1
|
Al Zein M, Khazzeka A, El Khoury A, Al Zein J, Zoghaib D, Eid AH. Revisiting high-density lipoprotein cholesterol in cardiovascular disease: Is too much of a good thing always a good thing? Prog Cardiovasc Dis 2024; 87:50-59. [PMID: 39442601 DOI: 10.1016/j.pcad.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Cardiovascular disease (CVD) continues to be a leading cause of global mortality and morbidity. Various established risk factors are linked to CVD, and modifying these risk factors is fundamental in CVD management. Clinical studies underscore the association between dyslipidemia and CVD, and therapeutic interventions that target low-density lipoprotein cholesterol elicit clear benefits. Despite the correlation between low high-density lipoprotein cholesterol (HDLC) and heightened CVD risk, HDL-raising therapies have yet to showcase significant clinical benefits. Furthermore, evidence from epidemiological and genetic studies reveals that not only low HDL-C levels, but also very high levels of HDL-C are linked to increased risk of CVD. In this review, we focus on HDL metabolism and delve into the relationship between HDL and CVD, exploring HDL functions and the observed alterations in its roles in disease. Altogether, the results discussed herein support the conventional wisdom that "too much of a good thing is not always a good thing". Thus, our recommendation is that a careful reconsideration of the impact of high HDL-C levels is warranted, and shall be revisited in future research.
Collapse
Affiliation(s)
- Mohammad Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Alicia Khazzeka
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Jana Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Dima Zoghaib
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
2
|
Endo Y, Sasaki K, Ikewaki K. Bridging the Gap Between the Bench and Bedside: Clinical Applications of High-density Lipoprotein Function. J Atheroscler Thromb 2024; 31:1239-1248. [PMID: 38925924 PMCID: PMC11374562 DOI: 10.5551/jat.rv22020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Decades of research have reshaped our understanding of high-density lipoprotein (HDL) , shifting our focus from cholesterol (C) levels to multifaceted functionalities. Epidemiological studies initially suggested an association between HDL-C levels and cardiovascular disease (CVD) risk; however, such a simple association has not been indicated by recent studies. Notably, genome-wide studies have highlighted discrepancies between HDL-C levels and CVD outcomes, urging a deeper exploration of the role of HDL. The key to this shift lies in elucidating the role of HDL in reverse cholesterol transport (RCT), which is a fundamental anti-atherosclerotic mechanism. Understanding RCT has led to the identification of therapeutic targets and novel interventions for atherosclerosis. However, clinical trials have underscored the limitations of HDL-C as a therapeutic target, prompting the re-evaluation of the role of HDL in disease prevention. Further investigations have revealed the involvement of HDL composition in various diseases other than CVD, including chronic kidney disease, Alzheimer's disease, and autoimmune diseases. The anti-inflammatory, antioxidative, and anti-infectious properties of HDL have emerged as crucial aspects of its protective function, opening new avenues for novel biomarkers and therapeutic targets. Omics technologies have provided insights into the diverse composition of HDL, revealing disease-specific alterations in the HDL proteome and lipidome. In addition, combining cell-based and cell-free assays has facilitated the evaluation of the HDL functionality across diverse populations, offering the potential for personalized medicine. Overall, a comprehensive understanding of HDL multifunctionality leads to promising prospects for future clinical applications and therapeutic developments, extending beyond cardiovascular health.
Collapse
Affiliation(s)
- Yasuhiro Endo
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
- Division of Environmental Medicine, National Defense Medical College Research Institute, Saitama, Japan
| | - Kei Sasaki
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Katsunori Ikewaki
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| |
Collapse
|
3
|
Kraaijenhof JM, Tromp TR, Nurmohamed NS, Reeskamp LF, Langenkamp M, Levels JHM, Boekholdt SM, Wareham NJ, Hoekstra M, Stroes ESG, Hovingh GK, Grefhorst A. ANGPTL3 (Angiopoietin-Like 3) Preferentially Resides on High-Density Lipoprotein in the Human Circulation, Affecting Its Activity. J Am Heart Assoc 2023; 12:e030476. [PMID: 37889183 PMCID: PMC10727379 DOI: 10.1161/jaha.123.030476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/24/2023] [Indexed: 10/28/2023]
Abstract
Background ANGPTL3 (angiopoietin-like protein 3) is an acknowledged crucial regulator of lipid metabolism by virtue of its inhibitory effect on lipoprotein lipase and endothelial lipase. It is currently unknown whether and to which lipoproteins ANGPTL3 is bound and whether the ability of ANGPTL3 to inhibit lipase activity is affected by binding to lipoproteins. Methods and Results Incubation of ultracentrifugation-isolated low-density lipoprotein (LDL) and high-density lipoprotein (HDL) fractions from healthy volunteers with recombinant ANGPTL3 revealed that ANGPTL3 associates with both HDL and LDL particles ex vivo. Plasma from healthy volunteers and a patient deficient in HDL was fractionated by fast protein liquid chromatography, and ANGPTL3 distribution among lipoprotein fractions was measured. In healthy volunteers, ≈75% of lipoprotein-associated ANGPTL3 resides in HDL fractions, whereas ANGPTL3 was largely bound to LDL in the patient deficient in HDL. ANGPTL3 activity was studied by measuring lipolysis and uptake of 3H-trioleate by brown adipocyte T37i cells. Unbound ANGPTL3 did not suppress lipase activity, but when given with HDL or LDL, ANGPTL3 suppressed lipase activity by 21.4±16.4% (P=0.03) and 25.4±8.2% (P=0.006), respectively. Finally, in a subset of the EPIC (European Prospective Investigation into Cancer) Norfolk study, plasma HDL cholesterol and amount of large HDL particles were both positively associated with plasma ANGPTL3 concentrations. Moreover, plasma ANGPTL3 concentrations showed a positive association with incident coronary artery disease (odds ratio, 1.25 [95% CI, 1.01-1.55], P=0.04). Conclusions Although ANGPTL3 preferentially resides on HDL, its activity was highest once bound to LDL particles.
Collapse
Affiliation(s)
- Jordan M. Kraaijenhof
- Department of Vascular MedicineAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| | - Tycho R. Tromp
- Department of Vascular MedicineAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| | - Nick S. Nurmohamed
- Department of Vascular MedicineAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
- Department of CardiologyAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| | - Laurens F. Reeskamp
- Department of Vascular MedicineAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| | - Marije Langenkamp
- Department of Experimental Vascular MedicineAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| | - Johannes H. M. Levels
- Department of Experimental Vascular MedicineAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| | - S. Matthijs Boekholdt
- Department of CardiologyAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| | | | - Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Erik S. G. Stroes
- Department of Vascular MedicineAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| | - G. Kees Hovingh
- Department of Vascular MedicineAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| | - Aldo Grefhorst
- Department of Experimental Vascular MedicineAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| |
Collapse
|
4
|
Nieddu G, Formato M, Lepedda AJ. Searching for Atherosclerosis Biomarkers by Proteomics: A Focus on Lesion Pathogenesis and Vulnerability. Int J Mol Sci 2023; 24:15175. [PMID: 37894856 PMCID: PMC10607641 DOI: 10.3390/ijms242015175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Plaque rupture and thrombosis are the most important clinical complications in the pathogenesis of stroke, coronary arteries, and peripheral vascular diseases. The identification of early biomarkers of plaque presence and susceptibility to ulceration could be of primary importance in preventing such life-threatening events. With the improvement of proteomic tools, large-scale technologies have been proven valuable in attempting to unravel pathways of atherosclerotic degeneration and identifying new circulating markers to be utilized either as early diagnostic traits or as targets for new drug therapies. To address these issues, different matrices of human origin, such as vascular cells, arterial tissues, plasma, and urine, have been investigated. Besides, proteomics was also applied to experimental atherosclerosis in order to unveil significant insights into the mechanisms influencing atherogenesis. This narrative review provides an overview of the last twenty years of omics applications to the study of atherogenesis and lesion vulnerability, with particular emphasis on lipoproteomics and vascular tissue proteomics. Major issues of tissue analyses, such as plaque complexity, sampling, availability, choice of proper controls, and lipoproteins purification, will be raised, and future directions will be addressed.
Collapse
Affiliation(s)
| | | | - Antonio Junior Lepedda
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (G.N.); (M.F.); Antonio Junior Lepedda (A.J.L.)
| |
Collapse
|
5
|
Huang C, Zhang J, Huang J, Li H, Wen K, Bao J, Wu X, Sun R, Abudukeremu A, Wang Y, He Z, Chen Q, Huang X, Wang H, Zhang Y. Proteomic and functional analysis of HDL subclasses in humans and rats: a proof-of-concept study. Lipids Health Dis 2023; 22:86. [PMID: 37386457 DOI: 10.1186/s12944-023-01829-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/07/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The previous study investigated whether the functions of small, medium, and large high density lipoprotein (S/M/L-HDL) are correlated with protein changes in mice. Herein, the proteomic and functional analyses of high density lipoprotein (HDL) subclasses were performed in humans and rats. METHODS After purifying S/M/L-HDL subclasses from healthy humans (n = 6) and rats (n = 3) using fast protein liquid chromatography (FPLC) with calcium silica hydrate (CSH) resin, the proteomic analysis by mass spectrometry was conducted, as well as the capacities of cholesterol efflux and antioxidation was measured. RESULTS Of the 120 and 106 HDL proteins identified, 85 and 68 proteins were significantly changed in concentration among the S/M/L-HDL subclasses in humans and rats, respectively. Interestingly, it was found that the relatively abundant proteins in the small HDL (S-HDL) and large HDL (L-HDL) subclasses did not overlap, both in humans and in rats. Next, by searching for the biological functions of the relatively abundant proteins in the HDL subclasses via Gene Ontology, it was displayed that the relatively abundant proteins involved in lipid metabolism and antioxidation were enriched more in the medium HDL (M-HDL) subclass than in the S/L-HDL subclasses in humans, whereas in rats, the relatively abundant proteins associated with lipid metabolism and anti-oxidation were enriched in M/L-HDL and S/M-HDL, respectively. Finally, it was confirmed that M-HDL and L-HDL had the highest cholesterol efflux capacity among the three HDL subclasses in humans and rats, respectively; moreover, M-HDL exhibited higher antioxidative capacity than S-HDL in both humans and rats. CONCLUSIONS The S-HDL and L-HDL subclasses are likely to have different proteomic components during HDL maturation, and results from the proteomics-based comparison of the HDL subclasses may explain the associated differences in function.
Collapse
Affiliation(s)
- Canxia Huang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Critical Care Medicine Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jie Zhang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jingjing Huang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hongwei Li
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Kexin Wen
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jinlan Bao
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Comprehensive Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaoying Wu
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Runlu Sun
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ayiguli Abudukeremu
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yue Wang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhijian He
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qiaofei Chen
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xinyi Huang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hong Wang
- Centers for Metabolic & Cardiovascular Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Yuling Zhang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China.
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
6
|
Al‐kuraishy HM, Hussien NR, Al‐Niemi MS, Fahad EH, Al‐Buhadily AK, Al‐Gareeb AI, Al‐Hamash SM, Tsagkaris C, Papadakis M, Alexiou A, Batiha GE. SARS-CoV-2 induced HDL dysfunction may affect the host's response to and recovery from COVID-19. Immun Inflamm Dis 2023; 11:e861. [PMID: 37249296 PMCID: PMC10187021 DOI: 10.1002/iid3.861] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
INTRODUCTION Covid-19 is linked with the development of cardio-metabolic disorders, including dyslipidemia, dysregulation of high-density lipoprotein (HDL), and low-density lipoprotein (LDL). Furthermore, SARS-Co-2 infection is associated with noteworthy changes in lipid profile, which is suggested as a possible biomarker to support the diagnosis and management of Covid-19. METHODS This paper adopts the literature review method to obtain information about how Covid-19 affects high-risk group patients and may cause severe and critical effects due to the development of acute lung injury and acute respiratory distress syndrome. A narrative and comprehensive review is presented. RESULTS Reducing HDL in Covid-19 is connected to the disease severity and poor clinical outcomes, suggesting that high HDL serum levels could benefit Covid-19. SARS-CoV-2 binds HDL, and this complex is attached to the co-localized receptors, facilitating viral entry. Therefore, SARS-CoV-2 infection may induce the development of dysfunctional HDL through different mechanisms, including induction of inflammatory and oxidative stress with activation of inflammatory signaling pathways. In turn, the induction of dysfunctional HDL induces the activation of inflammatory signaling pathways and oxidative stress, increasing Covid-19 severity. CONCLUSIONS Covid-19 is linked with the development of cardio-metabolic disorders, including dyslipidemia in general and dysregulation of high-density lipoprotein and low-density lipoprotein. Therefore, the present study aimed to overview the causal relationship between dysfunctional high-density lipoprotein and Covid-19.
Collapse
Affiliation(s)
- Hayder M. Al‐kuraishy
- Department of Pharmacology, ToxicologyMedicine College of Medicine Al‐Mustansiriyah UniversityBaghdadIraq
| | - Nawar R. Hussien
- Department of Clinical Pharmacy, College of PharmacyAl‐Farahidi UniversityBagdadIraq
| | - Marwa S. Al‐Niemi
- Department of Clinical Pharmacy, College of PharmacyAl‐Farahidi UniversityBagdadIraq
| | | | - Ali K. Al‐Buhadily
- Department of Clinical Pharmacology, Medicine and Therapeutic, Medical Faculty, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Pharmacology, ToxicologyMedicine College of Medicine Al‐Mustansiriyah UniversityBaghdadIraq
| | | | - Christos Tsagkaris
- Department of Health SciencesNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐HerdeckeUniversity of Witten‐HerdeckeWuppertalGermany
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP Med AustriaWienAustria
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
7
|
Systemic Biomarkers and Unique Pathways in Different Phenotypes of Heart Failure with Preserved Ejection Fraction. Biomolecules 2022; 12:biom12101419. [PMID: 36291628 PMCID: PMC9599828 DOI: 10.3390/biom12101419] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for around 50% of all heart failure cases. It is a heterogeneous condition with poorly understood pathogenesis. Here, we aimed to identify unique pathogenic mechanisms in acute and chronic HFpEF and hypertrophic cardiomyopathy (HCM). We performed unbiased, comprehensive proteomic analyses of plasma samples from gender- and BMI-matched patients with acute HFpEF (n = 8), chronic HFpEF (n = 9) and HCM (n = 14) using liquid chromatography–mass spectrometry. Distinct molecular signatures were observed in different HFpEF forms. Clusters of biomarkers differentially abundant between HFpEF forms were predominantly associated with microvascular inflammation. New candidate protein markers were also identified, including leucine-rich alpha-2-glycoprotein 1 (LRG1), serum amyloid A1 (SAA1) and inter-alpha-trypsin inhibitor heavy chain 3 (ITIH3). Our study is the first to apply systematic, quantitative proteomic screening of plasma samples from patients with different subtypes of HFpEF and identify candidate biomarkers for improved management of acute and chronic HFpEF and HCM.
Collapse
|
8
|
Davidson WS, Shah AS, Sexmith H, Gordon SM. The HDL Proteome Watch: Compilation of studies leads to new insights on HDL function. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159072. [PMID: 34800735 PMCID: PMC8715479 DOI: 10.1016/j.bbalip.2021.159072] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW High density lipoproteins (HDL) are a heterogeneous family of particles that contain distinct complements of proteins that define their function. Thus, it is important to accurately and sensitively identify proteins associated with HDL. Here we highlight the HDL Proteome Watch Database which tracks proteomics studies from different laboratories across the world. RECENT FINDINGS In 45 published reports, almost 1000 individual proteins have been detected in preparations of HDL. Of these, 251 have been identified in at least three different laboratories. The known functions of these consensus HDL proteins go well beyond traditionally recognized roles in lipid transport with many proteins pointing to HDL functions in innate immunity, inflammation, cell adhesion, hemostasis and protease regulation, and even vitamin and metal binding. SUMMARY The HDL proteome derived across multiple studies using various methodologies provides confidence in protein identifications that can offer interesting new insights into HDL function. We also point out significant issues that will require additional study going forward.
Collapse
Affiliation(s)
- W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237, United States of America.
| | - Amy S Shah
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH 45229, United States of America.
| | - Hannah Sexmith
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH 45229, United States of America.
| | - Scott M Gordon
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, United States of America.
| |
Collapse
|
9
|
Goetze S, Frey K, Rohrer L, Radosavljevic S, Krützfeldt J, Landmesser U, Bueter M, Pedrioli PGA, von Eckardstein A, Wollscheid B. Reproducible Determination of High-Density Lipoprotein Proteotypes. J Proteome Res 2021; 20:4974-4984. [PMID: 34677978 DOI: 10.1021/acs.jproteome.1c00429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
High-density lipoprotein (HDL) is a heterogeneous mixture of blood-circulating multimolecular particles containing many different proteins, lipids, and RNAs. Recent advancements in mass spectrometry-based proteotype analysis show promise for the analysis of proteoforms across large patient cohorts. In order to create the required spectral libraries enabling these data-independent acquisition (DIA) strategies, HDL was isolated from the plasma of more than 300 patients with a multiplicity of physiological HDL states. HDL proteome spectral libraries consisting of 296 protein groups and more than 786 peptidoforms were established, and the performance of the DIA strategy was benchmarked for the detection of HDL proteotype differences between healthy individuals and a cohort of patients suffering from diabetes mellitus type 2 and/or coronary heart disease. Bioinformatic interrogation of the data using the generated spectral libraries showed that the DIA approach enabled robust HDL proteotype determination. HDL peptidoform analysis enabled by using spectral libraries allowed for the identification of post-translational modifications, such as in APOA1, which could affect HDL functionality. From a technical point of view, data analysis further shows that protein and peptide quantities are currently more discriminative between different HDL proteotypes than peptidoforms without further enrichment. Together, DIA-based HDL proteotyping enables the robust digitization of HDL proteotypes as a basis for the analysis of larger clinical cohorts.
Collapse
Affiliation(s)
- Sandra Goetze
- Institute of Translational Medicine (ITM), Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich 8093, Switzerland.,Swiss Multi-Omics Center (SMOC), PHRT-CPAC, ETH Zurich, Zurich 8093, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne 1015, Switzerland
| | - Kathrin Frey
- Institute of Translational Medicine (ITM), Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich 8093, Switzerland
| | - Lucia Rohrer
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich 8091, Switzerland
| | - Silvija Radosavljevic
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich 8091, Switzerland
| | - Jan Krützfeldt
- Division of Endocrinology, Diabetes and Clinical Nutrition, University Hospital Zurich, Zurich 8091, Switzerland
| | - Ulf Landmesser
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin 12203, Germany
| | - Marco Bueter
- Department of Surgery and Transplantation, University Hospital Zurich, Zurich 8091, Switzerland
| | - Patrick G A Pedrioli
- Institute of Translational Medicine (ITM), Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich 8093, Switzerland.,Swiss Multi-Omics Center (SMOC), PHRT-CPAC, ETH Zurich, Zurich 8093, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne 1015, Switzerland
| | | | - Bernd Wollscheid
- Institute of Translational Medicine (ITM), Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich 8093, Switzerland.,Swiss Multi-Omics Center (SMOC), PHRT-CPAC, ETH Zurich, Zurich 8093, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne 1015, Switzerland
| |
Collapse
|
10
|
Alternative Method for HDL and Exosome Isolation with Small Serum Volumes and Their Characterizations. SEPARATIONS 2021. [DOI: 10.3390/separations8110204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
High-density lipoprotein (HDL) and exosomes are promising sources of biomarkers. However, the limited sample volume and access to the ultracentrifuge equipment are still an issue during HDL and exosome isolation. This study aimed to isolate HDL and exosomes using an ultracentrifugation-free method with various small serum volumes. HDL was isolated from 200 µL (HDL200) and 500 µL (HDL500) of sera. Three different volumes: 50 µL (Exo50), 100 µL (Exo100), and 250 µL (Exo250) were used for exosome isolation. HDL and exosomes were isolated using commercial kits with the modified method and characterized by multiple approaches. The HDL levels of HDL200 and HDL500 were not significantly different (p > 0.05), with percent recoveries of >90%. HDL200 and HDL500 had the same protein pattern with a biochemical similarity of 99.60 ± 0.10%. The particle sizes of Exo50, Exo100, and Exo250 were in the expected range. All isolated exosomes exhibited a similar protein pattern with a biochemical similarity of >99%. In conclusion, two different serum volumes (200 and 500 µL) and three different serum volumes (50, 100, and 250 µL) can be employed for HDL and exosome isolation, respectively. The possibility of HDL and exosome isolation with small volumes will accelerate biomarker discoveries with various molecular diagnostic approaches.
Collapse
|
11
|
Valencia C SY, Isaza M CA, Henao B J, Beltrán A L, Loango N, Landázuri P. Arylesterase activity of paraoxonase 1 (PON1) on HDL 3 and HDL 2: Relationship with Q192R, C-108T, and L55M polymorphisms. Biochem Biophys Rep 2021; 26:100971. [PMID: 33778169 PMCID: PMC7985468 DOI: 10.1016/j.bbrep.2021.100971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/06/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Background Controversy exists regarding the role of the subfractions of high-density lipoproteins (HDL2 and HDL3) in cardiovascular disease. The functionality of these particles, and their protective role, is due in part to the paraoxonase 1 (PON1) presence in them. The polymorphisms rs662 (Q192R, A/G), rs854560 (L55 M, T/A), and rs705379 (C-108T) of the PON1 gene have been related to enzyme activity and, with the anti-oxidative capacity of the HDL. The objective was to determine the arylesterase PON1 activity in HDL3 and HDL2 and its relationship with the polymorphisms mentioned, in a young population. Methods The polymorphisms were determined through mini-sequencing (SnaPshot). The HDL subpopulations were separated via ionic precipitation, cholesterol was measured with enzymatic methods, and PON1 activity was measured through spectrophotometry. Results The results show that the PON1 polymorphisms do not influence the cholesterol in the HDL. A variation between 40.02 and 43.9 mg/dL was in all the polymorphisms without significant differences. Additionally, PON1 activity in the HDL3 subfractions was greater (62.83 ± 20 kU/L) than with HDL2 (35.8 ± 20.8 kU/L) in the whole population and in all the polymorphisms (p < 0.001), and it was independent of the polymorphism and differential arylesterase activity in the Q192R polymorphism (QQ > QR > RR). Thus, 115.90 ± 30.7, 88.78 ± 21.3, 65.29 ± 10.2, respectively, for total HDL, with identical behavior for HDL3 and HDL2. Conclusions PON1 polymorphisms do not influence the HDL-c, and the PON activity is greater in the HDL3 than in the HDL2, independent of the polymorphism, but it is necessary to delve into the functionality of these findings in different populations. PON1 polymorphisms do not influence the cholesterol in the HDL subfractions. PON1 arylesterase activity in the HDL3 subfractions was greater than with HDL2. In Q192R, L55 M and C-108T polymorphisms, PON1 activity is always higher in HDL3. This study shows that healthy young people in Colombia have very low HDL cholesterol.
Collapse
Affiliation(s)
- Sandra Y Valencia C
- Faculty of Health Sciences, Program of Nutrition, Universidad Libre, Colombia.,Faculty of Medicine, Fundación Universitaria Autónoma de las Américas, Colombia.,Faculty of Health Sciences, Universidad del Quindío, Colombia
| | - Carlos A Isaza M
- Faculty of Health Sciences, Universidad Tecnológica de Pereira, Colombia
| | - Julieta Henao B
- Faculty of Health Sciences, Universidad Tecnológica de Pereira, Colombia
| | - Leonardo Beltrán A
- Faculty of Health Sciences, Universidad Tecnológica de Pereira, Colombia.,Faculty of Health Sciences, Unidad Central del Valle del Cauca, Colombia
| | - Nelsy Loango
- Faculty of Health Sciences, Universidad del Quindío, Colombia.,Faculty of Basic Sciences and Technologies, Universidad del Quindío, Colombia
| | | |
Collapse
|
12
|
Cheng CF, Lin YJ, Lin MC, Liang WM, Chen CC, Chen CH, Wu JY, Lin TH, Liao CC, Huang SM, Hsieh AR, Tsai FJ. Genetic risk score constructed from common genetic variants is associated with cardiovascular disease risk in type 2 diabetes mellitus. J Gene Med 2020; 23:e3305. [PMID: 33350037 DOI: 10.1002/jgm.3305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/21/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Patients with type 2 diabetes mellitus (T2DM) experience a two-fold increased risk of cardiovascular diseases. Genome-wide association studies (GWAS) have identified T2DM susceptibility genetic variants. Interestingly, the genetic variants associated with cardiovascular disease risk in T2DM Han Chinese remain to be elucidated. The present study aimed to investigate the genetic variants associated with cardiovascular disease risk in T2DM. METHODS We performed bootstrapping, GWAS and an investigation of genetic variants associated with cardiovascular disease risk in a discovery T2DM cohort and in a replication cohort. The discovery cohort included 326 cardiovascular disease patients and 1209 noncardiovascular disease patients. The replication cohort included 68 cardiovascular disease patients and 317 noncardiovascular disease patients. The main outcome measures were genetic variants for genetic risk score (GRS) in cardiovascular disease risk in T2DM. RESULTS In total, 35 genetic variants were associated with cardiovascular disease risk. A GRS was generated by combining risk alleles from these variants weighted by their estimated effect sizes (log odds ratio [OR]). T2DM patients with weighted GRS ≥ 12.63 had an approximately 15-fold increase in cardiovascular disease risk (odds ratio = 15.67, 95% confidence interval [CI] = 10.33-24.00) compared to patients with weighted GRS < 10.39. With the addition of weighted GRS, receiver-operating characteristic curves showed that area under the curve with conventional risk factors was improved from 0.719 (95% CI = 0.689-0.750) to 0.888 (95% CI = 0.866-0.910). CONCLUSIONS These 35 genetic variants are associated with cardiovascular disease risk in T2DM, alone and cumulatively. T2DM patients with higher levels of weighted genetic risk score have higher cardiovascular disease risks.
Collapse
Affiliation(s)
- Chi-Fung Cheng
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan.,Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Ying-Ju Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Mei-Chen Lin
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
| | - Wen-Miin Liang
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
| | - Ching-Chu Chen
- Division of Endocrinology and Metabolism, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chien-Hsiun Chen
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Institute of Biomedical Sciences, Taipei, Taiwan
| | - Jer-Yuarn Wu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Institute of Biomedical Sciences, Taipei, Taiwan
| | - Ting-Hsu Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Ai-Ru Hsieh
- Department of Statistics, Tamkang University, New Taipei, Taiwan
| | - Fuu-Jen Tsai
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| |
Collapse
|
13
|
Peterson SJ, Choudhary A, Kalsi AK, Zhao S, Alex R, Abraham NG. OX-HDL: A Starring Role in Cardiorenal Syndrome and the Effects of Heme Oxygenase-1 Intervention. Diagnostics (Basel) 2020; 10:E976. [PMID: 33233550 PMCID: PMC7699797 DOI: 10.3390/diagnostics10110976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
In this review, we will evaluate how high-density lipoprotein (HDL) and the reverse cholesterol transport (RCT) pathway are critical for proper cardiovascular-renal physiology. We will begin by reviewing the basic concepts of HDL cholesterol synthesis and pathway regulation, followed by cardiorenal syndrome (CRS) pathophysiology. After explaining how the HDL and RCT pathways become dysfunctional through oxidative processes, we will elaborate on the potential role of HDL dysfunction in CRS. We will then present findings on how HDL function and the inducible antioxidant gene heme oxygenase-1 (HO-1) are interconnected and how induction of HO-1 is protective against HDL dysfunction and important for the proper functioning of the cardiovascular-renal system. This will substantiate the proposal of HO-1 as a novel therapeutic target to prevent HDL dysfunction and, consequently, cardiovascular disease, renal dysfunction, and the onset of CRS.
Collapse
Affiliation(s)
- Stephen J. Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Abu Choudhary
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Amardeep K. Kalsi
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Shuyang Zhao
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (A.C.); (A.K.K.); (S.Z.)
| | - Ragin Alex
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA;
| | - Nader G. Abraham
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA;
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
- Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| |
Collapse
|
14
|
Plubell DL, Fenton AM, Rosario S, Bergstrom P, Wilmarth PA, Clark W, Zakai NA, Quinn JF, Minnier J, Alkayed NJ, Fazio S, Pamir N. High-Density Lipoprotein Carries Markers That Track With Recovery From Stroke. Circ Res 2020; 127:1274-1287. [PMID: 32844720 PMCID: PMC7581542 DOI: 10.1161/circresaha.120.316526] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RATIONALE Prospective cohort studies question the value of HDL-C (high-density lipoprotein cholesterol) for stroke risk prediction. OBJECTIVE Investigate the relationship between long-term functional recovery and HDL proteome and function. METHODS AND RESULTS Changes in HDL protein composition and function (cholesterol efflux capacity) in patients after acute ischemic stroke at 2 time points (24 hours, 35 patients; 96 hours, 20 patients) and in 35 control subjects were measured. The recovery from stroke was assessed by 3 months, the National Institutes of Health Stroke Scale and modified Rankin scale scores. When compared with control subject after adjustments for sex and HDL-C levels, 12 proteins some of which participate in acute phase response and platelet activation (APMAP [adipocyte plasma membrane-associated protein], GPLD1 [phosphate inositol-glycan specific phospholipase D], APOE [apolipoprotein E], IHH [Indian hedgehog protein], ITIH4 [inter-alpha-trypsin inhibitor chain H4], SAA2 [serum amyloid A2], APOA4 [apolipoprotein A-IV], CLU [clusterin], ANTRX2 [anthrax toxin receptor 2], PON1 [serum paraoxonase/arylesterase], SERPINA1 [alpha-1-antitrypsin], and APOF [apolipoprotein F]) were significantly (adjusted P<0.05) altered in stroke HDL at 96 hours. The first 8 of these proteins were also significantly altered at 24 hours. Consistent with inflammatory remodeling, cholesterol efflux capacity was reduced by 32% (P<0.001) at both time points. Baseline stroke severity adjusted regression model showed that changes within 96-hour poststroke in APOF, APOL1, APMAP, APOC4 (apolipoprotein C4), APOM (apolipoprotein M), PCYOX1 (prenylcysteine oxidase 1), PON1, and APOE correlate with stroke recovery scores (R2=0.38-0.73, adjusted P<0.05). APOF (R2=0.73) and APOL1 (R2=0.60) continued to significantly correlate with recovery scores after accounting for tPA (tissue-type plasminogen activator) treatment. CONCLUSIONS Changes in HDL proteins during early acute phase of stroke associate with recovery. Monitoring HDL proteins may provide clinical biomarkers that inform on stroke recuperation.
Collapse
Affiliation(s)
- Deanna L. Plubell
- Knight Cardiovascular Institute, Department of Medicine, Oregon Health & Science University
| | - Alex M. Fenton
- Knight Cardiovascular Institute, Department of Medicine, Oregon Health & Science University
| | - Sara Rosario
- Knight Cardiovascular Institute, Department of Medicine, Oregon Health & Science University
| | - Paige Bergstrom
- Knight Cardiovascular Institute, Department of Medicine, Oregon Health & Science University
| | | | - Wayne Clark
- Department of Neurology, Oregon Health & Science University
| | - Neil A. Zakai
- Department of Medicine, Larner College of Medicine, University of Vermont
| | | | - Jessica Minnier
- Knight Cardiovascular Institute, Department of Medicine, Oregon Health & Science University
- School of Public Health, Oregon Health & Science University
| | - Nabil J. Alkayed
- Knight Cardiovascular Institute, Department of Medicine, Oregon Health & Science University
| | - Sergio Fazio
- Knight Cardiovascular Institute, Department of Medicine, Oregon Health & Science University
| | - Nathalie Pamir
- Knight Cardiovascular Institute, Department of Medicine, Oregon Health & Science University
| |
Collapse
|
15
|
Advances in HDL: Much More than Lipid Transporters. Int J Mol Sci 2020; 21:ijms21030732. [PMID: 31979129 PMCID: PMC7037660 DOI: 10.3390/ijms21030732] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 01/07/2023] Open
Abstract
High Density Lipoprotein (HDL) particles, beyond serving as lipid transporters and playing a key role in reverse cholesterol transport, carry a highly variable number of proteins, micro-RNAs, vitamins, and hormones, which endow them with the ability to mediate a plethora of cellular and molecular mechanisms that promote cardiovascular health. It is becoming increasingly evident, however, that the presence of cardiovascular risk factors and co-morbidities alters HDLs cargo and protective functions. This concept has led to the notion that metrics other than HDL-cholesterol levels, such as HDL functionality and composition, may better capture HDL cardiovascular protection. On the other hand, the potential of HDL as natural delivery carriers has also fostered the design of engineered HDL-mimetics aiming to improve HDL efficacy or as drug-delivery agents with therapeutic potential. In this paper, we first provide an overview of the molecules known to be transported by HDL particles and mainly discuss their functions in the cardiovascular system. Second, we describe the impact of cardiovascular risk factors and co-morbidities on HDL remodeling. Finally, we review the currently developed HDL-based approaches.
Collapse
|
16
|
Florens N, Calzada C, Delolme F, Page A, Guebre Egziabher F, Juillard L, Soulage CO. Proteomic Characterization of High-Density Lipoprotein Particles from Non-Diabetic Hemodialysis Patients. Toxins (Basel) 2019; 11:toxins11110671. [PMID: 31731787 PMCID: PMC6891510 DOI: 10.3390/toxins11110671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 12/28/2022] Open
Abstract
Chronic kidney disease is associated with an increased cardiovascular risk, and altered biological properties of high-density lipoproteins (HDL) may play a role in these events. This study aimed to describe the HDL proteome from non-diabetic hemodialysis patients and identify potential pathways affected by the dysregulated expression of HDL proteins. HDL were sampled from nine non-diabetic hemodialysis (HD) and eight control patients. Samples were analyzed using a nano-RSLC coupled with a Q-Orbitrap. Data were processed by database searching using SequestHT against a human Swissprot database and quantified with a label-free quantification approach. Proteins that were in at least five of the eight control and six of the nine HD patients were analyzed. Analysis was based on pairwise ratios and the ANOVA hypothesis test. Among 522 potential proteins, 326 proteins were identified to be in the HDL proteome from HD and control patients, among which 10 were significantly upregulated and nine downregulated in HD patients compared to the control patients (p < 0.05). Up and downregulated proteins were involved in lipid metabolism, hemostasis, wound healing, oxidative stress, and apoptosis pathways. This difference in composition could partly explain HDL dysfunction in the chronic kidney disease (CKD) population and participate in the higher cardiovascular risk observed in this population.
Collapse
Affiliation(s)
- Nans Florens
- Univ. Lyon, CarMeN, INSERM U1060, INSA de Lyon, Université Claude Bernard Lyon 1, INRA U1397, F-69621 Villeurbanne, France; (C.C.); (F.G.E.); (L.J.)
- Hospices Civils de Lyon, Service de Néphrologie-Hypertension-Hémodialyse, Hôpital E. Herriot, F-69003 Lyon, France
- Correspondence: (N.F.); (C.O.S.)
| | - Catherine Calzada
- Univ. Lyon, CarMeN, INSERM U1060, INSA de Lyon, Université Claude Bernard Lyon 1, INRA U1397, F-69621 Villeurbanne, France; (C.C.); (F.G.E.); (L.J.)
| | - Frédéric Delolme
- Protein Science Facility, SFR BioSciences CNRS UMS3444, Inserm US8, Université Claude Bernard Lyon 1, ENS de Lyon, F-69007 Lyon, France; (F.D.); (A.P.)
| | - Adeline Page
- Protein Science Facility, SFR BioSciences CNRS UMS3444, Inserm US8, Université Claude Bernard Lyon 1, ENS de Lyon, F-69007 Lyon, France; (F.D.); (A.P.)
| | - Fitsum Guebre Egziabher
- Univ. Lyon, CarMeN, INSERM U1060, INSA de Lyon, Université Claude Bernard Lyon 1, INRA U1397, F-69621 Villeurbanne, France; (C.C.); (F.G.E.); (L.J.)
- Hospices Civils de Lyon, Service de Néphrologie-Hypertension-Hémodialyse, Hôpital E. Herriot, F-69003 Lyon, France
| | - Laurent Juillard
- Univ. Lyon, CarMeN, INSERM U1060, INSA de Lyon, Université Claude Bernard Lyon 1, INRA U1397, F-69621 Villeurbanne, France; (C.C.); (F.G.E.); (L.J.)
- Hospices Civils de Lyon, Service de Néphrologie-Hypertension-Hémodialyse, Hôpital E. Herriot, F-69003 Lyon, France
| | - Christophe O. Soulage
- Univ. Lyon, CarMeN, INSERM U1060, INSA de Lyon, Université Claude Bernard Lyon 1, INRA U1397, F-69621 Villeurbanne, France; (C.C.); (F.G.E.); (L.J.)
- Correspondence: (N.F.); (C.O.S.)
| |
Collapse
|
17
|
Abstract
Introduction: High-density lipoprotein (HDL) particles are heterogeneous and their proteome is complex and distinct from HDL cholesterol. However, it is largely unknown whether HDL proteins are associated with cardiovascular protection. Areas covered: HDL isolation techniques and proteomic analyses are reviewed. A list of HDL proteins reported in 37 different studies was compiled and the effects of different isolation techniques on proteins attributed to HDL are discussed. Mass spectrometric techniques used for HDL analysis and the need for precise and robust methods for quantification of HDL proteins are discussed. Expert opinion: Proteins associated with HDL have the potential to be used as biomarkers and/or help to understand HDL functionality. To achieve this, large cohorts must be studied using precise quantification methods. Key factors in HDL proteome quantification are the isolation methodology and the mass spectrometry technique employed. Isolation methodology affects what proteins are identified in HDL and the specificity of association with HDL particles needs to be addressed. Shotgun proteomics yields imprecise quantification, but the majority of HDL studies relied on this approach. Few recent studies used targeted tandem mass spectrometry to quantify HDL proteins, and it is imperative that future studies focus on the application of these precise techniques.
Collapse
Affiliation(s)
- Graziella Eliza Ronsein
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo , São Paulo , Brazil
| | - Tomáš Vaisar
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington , Seattle , WA , USA
| |
Collapse
|
18
|
Fournier M, Bonneil E, Garofalo C, Grimard G, Laverdière C, Krajinovic M, Drouin S, Sinnett D, Marcil V, Levy E. Altered proteome of high-density lipoproteins from paediatric acute lymphoblastic leukemia survivors. Sci Rep 2019; 9:4268. [PMID: 30862935 PMCID: PMC6414624 DOI: 10.1038/s41598-019-40906-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 01/30/2019] [Indexed: 01/16/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most frequent malignancy in children. With the use of more modern, efficient treatments, 5-year survival has reached more than 90% in this population. However, this achievement comes with many secondary and long-term effects since more than 65% of the survivors experience at least one severe complication, including the metabolic syndrome and cardiovascular diseases. The main objective of the present work was to characterize the composition of HDL particles isolated from pediatric ALL survivors. HDLs from 8 metabolically healthy ALL survivors, 8 metabolically unhealthy ALL survivors and 8 age- and gender-matched controls were analyzed. The HDL fraction from the survivors contained less cholesterol than the controls. In addition, proteomic analyses revealed an enrichment of pro-thrombotic (e.g., fibrinogen) and pro-inflammatory (e.g., amyloid A) proteins in the HDLs deriving from metabolically unhealthy survivors. These results indicate an alteration in the composition of lipid and protein content of HDL from childhood ALL survivors with metabolic disorders. Although more work is needed to validate the functionality of these HDLs, the data seem relevant for survivor health given the detection of potential biomarkers related to HDL metabolism and functionality in cancer.
Collapse
Affiliation(s)
- Maryse Fournier
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Eric Bonneil
- Institute of Research in Immunology and Cancer, Université de Montréal, QC, H3C 3J7, Montréal, Canada
| | - Carole Garofalo
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Guy Grimard
- Department of Pediatrics, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Caroline Laverdière
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada.,Department of Pediatrics, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Maja Krajinovic
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada.,Department of Pediatrics, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Simon Drouin
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Daniel Sinnett
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada.,Department of Pediatrics, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Valérie Marcil
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Emile Levy
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada. .,Department of Nutrition, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada.
| |
Collapse
|
19
|
Emmens JE, Jones DJL, Cao TH, Chan DCS, Romaine SPR, Quinn PA, Anker SD, Cleland JG, Dickstein K, Filippatos G, Hillege HL, Lang CC, Ponikowski P, Samani NJ, van Veldhuisen DJ, Zannad F, Zwinderman AH, Metra M, de Boer RA, Voors AA, Ng LL. Proteomic diversity of high-density lipoprotein explains its association with clinical outcome in patients with heart failure. Eur J Heart Fail 2017; 20:260-267. [PMID: 29251807 DOI: 10.1002/ejhf.1101] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/26/2017] [Accepted: 11/09/2017] [Indexed: 11/10/2022] Open
Abstract
AIMS Previously, low high-density lipoprotein (HDL) cholesterol was found to be one of the strongest predictors of mortality and/or heart failure (HF) hospitalisation in patients with HF. We therefore performed in-depth investigation of the multifunctional HDL proteome to reveal underlying pathophysiological mechanisms explaining the association between HDL and clinical outcome. METHODS AND RESULTS We selected a cohort of 90 HF patients with 1:1 cardiovascular death/survivor ratio from BIOSTAT-CHF. A novel optimised protocol for selective enrichment of lipoproteins was used to prepare plasma. Enriched lipoprotein content of samples was analysed using high resolution nanoscale liquid chromatography-mass spectrometry-based proteomics, utilising a label free approach. Within the HDL proteome, 49 proteins significantly differed between deaths and survivors. An optimised model of 12 proteins predicted death with 76% accuracy (Nagelkerke R2 =0.37, P < 0.001). The strongest contributors to this model were filamin-A (related to crosslinking of actin filaments) [odds ratio (OR) 0.31, 95% confidence interval (CI) 0.15-0.61, P = 0.001] and pulmonary surfactant-associated protein B (related to alveolar capillary membrane function) (OR 2.50, 95% CI 1.57-3.98, P < 0.001). The model predicted mortality with an area under the curve of 0.82 (95% CI 0.77-0.87, P < 0.001). Internal cross validation resulted in 73.3 ± 7.2% accuracy. CONCLUSION This study shows marked differences in composition of the HDL proteome between HF survivors and deaths. The strongest differences were seen in proteins reflecting crosslinking of actin filaments and alveolar capillary membrane function, posing potential pathophysiological mechanisms underlying the association between HDL and clinical outcome in HF.
Collapse
Affiliation(s)
- Johanna Elisabeth Emmens
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Donald J L Jones
- Department of Cancer Studies, University of Leicester, Leicester Royal Infirmary, Leicester, UK
| | - Thong H Cao
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK.,Department of General Internal Medicine, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Daniel C S Chan
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Simon P R Romaine
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Paulene A Quinn
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Stefan D Anker
- Division of Cardiology and Metabolism - Heart Failure, Cachexia and Sarcopenia, Department of Cardiology (CVK); and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) Berlin, Charité Universitätsmedizin Berlin, Germany.,Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - John G Cleland
- National Heart and Lung Institute, Royal Brompton and Harefield Hospitals, Imperial College, London, UK
| | - Kenneth Dickstein
- University of Bergen, Bergen, Norway.,Stavanger University Hospital, Stavanger, Norway
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens, School of Medicine, Heart Failure Unit, Department of Cardiology, Athens University Hospital Attikon, Athens, Greece
| | - Hans L Hillege
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Chim C Lang
- School of Medicine Centre for Cardiovascular and Lung Biology, Division of Medical Sciences, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Piotr Ponikowski
- Department of Heart Diseases, Wroclaw Medical University, and Cardiology Department, Military Hospital, Wroclaw, Poland
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Dirk J van Veldhuisen
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Faiz Zannad
- Inserm CIC 1433, Université de Lorrain, CHU de Nancy, Nancy, France
| | - Aeilko H Zwinderman
- Department of Epidemiology, Biostatistics and Bioinformatics, Academic Medical Centre, Amsterdam, The Netherlands
| | - Marco Metra
- Institute of Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Leong L Ng
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
20
|
Farmakis D, Papingiotis G, Parissis J, Filippatos G. Ups and downs in heart failure: the case of proteomics. Eur J Heart Fail 2017; 20:63-66. [DOI: 10.1002/ejhf.1065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/28/2022] Open
Affiliation(s)
- Dimitrios Farmakis
- Heart Failure Unit, Department of Cardiology, Athens University Hospital Attikon; National and Kapodistrian University of Athens; Athens Greece
| | - Georgios Papingiotis
- Heart Failure Unit, Department of Cardiology, Athens University Hospital Attikon; National and Kapodistrian University of Athens; Athens Greece
| | - John Parissis
- Heart Failure Unit, Department of Cardiology, Athens University Hospital Attikon; National and Kapodistrian University of Athens; Athens Greece
| | - Gerasimos Filippatos
- Heart Failure Unit, Department of Cardiology, Athens University Hospital Attikon; National and Kapodistrian University of Athens; Athens Greece
| |
Collapse
|
21
|
Shao B, Heinecke JW. Quantifying HDL proteins by mass spectrometry: how many proteins are there and what are their functions? Expert Rev Proteomics 2017; 15:31-40. [PMID: 29113513 DOI: 10.1080/14789450.2018.1402680] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Many lines of evidence indicate that low levels of HDL cholesterol increase the risk of cardiovascular disease (CVD). However, recent clinical studies of statin-treated subjects with established atherosclerosis cast doubt on the hypothesis that elevating HDL cholesterol levels reduces CVD risk. Areas covered: It is critical to identify new HDL metrics that capture HDL's proposed cardioprotective effects. One promising approach is quantitative MS/MS-based HDL proteomics. This article focuses on recent studies of the feasibility and challenges of using this strategy in translational studies. It also discusses how lipid-lowering therapy and renal disease alter HDL's functions and proteome, and how HDL might serve as a platform for binding proteins with specific functional properties. Expert commentary: It is clear that HDL has a diverse protein cargo and that its functions extend well beyond its classic role in lipid transport and reverse cholesterol transport. MS/MS analysis has demonstrated that HDL might contain >80 different proteins. Key challenges are demonstrating that these proteins truly associate with HDL, are functionally important, and that MS-based HDL proteomics can reproducibly detect biomarkers in translational studies of disease risk.
Collapse
Affiliation(s)
- Baohai Shao
- a Department of Medicine , University of Washington , Seattle , WA , USA
| | - Jay W Heinecke
- a Department of Medicine , University of Washington , Seattle , WA , USA
| |
Collapse
|
22
|
Boyce G, Button E, Soo S, Wellington C. The pleiotropic vasoprotective functions of high density lipoproteins (HDL). J Biomed Res 2017; 32:164. [PMID: 28550271 PMCID: PMC6265396 DOI: 10.7555/jbr.31.20160103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022] Open
Abstract
The pleiotropic functions of circulating high density lipoprotein (HDL) on peripheral vascular health are well established. HDL plays a pivotal role in reverse cholesterol transport and is also known to suppress inflammation, endothelial activation and apoptosis in peripheral vessels. Although not expressed in the central nervous system, HDL has nevertheless emerged as a potential resilience factor for dementia in multiple epidemiological studies. Animal model data specifically support a role for HDL in attenuating the accumulation of β-amyloid within cerebral vessels concomitant with reduced neuroinflammation and improved cognitive performance. As the vascular contributions to dementia are increasingly appreciated, this review seeks to summarize recent literature focused on the vasoprotective properties of HDL that may extend to cerebral vessels, discuss potential roles of HDL in dementia relative to brain-derived lipoproteins, identify gaps in current knowledge, and highlight new opportunities for research and discovery.
Collapse
Affiliation(s)
- Guilaine Boyce
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Emily Button
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Sonja Soo
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cheryl Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
23
|
Impact of Rosuvastatin Treatment on HDL-Induced PKC-βII and eNOS Phosphorylation in Endothelial Cells and Its Relation to Flow-Mediated Dilatation in Patients with Chronic Heart Failure. Cardiol Res Pract 2016; 2016:4826102. [PMID: 27563480 PMCID: PMC4985575 DOI: 10.1155/2016/4826102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/27/2016] [Indexed: 11/17/2022] Open
Abstract
Background. Endothelial function is impaired in chronic heart failure (CHF). Statins upregulate endothelial NO synthase (eNOS) and improve endothelial function. Recent studies demonstrated that HDL stimulates NO production due to eNOS phosphorylation at Ser(1177), dephosphorylation at Thr(495), and diminished phosphorylation of PKC-βII at Ser(660). The aim of this study was to elucidate the impact of rosuvastatin on HDL mediated eNOS and PKC-βII phosphorylation and its relation to endothelial function. Methods. 18 CHF patients were randomized to 12 weeks of rosuvastatin or placebo. At baseline, 12 weeks, and 4 weeks after treatment cessation we determined lipid levels and isolated HDL. Human aortic endothelial cells (HAEC) were incubated with isolated HDL and phosphorylation of eNOS and PKC-βII was evaluated. Flow-mediated dilatation (FMD) was measured at the radial artery. Results. Rosuvastatin improved FMD significantly. This effect was blunted after treatment cessation. LDL plasma levels were reduced after rosuvastatin treatment whereas drug withdrawal resulted in significant increase. HDL levels remained unaffected. Incubation of HAEC with HDL had no impact on phosphorylation of eNOS or PKC-βII. Conclusion. HDL mediated eNOS and PKC-βII phosphorylation levels in endothelial cells do not change with rosuvastatin in CHF patients and do not mediate the marked improvement in endothelial function.
Collapse
|