1
|
Chagantipati S, Palanisamy P, Burri G, Jalleda RL, Shaik N, Nadakuditi VR, Nasani N, Reddy RC, Srikanth K, Nutalapati V. Assessing the dual toxicity of HfO 2 nanoparticles and quinalphos on Pila virens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177582. [PMID: 39566615 DOI: 10.1016/j.scitotenv.2024.177582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Pila virens (P. virens) is an edible freshwater snail, widely distributed in Asia and Africa. P. virens is used as one of the most promising model organisms for monitoring environmental contamination in aquatic ecosystems. The physiological responses to the contaminants such as pesticides and nanomaterials are inadequate, especially in relation to the effects of co-exposure. In this work, we have investigated on the noxious effects of co-exposure between an organophosphorus pesticide, quinalphos and hafnium oxide nanoparticles (HfO2NPs) on the antioxidant responses of P. virens. Phase pure forms of HfO2NPs (monoclinic, P21/c) were obtained by sol-gel method. The crystallinity, structure and surface morphology were analysed with various spectroscopic methods like powder X-ray, Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), High Resolution Scanning Electron Microscope (HR-SEM) and Transmission Electron Microscope (TEM). P. virens after exposure for 96 h to the different concentrations of quinalphos (0.25-2.25 mg/mL) and HfO2NPs (10-50 mg/mL), the median lethal concentration (LC50) was determined to be 1.159 mg/mL and 11.47 mg/mL, respectively and show a significant fatal effect against the snail. The P. virens were exposed to sub-lethal concentrations of LC25 (0.57 mg/mL quinalphos and 5.73 mg/mL HfO2NPs) individually and in combination as a binary toxicity (quinalphos + HfO2NPs), (0.57 mg/mL + 5.73 mg/mL) for 24 and 48 h. Further, the antioxidant responses were assessed which included catalase (CAT), glutathione sulfo-transferase (GST), and malonaldehyde (MDA) activity in the group exposed to quinalphos and HfO2NPs exhibited to show an enhancement in their activity in comparison to controls after 24 and 48 h and revealed that 48 h exposure has significant impact. These results provide a valuable insight towards increased awareness of the physiological defences of P. virens after co-exposure to quinalphos and HfO2NPs in aquatic ecosystem.
Collapse
Affiliation(s)
- Shanmukh Chagantipati
- Department of Biotechnology, Vignan's Foundation for Science Technology & Research, (Deemed to be University), Vadlamudi-522213, Guntur District, Andhra Pradesh, India
| | - Prasanth Palanisamy
- Functional Materials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu, 603203, India
| | - Ganesh Burri
- Department of Biotechnology, Vignan's Foundation for Science Technology & Research, (Deemed to be University), Vadlamudi-522213, Guntur District, Andhra Pradesh, India
| | - Reethika Lakshmi Jalleda
- Department of Biotechnology, Vignan's Foundation for Science Technology & Research, (Deemed to be University), Vadlamudi-522213, Guntur District, Andhra Pradesh, India
| | - Nadiya Shaik
- Department of Biotechnology, Vignan's Foundation for Science Technology & Research, (Deemed to be University), Vadlamudi-522213, Guntur District, Andhra Pradesh, India
| | - Venkata Raju Nadakuditi
- Department of Biotechnology, Vignan's Foundation for Science Technology & Research, (Deemed to be University), Vadlamudi-522213, Guntur District, Andhra Pradesh, India
| | - Narendar Nasani
- Centre for Materials for Electronics Technology (C-MET), (Under Ministry of Electronics & Information Technology (MeitY), Government of India), IDA Phase-III, Hyderabad, India
| | - Raghu C Reddy
- Centre for Materials for Electronics Technology (C-MET), (Under Ministry of Electronics & Information Technology (MeitY), Government of India), IDA Phase-III, Hyderabad, India
| | - Koigoora Srikanth
- Department of Biotechnology, Vignan's Foundation for Science Technology & Research, (Deemed to be University), Vadlamudi-522213, Guntur District, Andhra Pradesh, India; Department of Biotechnology, Vignan's Foundation for Science Technology & Research, (Deemed to be University), Yadadri Bhuvanagiri District, Hyderabad 508824, Telangana, India; Centre for Environment & Marine Studies (CESAM), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Venkatramaiah Nutalapati
- Functional Materials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
2
|
Vijayaram S, Sinha R, Faggio C, Ringø E, Chou CC. Biopolymer encapsulation for improved probiotic delivery: Advancements and challenges. AIMS Microbiol 2024; 10:986-1023. [PMID: 39628726 PMCID: PMC11609427 DOI: 10.3934/microbiol.2024043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/27/2024] [Accepted: 10/22/2024] [Indexed: 12/06/2024] Open
Abstract
Probiotics, known for their health benefits as living microorganisms, hold significant importance across various fields, including agriculture, aquaculture, nutraceuticals, and pharmaceuticals. Optimal delivery and storage of probiotic cells are essential to maximize their effectiveness. Biopolymers, derived from living sources, plants, animals, and microbes, offer a natural solution to enhance probiotic capabilities and they possess distinctive qualities such as stability, flexibility, biocompatibility, sustainability, biodegradability, and antibacterial properties, making them ideal for probiotic applications. These characteristics create optimal environments for the swift and precisely targeted delivery of probiotic cells that surpass the effectiveness of unencapsulated probiotic cells. Various encapsulation techniques using diverse biopolymers are employed for this purpose. These techniques are not limited to spray drying, emulsion, extrusion, spray freeze drying, layer by layer, ionic gelation, complex coacervation, vibration technology, electrospinning, phase separation, sol-gel encapsulation, spray cooling, fluidized, air suspension coating, compression coating, co-crystallization coating, cyclodextrin inclusion, rotating disk, and solvent evaporation methods. This review addresses the latest advancements in probiotic encapsulation materials and techniques, bridging gaps in our understanding of biopolymer-based encapsulation systems. Specifically, we address the limitations of current encapsulation methods in maintaining probiotic viability under extreme environmental conditions and the need for more targeted and efficient delivery mechanisms. Focusing on the interactions between biopolymers and probiotics reveals how customized encapsulation approaches can enhance probiotic stability, survival, and functionality. Through detailed comparative analysis of the effectiveness of various encapsulation methods, we identify key strategies for optimizing probiotic deployment in challenging conditions such as high-temperature processing, acidic environments, and gastrointestinal transit. The findings presented in this review highlight the superior performance of novel encapsulation methods using biopolymer blends and advanced technologies like electrospinning and layer-by-layer assembly, which provide enhanced protection and controlled release of probiotics by offering insights into the development of more robust encapsulation systems that ensure the sustained viability and bioavailability of probiotics, thus advancing their application across multiple industries. In conclusion, this paper provides the foundation for future research to refine encapsulation techniques to overcome the challenges of probiotic delivery in clinical and commercial settings.
Collapse
Affiliation(s)
- Srirengaraj Vijayaram
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, 145 Xingda Rd. Taichung, 40227, Taiwan
| | - Reshma Sinha
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, 176206, India
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 S. Agata-Messina, Italy
| | - Einar Ringø
- Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries, and Economics, UiT the Arctic University of Norway, Tromsø, 9037, Norway
| | - Chi-Chung Chou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, 145 Xingda Rd. Taichung, 40227, Taiwan
| |
Collapse
|
3
|
Tahir R, Samra, Ghaffar A, Afzal F, Qazi IH, Zhao L, Yan H, Kuo H, Khan H, Yang S. Chronic cypermethrin induced toxicity and molecular fate assessment within common carp (Cyprinus carpio) using multiple biomarkers approach and its novel therapeutic detoxification. CHEMOSPHERE 2024; 357:142096. [PMID: 38663676 DOI: 10.1016/j.chemosphere.2024.142096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Cypermethrin (CYP) is a chemical of emerging concern which has persistent and bioaccumulating impacts as it can be found extensively in freshwater ecosystem and agricultural products. It has exposure risk and toxic effects over human edible fish, as common carp. Four groups were designed for toxicity assessment and detoxification approach: control group (CL), CYP exposure group (CYP), CYP + 10% M. oleifera leaves and 10% M. oleifera seeds (CMO group), 10% M. oleifera leaves and 10% M. oleifera seeds (MO group). Trial period was forty days during which cohort of 240 fish in CYP and CMO group was exposed to 1/5 of 96h LC50 of CYP (0.1612 μg/L). CYP-exposed carp exhibited lower growth parameters, but carp fed with 10% M. oleifera seeds and leaves showed significant improvement in growth rate (SGR, RGR) and weight gain (WG) as compared to the control group. CYP exposure negatively affected haemato-biochemical parameters. Moreover, CYP exposure also led to oxidative stress, damaged immunological parameters, genotoxicity and histopathological damage in liver and intestinal cells. Whereas, M. oleifera supplementation has ameliorated these conditions. Thereby, supplementation with M. oleifera is potential and novel therapeutic detoxication approach for common carp and human health against persistent and bioaccumulating emerging chemicals.
Collapse
Affiliation(s)
- Rabia Tahir
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Samra
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Abdul Ghaffar
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Fozia Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Izhar Hyder Qazi
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Haoxiao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - He Kuo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hamid Khan
- Department of Biochemistry, Quaid i Azam University, Islamabad, 45320, Pakistan
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
4
|
Yousaf Z, Hussain SM, Ali S, Sarker PK, Al-Ghanim KA. Recuperative Effects of Cinnamon (Cinnamomum zeylanicum) in Catla catla After Sub-Lethal Exposure to Lead. Biol Trace Elem Res 2024:10.1007/s12011-024-04213-5. [PMID: 38698173 DOI: 10.1007/s12011-024-04213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
This research was conducted to validate the beneficial effects of incorporating dietary cinnamon (Cinnamomum zeylanicum) powder (CzP) in alleviating lead (Pb) poisoning in fish. Healthy Catla catla individuals (16.36 ± 0.19 g/fish) were distributed across 18 tanks in triplicate groups. The experimental groups were as follows: Control group: fish without supplementation or exposure to Pb; positive control group: fish without supplementation but exposed to 1 mg/L Pb; 5 g/kg CzP along with 1 mg/L Pb exposure; 10 g/kg CzP along with 1 mg/L Pb exposure; 15 g/kg CzP along with 1 mg/L Pb exposure; and 20 g/kg CzP along with 1 mg/L Pb exposure. The trial continued for a period of 60 days. Waterborne Pb had a deleterious effect on fish growth performance, body composition, blood profile, and digestive enzyme activity, along with elevated Pb accumulation in various tissues. Conversely, consumption of cinnamon effectively mitigated the toxic potential of Pb and enhanced fish longevity. Notably, 10 g/kg CzP boosted growth, improved carcass quality, reversed blood indices, restored enzyme function in the gut, and mitigated Pb accumulation in tissues. In summary, the findings revealed that incorporating 10 g/kg of CzP as a dietary supplement in C. catla aquaculture could effectively counteract heavy metal toxicity.
Collapse
Affiliation(s)
- Zeeshan Yousaf
- Fish Nutrition Laboratory, Department of Zoology, Government College University Faisalabad, Punjab, 38000, Pakistan
| | - Syed Makhdoom Hussain
- Fish Nutrition Laboratory, Department of Zoology, Government College University Faisalabad, Punjab, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Punjab, 38000, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Pallab K Sarker
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Jindal R, Sharma R, Kaur P, Kaur S, Multisanti CR, Faggio C. Mitigation of haemato-genotoxic and stress response effects in Cyprinus carpio via silymarin dietary supplementation following deltamethrin exposure. Heliyon 2024; 10:e28419. [PMID: 38590886 PMCID: PMC10999925 DOI: 10.1016/j.heliyon.2024.e28419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024] Open
Abstract
The study examined the potential of Silymarin, a blend of bioactive flavonolignans extracted from the milk thistle Silybum marianum, to mitigate Deltamethrin-induced toxicity in the blood of Cyprinus carpio. Fish were exposed to Deltamethrin (0.66 μg/L), the plant extract, or a combination of both for a duration of thirty days. Various parameters, including serum biochemical markers, erythrocytic abnormalities, and genotoxicity endpoints, were assessed. Results indicated a significant (p < 0.05) increase in the levels of AST, ALT, ALP, blood urea nitrogen, creatinine, glucose, cholesterol, and TLC in the fish exposed to the pesticide. Conversely, total protein, TEC, and Hb showed a notable decrease. There was also a notable rise in micronuclei and erythrocytic abnormalities such as acanthocytes, microcytes, and notched cells. Under ultrastructural examination, phenotypic deformities like spherocytosis, discocytes, and clumped erythrocytes were observed. However, dietary supplementation of silymarin (1 g/kg) significantly restored the biochemical, genetic, and cellular parameters, resembling those of the control group. This suggests the potential of this plant extract in protecting the common carp, Cyprinus carpio, from Deltamethrin-induced damage by scavenging free radicals and reducing DNA oxidative stress.
Collapse
Affiliation(s)
- Rajinder Jindal
- Aquatic Biology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Ritu Sharma
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh 160014, India
| | - Parminder Kaur
- Department of Biosciences, University Institute of Biotechnology, Chandigarh University, Punjab, India
| | - Sukhmani Kaur
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | | | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina-Italy Messina, Italy
- Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
6
|
Shehata AI, Soliman AA, Ahmed HA, Gewaily MS, Amer AA, Shukry M, Abdel-Latif HMR. Evaluation of different probiotics on growth, body composition, antioxidant capacity, and histoarchitecture of Mugil capito. Sci Rep 2024; 14:7379. [PMID: 38548786 PMCID: PMC10978984 DOI: 10.1038/s41598-024-57489-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/19/2024] [Indexed: 04/01/2024] Open
Abstract
We investigated the dietary effects of the single application of Saccharomyces cerevisiae, Lactobacillus bulgaricus, and their combination on growth, proximate composition of whole fish body, antioxidant defense, and histoarchitecture of hapa-reared Mugil capito. Healthy fish (Fish weighed = 10.30 ± 0.10 g at first) were randomly allocated into 4 equal groups, each with three replicates. These groups were designed as follows: (1) a group fed a basal diet without probiotics (control), (2) a group fed a diet containing S. cerevisiae (4 g/kg diet), (3) a group fed a diet containing L. bulgaricus (2 g/kg diet), and (4) the last group fed a diet containing a combination of both, all for a duration of 60 days. Probiotic-treated groups showed significantly better growth and nutrition utilization than the control group. Significant differences were observed in the crude fat and crude protein contents among the groups, with the combination group exhibiting the highest levels. However, there were no significant variations in ash content across all groups. The highest hepatic antioxidant capacity (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) enzyme activities) was observed in the combination group. Thiobarbituric acid reactive substance (TBARS) concentrations were decreased significantly in all probiotic groups, suggesting improved oxidative stress resilience in these groups. The histomorphological analysis of the hepatopancreatic tissues revealed well-arranged parenchyma, increased glycogen storage, and melanomacrophage centers in probiotic-treated groups, particularly the combined probiotics group. Furthermore, the probiotic supplementation improved the histoarchitecture of the intestinal villi compared to the control group. To put it briefly, combined dietary administration of these probiotics improved growth, body composition, antioxidant defenses, and hepatic and intestinal health in hapa-reared M. capito, highlighting their promising role in promoting welfare and productivity.
Collapse
Affiliation(s)
- Akram Ismael Shehata
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt.
| | - Ali A Soliman
- National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Hamada A Ahmed
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Mahmoud S Gewaily
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Asem A Amer
- Department of Fish Nutrition and Feed Technology, Central Laboratory for Aquaculture Research, Agricultural Research Center, Abbassa, Abo-Hammad, Sharqia, 44662, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22758, Egypt.
| |
Collapse
|
7
|
Sirati R, Khajehrahimi AE, Kazempoor R, Kakoolaki S, Ghorbanzadeh A. Development, physicochemical characterization, and antimicrobial evaluation of niosome-loaded oregano essential oil against fish-borne pathogens. Heliyon 2024; 10:e26486. [PMID: 38463865 PMCID: PMC10920168 DOI: 10.1016/j.heliyon.2024.e26486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 03/12/2024] Open
Abstract
Objective Niosomes have gained attention as a promising drug delivery system for enhancing the antimicrobial and anti-biofilm effects of natural compounds. Oregano essential oil has demonstrated potent antimicrobial and anti-biofilm properties against food-borne pathogens. Methods In this study, researchers aimed to explore the use of niosomes as a delivery system to improve the efficacy of oregano essential oil against food-borne pathogens. The structural and morphological properties of different niosome formulations were examined. Different formulations of niosomes were prepared and their structural and morphological properties were examined. The antimicrobial and anti-biofilm effects of niosomes containing oregano essential oil were evaluated using microbroth-dilution and microtiter-plate methods, respectively. The biocompatibility of the synthesized niosomes was assessed using the MTT method on human foreskin fibroblasts normal cell line (HFF). Results The optimal formulation of niosomes had an average size of 219 nm and an encapsulation efficiency of 61.22%. The release study demonstrated that 58% of the essential oil was released from niosomes, while 100% was released from free essential oil. Furthermore, the antimicrobial and anti-biofilm effects of the essential oil were found to be 2-4 times higher when loaded in niosomes. The biocompatibility test confirmed that the synthesized empty niosomes had no cytotoxic effects on HFF cell line. Conclusion Niosomes encapsulating oregano essential oil demonstrated the capacity to inhibit the activity of genes associated with biofilm formation in pathogenic bacteria. This study highlights the significant antimicrobial and anti-biofilm effects of niosomes containing oregano essential oil, suggesting their potential as a suitable drug delivery system.
Collapse
Affiliation(s)
- Rameen Sirati
- Department of Aquatic Animal Health and Diseases, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Eghbal Khajehrahimi
- Department of Aquatic Animal Health and Diseases, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Reza Kazempoor
- Department of Aquatic Animal Health and Diseases, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shapoor Kakoolaki
- Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran
| | - Arman Ghorbanzadeh
- Department of Aquatic Animal Health and Diseases, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Pascon G, Daniso E, Cardinaletti G, Messina M, Campagnolo F, Zuccaccia D, Tulli F. Postprandial kinetics of digestive function in rainbow trout (Oncorhynchus mykiss): genes expression, enzymatic activity and blood biochemistry as a practical tool for nutritional studies. Comp Biochem Physiol A Mol Integr Physiol 2024; 288:111559. [PMID: 38052346 DOI: 10.1016/j.cbpa.2023.111559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Postprandial kinetics of genes expression of gastric (chitinase, pepsinogen) and intestinal (alkaline phosphatase, maltase) digestive enzymes and nutrient transporters (peptide transporter 1, sodium-glucose transporter 1), Brush Border Membrane (BBM) enzymes activity (alkaline phosphatase, leucine aminopeptidase, maltase, saccharase) and blood biochemistry (triglycerides, cholesterol, protein, albumin, glucose, amino acids) through NMR spectroscopy, were investigated in rainbow trout (Oncorhynchus mykiss) fed a commercial aquafeed. For this purpose, fish were starved 72 h and digestive tract and blood were sampled before the meal and at 1.5, 3, 6, 9, 12, and 24 h after feeding (T0, T1.5, T3, T6, T9, T12 and T24). The postprandial kinetic showed that the expression of the genes involved in digestion and nutrient transport, the activity of BBM enzymes, and the presence of metabolites in blood were stimulated in different ways by the presence of feed in the digestive tract. The expression of most genes peaked 3 h after meal except gastric pepsinogen and maltase in distal intestine that peaked at T9 and T12, respectively. The activity of BBM enzymes were stimulated differently based on the intestine tract. The plasma proteins level increased from T1.5 until T9, while the other blood parameters unvariated during the postprandial period. This study supplied useful information about the physiological effects a single meal as a potential tool for planning nutritional studies involving the digestive functions.
Collapse
Affiliation(s)
- G Pascon
- Dept. of Agriculture, Food, Environment and Animal Science, University of Udine, Italy
| | - E Daniso
- Dept. of Agriculture, Food, Environment and Animal Science, University of Udine, Italy
| | - G Cardinaletti
- Dept. of Agriculture, Food, Environment and Animal Science, University of Udine, Italy
| | - M Messina
- Dept. of Agriculture, Food, Environment and Animal Science, University of Udine, Italy
| | - F Campagnolo
- Dept. of Agriculture, Food, Environment and Animal Science, University of Udine, Italy
| | - D Zuccaccia
- Dept. of Agriculture, Food, Environment and Animal Science, University of Udine, Italy
| | - F Tulli
- Dept. of Agriculture, Food, Environment and Animal Science, University of Udine, Italy.
| |
Collapse
|
9
|
Cao N, Zong X, Guo X, Chen X, Nie D, Huang L, Li L, Ma Y, Wang C, Pang S. The adsorption effects of biochar on carbofuran in water and the mixture toxicity of biochar-carbofuran in rats. CHEMOSPHERE 2024; 350:140992. [PMID: 38141676 DOI: 10.1016/j.chemosphere.2023.140992] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/11/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Carbofuran, a widely used carbamate insecticide, is frequently detected in water. In this study, a high-performance adsorbent (WAB4) for carbofuran was obtained from laboratory-synthesized biochars. The maximum adsorption of carbofuran by WAB4 reaches 113.7 mg/g approximately. The adsorption of carbofuran by biochar was a multi-molecular layer and the adsorption process conforms to the pseudo-second-order kinetic model (R2 = 0.9984) and Freundlich isotherm model (R2 = 0.99). Importantly, an in vivo rat model was used to assess the combined toxicological effects of biochar-carbofuran complexes. The toxicity of the complexes (LD50 > 12 mg/kg) is lower than that of carbofuran (LD50 = 7.9 mg/kg) alone. The damage of biochar-carbofuran complex on rat liver and lung is significantly less than that of carbofuran. The Cmax and bioavailability of carbofuran were found to be reduced by 64% and 68%, respectively, when biochar was present, by UPLC-MS/MS analysis of carbofuran in rat plasma. Furthermore, it was confirmed that the biochar-carbofuran complex is relatively stable in the gastrointestinal tract, by performing a carbofuran release assay in artificial gastrointestinal fluids in vitro. Collectively, biochar is a bio-friendly material for the removal of carbofuran from water.
Collapse
Affiliation(s)
- Niannian Cao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; State Key Laboratory of NBC Protection for Civilians, Beijing, 102205, China
| | - Xingxing Zong
- State Key Laboratory of NBC Protection for Civilians, Beijing, 102205, China
| | - Xuanjun Guo
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; State Key Laboratory of NBC Protection for Civilians, Beijing, 102205, China
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilians, Beijing, 102205, China
| | - Dongxing Nie
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100125, China
| | - Lan Huang
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100125, China
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilians, Beijing, 102205, China
| | - Yongqiang Ma
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Chen Wang
- State Key Laboratory of NBC Protection for Civilians, Beijing, 102205, China.
| | - Sen Pang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Adel M, Sakhaie F, Hosseini Shekarabi SP, Gholamhosseini A, Impellitteri F, Faggio C. Dietary Mentha piperita essential oil loaded in chitosan nanoparticles mediated the growth performance and humoral immune responses in Siberian sturgeon (Acipenserbaerii). FISH & SHELLFISH IMMUNOLOGY 2024; 145:109321. [PMID: 38122952 DOI: 10.1016/j.fsi.2023.109321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Siberian sturgeon (Acipenser baerii) fry often face environmental stressors that can compromise their immune system, rendering them susceptible to opportunistic pathogens in intensive aquaculture systems. In this study, we explored the innovative use of chitosan nanoparticles loaded with Mentha piperita essential oil (MPO/CNPs) as a dietary supplement to improve the growth and immune responses of A. baerii. The results demonstrated that the addition of MPO/CNPs to the diet led to significant improvements in growth, as evidenced by increased red blood cell count, hematocrit, haemoglobin concentration, and reduced triglyceride levels. Furthermore, significant differences were observed in the immune parameters for the treatment groups receiving Mentha piperita essential oil loaded in chitosan nanoparticles (MPO/CNPs), including enhanced lysozyme activity, immunoglobulin M (IgM) levels, respiratory burst activity, and ACH50 activity. Additionally, gene expression analysis revealed upregulation of key immune-related genes in the MPO/CNPs-treated groups. These findings suggest that the use of MPO/CNPs can enhance the growth and bolster the immune defences of Siberian sturgeon fry, contributing to more sustainable production in intensive aquaculture environments.
Collapse
Affiliation(s)
- Milad Adel
- Department of Aquatic Animal Health and Diseases, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran
| | - Fahimeh Sakhaie
- School of Pharmacy, Shahid Beheshti University, Tehran, Iran
| | - Seyed Pezhman Hosseini Shekarabi
- National Research Center of Saltwater Aquatic Animals, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Bafq, Iran
| | - Amin Gholamhosseini
- Department of Aquatic Animal Health and Diseases, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences of the University of Messina, Messina, Italy; Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
11
|
Ravindra J, Ug Y, Pandyanda Nanjappa D, Kalladka K, Dhakal R, Chakraborty A, Chakraborty G. Allicin extracted from Allium sativum shows potent anti-cancer and antioxidant properties in zebrafish. Biomed Pharmacother 2023; 169:115854. [PMID: 37951024 DOI: 10.1016/j.biopha.2023.115854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/26/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023] Open
Abstract
Garlic (Allium sativum) is an important flavouring component in Indian cuisine. Allicin, a sulphur containing compound, is the most abundant component of garlic and has been widely studied for its antimicrobial and antioxidant properties. It is also known to play a role in the regulation of blood pressure and cholesterol levels. Despite the known health benefits associated with allicin, systematic studies on its anti-cancer properties using animal models are very limited. This study aimed to develop a simple method for the extraction of allicin from fresh garlic, study the stability of the extracted compound at various temperatures, and evaluate the antioxidant, anti-proliferative, pro-apoptotic and anti-angiogenic properties in zebrafish. A five-month stability study indicated that allicin remains significantly stable at temperatures 4 °C and below but shows extensive degradation if stored at room temperature. The in vivo studies in zebrafish using a combination of mutants and transgenic lines demonstrated the antioxidant, anti-proliferative, apoptotic and anti-angiogenic properties of allicin. The study highlights the importance of natural bioactive compounds as potential anti-cancer agents that can be studied further.
Collapse
Affiliation(s)
- Jeshma Ravindra
- Department of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to be University), Kotekar-Beeri Road, Deralakatte, Mangalore 575018, India
| | - Yathisha Ug
- Department of Food Safety and Nutrition, Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to be University), Mangalore 575018, India
| | - Dechamma Pandyanda Nanjappa
- Department of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to be University), Kotekar-Beeri Road, Deralakatte, Mangalore 575018, India
| | - Krithika Kalladka
- Department of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to be University), Kotekar-Beeri Road, Deralakatte, Mangalore 575018, India
| | - Rasik Dhakal
- Department of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to be University), Kotekar-Beeri Road, Deralakatte, Mangalore 575018, India
| | - Anirban Chakraborty
- Department of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to be University), Kotekar-Beeri Road, Deralakatte, Mangalore 575018, India.
| | - Gunimala Chakraborty
- Department of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to be University), Kotekar-Beeri Road, Deralakatte, Mangalore 575018, India.
| |
Collapse
|
12
|
Rahman ANA, Altohamy DE, Elshopakey GE, Abdelwarith AA, Younis EM, Elseddawy NM, Elgamal A, Bazeed SM, Khamis T, Davies SJ, Ibrahim RE. Potential role of dietary Boswellia serrata resin against mancozeb fungicide-induced immune-antioxidant suppression, histopathological alterations, and genotoxicity in Nile tilapia, Oreochromis niloticus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106738. [PMID: 37922777 DOI: 10.1016/j.aquatox.2023.106738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/14/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
This study was established to look into the toxicological consequences of chronic exposure to a fungicide (mancozeb; MAZ) on the immune-antioxidant response, gene expressions, hepato-renal functions, and histological pictures of Nile tilapia (Oreochromis niloticus). Additionally, the effectiveness of Indian frankincense resin extract (IFRE) to mitigate their toxicity was taken into account. Fish (n =240; average body weight: 22.45 ± 2.21 g) were randomized into four groups for eight weeks in six replicates (control, IFRE, MAZ, and IFRE + MAZ), where ten fish were kept per replicate. The control and IFRE groups received basal diets that included 0.0 and 5 g/kg of IFRE without MAZ exposure. The MAZ and IFRE+MAZ groups received the same diets and were exposed to 1/10 of the 96-h of LC50 of MAZ (1.15 mg/L). The outcomes displayed that MAZ exposure resulted in a lower survival rate (56.67 %) and significantly decreased levels of immune-antioxidant variables (antiprotease, complement3, phagocytic activity, lysozyme, glutathione peroxidase, superoxide dismutase, and total antioxidant capacity) compared to the control group. The MAZ-exposed fish showed the greatest levels of lipid peroxide (malondialdehyde), alkaline phosphatase, alanine amino-transferase, and stress indicators (cortisol and glucose). Additionally, histopathological alterations, including vacuolation, severe necrosis, degeneration, and mononuclear cell infiltrations in the hepatic, renal, and splenic tissues resulted, besides a reduction in the melanomacrophage center in the spleen. A down-regulation of immune-antioxidant-associated genes [toll-like receptors (TLR-2 and TLR-7), nuclear factor kappa beta (NF-κβ), transforming growth factor-beta (TGF-β), phosphoinositide-3-kinase regulatory subunit 3 gamma b (pik3r3b), interleukins (IL-1β and IL-8), glutathione synthetase (GSS), glutathione peroxidase (GPx), and superoxide dismutase (SOD)] were the consequences of the MAZ exposure. Remarkably, the dietary inclusion of IFRE in MAZ-exposed fish augmented the immune-antioxidant parameters, including their associated genes, decreased stress response, and increased survival rate (85 %) compared with the MAZ-exposed fish. Moreover, dietary IFRE improved hepato-renal function indices by preserving the histological architecture of the hepatic, renal, and splenic tissues. The insights of this study advocate the use of an IFRE-dietary addition to protect Nile tilapia from MAZ toxicity, which provides perspectives for future implementations in enhancing fish health for sustainable aquaculture.
Collapse
Affiliation(s)
- Afaf N Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt.
| | - Dalia E Altohamy
- Department of Pharmacology, Central Laboratory, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, PO Box 35516, Mansoura, Dakahlia, Egypt
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Nora M Elseddawy
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt
| | - Aya Elgamal
- Department of Animal Histology and Anatomy, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Shefaa M Bazeed
- Department of Biochemistry and Animal Physiology, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, Galway H91V8Y1, Ireland
| | - Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt.
| |
Collapse
|
13
|
Noor G, Badruddeen, Akhtar J, Singh B, Ahmad M, Khan MI. An outlook on the target-based molecular mechanism of phytoconstituents as immunomodulators. Phytother Res 2023; 37:5058-5079. [PMID: 37528656 DOI: 10.1002/ptr.7969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
The immune system is one of the essential defense mechanisms. Immune system inadequacy increases the risk of infections and cancer diseases, whereas over-activation of the immune system causes allergies or autoimmune disorders. Immunomodulators have been used in the treatment of immune-related diseases. There is growing interest in using herbal medicines as multicomponent agents to modulate the complex immune system in immune-related diseases. Many therapeutic phytochemicals showed immunomodulatory effects by various mechanisms. This mechanism includes stimulation of lymphoid cell, phagocytosis, macrophage, and cellular immune function enhancement. In addition increased antigen-specific immunoglobulin production, total white cell count, and inhibition of TNF-α, IFN-γ, NF-kB, IL-2, IL-6, IL-1β, and other cytokines that influenced the immune system. This review aims to overview, widely investigated plant-derived phytoconstituents by targeting cells to modulate cellular and humoral immunity in in vivo and in vitro. However, further high-quality research is needed to confirm the clinical efficacy of plant-based immunomodulators.
Collapse
Affiliation(s)
- Gazala Noor
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Badruddeen
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Juber Akhtar
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Bhuwanendra Singh
- Department of Pharmacognosy, S.D. College of Pharmacy and Vocational Studies, Muzaffarnagar, India
| | - Mohammad Ahmad
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Mohammad Irfan Khan
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
14
|
Jeyavani J, Sibiya A, Stalin T, Vigneshkumar G, Al-Ghanim KA, Riaz MN, Govindarajan M, Vaseeharan B. Biochemical, Genotoxic and Histological Implications of Polypropylene Microplastics on Freshwater Fish Oreochromis mossambicus: An Aquatic Eco-Toxicological Assessment. TOXICS 2023; 11:toxics11030282. [PMID: 36977047 PMCID: PMC10052786 DOI: 10.3390/toxics11030282] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 05/27/2023]
Abstract
In recent years, polypropylene microplastic has persisted in freshwater ecosystems and biota, forming ever-growing threats. This research aimed to prepare polypropylene microplastics and evaluate their toxicity to the filter feeder Oreochromis mossambicus. In this research, fish were given a dietary supplement of polypropylene microplastics at 100, 500, and 1000 mg/kg for acute (96 h) and sub-acute (14 days) durations to assess toxic effects on liver tissues. FTIR results revealed the presence of polypropylene microplastic in their digestion matter. The ingestion of microplastics in O. mossambicus led to fluctuations in homeostasis, an upsurge in reactive oxygen species (ROS) levels, an alteration in antioxidant parameters, including superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), and glutathione peroxidase (GPx); a promotion in the oxidation of lipid molecules; and a denaturation in the neurotransmitter enzyme acetylcholinesterase (AChE). Our data indicated that sustained exposure to microplastics (14 days) produced a more severe threat than acute exposure (96 h). In addition, higher apoptosis, DNA damage (genotoxicity), and histological changes were found in the liver tissues of the sub-acute (14 days) microplastics-treated groups. This research indicated that the constant ingestion of polypropylene microplastics is detrimental to freshwater environments and leads to ecological threats.
Collapse
Affiliation(s)
- Jeyaraj Jeyavani
- Biomaterials and Biotechnology in Animal Health Lab., Department of Animal Health and Management, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Ashokkumar Sibiya
- Biomaterials and Biotechnology in Animal Health Lab., Department of Animal Health and Management, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Thambusamy Stalin
- Department of Industrial Chemistry, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Ganesan Vigneshkumar
- Department of Industrial Chemistry, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Khalid A. Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Marimuthu Govindarajan
- Unit of Mycology and Parasitology, Department of Zoology, Annamalai University, Annamalainagar 608002, Tamil Nadu, India;
- Unit of Natural Products and Nanotechnology, Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612001, Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab., Department of Animal Health and Management, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
15
|
Banaei M, Forouzanfar M, Jafarinia M. Toxic effects of polyethylene microplastics on transcriptional changes, biochemical response, and oxidative stress in common carp (Cyprinus carpio). Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109423. [PMID: 35914709 DOI: 10.1016/j.cbpc.2022.109423] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022]
Abstract
Aquatic ecosystems have become a place for accumulating microplastics (MPs). MPs can directly or indirectly damage organisms. Although studies of the toxicity of MPs, there are insufficient literature reports on the effects of MPs on freshwater aquatic life. Therefore, this study aimed to evaluate the effect of MPs toxicity on Cyprinus carpio. In this study, biochemical parameters, oxidative biomarkers, and gene expression were assayed in fish exposed to 0, 175, 350, 700, and 1400 μg L-1 of MPs for 30 days. MPs were detected in the liver and intestine of fish using FTIR-analysis. Mt1, Ces2, and P450 mRNA expression were enhanced in the hepatocytes of fish exposed to MPs, while Mt2 gene expression was significantly decreased. After exposure to MPs, MDA and carbonyl protein levels were higher than those of the reference group. The antioxidant capacity and glycogen contents in the hepatocytes significantly declined. MPs significantly inhibited glutathione reductase (GR), glucose 6-phosphate dehydrogenase (G6PDH), and catalase (CAT) activities. However, superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities increased. MPs decreased the total protein, globulin levels, and butyrylcholinesterase (BChE) activity in blood. In contrast, aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT), lactate dehydrogenase (LDH), alkaline phosphatase (ALP), and creatine phosphokinase (CPK) activities increased in treated-fish with MPs. Glucose, creatinine, cholesterol and triglyceride concentrations in fish exposed to MPs were significantly higher than that of the reference group. Consequently, MPs exposure could disrupt biochemical homeostasis, oxidative stress and alter the expression of genes involved in detoxification.
Collapse
Affiliation(s)
- Mehdi Banaei
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Mohsen Forouzanfar
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran.
| | - Mojtaba Jafarinia
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
16
|
Allicin Promoted Reducing Effect of Garlic Powder through Acrylamide Formation Stage. Foods 2022; 11:foods11162394. [PMID: 36010398 PMCID: PMC9407168 DOI: 10.3390/foods11162394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Acrylamide is formed during food heating and is neurotoxic to animals and potentially carcinogenic to humans. It is important to reduce acrylamide content during food processing. Researchers have suggested that garlic powder could reduce acrylamide content, but the key substance and acrylamide reduction pathway of garlic powder was unclear. Methods: The inhibitory effect of garlic powder on acrylamide in asparagine/glucose solution and a fried potato model system were firstly evaluated. Furthermore, the effect of allicin on the amount of produced acrylamide in the asparagine/glucose solution model system and fried potatoes was studied with kinetic analysis. Results: The freeze-dried garlic powder had a higher inhibition rate (41.0%) than oven-dried garlic powder (maximum inhibition rate was 37.3%), and allicin had a 71.3% attribution to the reduction of acrylamide content. Moreover, the inhibition rate of allicin had a nonlinear relationship with the addition level increase. The kinetic analysis indicated that garlic powder and allicin could reduce acrylamide content through the AA formation stage, but not the decomposition stage. Conclusions: Allicin was the key component of garlic powder in reducing acrylamide content during acrylamide formation stage. This research could provide a new method to reduce acrylamide content during food processing and expand the application area of garlic.
Collapse
|
17
|
Banaee M, Sureda A, Faggio C. Protective effect of protexin concentrate in reducing the toxicity of chlorpyrifos in common carp (Cyprinus carpio). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103918. [PMID: 35753671 DOI: 10.1016/j.etap.2022.103918] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/06/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The present study aimed to evaluate the protective effect of protexin supplementation against chlorpyrifos-induced oxidative stress and immunotoxicity in Cyprinus carpio. After 21 days, the activity of superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR), and total antioxidant levels significantly decreased in hepatocytes of fish exposed to chlorpyrifos, while malondialdehyde (MDA) increased. Treatment with protexin was able to reverse the decrease in SOD and GR and significantly reduce MDA levels. Exposure to chlorpyrifos also induced alterations in blood biochemical parameters and caused immunosuppression. Dietary protexin return some parameters (aspartate aminotransferase, lactate dehydrogenase, and γ-glutamyltransferase activities, and glucose, cholesterol, total protein, creatinine, and complement C4 levels) to values similar to those of the control group. Based on the results, it can be concluded that protexin exerted protective effects against chlorpyrifos exposure in C. carpio reducing oxidative damage, and ameriorating blood biochemical alterations and the immunosuppression.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Health Research Institute of the Balearic Islands (IdISBa), and CIBEROBN Fisiopatología de la Obesidad la Nutrición, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
18
|
Rabelo-Ruiz M, Newman-Portela AM, Peralta-Sánchez JM, Martín-Platero AM, Agraso MDM, Bermúdez L, Aguinaga MA, Baños A, Maqueda M, Valdivia E, Martínez-Bueno M. Beneficial Shifts in the Gut Bacterial Community of Gilthead Seabream (Sparus aurata) Juveniles Supplemented with Allium-Derived Compound Propyl Propane Thiosulfonate (PTSO). Animals (Basel) 2022; 12:ani12141821. [PMID: 35883368 PMCID: PMC9312144 DOI: 10.3390/ani12141821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Aquaculture plays an important role in supplying global food demand and protein sources. The increasing restriction of drugs in fish production has forced this sector to carry out changes in the management of farms. Functional feed additives such as probiotics, prebiotics, and phytogenics have been proposed in order to maintain or improve productive levels and general health status of fish. In this study, we explore the effects of Allium-derived food additives in the bacterial community and growth of gilthead seabream (Sparus aurata) juveniles. We found that this additive produced significant changes in bacterial community of the hindgut. In this sense, this shift occurred towards a more diverse microbiota. Especially relevant is the decrease in the populations of potential pathogenic bacteria as Vibrio and Pseudomonas, while this additive enhanced Lactobacillus, a well-known beneficial genus. Our work shows that the addition of PTSO has beneficial effects on bacterial communities while keeping productive parameters on fish growth. Abstract This study analyzes the potential use of an Allium-derived compound, propyl propane thiosulfonate (PTSO), as a functional feed additive in aquaculture. Gilthead seabream (Sparus aurata) juveniles had their diet supplemented with this Allium-derived compound (150 mg/kg of PTSO) and were compared with control fish. The effects of this organosulfur compound were tested by measuring the body weight and analyzing the gut microbiota after 12 weeks. The relative abundance of potentially pathogenic Vibrio and Pseudomonas in the foregut and hindgut of supplemented fish significantly decreased, while potentially beneficial Lactobacillus increased compared to in the control fish. Shannon’s alpha diversity index significantly increased in both gut regions of fish fed with a PTSO-supplemented diet. Regarding beta diversity, significant differences between treatments only appeared in the hindgut when minority ASVs were taken into account. No differences occurred in body weight during the experiment. These results indicate that supplementing the diet with Allium-derived PTSO produced beneficial changes in the intestinal microbiota while maintaining the productive parameters of gilthead seabream juveniles.
Collapse
Affiliation(s)
- Miguel Rabelo-Ruiz
- Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain; (M.R.-R.); (A.M.N.-P.); (A.M.M.-P.); (M.M.); (E.V.)
| | - Antonio M. Newman-Portela
- Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain; (M.R.-R.); (A.M.N.-P.); (A.M.M.-P.); (M.M.); (E.V.)
| | - Juan Manuel Peralta-Sánchez
- Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain; (M.R.-R.); (A.M.N.-P.); (A.M.M.-P.); (M.M.); (E.V.)
- Correspondence: (J.M.P.-S.); (M.M.-B.)
| | - Antonio Manuel Martín-Platero
- Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain; (M.R.-R.); (A.M.N.-P.); (A.M.M.-P.); (M.M.); (E.V.)
| | - María del Mar Agraso
- Aquaculture Technology Centre of Andalusia, CTAQUA. Muelle Comercial s/n, El Puerto de Santa María, 11500 Cádiz, Spain; (M.d.M.A.); (L.B.)
| | - Laura Bermúdez
- Aquaculture Technology Centre of Andalusia, CTAQUA. Muelle Comercial s/n, El Puerto de Santa María, 11500 Cádiz, Spain; (M.d.M.A.); (L.B.)
| | - María Arántzazu Aguinaga
- Departamento de Microbiología y Biotecnología, DMC Research Center, Camino de Jayena s/n, 18620 Granada, Spain; (M.A.A.); (A.B.)
| | - Alberto Baños
- Departamento de Microbiología y Biotecnología, DMC Research Center, Camino de Jayena s/n, 18620 Granada, Spain; (M.A.A.); (A.B.)
| | - Mercedes Maqueda
- Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain; (M.R.-R.); (A.M.N.-P.); (A.M.M.-P.); (M.M.); (E.V.)
- Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain
| | - Eva Valdivia
- Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain; (M.R.-R.); (A.M.N.-P.); (A.M.M.-P.); (M.M.); (E.V.)
- Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain
| | - Manuel Martínez-Bueno
- Departamento de Microbiología, Universidad de Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain; (M.R.-R.); (A.M.N.-P.); (A.M.M.-P.); (M.M.); (E.V.)
- Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain
- Correspondence: (J.M.P.-S.); (M.M.-B.)
| |
Collapse
|
19
|
Shi H, Li B, Gao H, He H, Wu Z, Magdaloud J, Wang H, Chen L. Intrauterine programming of cartilaginous 11β-HSD2 induced by corticosterone and caffeine mediated susceptibility to adult osteoarthritis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113624. [PMID: 35588619 DOI: 10.1016/j.ecoenv.2022.113624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Our previous study reported that prenatal caffeine exposure (PCE) could induce chondrodysplasia and increase the susceptibility to osteoarthritis in offspring rats. However, the potential mechanisms and initiating factors remain unknown. This study aims to investigate whether 11β-HSD2, a glucocorticoid-metabolizing enzyme, is involved in the susceptibility of osteoarthritis induced by PCE and to further explore its potential mechanisms and initiating factors. Firstly, we found that PCE reduced cartilage matrix synthesis (aggrecan/Col2a1 expression) in male adult offspring rats and exhibited an osteoarthritis phenotype following chronic stress, which was associated with persistently reduced H3K9ac and H3K27ac levels at the promoter of 11β-HSD2 as well as its expression in the cartilage from fetus to adulthood. The expression of 11β-HSD2, aggrecan and Col2a1 were all decreased by corticosterone in the fetal chondrocytes, while overexpression of 11β-HSD2 could partially alleviate the decrease of matrix synthesis induced by corticosterone in vitro. Furthermore, the glucocorticoid receptor (GR) activated by glucocorticoids directly bonded to the promoter region of 11β-HSD2 to inhibit its expression. Meanwhile, the activated GR reduced the H3K9ac and H3K27ac levels of 11β-HSD2 by recruiting HDAC4 and promoting GR-HDAC4 protein interaction to inhibit the 11β-HSD2 expression. Moreover, caffeine could reduce the expression of 11β-HSD2 by inhibiting the cAMP/PKA signaling pathway but without reducing the H3K9ac and H3K27ac levels of 11β-HSD2, thereby synergistically enhancing the corticosterone effect. In conclusion, the persistently reduced H3K9ac and H3K27ac levels of 11β-HSD2 from fetus to adulthood mediated the inhibition of cartilage matrix synthesis and the increased susceptibility to osteoarthritis. This epigenetic programming change in utero was induced by glucocorticoids with synergistic effect of caffeine.
Collapse
Affiliation(s)
- Huasong Shi
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Bin Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hui Gao
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hangyuan He
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhixin Wu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | | | - Hui Wang
- Department of Pharmacology, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
20
|
Mansour AT, Hamed HS, El-Beltagi HS, Mohamed WF. Modulatory Effect of Papaya Extract against Chlorpyrifos-Induced Oxidative Stress, Immune Suppression, Endocrine Disruption, and DNA Damage in Female Clarias gariepinus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4640. [PMID: 35457505 PMCID: PMC9032737 DOI: 10.3390/ijerph19084640] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 02/01/2023]
Abstract
Chlorpyrifos (CPF) is one of the widely used organophosphorus pesticides in agriculture activities and its presence in the aquatic environment has been broadly recorded. In the present study, we investigated the effect of CPF exposure on oxidative stress, innate immunity, sexual hormones, and DNA integrity of female African catfish, Clarias gariepinus, in addition to the potential use of dietary supplementation of papaya, Carica papaya (CP), extract against CPF toxicity. Apparent healthy female catfish (300 ± 10 g) were divided into four groups with three replicates each. The first group served as the negative control (fed on a basal diet) and the other groups exposed to CPF (8.75 µg/L) with or without CP extract (250 mg/kg body weight) for six weeks. The results revealed that CPF exposure exhibited marked elevations in stress markers (glucose and cortisol), serum aspartate aminotransferase, alanine aminotransferase activities, testosterone, and luteinizing hormone level. Moreover, CPF increased the percentage of hepatic DNA damage. In addition, catfish exposed to CPF experienced significant decline in serum total protein, albumin, follicles stimulating hormone, estradiol hormone levels, AChE, immunoglobulin, and lysozyme activity. CPF induced significantly oxidative stress in hepatic and renal tissues. The dietary supplementation with CP extract at a level of 250 mg/kg body weight succeeded to alleviate the negative effects of CPF on the physiological, immunological, and antioxidant status of female catfish. In addition, CP extract alleviated the endocrine disruption and hepatic DNA damage and counteracted the subchronic CPF toxicity in female African catfish. Finally, the CP extract may be used as a feed additive in the aquatic diet.
Collapse
Affiliation(s)
- Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Heba S. Hamed
- Department of Zoology, Faculty of Women for Arts, Science & Education, Ain Shams University, Cairo 11757, Egypt
| | - Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia;
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Walid Fathy Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo 11757, Egypt;
| |
Collapse
|
21
|
Oda SS, El-Manakhly ESM, Abou-Srag MA, Tohamy HG. Assessment of reproductive toxicity of carbofuran and copper sulfate in male Nile tilapia (Oreochromis niloticus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15896-15904. [PMID: 34633618 DOI: 10.1007/s11356-021-16965-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
This study's hypothesis is that carbofuran and copper sulfate have a synergistic harmful impact on the fertility of male Nile tilapia. Hence, this study was designed to assess the toxic reproductive outcome of carbofuran, copper sulfate, and their mixture in male Nile tilapia. Sixty male Nile tilapia fishes were separated into four groups (15 fish/group). The control group; carbofuran group, was given dechlorinated tap water containing 0.02 mg/L (1/10 dose of LC50) carbofuran; copper group was given dechlorinated tap water containing 4.0 mg/L (1/10 dose of LC50) copper sulfate; carbofuran + copper sulfate group received dechlorinated tap water containing 0.02 mg/L carbofuran plus 4.0 mg/L copper sulfate. After 6 weeks, results revealed a significant rise in testicular malondialdehyde levels and a significant decrease in testicular reduced glutathione contents among all experimental groups compared to the control group. Testicular testosterone levels were significantly declined in copper and combined groups compared to the control. The seminal evaluation using computer-assisted sperm analysis showed a significant decline in the progressive motility percentage, motile ratio percentage, sperm concentration, curvilinear velocity, straight-line velocity, average path velocity, and wobble in all intoxicated groups, particularly, the combined group. The histopathology of testes in all intoxicated groups revealed a detachment of the basal membrane of some seminiferous tubules, and others were free from spermatogonia and spermatozoa with interstitial eosinophilic granular cell infiltration. Testicular lesions were more severe in the combined group. Finally, it was concluded that carbofuran and copper sulfate exerted a negative effect on the reproductive function of male Nile tilapia, and they have a synergistic harmful impact on the fertility of male Nile tilapia.
Collapse
Affiliation(s)
- Samah S Oda
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina-Behera, 22758, Egypt.
| | - El-Sayed M El-Manakhly
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina-Behera, 22758, Egypt
| | - Mohamed A Abou-Srag
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina-Behera, 22758, Egypt
| | - Hossam G Tohamy
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina-Behera, 22758, Egypt
| |
Collapse
|
22
|
Munir MA, Anjum KM, Javid A, Khan N, Jianming C, Naseer J, Anjum A, Usman S, Shahzad M, Hafeez S, Hussain T, Saeed A, Badeni AH, Mansoor MK, Hussain I. Sublethal toxicity of carbofuran in cattle egret (Bubulcus ibis coromandus): hematological, biochemical, and histopathological alterations. BRAZ J BIOL 2022; 84:e255055. [PMID: 35019107 DOI: 10.1590/1519-6984.255055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022] Open
Abstract
This study was aimed to investigate Carbofuran (CF)-induced pathological changes in cattle egret. Two hundred cattle egrets were reared and equally divided into four groups and given different CF concentrations (0.03 mg/L, 0.02 mg/L, 0.01 mg/L and 0 mg/L (control group)). Hematology, serum biochemistry, histopathology, and immunological markers were studied. Our results confirm that CF induces anemic conditions, leukocytosis, elevated liver enzymatic activity, and alterations in renal biomarkers. Moreover, specific microscopic lesions such as multifocal necrosis, pyknotic nuclei, hemorrhages, congestion, and inflammatory cell proliferation were observed in the liver, kidney, spleen, and thymus. These findings suggest that CF can induce harmful effects, so the application of this pesticide in the field must be strictly monitored to mitigate the possibility of exposure to non-target species.
Collapse
Affiliation(s)
- M A Munir
- University of Veterinary and Animal Sciences, Department of Wildlife & Ecology, Ravi Campus, Pattoki, Pakistan
| | - K M Anjum
- University of Veterinary and Animal Sciences, Department of Wildlife & Ecology, Ravi Campus, Pattoki, Pakistan
| | - A Javid
- University of Veterinary and Animal Sciences, Department of Wildlife & Ecology, Ravi Campus, Pattoki, Pakistan
| | - N Khan
- University of Veterinary and Animal Sciences, Department of Fisheries & Aquaculture, Ravi Campus, Pattoki, Pakistan
| | - C Jianming
- Minjiang University, Institute of Oceanography, Fuzhou, China
| | - J Naseer
- The Islamia University of Bahawalpur, Department of Forestry, Range and Wildlife Management, Bahawalpur, Pakistan
| | - A Anjum
- The Islamia University of Bahawalpur, Faculty of Veterinary and Animal Sciences, Department of Pathology, Bahawalpur, Pakistan
| | - S Usman
- University of Veterinary and Animal Sciences, Faculty of Veterinary and Animal Sciences, Department of Pathology, Lahore, Pakistan
| | - M Shahzad
- The Islamia University of Bahawalpur, Faculty of Veterinary and Animal Sciences, Department of Pathology, Bahawalpur, Pakistan
| | - Shahid Hafeez
- University of Agriculture Faisalabad, Department of Forestry and Range Management, Faisalabad, Pakistan
| | - T Hussain
- The Islamia University of Bahawalpur, Department of Forestry, Range and Wildlife Management, Bahawalpur, Pakistan
| | - A Saeed
- The Islamia University of Bahawalpur, Department of Forestry, Range and Wildlife Management, Bahawalpur, Pakistan
| | - A H Badeni
- University of Veterinary and Animal Sciences, Department of Wildlife & Ecology, Ravi Campus, Pattoki, Pakistan
| | - M K Mansoor
- The Islamia University of Bahawalpur, Faculty of Veterinary and Animal Sciences, Department of Microbiology, Bahawalpur, Pakistan
| | - I Hussain
- Bahauddin Zakariya University, Department of Pathobiology, Multan, Pakistan
| |
Collapse
|
23
|
Hamidi S, Banaee M, Pourkhabbaz HR, Sureda A, Khodadoust S, Pourkhabbaz AR. Effect of petroleum wastewater treated with gravity separation and magnetite nanoparticles adsorption methods on the blood biochemical response of mrigal fish (Cirrhinus cirrhosus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3718-3732. [PMID: 34389959 DOI: 10.1007/s11356-021-15106-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/21/2021] [Indexed: 04/16/2023]
Abstract
Drainage of treated wastewater to surface water is a severe threat to the health of aquatic organisms. This study aimed to evaluate the effects of 0.5 and 1% water-soluble fractions of crude oil (WSFO), WSFO treated with magnetic nanoparticles of Fe3O4 (TWSFO-Fe3O4) and with the gravity separation method (TWSFO-GSM) on Cirrhinus cirrhosis for 21 days. The rate of erythrocyte hemolysis in fish exposed to untreated 0.5 and 1% WSFO were significantly high. The activities of alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP) were significantly increased in the groups exposed to TWSFO-GSM compared to the control group, while lactate dehydrogenase (LDH) was reduced. No significant differences in LDH, ALT, ALP, and GGT activities were observed in the fish treated with TWSFO-Fe3O4. The aspartate aminotransferase activity was significantly increased after exposure to TWSFO-Fe3O4 (1%) and TWSFO-GSM. The levels of triglyceride were decreased, whereas glucose, cholesterol, and cholinesterase activity increased in fish after both treatments. The total protein and albumin contents significantly decreased in fish under exposure to both doses of TWSFO-Fe3O4 and TWSFO-GSM. The globulin level decreased in fish exposed to TWSFO-Fe3O4 (1%) and TWSFO-GSM. Glutathione peroxidase, catalase, glucose-6-phosphate dehydrogenase activities, and total antioxidant levels were significantly reduced in the hepatocytes of fish exposed to TWSFO-Fe3O4, TWSFO-GSM, and WSFO, while superoxide dismutase activity and malondialdehyde content were increased. This study showed that despite removing oil drips from the WSFO, the xenobiotics present in the effluent treated by gravitational or nano-magnetite methods caused changes in biochemical parameters and induced oxidative stress. Therefore, it is recommended to prevent the discharge of treated effluent from the oil and petrochemical industries to aquatic ecosystems.
Collapse
Affiliation(s)
- Sakineh Hamidi
- Environmental Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Hamid Reza Pourkhabbaz
- Environmental Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, the Balearic Islands Health Research Institute (IdISBa), and CIBEROBN Physiopathology of Obesity and Nutrition, University of Balearic Islands, 07122, Palma de Mallorca, Spain
| | - Saeid Khodadoust
- Chemistry Department, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Ali Reza Pourkhabbaz
- Department of Environmental Sciences, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran
| |
Collapse
|
24
|
Embryotoxicity of Selective Serotonin Reuptake Inhibitors—Comparative Sensitivity of Zebrafish (Danio rerio) and African Clawed Frog (Xenopus laevis) Embryos. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112110015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past twenty years, the prescription of antidepressant drugs has increased all over the world. After their application, antidepressants, like other pharmaceuticals, are excreted and enter the aquatic environment. They are dispersed among surface waters mainly through waste water sources, typically at very low concentrations— from a tenth up to hundreds of ng/L. Frequently detected antidepressants include fluoxetine and citalopram—both selective serotonin reuptake inhibitors. The aim of our study was to assess the embryotoxicity of fluoxetine hydrochloride and citalopram hydrochloride on the early life stages of zebrafish (Danio rerio) and the African clawed frog (Xenopus laevis). The embryos were exposed to various concentrations of the individual antidepressants and of their mixtures for 96 h. The tested levels included both environmentally relevant and higher concentrations for the evaluation of dose-dependent effects. Our study demonstrated that even environmentally relevant concentrations of these psychiatric drugs influenced zebrafish embryos, which was proven by a significant increase (p < 0.01) in the embryos’ heart rates after fluoxetine hydrochloride exposure and in their hatching rate after exposure to a combination of both antidepressants, and thus revealed a potential risk to aquatic life. Despite these results, we can conclude that the African clawed frog is more sensitive, since exposure to the highest concentrations of fluoxetine hydrochloride (10,000 μg/L) and citalopram hydrochloride (100,000 μg/L) resulted in total mortality of the frog embryos.
Collapse
|
25
|
Hamed HS, Ali RM, Shaheen AA, Hussein NM. Chitosan nanoparticles alleviated endocrine disruption, oxidative damage, and genotoxicity of Bisphenol-A- intoxicated female African catfish. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109104. [PMID: 34146699 DOI: 10.1016/j.cbpc.2021.109104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/31/2021] [Accepted: 06/06/2021] [Indexed: 12/18/2022]
Abstract
Bisphenol-A (BPA) is widely used in production of plastic products. It can reach the ecosystems affecting aquatic organisms most likely fishes. The purpose of this study was to study the toxic effects of BPA on the biochemical variables and oxidative stress in female African catfish, Clarias gariepinus and to estimate the protective role of chitosan nanoparticles (CSNPs) against BPA toxicity. Five groups in triplicates of fish were divided as follows: group I was control, group II was treated with CSNPs (0.66 ml/L), group III was exposed to BPA (1.43 μg/L), group IV was treated with BPA (1.43 μg/L) plus CSNPs (0.33 ml/L), and group V was treated with BPA (1.43 μg/L) plus CSNPs (0.66 ml/L) for 30 days. Blood and liver tissue samples were collected at the end of experiment for the biochemical and oxidative stress biomarkers analyses. Results exhibited that serum Follicle Stimulating Hormone (FSH) and 17-β Estradiol (E2) were significantly decreased in female catfish. While, serum Testosterone (T.) and Luteinizing Hormone (LH) were increased after exposure to BPA. Marked increment in superoxide dismutase (SOD) and malondialdehyde (MDA) levels of hepatic tissue of catfish exposed to BPA. Furthermore, significant reduction in hepatic catalase (CAT), glutathione peroxidase (GSH-px), total antioxidant capacity (TAC), reduced glutathione (GSH), and glutathione S-transferase (GST) levels were decreased significantly in BPA-exposed catfish compared to the control group. However, administration of female C. gariepinus with the low and high doses (0.33 ml/L and 0.66 ml/L) of CNPs restored the biochemical parameters to be close to the normal values of the control group and also, reduced oxidative stress induced by BPA toxicity. This improvement was evident in fish administrated with the high CSNPs dose (0.66 ml/L) compared to catfish exposed to BPA in group (III). Furthermore, the percentage of hepatic DNA damage was detected in group III exposed to BPA alone. However, it was declined after co- administration with both the low and high doses of CSNPs. The study has revealed that treatment with CSNPs has antagonistic functions against the toxicity of BPA in female African catfish.
Collapse
Affiliation(s)
- Heba S Hamed
- Department of Zoology, Faculty of women for Arts, Science & Education, Ain Shams University, Cairo 11757, Egypt.
| | - Rokaya M Ali
- Department of Zoology, Faculty of women for Arts, Science & Education, Ain Shams University, Cairo 11757, Egypt
| | - Adel A Shaheen
- Department of Aquatic animals Diseases and Management, Faculty of Veterinary Medicine, Banha University, Banha, Egypt
| | - Naema M Hussein
- Department of Zoology, Faculty of women for Arts, Science & Education, Ain Shams University, Cairo 11757, Egypt
| |
Collapse
|
26
|
Sharma R, Jindal R, Faggio C. Cassia fistula ameliorates chronic toxicity of cypermethrin in Catla catla. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109113. [PMID: 34153505 DOI: 10.1016/j.cbpc.2021.109113] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 12/13/2022]
Abstract
Protective effects of Cassia fistula, in Catla catla exposed to synthetic pyrethroid cypermethrin were evaluated. Fish, after chronic exposure to environmentally relevant sub-lethal concentration 0.41 μg/l of the pesticide were assessed for antioxidant activity, histopathological and ultrastructural alterations. Significant (p < 0.05) decrease in the activities of antioxidants such as CAT, SOD, GST, GSH was registered, whereas LPO level got elevated. Histological damage depicted necrosis, epithelial hypertrophy, hyperplasia and fusion of secondary lamellae and changes in gill vasculature. Histopathological alteration index was employed for the semi quantitative evaluation of the degree of tissue change (DTC). Transmission electron microscopy displayed swollen and distorted mitochondria, damaged chloride cells and necrosis. Dietary supplementation of Cassia fistula bark extract significantly (p < 0.05) improved the antioxidant activity, reduced lipid peroxidation and prevented histopathological alterations. The findings suggest that sub-lethal concentration of cypermethrin is toxic to fish. The study also draws attention towards potential of plant derived antioxidants in mitigating pesticide induced toxic effects.
Collapse
Affiliation(s)
- Ritu Sharma
- Aquatic Biology Laboratory, Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Rajinder Jindal
- Aquatic Biology Laboratory, Department of Zoology, Panjab University, Chandigarh 160014, India.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy.
| |
Collapse
|
27
|
Effects of Dietary Bovine Lactoferrin on Growth Performance and Immuno-physiological Responses of Asian Sea Bass (Lates calcarifer) Fingerlings. Probiotics Antimicrob Proteins 2021; 13:1790-1797. [PMID: 34033064 DOI: 10.1007/s12602-021-09805-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 01/24/2023]
Abstract
The aim of this study was to evaluate the effects of lactoferrin (Lf) on growth and feeding performance, biochemical and immune parameters in Asian sea bass (Lates calcarifer). A basal diet was supplemented with 0 (control), 400 (400 Lf), or 800 (800 Lf) mg Lf kg-1 diet. The results indicate a significant increase in innate immune parameters when the diet was supplemented with 800 mg Lf kg-1. The highest serum albumin value and the lowest serum glucose concentration were observed in 800 Lf group. The liver catalase activity in the 400 Lf and 800 Lf groups was lower than the control value. Moreover, malondialdehyde concentration in the liver of Asian sea bass was increased with increasing the dietary Lf supplementation. The results of the study suggest that supplementing diet with 800 mg Lf kg-1 stimulates non-specific immune response in Asian sea bass. Nonetheless, selecting an appropriate dose can be difficult, especially since both the higher and the lower dose tested may result in adverse effects.
Collapse
|