1
|
Lugo L, Venegas C, Guarin Trujillo E, Diaz Granados-Ramírez MA, Martin A, Vesga FJ, Pérez-Flórez A, Celis C. Ecotoxicology Evaluation of a Fenton-Type Process Catalyzed with Lamellar Structures Impregnated with Fe or Cu for the Removal of Amoxicillin and Glyphosate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:7172. [PMID: 38131723 PMCID: PMC10743043 DOI: 10.3390/ijerph20247172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Antibiotics and pesticides, as well as various emerging contaminants that are present in surface waters, raise significant environmental concerns. Advanced oxidation processes, which are employed to eliminate these substances, have demonstrated remarkable effectiveness. However, during the degradation process, by-products that are not completely mineralized are generated, posing a substantial risk to aquatic ecosystem organisms; therefore, it is crucial to assess effluent ecotoxicity following treatment. This study aimed to assess the toxicity of effluents produced during the removal of amoxicillin and glyphosate with a Fenton-type process using a laminar structure catalyzed with iron (Fe) and copper (Cu). The evaluation included the use of Daphnia magna, Selenastrum capricornutum, and Lactuca sativa, and mutagenicity testing was performed using strains TA98 and TA100 of Salmonella typhimurium. Both treated and untreated effluents exhibited inhibitory effects on root growth in L. sativa, even at low concentrations ranging from 1% to 10% v/v. Similarly, negative impacts on the growth of algal cells of S. capricornutum were observed at concentrations as low as 0.025% v/v, particularly in cases involving amoxicillin-copper (Cu) and glyphosate with copper (Cu) and iron (Fe). Notably, in the case of D. magna, mortality was noticeable even at concentrations of 10% v/v. Additionally, the treatment of amoxicillin with double-layer hydroxides of Fe and Cu resulted in mutagenicity (IM ≥ 2.0), highlighting the necessity to treat the effluent further from the advanced oxidation process to reduce ecological risks.
Collapse
Affiliation(s)
- Lorena Lugo
- Department of Chemistry, Research Line in Environmental and Materials Technology (ITAM), Pontificia Universidad Javeriana, Carrera 7 No. 43–82, Bogotá 110231, Colombia; (L.L.); (A.M.); (A.P.-F.)
| | - Camilo Venegas
- Department of Microbiology, School of Sciences, Microbiological Quality of Water and Sludge (CMAL), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá 110231, Colombia; (C.V.); (E.G.T.); (M.A.D.G.-R.); (F.-J.V.)
| | - Elizabeth Guarin Trujillo
- Department of Microbiology, School of Sciences, Microbiological Quality of Water and Sludge (CMAL), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá 110231, Colombia; (C.V.); (E.G.T.); (M.A.D.G.-R.); (F.-J.V.)
| | - Maria Alejandra Diaz Granados-Ramírez
- Department of Microbiology, School of Sciences, Microbiological Quality of Water and Sludge (CMAL), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá 110231, Colombia; (C.V.); (E.G.T.); (M.A.D.G.-R.); (F.-J.V.)
| | - Alison Martin
- Department of Chemistry, Research Line in Environmental and Materials Technology (ITAM), Pontificia Universidad Javeriana, Carrera 7 No. 43–82, Bogotá 110231, Colombia; (L.L.); (A.M.); (A.P.-F.)
| | - Fidson-Juarismy Vesga
- Department of Microbiology, School of Sciences, Microbiological Quality of Water and Sludge (CMAL), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá 110231, Colombia; (C.V.); (E.G.T.); (M.A.D.G.-R.); (F.-J.V.)
| | - Alejandro Pérez-Flórez
- Department of Chemistry, Research Line in Environmental and Materials Technology (ITAM), Pontificia Universidad Javeriana, Carrera 7 No. 43–82, Bogotá 110231, Colombia; (L.L.); (A.M.); (A.P.-F.)
| | - Crispín Celis
- Department of Chemistry, Research Line in Environmental and Materials Technology (ITAM), Pontificia Universidad Javeriana, Carrera 7 No. 43–82, Bogotá 110231, Colombia; (L.L.); (A.M.); (A.P.-F.)
| |
Collapse
|
2
|
Abstract
In the last decade, metal engineered nanomaterials (ENMs) have seen an exponential use in many critical technologies and products, as well an increasing release into the environment. Coastal ecosystems worldwide may receive ENM-polluted waters and wastes, with a consequent alteration of habitats and contamination of aquatic biota. There is a scarcity of data regarding the fate of these emerging contaminants in such environments. Open issues include the determination of the sources, the quantification of the interactions with marine sediments, the bioaccumulation pathways, the ecotoxicology on marine fauna and the identification of the principal biotic and abiotic factors that may alter metal ENMs toxicity. Little is known about their potential transference into the food web, as well toxicity features and co-stressors of single or multiple ENMs under laboratory and real environmental conditions for various taxonomic phyla. This review reports current knowledge on the ecological impact of ENMs under the complex environmental conditions of estuary systems, identifies gaps in current knowledge and provides directions for future research.
Collapse
|
3
|
Guidi P, Bernardeschi M, Scarcelli V, Lucchesi P, Palumbo M, Corsi I, Frenzilli G. Nanoparticled Titanium Dioxide to Remediate Crude Oil Exposure. An In Vivo Approach in Dicentrarchus labrax. TOXICS 2022; 10:111. [PMID: 35324736 PMCID: PMC8952326 DOI: 10.3390/toxics10030111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/22/2022] [Accepted: 02/22/2022] [Indexed: 12/10/2022]
Abstract
The contamination of marine water bodies with petroleum hydrocarbons represents a threat to ecosystems and human health. In addition to the surface slick of crude oil, the water-soluble fraction of petroleum is responsible for the induction of severe toxic effects at different cellular and molecular levels. Some petroleum-derived hydrocarbons are classified as carcinogenic and mutagenic contaminants; therefore, the oil spill into the marine environment can have long term consequences to the biota. Therefore, new tools able to remediate crude oil water accommodation fraction pollution in marine water are highly recommended. Nanomaterials were recently proposed in environmental remediation processes. In the present in vivo study, the efficacy of pure anatase titanium nanoparticles (n-TiO2) was tested on Dicentrarchus labrax exposed to the accommodated fraction of crude oil. It was found that n-TiO2 nano-powders themselves were harmless in terms of DNA primary damage, and the capability of pure anatase n-TiO2 to lower the levels of DNA damage induced by a mixture of genotoxic pollutant was revealed. These preliminary results on a laboratory scale are the prerequisite for deepening this new technology for the abatement of the cellular effects related with oil spill pollutants released in marine environments.
Collapse
Affiliation(s)
- Patrizia Guidi
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (V.S.); (P.L.); (M.P.); (G.F.)
| | - Margherita Bernardeschi
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (V.S.); (P.L.); (M.P.); (G.F.)
| | - Vittoria Scarcelli
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (V.S.); (P.L.); (M.P.); (G.F.)
| | - Paolo Lucchesi
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (V.S.); (P.L.); (M.P.); (G.F.)
| | - Mara Palumbo
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (V.S.); (P.L.); (M.P.); (G.F.)
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Science and INSTM Local Unit, University of Siena, 53100 Siena, Italy;
| | - Giada Frenzilli
- Section of Applied Biology and Genetics and INSTM Local Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.B.); (V.S.); (P.L.); (M.P.); (G.F.)
| |
Collapse
|
4
|
Guidi P, Bernardeschi M, Palumbo M, Scarcelli V, Genovese M, Protano G, Vitiello V, Pontorno L, Bonciani L, Buttino I, Chiaretti G, Pellegrini D, Fiorati A, Riva L, Punta C, Corsi I, Frenzilli G. Cellular Responses Induced by Zinc in Zebra Mussel Haemocytes. Loss of DNA Integrity as a Cellular Mechanism to Evaluate the Suitability of Nanocellulose-Based Materials in Nanoremediation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2219. [PMID: 34578535 PMCID: PMC8472658 DOI: 10.3390/nano11092219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022]
Abstract
Zinc environmental levels are increasing due to human activities, posing a threat to ecosystems and human health. Therefore, new tools able to remediate Zn contamination in freshwater are highly recommended. Specimens of Dreissena polymorpha (zebra mussel) were exposed for 48 h and 7 days to a wide range of ZnCl2 nominal concentrations (1-10-50-100 mg/L), including those environmentally relevant. Cellulose-based nanosponges (CNS) were also tested to assess their safety and suitability for Zn removal from freshwater. Zebra mussels were exposed to 50 mg/L ZnCl2 alone or incubated with 1.25 g/L of CNS (2 h) and then removed by filtration. The effect of Zn decontamination induced by CNS has been verified by the acute toxicity bioassay Microtox®. DNA primary damage was investigated by the Comet assay; micronuclei frequency and nuclear morphological alterations were assessed by Cytome assay in mussels' haemocytes. The results confirmed the genotoxic effect of ZnCl2 in zebra mussel haemocytes at 48 h and 7-day exposure time. Zinc concentrations were measured in CNS, suggesting that cellulose-based nanosponges were able to remove Zn(II) by reducing its levels in exposure waters and soft tissues of D. polymorpha in agreement with the observed restoration of genetic damage exerted by zinc exposure alone.
Collapse
Affiliation(s)
- Patrizia Guidi
- Department of Clinical and Experimental Medicine-Section of Applied Biology and Genetics and INSTM Local Unit, University of Pisa, 56126 Pisa, Italy; (P.G.); (M.B.); (M.P.); (V.S.); (M.G.)
| | - Margherita Bernardeschi
- Department of Clinical and Experimental Medicine-Section of Applied Biology and Genetics and INSTM Local Unit, University of Pisa, 56126 Pisa, Italy; (P.G.); (M.B.); (M.P.); (V.S.); (M.G.)
| | - Mara Palumbo
- Department of Clinical and Experimental Medicine-Section of Applied Biology and Genetics and INSTM Local Unit, University of Pisa, 56126 Pisa, Italy; (P.G.); (M.B.); (M.P.); (V.S.); (M.G.)
| | - Vittoria Scarcelli
- Department of Clinical and Experimental Medicine-Section of Applied Biology and Genetics and INSTM Local Unit, University of Pisa, 56126 Pisa, Italy; (P.G.); (M.B.); (M.P.); (V.S.); (M.G.)
| | - Massimo Genovese
- Department of Clinical and Experimental Medicine-Section of Applied Biology and Genetics and INSTM Local Unit, University of Pisa, 56126 Pisa, Italy; (P.G.); (M.B.); (M.P.); (V.S.); (M.G.)
| | - Giuseppe Protano
- Department of Physical, Earth and Environmental Sciences and INSTM Local Unit, University of Siena, 53100 Siena, Italy; (G.P.); (I.C.)
| | - Valentina Vitiello
- Italian Institute for Environmental Protection and Research (ISPRA), Via del Cedro, 38, 57123 Livorno, Italy; (V.V.); (I.B.); (G.C.); (D.P.)
| | - Lorenzo Pontorno
- Biochemie Lab. S.r.l., Via di Limite 27G, 50013 Campi Bisenzio, Italy; (L.P.); (L.B.)
| | - Lisa Bonciani
- Biochemie Lab. S.r.l., Via di Limite 27G, 50013 Campi Bisenzio, Italy; (L.P.); (L.B.)
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research (ISPRA), Via del Cedro, 38, 57123 Livorno, Italy; (V.V.); (I.B.); (G.C.); (D.P.)
| | - Gianluca Chiaretti
- Italian Institute for Environmental Protection and Research (ISPRA), Via del Cedro, 38, 57123 Livorno, Italy; (V.V.); (I.B.); (G.C.); (D.P.)
| | - David Pellegrini
- Italian Institute for Environmental Protection and Research (ISPRA), Via del Cedro, 38, 57123 Livorno, Italy; (V.V.); (I.B.); (G.C.); (D.P.)
| | - Andrea Fiorati
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta” and INSTM Local Unit, Politecnico di Milano, 20131 Milano, Italy; (A.F.); (L.R.)
| | - Laura Riva
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta” and INSTM Local Unit, Politecnico di Milano, 20131 Milano, Italy; (A.F.); (L.R.)
| | - Carlo Punta
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta” and INSTM Local Unit, Politecnico di Milano, 20131 Milano, Italy; (A.F.); (L.R.)
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences and INSTM Local Unit, University of Siena, 53100 Siena, Italy; (G.P.); (I.C.)
| | - Giada Frenzilli
- Department of Clinical and Experimental Medicine-Section of Applied Biology and Genetics and INSTM Local Unit, University of Pisa, 56126 Pisa, Italy; (P.G.); (M.B.); (M.P.); (V.S.); (M.G.)
| |
Collapse
|
5
|
Della Torre C, Maggioni D, Nigro L, Farè F, Hamza H, Protano G, Magni S, Fontana M, Riccardi N, Chiara M, Caruso D, Binelli A. Alginate coating modifies the biological effects of cerium oxide nanoparticles to the freshwater bivalve Dreissena polymorpha. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145612. [PMID: 33582348 DOI: 10.1016/j.scitotenv.2021.145612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
The adsorption of biomacromolecules is a fundamental process that can alter the behaviour and adverse effects of nanoparticles (NPs) in natural systems. While the interaction of NPs with natural molecules present in the environment has been described, their biological impacts are largely unknown. Therefore, this study aims to provide a first evidence of the influence of biomolecules sorption on the toxicity of cerium oxide nanoparticles (CeO2NPs) towards the freshwater bivalve Dreissena polymorpha. To this aim, we compared naked CeO2NPs and coated with alginate and chitosan, two polysaccharides abundant in aquatic environments. Mussels were exposed to the three CeO2NPs (naked, chitosan- and alginate-coated) up to 14 days at 100 μg L-1, which is a concentration higher than the environmental one predicted for this type of NP. A suite of biomarkers related to oxidative stress and energy metabolism was applied, and metabolomics was also carried out to identify metabolic pathways potentially targeted by CeO2NPs. Results showed that the coating with chitosan reduced NP aggregation and increased the stability in water. Nonetheless, the Ce accumulation in mussels was similar in all treatments. As for biological effects, all three types of CeO2NPs reduced significantly the level of reactive oxygen species and the activity of superoxide dismutase, glutathione peroxidase and glutathione-S-transferase. The effect was more pronounced in individuals exposed to CeO2NPs coated with alginate, which also significantly induced the activity of the electron transport system. Metabolomics analysis of amino acid metabolism showed modulation only in mussels treated with CeO2NPs coated with alginate. In this group, 25 metabolites belonging to nucleotides, lipids/sterols and organic osmolytes were also modulated, suggesting that the nanoparticles affect energetic metabolism and osmoregulation of mussels. This study highlights the key role of the interaction between nanoparticles and natural molecules as a driver of nanoparticle ecotoxicity.
Collapse
Affiliation(s)
| | - Daniela Maggioni
- Department of Chemistry, Università degli Studi di Milano, Italy
| | - Lara Nigro
- Department of Biosciences, Università degli Studi di Milano, Italy
| | - Fiorenza Farè
- Unitech OMICs, mass spectrometry platform, Università degli Studi di Milano, Italy
| | - Hady Hamza
- Department of Chemistry, Università degli Studi di Milano, Italy
| | - Giuseppe Protano
- Department of Physical, Earth and Environmental Sciences, Università degli Studi di Siena, Italy
| | - Stefano Magni
- Department of Biosciences, Università degli Studi di Milano, Italy
| | - Manuela Fontana
- Unitech OMICs, mass spectrometry platform, Università degli Studi di Milano, Italy
| | | | - Matteo Chiara
- Department of Biosciences, Università degli Studi di Milano, Italy
| | - Donatella Caruso
- Unitech OMICs, mass spectrometry platform, Università degli Studi di Milano, Italy; Department of Pharmacological and Molecular Sciences, Università degli Studi di Milano, Italy
| | - Andrea Binelli
- Department of Biosciences, Università degli Studi di Milano, Italy
| |
Collapse
|
6
|
MacCormack TJ, Gormley PT, Khuong BN, Adams OA, Braz-Mota S, Duarte RM, Vogels CM, Tremblay L, Val AL, Almeida-Val VMF, Westcott SA. Boron Oxide Nanoparticles Exhibit Minor, Species-Specific Acute Toxicity to North-Temperate and Amazonian Freshwater Fishes. Front Bioeng Biotechnol 2021; 9:689933. [PMID: 34124028 PMCID: PMC8194395 DOI: 10.3389/fbioe.2021.689933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/05/2021] [Indexed: 11/25/2022] Open
Abstract
Boron oxide nanoparticles (nB2O3) are manufactured for structural, propellant, and clinical applications and also form spontaneously through the degradation of bulk boron compounds. Bulk boron is not toxic to vertebrates but the distinctive properties of its nanostructured equivalent may alter its biocompatibility. Few studies have addressed this possibility, thus our goal was to gain an initial understanding of the potential acute toxicity of nB2O3 to freshwater fish and we used a variety of model systems to achieve this. Bioactivity was investigated in rainbow trout (Oncorhynchus mykiss) hepatocytes and at the whole animal level in three other North and South American fish species using indicators of aerobic metabolism, behavior, oxidative stress, neurotoxicity, and ionoregulation. nB2O3 reduced O. mykiss hepatocyte oxygen consumption (ṀO2) by 35% at high doses but whole animal ṀO2 was not affected in any species. Spontaneous activity was assessed using ṀO2 frequency distribution plots from live fish. nB2O3 increased the frequency of high ṀO2 events in the Amazonian fish Paracheirodon axelrodi, suggesting exposure enhanced spontaneous aerobic activity. ṀO2 frequency distributions were not affected in the other species examined. Liver lactate accumulation and significant changes in cardiac acetylcholinesterase and gill Na+/K+-ATPase activity were noted in the north-temperate Fundulus diaphanus exposed to nB2O3, but not in the Amazonian Apistogramma agassizii or P. axelrodi. nB2O3 did not induce oxidative stress in any of the species studied. Overall, nB2O3 exhibited modest, species-specific bioactivity but only at doses exceeding predicted environmental relevance. Chronic, low dose exposure studies are required for confirmation, but our data suggest that, like bulk boron, nB2O3 is relatively non-toxic to aquatic vertebrates and thus represents a promising formulation for further development.
Collapse
Affiliation(s)
- Tyson J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - Patrick T Gormley
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - B Ninh Khuong
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - Olivia A Adams
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - Susana Braz-Mota
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Brazil
| | - Rafael M Duarte
- Institute of Biosciences, São Paulo State University (UNESP), São Vicente, Brazil
| | - Christopher M Vogels
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - Luc Tremblay
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Adalberto L Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Brazil
| | - Vera M F Almeida-Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Brazil
| | - Stephen A Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| |
Collapse
|
7
|
Koba-Ucun O, Ölmez Hanci T, Arslan-Alaton I, Arefi-Oskoui S, Khataee A, Kobya M, Orooji Y. Toxicity of Zn-Fe Layered Double Hydroxide to Different Organisms in the Aquatic Environment. Molecules 2021; 26:E395. [PMID: 33451084 PMCID: PMC7828569 DOI: 10.3390/molecules26020395] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 11/16/2022] Open
Abstract
The application of layered double hydroxide (LDH) nanomaterials as catalysts has attracted great interest due to their unique structural features. It also triggered the need to study their fate and behavior in the aquatic environment. In the present study, Zn-Fe nanolayered double hydroxides (Zn-Fe LDHs) were synthesized using a co-precipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and nitrogen adsorption-desorption analyses. The toxicity of the home-made Zn-Fe LDHs catalyst was examined by employing a variety of aquatic organisms from different trophic levels, namely the marine photobacterium Vibrio fischeri, the freshwater microalga Pseudokirchneriella subcapitata, the freshwater crustacean Daphnia magna, and the duckweed Spirodela polyrhiza. From the experimental results, it was evident that the acute toxicity of the catalyst depended on the exposure time and type of selected test organism. Zn-Fe LDHs toxicity was also affected by its physical state in suspension, chemical composition, as well as interaction with the bioassay test medium.
Collapse
Affiliation(s)
- Olga Koba-Ucun
- Department of Environmental Engineering, School of Civil Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey; (O.K.-U.); (T.Ö.H.)
| | - Tuğba Ölmez Hanci
- Department of Environmental Engineering, School of Civil Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey; (O.K.-U.); (T.Ö.H.)
| | - Idil Arslan-Alaton
- Department of Environmental Engineering, School of Civil Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey; (O.K.-U.); (T.Ö.H.)
| | - Samira Arefi-Oskoui
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran;
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran;
- Department of Environmental Engineering, Gebze Technical University, 41400 Kocaeli, Gebze, Turkey;
| | - Mehmet Kobya
- Department of Environmental Engineering, Gebze Technical University, 41400 Kocaeli, Gebze, Turkey;
- Department of Environmental Engineering, Kyrgyz-Turkish Manas University, Bishkek 720038, Kyrgyzstan
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China;
| |
Collapse
|
8
|
Suitability of a Cellulose-Based Nanomaterial for the Remediation of Heavy Metal Contaminated Freshwaters: A Case-Study Showing the Recovery of Cadmium Induced DNA Integrity Loss, Cell Proliferation Increase, Nuclear Morphology and Chromosomal Alterations on Dreissena polymorpha. NANOMATERIALS 2020; 10:nano10091837. [PMID: 32938003 PMCID: PMC7558755 DOI: 10.3390/nano10091837] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
The contamination of freshwaters by heavy metals represents a great problem, posing a threat for human and environmental health. Cadmium is classified as carcinogen to humans and its mechanism of carcinogenicity includes genotoxic events. In this study a recently developed eco-friendly cellulose-based nanosponge (CNS) was investigated as a candidate in freshwater nano-remediation process. For this purpose, CdCl2 (0.05 mg L−1) contaminated artificial freshwater (AFW) was treated with CNS (1.25 g L−1 for 2 h), and cellular responses were analyzed before and after CNS treatment in Dreissena polymorpha hemocytes. A control group (AFW) and a negative control group (CNS in AFW) were also tested. DNA primary damage was evaluated by Comet assay while chromosomal damage and cell proliferation were assessed by Cytome assay. AFW exposed to CNS did not cause any genotoxic effect in zebra mussel hemocytes. Moreover, DNA damage and cell proliferation induced by Cd(II) turned down to control level after 2 days when CNS were used. A reduction of Cd(II)-induced micronuclei and nuclear abnormalities was also observed. CNS was thus found to be a safe and effective candidate in cadmium remediation process being efficient in metal sequestering, restoring cellular damage exerted by Cd(II) exposure, without altering cellular physiological activity.
Collapse
|
9
|
Zeumer R, Galhano V, Monteiro MS, Kuehr S, Knopf B, Meisterjahn B, Soares AMVM, Loureiro S, Lopes I, Schlechtriem C. Chronic effects of wastewater-borne silver and titanium dioxide nanoparticles on the rainbow trout (Oncorhynchus mykiss). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:137974. [PMID: 32229380 DOI: 10.1016/j.scitotenv.2020.137974] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/01/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
Even though nanoparticles (NPs) are mostly removed by wastewater treatment plants, wastewater-borne NPs may show an altered toxicity to aquatic organisms. The main objectives of this work were: i) to assess the chronic (28 days) effects of wastewater-borne NPs of silver (AgNPs, 1.4-36.2 μg L-1) and titanium dioxide (TiO2NPs, 3.1-50.2 μg L-1) at the individual (growth) and biochemical (biomarkers of neurotoxicity, oxidative stress and energy metabolism) levels in rainbow trout Oncorhynchus mykiss; and ii) to compare them with their effluent-supplemented and water-dispersed counterparts. The total Ag and Ti levels were determined in several fish organs. The growth of O. mykiss was not affected by the NPs in any treatment, except a 29% increase at 5.5 μg L-1 of total Ag supplemented to effluents. The Ag level in organs of O. mykiss was significantly higher after exposure to water-dispersed AgNPs than their wastewater-borne or effluent-supplemented counterparts. No significant Ti uptake could be observed. Effluent-supplemented TiO2NPs (50.1 μg L-1 Ti) potentially induced neurotoxic effects, indicated by a 24% increase in acetylcholinesterase activity comparatively to controls. Energy reserves were unaffected by TiO2 treatments, while nearly all AgNP-containing treatments caused a depletion of total lipids, proteins and carbohydrates in the muscle, suggesting an increased energy demand for detoxification processes to cope with AgNPs. Besides NPs, the effluent matrix and dispersing agent (for AgNPs) induced significant effects on energetic reserves and oxidative stress, indicating background toxicity of both treatments at the biochemical level. Our study is the first to assess chronic effects of wastewater-borne NPs on rainbow trout. While no effects were found at the individual level, several biochemical markers were changed by the NPs exposure. Our results highlight the importance of using complex matrices for a reliable risk assessment of NPs in the aquatic environment.
Collapse
Affiliation(s)
- Richard Zeumer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department Bioaccumulation and Animal Metabolism, Auf dem Aberg 1, 57392 Schmallenberg, Germany; Institute of Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Victor Galhano
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Marta S Monteiro
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Sebastian Kuehr
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department Bioaccumulation and Animal Metabolism, Auf dem Aberg 1, 57392 Schmallenberg, Germany; Institute of Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - Burkhard Knopf
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department Bioaccumulation and Animal Metabolism, Auf dem Aberg 1, 57392 Schmallenberg, Germany.
| | - Boris Meisterjahn
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department Bioaccumulation and Animal Metabolism, Auf dem Aberg 1, 57392 Schmallenberg, Germany.
| | - Amadeu M V M Soares
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Susana Loureiro
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Isabel Lopes
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Christian Schlechtriem
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department Bioaccumulation and Animal Metabolism, Auf dem Aberg 1, 57392 Schmallenberg, Germany; Institute of Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|
10
|
Pikula K, Chaika V, Zakharenko A, Savelyeva A, Kirsanova I, Anisimova A, Golokhvast K. Toxicity of Carbon, Silicon, and Metal-Based Nanoparticles to the Hemocytes of Three Marine Bivalves. Animals (Basel) 2020; 10:ani10050827. [PMID: 32397595 PMCID: PMC7278372 DOI: 10.3390/ani10050827] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 01/17/2023] Open
Abstract
Simple Summary The growing nanotechnology industry disposes of a variety of nanoparticles with different physiochemical properties in everyday life. However, the dependence of the safety and toxicity of nanoparticles on their physicochemical properties remains unclear. Bivalve molluscs represent an efficient model for the investigation of nanoparticle toxicity owing to their filtrating ability and feeding on particles suspended in the water. Moreover, the blood cells of bivalve molluscs, the hemocytes, have been suggested as a good analog test-object to mammalian immune cells, phagocytes. In this study, we used hemocytes of three marine bivalve species, namely, Crenomytilus grayanus, Modiolus modiolus, and Arca boucardi, to evaluate and compare the toxic effects of 10 different types of nanoparticles. We gave short-term exposure of the nanoparticles to the hemocytes and registered viability and changes in their cell membrane polarization by employing flow cytometry. Metal-based nanoparticles were the most toxic to the cells of all three tested bivalve mollusc species. However, the sensitivity to different nanoparticle types varied between species. Moreover, the registered cell membrane depolarization indicated an early toxic response and raised concern that chronic long-term exposure of nanoparticles (even if they were previously declared as safe) is a serious threat for aquatic organisms. Abstract Nanoparticles (NPs) have broad applications in medicine, cosmetics, optics, catalysis, environmental purification, and other areas nowadays. With increasing annual production of NPs, the risks of their harmful influence on the environment and human health are also increasing. Currently, our knowledge about the mechanisms of the interaction between NPs and living organisms is limited. The marine species and their habitat environment are under continuous stress owing to the anthropogenic activities, which result in the release of NPs in the aquatic environment. We used a bioassay model with hemocytes of three bivalve mollusc species, namely, Crenomytilus grayanus, Modiolus modiolus, and Arca boucardi, to evaluate the toxicity of 10 different types of NPs. Specifically, we compared the cytotoxic effects and cell-membrane polarization changes in the hemocytes exposed to carbon nanotubes, carbon nanofibers, silicon nanotubes, cadmium and zinc sulfides, Au-NPs, and TiO2 NPs. Viability and the changes in hemocyte membrane polarization were measured by the flow cytometry method. The highest aquatic toxicity was registered for metal-based NPs, which caused cytotoxicity to the hemocytes of all the studied bivalve species. Our results also highlighted different sensitivities of the used tested mollusc species to specific NPs.
Collapse
Affiliation(s)
- Konstantin Pikula
- Education and Scientific Center of Nanotechnology, School of Engineering, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (V.C.); (A.Z.); (K.G.)
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B.Morskaya 42-44, 190000 Saint-Petersburg, Russia
- Correspondence:
| | - Vladimir Chaika
- Education and Scientific Center of Nanotechnology, School of Engineering, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (V.C.); (A.Z.); (K.G.)
| | - Alexander Zakharenko
- Education and Scientific Center of Nanotechnology, School of Engineering, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (V.C.); (A.Z.); (K.G.)
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B.Morskaya 42-44, 190000 Saint-Petersburg, Russia
| | - Anastasia Savelyeva
- School of Natural Sciences, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.S.); (I.K.); (A.A.)
| | - Irina Kirsanova
- School of Natural Sciences, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.S.); (I.K.); (A.A.)
| | - Anna Anisimova
- School of Natural Sciences, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.S.); (I.K.); (A.A.)
| | - Kirill Golokhvast
- Education and Scientific Center of Nanotechnology, School of Engineering, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (V.C.); (A.Z.); (K.G.)
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B.Morskaya 42-44, 190000 Saint-Petersburg, Russia
- Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, Radio 7, 690041 Vladivostok, Russia
| |
Collapse
|
11
|
Ollerhead KM, Adams OA, Willett NJ, Gates MA, Bennett JC, Murimboh J, Morash AJ, Lamarre SG, MacCormack TJ. Polyvinylpyrolidone-functionalized silver nanoparticles do not affect aerobic performance or fractional rates of protein synthesis in rainbow trout (Oncorhynchus mykiss). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114044. [PMID: 32004967 DOI: 10.1016/j.envpol.2020.114044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/15/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Aerobic performance in fish is linked to individual and population fitness and can be impacted by anthropogenic contaminants. Exposure to some engineered nanomaterials, including silver nanoparticles (nAg), reduces rates of oxygen consumption in some fish species, but the underlying mechanisms remain unclear. In addition, their effects on swim performance have not been studied. Our aim was to quantify the impact of exposure to functionalized nAg on aerobic scope and swim performance in rainbow trout (Oncorhychus mykiss) and to characterize the contribution of changing rates of protein synthesis to these physiological endpoints. Fish were exposed for 48 h to 5 nm polyvinylpyrolidone-functionalized nAg (nAgPVP; 100 μg L-1) or 0.22 μg L-1 Ag+ (as AgNO3), which was the measured quantity of Ag released from the nAgPVP over that time period. Aerobic scope, critical swimming speed (Ucrit), and fractional rates of protein synthesis (Ks), were then assessed, along with indicators of osmoregulation and cardiotoxicity. Neither nAgPVP, nor Ag+ exposure significantly altered aerobic scope, its component parts, or swim performance. Ks was similarly unaffected in 8 tissue types, though it tended to be lower in liver of nAgPVP treated fish. The treatments tended to decrease gill Na+/K+-ATPase activity, but effects were not significant. The latter results suggest that a longer or more concentrated nAgPVP exposure may induce significant effects. Although this same formulation of nAgPVP is bioactive in other fish, it had no effects on rainbow trout under the conditions tested. Such findings on common model animals like trout may thus misrepresent the safety of nAg to more sensitive species.
Collapse
Affiliation(s)
- K M Ollerhead
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - O A Adams
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - N J Willett
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - M A Gates
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - J C Bennett
- Department of Physics, Acadia University, Wolfville, NS, Canada
| | - J Murimboh
- Department of Chemistry, Acadia University, Wolfville, NS, Canada
| | - A J Morash
- Department of Biology, Mount Allison University, Sackville, NB, Canada
| | - S G Lamarre
- Département de Biologie, Université de Moncton, Moncton, NB, Canada
| | - T J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada.
| |
Collapse
|
12
|
Cazenave J, Ale A, Bacchetta C, Rossi AS. Nanoparticles Toxicity in Fish Models. Curr Pharm Des 2019; 25:3927-3942. [DOI: 10.2174/1381612825666190912165413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/29/2019] [Indexed: 12/27/2022]
Abstract
The increasing production and use of nanoparticles (NP) have raised concerns regarding the potential
toxicity to human and environmental health. In this review, we address the up to date information on nanotoxicity
using fish as models. Firstly, we carried out a systematic literature search (articles published up to February 2019
in the Scopus database) in order to quantitatively assess the scientific research on nanoparticles, nanotoxicity and
fish. Next, we carried out a narrative synthesis on the main factors and mechanisms involved in NP toxicity in
fish. According to the bibliometric analysis, there is a low contribution of scientific research on nanotoxicity
compared with the general nanoparticles scientific production. The literature search also showed that silver and
titanium NP are the most studied nanomaterials and Danio rerio is the fish species most used. In comparison with
freshwater fish, the effects of nanomaterials on marine fish have been little studied. After a non-systematic literature
analysis, we identified several factors involved in nanotoxicity, as well as the effects and main toxicity
mechanisms of NP on fish. Finally, we highlighted the knowledge gaps and the need for future research.
Collapse
Affiliation(s)
- Jimena Cazenave
- Instituto Nacional de Limnologia, CONICET, UNL, Santa Fe, Argentina, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| | - Analía Ale
- Instituto Nacional de Limnologia, CONICET, UNL, Santa Fe, Argentina, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| | - Carla Bacchetta
- Instituto Nacional de Limnologia, CONICET, UNL, Santa Fe, Argentina, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| | - Andrea Silvana Rossi
- Instituto Nacional de Limnologia, CONICET, UNL, Santa Fe, Argentina, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| |
Collapse
|
13
|
Du SNN, Choi JA, McCallum ES, McLean AR, Borowiec BG, Balshine S, Scott GR. Metabolic implications of exposure to wastewater effluent in bluegill sunfish. Comp Biochem Physiol C Toxicol Pharmacol 2019; 224:108562. [PMID: 31254663 DOI: 10.1016/j.cbpc.2019.108562] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/18/2019] [Accepted: 06/25/2019] [Indexed: 02/01/2023]
Abstract
Effluent from wastewater treatment plants (WWTP) contains a complex mixture of contaminants and is a major worldwide source of aquatic pollution. We examined the effects of exposure to treated effluent from a municipal WWTP on the metabolic physiology of bluegill sunfish (Lepomis macrochirus). We studied fish that were wild-caught or experimentally caged (28 d) downstream of the WWTP, and compared them to fish that were caught or caged at clean reference sites. Survival was reduced in fish caged at the effluent-contaminated site compared to those caged at the reference site. Resting rates of O2 consumption (MO2) were higher in fish from the contaminated site, reflecting a metabolic cost of wastewater exposure. The increases in routine MO2 did not reduce aerobic scope (difference or quotient of maximal MO2 and resting MO2), suggesting that physiological compensations accompanied the metabolic costs of wastewater exposure. Fish exposed to wastewater also had larger hearts and livers. The activity of mitochondrial enzymes (cytochrome c oxidase, citrate synthase) per liver mass was unaltered across treatments, so the increased mass of this organ increased its cumulative oxidative capacity in the fish. Wastewater exposure also reduced glycogen content per liver mass. The effects of caging itself, based on comparisons between fish that were wild-caught or caged at clean sites, were generally subtle and not statistically significant. We conclude that exposure to wastewater effluent invokes a metabolic cost that leads to compensatory physiological adjustments that partially offset the detrimental metabolic impacts of exposure.
Collapse
Affiliation(s)
- Sherry N N Du
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Jasmine A Choi
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Erin S McCallum
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Adrienne R McLean
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Brittney G Borowiec
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Graham R Scott
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
14
|
Application of PEG-Covered Non-Biodegradable Polyelectrolyte Microcapsules in the Crustacean Circulatory System on the Example of the Amphipod Eulimnogammarus verrucosus. Polymers (Basel) 2019; 11:polym11081246. [PMID: 31357585 PMCID: PMC6723028 DOI: 10.3390/polym11081246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 02/02/2023] Open
Abstract
Layer-by-layer assembled microcapsules are promising carriers for the delivery of various pharmaceutical and sensing substances into specific organs of different animals, but their utility in vivo inside such an important group as crustaceans remains poorly explored. In the current study, we analyzed several significant aspects of the application of fluorescent microcapsules covered by polyethylene glycol (PEG) inside the crustacean circulatory system, using the example of the amphipod Eulimnogammarus verrucosus. In particular, we explored the distribution dynamics of visible microcapsules after injection into the main hemolymph vessel; analyzed the most significant features of E. verrucosus autofluorescence; monitored amphipod mortality and biochemical markers of stress response after microcapsule injection, as well as the healing of the injection wound; and finally, we studied the immune response to the microcapsules. The visibility of microcapsules decreased with time, however, the central hemolymph vessel was confirmed to be the most promising organ for detecting the spectral signal of implanted microencapsulated fluorescent probes. One million injected microcapsules (sufficient for detecting stable fluorescence during the first hours after injection) showed no toxicity for six weeks, but in vitro amphipod immune cells recognize the PEG-coated microcapsules as foreign bodies and try to isolate them by 12 h after contact.
Collapse
|
15
|
Torrealba D, More-Bayona JA, Wakaruk J, Barreda DR. Innate Immunity Provides Biomarkers of Health for Teleosts Exposed to Nanoparticles. Front Immunol 2019; 9:3074. [PMID: 30687312 PMCID: PMC6335578 DOI: 10.3389/fimmu.2018.03074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, the unique properties of nanoparticles have fostered novel applications in various fields such as biology, pharmaceuticals, agriculture, and others. Unfortunately, their rapid integration into daily life has also led to environmental concerns due to uncontrolled release of nanoparticles into the aquatic environment. Despite increasing awareness of nanoparticle bioaccumulation in the aquatic environment, much remains to be learned about their impact on aquatic organisms and how to best monitor these effects. Herein, we provide the first review of innate immunity as an emerging tool to assess the health of fish following nanoparticle exposure. Fish are widely used as sentinels for aquatic ecosystem pollution and innate immune parameters offer sensitive and reliable tools that can be harnessed for evaluation of contamination events. The most frequent biomarkers highlighted in literature to date include, but are not limited to, parameters associated with leukocyte dynamics, oxidative stress, and cytokine production. Taken together, innate immunity offers finite and sensitive biomarkers for assessment of the impact of nanoparticles on fish health.
Collapse
Affiliation(s)
- Débora Torrealba
- Immunology and Animal Health Laboratory, Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Juan A. More-Bayona
- Immunology and Animal Health Laboratory, Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Jeremy Wakaruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Daniel R. Barreda
- Immunology and Animal Health Laboratory, Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Reid AJ, Carlson AK, Creed IF, Eliason EJ, Gell PA, Johnson PTJ, Kidd KA, MacCormack TJ, Olden JD, Ormerod SJ, Smol JP, Taylor WW, Tockner K, Vermaire JC, Dudgeon D, Cooke SJ. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol Rev Camb Philos Soc 2018; 94:849-873. [PMID: 30467930 DOI: 10.1111/brv.12480] [Citation(s) in RCA: 825] [Impact Index Per Article: 117.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022]
Abstract
In the 12 years since Dudgeon et al. (2006) reviewed major pressures on freshwater ecosystems, the biodiversity crisis in the world's lakes, reservoirs, rivers, streams and wetlands has deepened. While lakes, reservoirs and rivers cover only 2.3% of the Earth's surface, these ecosystems host at least 9.5% of the Earth's described animal species. Furthermore, using the World Wide Fund for Nature's Living Planet Index, freshwater population declines (83% between 1970 and 2014) continue to outpace contemporaneous declines in marine or terrestrial systems. The Anthropocene has brought multiple new and varied threats that disproportionately impact freshwater systems. We document 12 emerging threats to freshwater biodiversity that are either entirely new since 2006 or have since intensified: (i) changing climates; (ii) e-commerce and invasions; (iii) infectious diseases; (iv) harmful algal blooms; (v) expanding hydropower; (vi) emerging contaminants; (vii) engineered nanomaterials; (viii) microplastic pollution; (ix) light and noise; (x) freshwater salinisation; (xi) declining calcium; and (xii) cumulative stressors. Effects are evidenced for amphibians, fishes, invertebrates, microbes, plants, turtles and waterbirds, with potential for ecosystem-level changes through bottom-up and top-down processes. In our highly uncertain future, the net effects of these threats raise serious concerns for freshwater ecosystems. However, we also highlight opportunities for conservation gains as a result of novel management tools (e.g. environmental flows, environmental DNA) and specific conservation-oriented actions (e.g. dam removal, habitat protection policies, managed relocation of species) that have been met with varying levels of success. Moving forward, we advocate hybrid approaches that manage fresh waters as crucial ecosystems for human life support as well as essential hotspots of biodiversity and ecological function. Efforts to reverse global trends in freshwater degradation now depend on bridging an immense gap between the aspirations of conservation biologists and the accelerating rate of species endangerment.
Collapse
Affiliation(s)
- Andrea J Reid
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, K1S 5B6, Canada
| | - Andrew K Carlson
- Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife and Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Irena F Creed
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, S7N 5C8, Canada
| | - Erika J Eliason
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93117, U.S.A
| | - Peter A Gell
- School of Life and Health Sciences, University Drive, Federation University Australia, Mount Helen, 3350, Australia
| | - Pieter T J Johnson
- Ecology & Evolutionary Biology, University of Colorado, Boulder, CO 80309, U.S.A
| | - Karen A Kidd
- Department of Biology and School of Geography and Earth Sciences, McMaster University, Hamilton, L8S 4K1, Canada
| | - Tyson J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, E4L 1G8, Canada
| | - Julian D Olden
- School of Aquatic and Fishery Science, University of Washington, Seattle, WA 98195-5020, U.S.A
| | - Steve J Ormerod
- Water Research Institute & School of Biosciences, Cardiff University, Cardiff, CF10 3AX, U.K
| | - John P Smol
- Paleoecological Environmental Assessment and Research Lab (PEARL), Department of Biology, Queen's University, Kingston, K7L 3N6, Canada
| | - William W Taylor
- Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife and Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Klement Tockner
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, 12587, Germany
| | - Jesse C Vermaire
- Institute of Environmental Science, Carleton University, Ottawa, K1S 5B6, Canada
| | - David Dudgeon
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, K1S 5B6, Canada.,Institute of Environmental Science, Carleton University, Ottawa, K1S 5B6, Canada
| |
Collapse
|
17
|
Cheng Y, Zhang Y, Pei R, Xie Y, Yao W, Guo Y, Qian H. Fast Detection of Bismerthiazol in Cabbage Based on Fluorescence Quenching of Protein-Capping Gold Nanoclusters. ANAL SCI 2018; 34:415-419. [PMID: 29643303 DOI: 10.2116/analsci.17p347] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this work, bismerthiazol was firstly assayed by a fast and portable method employing protein-capping gold nanoculsters as probes. The luminescent intensity of the nanoclusters showed a correlative response towards bismerthiazol from 5 to 4000 μg/mL with a linear relation in the range of 5 - 100 μg/mL. As little as 5 μg/mL of bismerthiazol could be quantified. The high affinity of bismerthiazol to interact with the soybean protein-capped gold nanoclusters contributed to the excellent selectivity of this method over other common pesticides. The recoveries in several cabbage samples were 101 - 135%, indicating good performance in practical applications. By comparison to previous reported approaches, this method bears advantages including simple operation, fast response, visual readout and good selectivity.
Collapse
Affiliation(s)
- Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University
| | - Yao Zhang
- School of Food Science and Technology, Jiangnan University
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University
| | - Yahui Guo
- School of Food Science and Technology, Jiangnan University
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University
| |
Collapse
|
18
|
Corsi I, Fiorati A, Grassi G, Bartolozzi I, Daddi T, Melone L, Punta C. Environmentally Sustainable and Ecosafe Polysaccharide-Based Materials for Water Nano-Treatment: An Eco-Design Study. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1228. [PMID: 30018238 PMCID: PMC6073422 DOI: 10.3390/ma11071228] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/29/2018] [Accepted: 07/12/2018] [Indexed: 12/30/2022]
Abstract
Nanoremediation, which is the use of nanoparticles and nanomaterials for environmental remediation, is widely explored and proposed for preservation of ecosystems that suffer from the increase in human population, pollution, and urbanization. We herein report a critical analysis of nanotechnologies for water remediation by assessing their sustainability in terms of efficient removal of pollutants, appropriate methods for monitoring their effectiveness, and protocols for the evaluation of any potential environmental risks. Our purpose is to furnish fruitful guidelines for sustainable water management, able to promote nanoremediation also at European level. In this context, we describe new nanostructured polysaccharide-based materials obtained from renewable resources as alternative efficient and ecosafe solutions for water nano-treatment. We also provide eco-design indications to improve the sustainability of the production of these materials, based on life-cycle assessment methodology.
Collapse
Affiliation(s)
- Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Andrea Fiorati
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta" Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy.
| | - Giacomo Grassi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Irene Bartolozzi
- Sant'Anna School of Advanced Studies, Institute of Management, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
- Ergo S.r.l., c/o Technology Centre, Via Giuntini 25/29⁻int. 29, 56023 Pisa, Italy.
| | - Tiberio Daddi
- Sant'Anna School of Advanced Studies, Institute of Management, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
| | - Lucio Melone
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta" Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy.
| | - Carlo Punta
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta" Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy.
| |
Collapse
|
19
|
Callaghan NI, Williams KJ, Bennett JC, MacCormack TJ. Nanoparticulate-specific effects of silver on teleost cardiac contractility. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:721-730. [PMID: 29129433 DOI: 10.1016/j.envpol.2017.10.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/15/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
Silver nanoparticles (nAg), due to their biocidal properties, are common in medical applications and are used in more consumer products than any other engineered nanomaterial. This growing abundance, combined with their ability to translocate across the epithelium and bioaccumulate, suggests that internalized nAg may present a risk of toxicity to many organisms in the future. However, little experimentation has been devoted to cardiac responses to acute nAg exposure, even though nAg is known to disrupt ion channels even when ionic Ag+ does not. In this study, we examined the cardiac response to nAg exposure relative to a sham and an ionic AgNO3 control across cardiomyocyte survival and homeostasis, ventricular contractility, and intrinsic pacing rates of whole hearts. Our results suggest that nAg, but not Ag+ alone, inhibits force production by the myocardium, that Ag in any form disrupts normal pacing of cardiac contractions, and that these responses are likely not due to cytotoxicity. This evidence of nanoparticle-specific effects on physiology should encourage further research into nAg cardiotoxicity and other potential sublethal effects.
Collapse
Affiliation(s)
- Neal Ingraham Callaghan
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, E4L 1G8, Canada.
| | - Kenneth Javier Williams
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, E4L 1G8, Canada.
| | - J Craig Bennett
- Department of Physics, Acadia University, Wolfville, NS, B4P 2R6, Canada.
| | - Tyson James MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, E4L 1G8, Canada.
| |
Collapse
|
20
|
Eymard-Vernain E, Coute Y, Adrait A, Rabilloud T, Sarret G, Lelong C. The poly-gamma-glutamate of Bacillus subtilis interacts specifically with silver nanoparticles. PLoS One 2018; 13:e0197501. [PMID: 29813090 PMCID: PMC5973573 DOI: 10.1371/journal.pone.0197501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 05/03/2018] [Indexed: 12/03/2022] Open
Abstract
For many years, silver nanoparticles, as with other antibacterial nanoparticles, have been extensively used in manufactured products. However, their fate in the environment is unclear and raises questions. We studied the fate of silver nanoparticles in the presence of bacteria under growth conditions that are similar to those found naturally in the environment (that is, bacteria in a stationary phase with low nutrient concentrations). We demonstrated that the viability and the metabolism of a gram-positive bacteria, Bacillus subtilis, exposed during the stationary phase is unaffected by 1 mg/L of silver nanoparticles. These results can be partly explained by a physical interaction of the poly-gamma-glutamate (PGA) secreted by Bacillus subtilis with the silver nanoparticles. The coating of the silver nanoparticles by the secreted PGA likely results in a loss of the bioavailability of nanoparticles and, consequently, a decrease of their biocidal effect.
Collapse
Affiliation(s)
- Elise Eymard-Vernain
- BIG, LCBM, ProMD, UMR CNRS-CEA-UGA, Grenoble, France
- ISTerre, CNRS-UGA, Grenoble, France
| | - Yohann Coute
- BIG, BGE, EDyP, INSERM-CEA-UGA, Grenoble, France
| | - Annie Adrait
- BIG, BGE, EDyP, INSERM-CEA-UGA, Grenoble, France
| | | | | | - Cécile Lelong
- BIG, LCBM, ProMD, UMR CNRS-CEA-UGA, Grenoble, France
- * E-mail:
| |
Collapse
|