [Revised: 10/11/2013] [Accepted: 10/16/2013] [Indexed: 06/02/2023]
Abstract
Intertidal bivalves experience broad fluctuations of environmental temperature, pH and oxygen content which could change their intracellular pH. They are also exposed to trace metals such as cadmium (Cd) and copper (Cu) that accumulate in their tissues and may negatively affect mitochondrial functions and bioenergetics. We determined the interactive effects of pH and trace metals (25 μM Cd or Cu) on mitochondrial functions (including respiration and membrane potentials in both ADP-stimulated (state 3) and resting (state 4) states) of two common marine bivalves, the hard clams (Mercenaria mercenaria) and eastern oysters (Crassostrea virginica). In the absence of the trace metals, mitochondrial functions of C. virginica and M. mercenaria were insensitive to pH in a broad physiologically relevant range (6.6-7.8). Mitochondrial respiration was generally suppressed by 25 μM Cd or Cu (with the stronger effects observed for ADP-stimulated compared to the resting respiration) while the mitochondrial membrane potential was unaffected. pH modulated the effects of Cu and Cd on mitochondrial respiration of the bivalves. In oysters, Cu suppressed ADP-stimulated mitochondrial respiration at high and low pH values (6.6 and 7.8, respectively), but had no effect in the intermediate pH range (7.0-7.4). In clams, the negative effect of Cu on ADP-stimulated respiration was only observed at extremely high pH (7.8). A decrease in pH was also protective against Cd in mitochondria of clams and oysters. In clams, 25 μM Cd suppressed ADP-stimulated respiration at all pH; however, at low pH (6.6-7.0) this suppression was paralleled by a decrease in the rates of proton leak thereby effectively restoring mitochondrial coupling. In oysters, the inhibitory effects of Cd on ADP-stimulated respiration were fully abolished at low pH (6.6-7.0). This indicates that moderate acidosis (such as occurs during exposure to air, extreme salinities or elevated CO2 levels in the intertidal zone) may have a beneficial side-effect of protecting mitochondria of clams and oysters against the toxic effects of trace metals in polluted estuaries.
Collapse
Affiliation(s)
- Anna V Ivanina
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC, USA
| | | |
Collapse
|