1
|
Balapure A, Dubey SK, Javed A, Chattopadhyay S, Goel S. A review: early detection of oral cancer biomarkers using microfluidic colorimetric point-of-care devices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6098-6118. [PMID: 39206589 DOI: 10.1039/d4ay01030b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of head and neck cancers. OSCC constitutes 90% of the head and neck malignancies. The delayed identification of oral cancer is the primary cause of ineffective medical treatment. To address this issue, low-cost, reliable point-of-care devices that can be utilized for large-scale screening, even in low-resource settings, including rural areas and primary healthcare centers, are of great interest. Herein, a comprehensive analysis of numerous salivary biomarkers that exhibit significant variations in concentration between individuals with oral cancer and those without is given. Furthermore, the article explores several point-of-care devices that exhibit potential in the realm of oral cancer detection. The biomarkers are discussed with a focus on their structural characteristics and role in oral cancer progression. The devices based on colorimetry and microfluidics are discussed in detail, considering their compliance with the 'REASSURED' criteria given by the World Health Organization (WHO) and suitability for mass screening in low-resource settings. Finally, the discourse revolves around the fundamental aspects pertaining to the advancement of multiplex, cost-effective point-of-care devices designed for widespread screening purposes.
Collapse
Affiliation(s)
- Aniket Balapure
- MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, 500 078, Telangana, India.
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, 500 078, Telangana, India
| | - Satish Kumar Dubey
- MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, 500 078, Telangana, India.
- Department of Mechanical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, 500 078, Telangana, India
| | - Arshad Javed
- MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, 500 078, Telangana, India.
- Department of Mechanical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, 500 078, Telangana, India
| | - Samit Chattopadhyay
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, K K Birla Goa Campus, NH-17B, Zuarinagar, Goa 403726, India
| | - Sanket Goel
- MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, 500 078, Telangana, India.
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, 500 078, Telangana, India
| |
Collapse
|
2
|
Ouled Ltaief O, Ben Amor I, Hemmami H, Hamza W, Zeghoud S, Ben Amor A, Benzina M, Alnazza Alhamad A. Recent developments in cancer diagnosis and treatment using nanotechnology. Ann Med Surg (Lond) 2024; 86:4541-4554. [PMID: 39118776 PMCID: PMC11305775 DOI: 10.1097/ms9.0000000000002271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/05/2024] [Indexed: 08/10/2024] Open
Abstract
The article provides an insightful overview of the pivotal role of nanotechnology in revolutionizing cancer diagnosis and treatment. It discusses the critical importance of nanoparticles in enhancing the accuracy of cancer detection through improved imaging contrast agents and the synthesis of various nanomaterials designed for oncology applications. The review broadly classifies nanoparticles used in therapeutics, including metallic, magnetic, polymeric, and many other types, with an emphasis on their functions in drug delivery systems for targeted cancer therapy. It details targeting mechanisms, including passive and intentional targeting, to maximize treatment efficacy while minimizing side effects. Furthermore, the article addresses the clinical applications of nanomaterials in cancer treatment, highlights prospects, and addresses the challenges of integrating nanotechnology into cancer treatment.
Collapse
Affiliation(s)
- Olfa Ouled Ltaief
- Water, Energy and Environment Laboratory, National School of Engineers of Sfax, University of Safx, Safx, Tunisia
| | - Ilham Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Hadia Hemmami
- Department of Process Engineering and Petrochemical, Faculty of Technology
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Wiem Hamza
- Water, Energy and Environment Laboratory, National School of Engineers of Sfax, University of Safx, Safx, Tunisia
| | - Soumeia Zeghoud
- Department of Process Engineering and Petrochemical, Faculty of Technology
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Asma Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology
- Renewable Energy Development unit in Arid Zones (UDERZA), University of El Oued, El Oued, Algeria
| | - Mourad Benzina
- Water, Energy and Environment Laboratory, National School of Engineers of Sfax, University of Safx, Safx, Tunisia
| | - Ali Alnazza Alhamad
- Department of Chemistry, Faculty of Science, University of Aleppo, Aleppo, Syria
- Department of Technology of organic synthesis, Ural Federal University, Yekaterinburg, Russia
| |
Collapse
|
3
|
Weng Q, Li H, Fan Z, Dong Y, Qi Y, Wang P, Luo C, Li J, Zhao X, Yu H. Enzyme-free and rapid colorimetric analysis of osteopontin via triple-helix aptamer probe coupled with catalytic hairpin assembly reaction. Anal Chim Acta 2024; 1312:342764. [PMID: 38834269 DOI: 10.1016/j.aca.2024.342764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Osteopontin (OPN) is closely associated with tumorigenesis, growth, invasion, and immune escape and it serves as a plasma biomarker for hepatocellular carcinoma (HCC). Nevertheless, the accurate and rapid detection of low-abundance OPN still poses significant challenges. Currently, the majority of protein detection methods rely heavily on large precision instruments or involve complex procedures. Therefore, developing a simple, enzyme-free, rapid colorimetric analysis method with high sensitivity is imperative. RESULTS In this study, we have developed a portable colorimetric biosensor by integrating the triple-helix aptamer probe (THAP) and catalytic hairpin assembly (CHA) strategy, named as T-CHA. After binding to the OPN, the trigger probe can be released from THAP, then initiates the CHA reaction and outputs the signal through the formation of a G-quadruplex/Hemin DNAzyme with horseradish peroxidase-like activity. Consequently, this colorimetric sensor achieves visual free-labeled detection without additional fluorophore modification and allows for accurate quantification by measuring the optical density of the solution at 650 nm. Under optimal conditions, the logarithmic values of various OPN concentrations exhibit satisfactory linearity in the range of 5 pg mL-1 to 5 ng mL-1, with a detection limit of 2.04 pg mL-1. Compared with the widely used ELISA strategy, the proposed T-CHA strategy is rapid (∼105 min), highly sensitive, and cost-effective. SIGNIFICANCE The T-CHA strategy, leveraging the low background leakage of THAP and the high catalytic efficiency of CHA, has been successfully applied to the detection of OPN in plasma, demonstrating significant promise for the early diagnosis of HCC in point-of-care testing. Given the programmability of DNA and the universality of T-CHA, it can be readily modified for analyzing other useful tumor biomarkers.
Collapse
Affiliation(s)
- Qin Weng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hang Li
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhichao Fan
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yan Dong
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuchen Qi
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Peilin Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jianjun Li
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Xiang Zhao
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Hua Yu
- Department of General Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
4
|
Zhang S, Kong N, Wang Z, Zhang Y, Ni C, Li L, Wang H, Yang M, Yang W, Yan F. Nanochemistry of gold: from surface engineering to dental healthcare applications. Chem Soc Rev 2024; 53:3656-3686. [PMID: 38502089 DOI: 10.1039/d3cs00894k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Advancements in nanochemistry have led to the development of engineered gold nanostructures (GNSs) with remarkable potential for a variety of dental healthcare applications. These innovative nanomaterials offer unique properties and functionalities that can significantly improve dental diagnostics, treatment, and overall oral healthcare applications. This review provides an overview of the latest advancements in the design, synthesis, and application of GNSs for dental healthcare applications. Engineered GNSs have emerged as versatile tools, demonstrating immense potential across different aspects of dentistry, including enhanced imaging and diagnosis, prevention, bioactive coatings, and targeted treatment of oral diseases. Key highlights encompass the precise control over GNSs' size, crystal structure, shape, and surface functionalization, enabling their integration into sensing, imaging diagnostics, drug delivery systems, and regenerative therapies. GNSs, with their exceptional biocompatibility and antimicrobial properties, have demonstrated efficacy in combating dental caries, periodontitis, peri-implantitis, and oral mucosal diseases. Additionally, they show great promise in the development of advanced sensing techniques for early diagnosis, such as nanobiosensor technology, while their role in targeted drug delivery, photothermal therapy, and immunomodulatory approaches has opened new avenues for oral cancer therapy. Challenges including long-term toxicity, biosafety, immune recognition, and personalized treatment are under rigorous investigation. As research at the intersection of nanotechnology and dentistry continues to thrive, this review highlights the transformative potential of engineered GNSs in revolutionizing dental healthcare, offering accurate, personalized, and minimally invasive solutions to address the oral health challenges of the modern era.
Collapse
Affiliation(s)
- Shuang Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Na Kong
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia.
- Hainan Provincial Key Laboratory of Natural Rubber Processing, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Zezheng Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Yangheng Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Can Ni
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Lingjun Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Hongbin Wang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Min Yang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia.
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| |
Collapse
|
5
|
Gupta N, Bhargava A, Saigal S, Mehta V. Nanoparticle-based immunosensors for enhanced DNA analysis in oral cancer: A systematic review. J Oral Maxillofac Pathol 2024; 28:284-292. [PMID: 39157838 PMCID: PMC11329074 DOI: 10.4103/jomfp.jomfp_345_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 08/20/2024] Open
Abstract
To investigate the diagnostic and therapeutic potential of nanoparticle (NP)-based immunosensors in the field of oral cancer. PubMed, Embase, Scopus, Web of Science, and Google Scholar databases were explored for NP applications in oral cancer. Data extraction in terms and quality assessment of all the articles were done. Out of 147, 17 articles were included in this review. A majority of the studies showed improved sensitivity and specificity for saliva analysis using an enzyme-linked immunosorbent assay based on gold NPs, improving early identification. Additionally, novel therapeutic approaches, utilising NP-based immunosensors, demonstrated targeted drug delivery, coupled chemo-photothermal therapy, and gene silencing. Imaging methods have made it possible to distinguish between malignant and healthy states, such as surface-enhanced Raman scattering and optical coherence tomography. The reviews' findings highlight the transformational potential of NP-based immunosensors in addressing the difficulties associated with diagnosing and treating oral cancer. However, for an accurate interpretation and application of NP-based solutions in clinical practise, it is essential to be thoroughly aware of the intricacies involved, and the synthesised data in this review support the continued investigation and improvement of NP-based therapies in the ongoing effort to improve the management of oral cancer.
Collapse
Affiliation(s)
- Neha Gupta
- Department of Oral Pathology, Microbiology and Forensic Odontology, Dental College, Rajendra Institute of Medical Sciences (RIMS), Ranchi, India
| | - Ankur Bhargava
- Department of Oral Pathology and Microbiology, Hazaribag College of Dental Sciences and Hospital, Hazaribag, Jharkhand, India
| | - Sonal Saigal
- Department of Oral Pathology, Microbiology and Forensic Odontology, Dental College, Rajendra Institute of Medical Sciences (RIMS), Ranchi, India
| | - Vini Mehta
- Department of Dental Research Cell, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| |
Collapse
|
6
|
Nan X, Yao X, Yang L, Cui Y. Lateral flow assay of pathogenic viruses and bacteria in healthcare. Analyst 2023; 148:4573-4590. [PMID: 37655501 DOI: 10.1039/d3an00719g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Healthcare-associated pathogenic viruses and bacteria can have a serious impact on human health and have attracted widespread global attention. The lateral flow assay is a unidirectional detection based on the binding of a target analyte and a bioreceptor on the device via lateral flow. With incredible advantages over traditional chromatographic methods, such as rapid detection, ease of manufacture and cost effectiveness, these test strips are increasingly considered the ideal form for point-of-care applications. This review explores lateral flow assays for pathogenic viruses and bacteria, with a particular focus on methodologies, device components, construction methods, and applications. We anticipate that this review could provide exciting opportunities for developing new lateral flow devices for pathogens and advance related healthcare applications.
Collapse
Affiliation(s)
- Xuanxu Nan
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| | - Xuesong Yao
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| | - Li Yang
- Peking University First Hospital; Peking University Institute of Nephrology, Beijing 100034, P. R. China.
| | - Yue Cui
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| |
Collapse
|
7
|
Menditti D, Santagata M, Imola G, Staglianò S, Vitagliano R, Boschetti CE, Inchingolo AM. Personalized Medicine in Oral Oncology: Imaging Methods and Biological Markers to Support Diagnosis of Oral Squamous Cell Carcinoma (OSCC): A Narrative Literature Review. J Pers Med 2023; 13:1397. [PMID: 37763165 PMCID: PMC10532745 DOI: 10.3390/jpm13091397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
For decades, oral squamous cell carcinoma (OSCC) has been one of the most prevalent and mortal cancers worldwide. The gold standard for OSCC diagnosis is still histopathology but this narrative multidisciplinary review has the aim to explore the literature about conventional OSCC prognostic indicators related to the pTNM stage at the diagnosis such as the depth of invasion and the lymphovascular invasion associated with distant metastasis as indicators of poor life expectancy. Despite its multifactorial nature and recognizable precursors, its diagnosis at the early stages is still challenging. We wanted to highlight the importance of the screening as a primary weapon that a stomatologist should consider, intercepting all at-risk conditions and lesions associated with OSCC and its early stages. This narrative review also overviews the most promising imaging techniques, such as CT, MRI, and US-echography, and their application related to clinical and surgical practice, but also the most-investigated prognostic and diagnostic tissue and salivary biomarkers helpful in OSCC diagnosis and prognostic assessment. Our work highlighted remarkable potential biomarkers that could have a leading role in the future. However, we are still far from defining an appropriate and concrete protocol to apply in clinical practice. The hope is that the present and future research will overcome these limitations to benefit patients, clinicians, and welfare.
Collapse
Affiliation(s)
- Dardo Menditti
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (D.M.); (M.S.); (G.I.); (S.S.); (C.E.B.)
| | - Mario Santagata
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (D.M.); (M.S.); (G.I.); (S.S.); (C.E.B.)
| | - Gianmaria Imola
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (D.M.); (M.S.); (G.I.); (S.S.); (C.E.B.)
| | - Samuel Staglianò
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (D.M.); (M.S.); (G.I.); (S.S.); (C.E.B.)
| | - Rita Vitagliano
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (D.M.); (M.S.); (G.I.); (S.S.); (C.E.B.)
| | - Ciro Emiliano Boschetti
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (D.M.); (M.S.); (G.I.); (S.S.); (C.E.B.)
| | | |
Collapse
|
8
|
Senevirathna K, Jayawickrama SM, Jayasinghe YA, Prabani KIP, Akshala K, Pradeep RGGR, Damayanthi HDWT, Hettiarachchi K, Dorji T, Lucero‐Prisno DE, Rajapakse RMG, Kanmodi KK, Jayasinghe RD. Nanoplatforms: The future of oral cancer treatment. Health Sci Rep 2023; 6:e1471. [PMID: 37547360 PMCID: PMC10397482 DOI: 10.1002/hsr2.1471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023] Open
Abstract
Background and Aims Cytotoxicity is a key disadvantage of using chemotherapeutic drugs to treat cancer. This can be overcome by encapsulating chemotherapeutic drugs in suitable carriers for targeted delivery, allowing them to be released only at the cancerous sites. Herein, we aim to review the recent scientific developments in the utilization of nanotechnology-based drug delivery systems for treating oral malignancies that can lead to further improvements in clinical practice. Methods A comprehensive literature search was conducted on PubMed, Google Scholar, ScienceDirect, and other notable databases to identify recent peer-reviewed clinical trials, reviews, and research articles related to nanoplatforms and their applications in oral cancer treatment. Results Nanoplatforms offer a revolutionary strategy to overcome the challenges associated with conventional oral cancer treatments, such as poor drug solubility, non-specific targeting, and systemic toxicity. These nanoscale drug delivery systems encompass various formulations, including liposomes, polymeric nanoparticles, dendrimers, and hydrogels, which facilitate controlled release and targeted delivery of therapeutic agents to oral cancer sites. By exploiting the enhanced permeability and retention effect, Nanoplatforms accumulate preferentially in the tumor microenvironment, increasing drug concentration and minimizing damage to healthy tissues. Additionally, nanoplatforms can be engineered to carry multiple drugs or a combination of drugs and diagnostic agents, enabling personalized and precise treatment approaches. Conclusion The utilization of nanoplatforms in oral cancer treatment holds significant promise in revolutionizing therapeutic strategies. Despite the promising results in preclinical studies, further research is required to evaluate the safety, efficacy, and long-term effects of nanoformulations in clinical settings. If successfully translated into clinical practice, nanoplatform-based therapies have the potential to improve patient outcomes, reduce side effects, and pave the way for more personalized and effective oral cancer treatments.
Collapse
Affiliation(s)
- Kalpani Senevirathna
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Shalindu M. Jayawickrama
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Yovanthi A. Jayasinghe
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Karunakalage I. P. Prabani
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Kushani Akshala
- Department of Agricultural Biology, Faculty of AgricultureUniversity of PeradeniyaPeradeniyaSri Lanka
| | | | | | - Kalani Hettiarachchi
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Thinley Dorji
- Department of Internal MedicineCentral Regional Referral HospitalGelegphuBhutan
| | - Don E. Lucero‐Prisno
- Department of Global Health and DevelopmentLondon School of Hygiene and Tropical MedicineLondonUK
| | | | - Kehinde K. Kanmodi
- Faculty of DentistryUniversity of PuthisastraPhnom PenhCambodia
- School of DentistryUniversity of RwandaKigaliRwanda
- School of Health and Life SciencesTeesside UniversityMiddlesbroughUK
- Cephas Health Research Initiative IncIbadanNigeria
| | - Ruwan D. Jayasinghe
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
- Faculty of DentistryUniversity of PuthisastraPhnom PenhCambodia
| |
Collapse
|
9
|
Alrushaid N, Khan FA, Al-Suhaimi EA, Elaissari A. Nanotechnology in Cancer Diagnosis and Treatment. Pharmaceutics 2023; 15:pharmaceutics15031025. [PMID: 36986885 PMCID: PMC10052895 DOI: 10.3390/pharmaceutics15031025] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Traditional cancer diagnosis has been aided by the application of nanoparticles (NPs), which have made the process easier and faster. NPs possess exceptional properties such as a larger surface area, higher volume proportion, and better targeting capabilities. Additionally, their low toxic effect on healthy cells enhances their bioavailability and t-half by allowing them to functionally penetrate the fenestration of epithelium and tissues. These particles have attracted attention in multidisciplinary areas, making them the most promising materials in many biomedical applications, especially in the treatment and diagnosis of various diseases. Today, many drugs are presented or coated with nanoparticles for the direct targeting of tumors or diseased organs without harming normal tissues/cells. Many types of nanoparticles, such as metallic, magnetic, polymeric, metal oxide, quantum dots, graphene, fullerene, liposomes, carbon nanotubes, and dendrimers, have potential applications in cancer treatment and diagnosis. In many studies, nanoparticles have been reported to show intrinsic anticancer activity due to their antioxidant action and cause an inhibitory effect on the growth of tumors. Moreover, nanoparticles can facilitate the controlled release of drugs and increase drug release efficiency with fewer side effects. Nanomaterials such as microbubbles are used as molecular imaging agents for ultrasound imaging. This review discusses the various types of nanoparticles that are commonly used in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Noor Alrushaid
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Univ. Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Lyon, France
| | - Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ebtesam Abdullah Al-Suhaimi
- Biology Department, College of Science, Institute of Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Abdelhamid Elaissari
- Univ. Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Lyon, France
| |
Collapse
|
10
|
Sowmya SV, Augustine D, Prabhu S, Patil S. Nanomaterials-based Bioanalytical Sensors for the Detection of Oral Cancer Biomarkers. J Contemp Dent Pract 2023; 24:69-70. [PMID: 37272136 DOI: 10.5005/jp-journals-10024-3478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- S V Sowmya
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India, Phone: +91 9945784509, e-mail:
| | - Dominic Augustine
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Sonia Prabhu
- Faculty of Dental Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, Utah, United States of America; Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
11
|
Chakraborty D, Ghosh D, Kumar S, Jenkins D, Chandrasekaran N, Mukherjee A. Nano-diagnostics as an emerging platform for oral cancer detection: Current and emerging trends. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1830. [PMID: 35811418 DOI: 10.1002/wnan.1830] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/05/2022] [Accepted: 06/15/2022] [Indexed: 01/31/2023]
Abstract
Globally, oral cancer kills an estimated 150,000 individuals per year, with 300,000 new cases being diagnosed annually. The high incidence rate of oral cancer among the South-Asian and American populations is majorly due to overuse of tobacco, alcohol, and poor dental hygiene. Additionally, socio-economic issues and lack of general awareness delay the primary screening of the disease. The availability of early screening techniques for oral cancer can help in carving out a niche for accurate disease prognosis and also its prevention. However, conventional diagnostic approaches and therapeutics are still far from optimal. Thus, enhancing the analytical performance of diagnostic platforms in terms of specificity and precision can help in understanding the disease progression paradigm. Fabrication of efficient nanoprobes that are sensitive, noninvasive, cost-effective, and less labor-intensive can reduce the global cancer burden. Recent advances in optical, electrochemical, and spectroscopy-based nano biosensors that employ noble and superparamagnetic nanoparticles, have been proven to be extremely efficient. Further, these sensitive nanoprobes can also be employed for predicting disease relapse after chemotherapy, when the majority of the biomarker load is eliminated. Herein, we provide the readers with a brief summary of conventional and new-age oral cancer detection techniques. A comprehensive understanding of the inherent challenges associated with conventional oral cancer detection techniques is discussed. We also elaborate on how nanoparticles have shown tremendous promise and effectiveness in radically transforming the approach toward oral cancer detection. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices Diagnostic Tools > In Vitro Nanoparticle-Based Sensing.
Collapse
Affiliation(s)
- Debolina Chakraborty
- School of Advanced Sciences, Vellore Institute of Technology, Vellore, India.,Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | - Debayan Ghosh
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | - Sanjit Kumar
- Centre for Bioseparation Technology, Vellore Institute of Technology, Vellore, India
| | - David Jenkins
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science & Engineering, University of Plymouth, Devon, UK
| | | | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
12
|
Chakraborty D, Mukherjee A, Ethiraj KR. Gold nanorod-based multiplex bioanalytical assay for the detection of CYFRA 21-1 and CA-125: towards oral cancer diagnostics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3614-3622. [PMID: 36111568 DOI: 10.1039/d2ay01216b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The study emphasizes the application of gold nanorods (GNRs) with different aspect ratios (ARs) for the development of multiplex assay for oral cancer detection. The tunable optical properties of the GNRs that rely on the geometrical alterations of the nanostructure and the corresponding change in the refractive indices of the local environment form the basis of the label-free biosensing mechanism. In the present work, two GNRs with AR 2.1 and AR 3.9 exhibiting LSPR at 620 and 775 nm were used for sensing oral cancer biomarkers (Cyfra 21-1 and CA-125). Clinically relevant salivary concentrations of CYFRA 21-1 and CA-125 were taken into consideration for designing the assay range. Herein, the antibodies against Cyfra 21-1 and CA-125 have been employed as biospecific probes to functionalize the GNRs with different ARs. Molecular interactions that induce a spectral shift of distinct plasmon band maxima facilitated quantitative assessment of the target analyte. The GNR bioprobe employed for sensing Cyfra 21-1 had a wide linear detection range of 0.496-48.4 ng mL-1 with a detection limit as low as 0.84 ng mL-1 and for CA-125 the detection range was 5-320 U mL-1 with a detection limit of 1.6 U mL-1. The individual GNR bioprobe also showed high specificity against several interferents. For multiplexed biosensing, the plasmon spectra of the GNR bioprobe mixture showed distinct responses upon binding of single and dual targets in the sample mixture and/or artificial saliva. The quantitative data from the developed method are of high clinical significance that can aid in the understanding of clinicopathological advancements in oral cancer at an early stage. This simple yet novel nanosized optical transducer technology can be further converted into miniaturized biochips and can be deployed in clinics as a nanoparticle-based point-of-care diagnostic adjunct.
Collapse
Affiliation(s)
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India.
| | - K R Ethiraj
- School of Advanced Sciences, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
13
|
Emerging Biosensors for Oral Cancer Detection and Diagnosis—A Review Unravelling Their Role in Past and Present Advancements in the Field of Early Diagnosis. BIOSENSORS 2022; 12:bios12070498. [PMID: 35884301 PMCID: PMC9312890 DOI: 10.3390/bios12070498] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022]
Abstract
Oral cancer is a serious concern to people all over the world because of its high mortality rate and metastatic spread to other areas of the body. Despite recent advancements in biomedical research, OC detection at an early stage remains a challenge and is complex and inaccurate with conventional diagnostics procedures. It is critical to study innovative approaches that can enable a faster, easier, non-invasive, and more precise diagnosis of OC in order to increase the survival rate of patients. In this paper, we conducted a review on how biosensors might be an excellent tool for detecting OC. This review covers the strategies that use different biosensors to target various types of biomarkers and focuses on biosensors that function at the molecular level viz. DNA biosensors, RNA biosensors, and protein biosensors. In addition, we reviewed non-invasive electrochemical methods, optical methods, and nano biosensors to analyze the OC biomarkers present in body fluids such as saliva and serum. As a result, this review sheds light on the development of ground-breaking biosensors for the early detection and diagnosis of OC.
Collapse
|
14
|
Zhang Q, Hou D, Wen X, Xin M, Li Z, Wu L, Pathak JL. Gold nanomaterials for oral cancer diagnosis and therapy: Advances, challenges, and prospects. Mater Today Bio 2022; 15:100333. [PMID: 35774196 PMCID: PMC9237953 DOI: 10.1016/j.mtbio.2022.100333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022] Open
Abstract
Early diagnosis and treatment of oral cancer are vital for patient survival. Since the oral cavity accommodates the second largest and most diverse microbiome community after the gut, the diagnostic and therapeutic approaches with low invasiveness and minimal damage to surrounding tissues are keys to preventing clinical intervention-related infections. Gold nanoparticles (AuNPs) are widely used in the research of cancer diagnosis and therapy due to their excellent properties such as surface-enhanced Raman spectroscopy, surface plasma resonance, controlled synthesis, the plasticity of surface morphology, biological safety, and stability. AuNPs had been used in oral cancer detection reagents, tumor-targeted therapy, photothermal therapy, photodynamic therapy, and other combination therapies for oral cancer. AuNPs-based noninvasive diagnosis and precise treatments further reduce the clinical intervention-related infections. This review is focused on the recent advances in research and application of AuNPs for early screening, diagnostic typing, drug delivery, photothermal therapy, radiotherapy sensitivity treatment, and combination therapy of oral cancer. Distinctive reports from the literature are summarized to highlight the latest advances in the development and application of AuNPs in oral cancer diagnosis and therapy. Finally, this review points out the challenges and prospects of possible applications of AuNPs in oral cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Qing Zhang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China.,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 BT Amsterdam, the Netherlands
| | - Dan Hou
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Xueying Wen
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Mengyu Xin
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Ziling Li
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Lihong Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| |
Collapse
|
15
|
Tian Y, Yuan L, Zhang M, He Y, Lin X. Sensitive detection of the okadaic acid marine toxin in shellfish by Au@Pt NPs/horseradish peroxidase dual catalysis immunoassay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1261-1267. [PMID: 35266934 DOI: 10.1039/d1ay01973b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Based on the catalysis enhancement strategy of Au@Pt nanoparticles (Au@Pt NPs) and horseradish peroxidase (HRP) related to the TMB-H2O2 indicator, a sensitive colorimetric immunoassay was established for trace okadaic acid (OA) detection. The anti-OA monoclonal antibody (McAb) with a high Kaff constant was prepared and modified on Au@Pt NPs. Through grafting the HRP conjugated goat anti-mouse IgG antibody (IgG) on Au@Pt/McAb, bifunctional composites with Au@Pt-Ab and HRP were prepared and adopted. Characteristics including morphology, specificity and catalytic performance were evaluated. Under the optimal conditions, the sensitivity of the resultant enzyme immunoassay was significantly improved, and a low limit of detection (LOD) of OA was achieved at 0.04 ng mL-1 (equivalent to 0.6 μg kg-1 in mussel tissue), which was better than that of most HRP or Au/HRP enzyme-linked immunosorbent assays. When applied to fortified shellfish samples (e.g. oysters, mussels and clams), the recoveries ranging from 98.3 ± 2.3% to 106.0 ± 9.0% were acceptable and comparable with those of the LC-MS method. Acceptable precision was achieved with a variation coefficient (CV) of 2.3-8.4%. The method provides a promising alternative for the highly sensitive detection of the OA marine toxin at trace levels.
Collapse
Affiliation(s)
- Yinqi Tian
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, P. R. China.
| | - Lin Yuan
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, P. R. China.
| | - Min Zhang
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, P. R. China.
| | - Youfen He
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, P. R. China.
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, P. R. China.
- Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fuzhou, 350108, Fujian, P. R. China
| |
Collapse
|
16
|
Fatrekar AP, Morajkar R, Krishnan S, Dusane A, Madhyastha H, Vernekar AA. Delineating the Role of Tailored Gold Nanostructures at the Biointerface. ACS APPLIED BIO MATERIALS 2021; 4:8172-8191. [PMID: 35005942 DOI: 10.1021/acsabm.1c00998] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gold (Au) has emerged as a superior element, because of its widespread applications in electronic and medical fields. The desirable physical, chemical, optical, and inherent enzyme-like properties of Au are efficiently exploited for detection, diagnostic, and therapeutic purposes. Au offers a unique advantage of fabricating gold nanostructures (GNS) having exact physical, chemical, optical, and enzyme-like properties required for the specific biomedical application. In this Review, the emerging trend of GNS for various biomedical applications is highlighted. Some notable structural and chemical modifications achieved for the detection of biomolecules, pathogens, diagnosis of diseases, and therapeutic applications are discussed in brief. The limitations of GNS during biomedical usage are highlighted and the way forward to overcome these limitations are discussed.
Collapse
Affiliation(s)
- Adarsh P Fatrekar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600 020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Rasmi Morajkar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600 020, India
| | | | - Apurva Dusane
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600 020, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Amit A Vernekar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600 020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
17
|
Anik MI, Mahmud N, Al Masud A, Hasan M. Gold nanoparticles (GNPs) in biomedical and clinical applications: A review. NANO SELECT 2021. [DOI: 10.1002/nano.202100255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Muzahidul I. Anik
- Department of Chemical Engineering University of Rhode Island South Kingstown Rhode Island USA
| | - Niaz Mahmud
- Department of Biomedical Engineering Military Institute of Science and Technology Dhaka Bangladesh
| | - Abdullah Al Masud
- Department of Chemical Engineering Bangladesh University of Engineering and Technology Dhaka Bangladesh
| | - Maruf Hasan
- Department of Biomedical Engineering Military Institute of Science and Technology Dhaka Bangladesh
| |
Collapse
|
18
|
Nanoparticles in Dentistry: A Comprehensive Review. Pharmaceuticals (Basel) 2021; 14:ph14080752. [PMID: 34451849 PMCID: PMC8398506 DOI: 10.3390/ph14080752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, nanoparticles (NPs) have been receiving more attention in dentistry. Their advantageous physicochemical and biological properties can improve the diagnosis, prevention, and treatment of numerous oral diseases, including dental caries, periodontal diseases, pulp and periapical lesions, oral candidiasis, denture stomatitis, hyposalivation, and head, neck, and oral cancer. NPs can also enhance the mechanical and microbiological properties of dental prostheses and implants and can be used to improve drug delivery through the oral mucosa. This paper reviewed studies from 2015 to 2020 and summarized the potential applications of different types of NPs in the many fields of dentistry.
Collapse
|
19
|
Lorenzo-Gómez R, Miranda-Castro R, de-Los-Santos-Álvarez N, Lobo-Castañón MJ. Bioanalytical methods for circulating extracellular matrix-related proteins: new opportunities in cancer diagnosis. Anal Bioanal Chem 2021; 414:147-165. [PMID: 34091712 DOI: 10.1007/s00216-021-03416-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 01/16/2023]
Abstract
The role of the extracellular matrix (ECM) remodeling in tumorigenesis and metastasis is becoming increasingly clear. Cancer development requires that tumor cells recruit a tumor microenvironment permissive for further tumor growth. This is a dynamic process that takes place by a cross-talk between tumor cells and ECM. As a consequence, molecules derived from the ECM changes associated to cancer are released into the bloodstream, representing potential biomarkers of tumor development. This article highlights the importance of developing and improving bioanalytical methods for the detection of ECM remodeling-derived components, as a step forward to translate the basic knowledge about cancer progression into the clinical practice.
Collapse
Affiliation(s)
- Ramón Lorenzo-Gómez
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain
| | - Rebeca Miranda-Castro
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain
| | - Noemí de-Los-Santos-Álvarez
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain
| | - María Jesús Lobo-Castañón
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain.
| |
Collapse
|
20
|
Zheng W, Zhou Q, Yuan C. Nanoparticles for Oral Cancer Diagnosis and Therapy. Bioinorg Chem Appl 2021; 2021:9977131. [PMID: 33981334 PMCID: PMC8088384 DOI: 10.1155/2021/9977131] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Oral cancer is the sixth most common malignant cancer, affecting the health of people with an unacceptably high mortality rate. Despite numerous clinical methods in the diagnosis and therapy of oral cancer (e.g., magnetic resonance imaging, computed tomography, surgery, and chemoradiotherapy), they still remain far from optimal. Therefore, an urgent need exists for effective and practical techniques of early diagnosis and effective therapy of oral cancer. Currently, various types of nanoparticles have aroused wide public concern, representing a promising tool for diagnostic probes and therapeutic devices. Their inherent physicochemical features, including ultrasmall size, high reactivity, and tunable surface modification, enable them to overcome some of the limitations and achieve the expected diagnostic and therapeutic effect. In this review, we introduce different types of nanoparticles that emerged for the diagnosis and therapy of oral cancers. Then, the challenges and future perspectives for nanoparticles applied in oral cancer diagnosis and therapy are presented. The objective of this review is to help researchers better understand the effect of nanoparticles on oral cancer diagnosis and therapy and may accelerate breakthroughs in this field.
Collapse
Affiliation(s)
- Weiping Zheng
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Qihui Zhou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China
| | - Changqing Yuan
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| |
Collapse
|
21
|
Sun S, Xie Y. An enhanced enzyme-linked aptamer assay for the detection of zearalenone based on gold nanoparticles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1255-1260. [PMID: 33616132 DOI: 10.1039/d0ay02173c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel enhanced enzyme-linked aptamer assay (ELAA) for the detection of zearalenone (ZEN) was developed based on gold nanoparticles (AuNPs) modified with an aptamer and horseradish peroxidase (HRP). In this assay, the aptamer was used as a recognition probe to competitively bind with coated ZEN-BSA on a microplate and ZEN in samples. AuNPs with high surface areas were used as a carrier to immobilize more amounts of HRP labelled aptamer probe, which can amplify the colorimetric signal by enhancing catalysis of the HRP enzyme compared with the traditional enzyme-linked method. Under the optimal conditions, the enhanced ELAA presented a good linearity in the range of 0.1-160 ng mL-1 and the limit of detection was 0.08 ng mL-1 for ZEN detection. In addition, the enhanced ELAA had no cross reactivity with other mycotoxins and showed good recoveries in spiked corn oil samples. These results indicated that the AuNP enhanced ELAA provided a new approach with simplicity, and high sensitivity and specificity for the detection of ZEN in foodstuff.
Collapse
Affiliation(s)
- Shumin Sun
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China.
| | - Yanli Xie
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China.
| |
Collapse
|
22
|
Singhal J, Verma S, Kumar S, Mehrotra D. Recent Advances in Nano-Bio-Sensing Fabrication Technology for the Detection of Oral Cancer. Mol Biotechnol 2021; 63:339-362. [PMID: 33638110 DOI: 10.1007/s12033-021-00306-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2021] [Indexed: 12/24/2022]
Abstract
Nanotechnology-based miniaturized devices have been a breakthrough in the pre-clinical and clinical research areas, e.g. drug delivery, personalized medicine. They have revolutionized the discovery and development of biomarker-based diagnostic devices for detection of various diseases such as tuberculosis, malaria and cancer. Nanomaterials (NMs) hold tremendous diagnostic potential due to their high surface-to-volume ratio and quantum confinement phenomenon, improving the detection limit of clinically relevant biomolecules in bio-fluids. Thus, they are helpful in the translation of bench-on platform to point-of-care (POC) screening device. The nanomaterial-based biosensor fabrication technology has also simplified and improved oral cancer (OC) or oral squamous cell carcinomas (OSCC) diagnosis. The fabrication of nano-bio sensors involves application specific modifications of NMs. The unique properties functionalized NMs have augmented their application on the nano-biosensing platform for the detection of clinically relevant biomolecules in bio-fluids. Therefore, this article summarizes the recent advancements in the process of fabrication of nano-biosensors for detection of OC.
Collapse
Affiliation(s)
- Jaya Singhal
- Department of Health Research - Multidisciplinary Research Unit, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India.,Department of Oral and Maxillofacial Surgery, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Saurabh Verma
- Department of Health Research - Multidisciplinary Research Unit, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Sumit Kumar
- Department of Health Research - Multidisciplinary Research Unit, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India.
| | - Divya Mehrotra
- Department of Health Research - Multidisciplinary Research Unit, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India. .,Department of Oral and Maxillofacial Surgery, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India.
| |
Collapse
|
23
|
Malecka K, Mikuła E, Ferapontova EE. Design Strategies for Electrochemical Aptasensors for Cancer Diagnostic Devices. SENSORS 2021; 21:s21030736. [PMID: 33499136 PMCID: PMC7866130 DOI: 10.3390/s21030736] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Improved outcomes for many types of cancer achieved during recent years is due, among other factors, to the earlier detection of tumours and the greater availability of screening tests. With this, non-invasive, fast and accurate diagnostic devices for cancer diagnosis strongly improve the quality of healthcare by delivering screening results in the most cost-effective and safe way. Biosensors for cancer diagnostics exploiting aptamers offer several important advantages over traditional antibodies-based assays, such as the in-vitro aptamer production, their inexpensive and easy chemical synthesis and modification, and excellent thermal stability. On the other hand, electrochemical biosensing approaches allow sensitive, accurate and inexpensive way of sensing, due to the rapid detection with lower costs, smaller equipment size and lower power requirements. This review presents an up-to-date assessment of the recent design strategies and analytical performance of the electrochemical aptamer-based biosensors for cancer diagnosis and their future perspectives in cancer diagnostics.
Collapse
Affiliation(s)
- Kamila Malecka
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748 Olsztyn, Poland; (K.M.); (E.M.)
| | - Edyta Mikuła
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748 Olsztyn, Poland; (K.M.); (E.M.)
| | - Elena E. Ferapontova
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Science and Technology, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
- Correspondence: ; Tel.: +45-87156703
| |
Collapse
|
24
|
Dos Santos ES, Ramos JC, Roza ALOC, Mariz BALA, Paes Leme AF. The role of osteopontin in oral cancer: A brief review with emphasis on clinical applications. Oral Dis 2020; 28:326-335. [PMID: 33188646 DOI: 10.1111/odi.13716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/13/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Osteopontin (OPN) is a calcium-binding glycol-phosphoprotein present in many physiologic and pathological processes. This protein can control bone cell adhesion, osteoclastic activity, and bone matrix mineralization. However, its participation in pathological processes such as atherosclerosis, sarcoidosis, tuberculosis, and cancer have been described. Some studies have shown that OPN may participate in the development and progression of oral cancer. Although the role of OPN in oral cancer is not fully understood, some studies have suggested that this protein may induce malignant phenotype of cells by activation of PI3K/AKT/mTOR pathway, which favors cell proliferation, invasion, metastasis, angiogenesis, and failure of treatment. This review discusses the possible mechanism of involvement of OPN in oral cancer and its potential clinical application in diagnosis and prognosis.
Collapse
Affiliation(s)
| | - Joab Cabral Ramos
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | | | | | - Adriana Franco Paes Leme
- Brazilian Bioscience National Laboratory, Brazil Center of Research in Energy and Materials, Campinas, Brazil
| |
Collapse
|
25
|
Tabatabaei MS, Islam R, Ahmed M. Applications of gold nanoparticles in ELISA, PCR, and immuno-PCR assays: A review. Anal Chim Acta 2020; 1143:250-266. [PMID: 33384122 DOI: 10.1016/j.aca.2020.08.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 12/19/2022]
Abstract
Development of state-of-the-art assays for sensitive and specific detection of disease biomarkers has received significant interest for early detection and prevention of various diseases. Enzyme Linked Immunosorbent assays (ELISA) and Polymerase Chain Reaction (PCR) are two examples of proteins and nucleic acid detection assays respectively, which have been widely used for the sensitive detection of target analytes in biological fluids. Recently, immuno-PCR has emerged as a sensitive detection method, where high specificity of sandwich ELISA assays is combined with high sensitivity of PCR for trace detection of biomarkers. However, inherent disadvantages of immuno-PCR assays limit their application as rapid and sensitive detection method in clinical settings. With advances in nanomaterials, nanoparticles-based immunoassays have been widely used to improve the sensitivity and simplicity of traditional immunoassays. Owing to facile synthesis, surface functionalization, and superior optical and electronic properties, gold nanoparticles have been at the forefront of sensing and detection technologies and have been extensively studied to improve the efficacies of immunoassays. This review provides a brief history of immuno-PCR assays and specifically focuses on the role of gold nanoparticles to improve the sensitivity and specificity of ELISA, PCR and immuno-PCR assays.
Collapse
Affiliation(s)
| | - Rafiq Islam
- Somru BioScience Inc., 19 Innovation Way, BioCommons Research Park.Charlottetown, PE, C1E 0B7, Canada
| | - Marya Ahmed
- Department of Chemistry, 550 University Ave. Charlottetown, PE, C1A 4P3, Canada; Faculty of Sustainable Design Engineering, University of Prince Edward Island, 550 University Ave. Charlottetown, PE, C1A 4P3, Canada.
| |
Collapse
|
26
|
Zhou S, Hu M, Huang X, Zhou N, Zhang Z, Wang M, Liu Y, He L. Electrospun zirconium oxide embedded in graphene-like nanofiber for aptamer-based impedimetric bioassay toward osteopontin determination. Mikrochim Acta 2020; 187:219. [PMID: 32166466 DOI: 10.1007/s00604-020-4187-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/24/2020] [Indexed: 12/28/2022]
Abstract
An impedimetric bioassay was constructed based on a nanohybrid of zirconium oxide nanoparticles and graphene-like nanofiber (denoted by ZrO2@GNF) for the determination of osteopontin (OPN). A series of ZrO2@GNF nanohybrids with different morphologies and nanostructures were derived from zirconium-based metal-organic frameworks (UiO-66) entrapped within the electric spun polyacrylonitrile (PAN) fiber (represented by UiO-66@PAN) by calcination at different temperatures. The basic characterizations revealed that the UiO-66@PAN nanofibers were collapsed into short nanorods. As such, homogeneously distributed ZrO2 nanoparticles were found to be embedded within the GNF nanostructure. This transition in the chemical structure and nanostructure not only can greatly enhance the electrochemical conductivity of the nanohybrid but also can strengthen the adsorbed bioaffinity toward OPN aptamer strands. As compared with bioassays based on ZrO2@GNF calcined at 500 °C and 900 °C, the ZrO2@GNF nanohybrid obtained at 700 °C (ZrO2@GNF700) demonstrated superior sensing performance, showing a determination limit of 4.76 fg mL-1 within a OPN concentration ranging 0.01 pg mL-1 to 2.0 ng mL-1. It also displayed high selectivity, accompanied by good reproducibility and stability, acceptable applicability, and excellent repeatability. Graphical abstractSchematic representation of an impedimetric aptasensor based on nanohybrids of zirconium oxide nanoparticles and graphene-like nanofiber (ZrO2@CNF) was constructed for osteopontin detection. The ZrO2@CNF700 nanohybrid-based aptasensor demonstrated superior sensing performances, providing a promising tool for detecting cancer markers in biomedical diagnosis.
Collapse
Affiliation(s)
- Sijie Zhou
- The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, People's Republic of China
| | - Mengyao Hu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Xiaoyu Huang
- The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, People's Republic of China
| | - Nan Zhou
- The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, People's Republic of China.
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China.
| | - Minghua Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Yang Liu
- The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, People's Republic of China
| | - Linghao He
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
27
|
Khare R, Yasir M, Singh P, Shrivastava R. Diagnostic aids for early detection of oral squamous cell carcinoma: concepts and emerging techniques. MINERVA BIOTECNOL 2020. [DOI: 10.23736/s1120-4826.19.02586-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Mukama O, Wu W, Wu J, Lu X, Liu Y, Liu Y, Liu J, Zeng L. A highly sensitive and specific lateral flow aptasensor for the detection of human osteopontin. Talanta 2019; 210:120624. [PMID: 31987218 DOI: 10.1016/j.talanta.2019.120624] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/02/2019] [Accepted: 12/07/2019] [Indexed: 10/25/2022]
Abstract
The rapid determination of human osteopontin (OPN) protein, a potential cancer biomarker, holds substantial promise for point-of-care diagnostics and biomedical applications. To date, most reported platforms for OPN detection are apparatus-dependent, time-consuming, and expensive. Herein, we established a lateral flow biosensor (LFB) for OPN detection. A biotinylated aptamer was used for OPN pre-capture from samples, an antibody for OPN was immobilized on the test line for a second specific target identification, and streptavidin-modified gold nanoparticles were sprayed on the conjugation pad for color detection. This LFB achieved as low as 0.1 ng mL-1 OPN sensitivity with a good dynamic detection between 10 and 500 ng mL-1 within 5 min. Intriguingly, the LFB allowed a qualitative and semi-quantitative detection of OPN in serum at clinically cut-off levels as in cancer patients, and can discriminate OPN from interfering proteins with high specificity. Thus, it is a promising alterative approach for point-of-care OPN screening and detection.
Collapse
Affiliation(s)
- Omar Mukama
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Department of Applied Biology, College of Science and Technology, University of Rwanda, Avenue de l'armée, P.O. Box: 3900, Kigali, Rwanda; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jinghua Wu
- School of Food Science and Engineering, Foshan University, Foshan, 528231, China
| | - Xuewen Lu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yumei Liu
- School of Food Science and Engineering, Foshan University, Foshan, 528231, China
| | - Yujie Liu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jiaxin Liu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Lingwen Zeng
- School of Food Science and Engineering, Foshan University, Foshan, 528231, China.
| |
Collapse
|
29
|
Abstract
High incidence of oral carcinoma and its late-stage presentation are the major global healthcare issues. The World Health Organization (WHO) has set early diagnosis and prevention of oral cancer as their primary objective. It is important to consider the time of oral screening, as it plays a pivotal role in understanding the disease prognosis. Critical signs and symptoms that can be identified during initial oral screening can improve the chances of patient's survival. Reports suggest that socio-economic factors, lack of public awareness and delays from primary health care centers are few of the major parameters that contribute to patient's mortality and morbidity. Conventional technique of visual examination of the oral lesion can effectively monitor patient mortality when exposed to risk factors. However, several disadvantages limit the clinical utility of this technique. Thus, screening aids that efficiently differentiate between a benign and malignant lesion as well as deliver information about early OSCC can ameliorate the complications associated with oral cancer diagnosis. Recent advances in optical imaging systems, such as tissue-fluorescence imaging and optical coherence tomography have been proved to be considerably efficient. Additionally, extensive research has been directed towards nanoparticle-based immunosensors, DNA analysis, and salivary proteomics. However, lack of proper clinical trials and correlation with biopsy result hinder the usage of these screening techniques in clinics. In this review, we highlight the importance of early diagnosis of oral cancer as well as discuss about the effectiveness and limitations of the recent diagnostic aids. It can be stated that public awareness regarding routine oral examination and employing screening methods that are non-invasive, robust, and economic, would enhance early stage diagnosis of oral cancer and have a positive impact on patient's survival.
Collapse
|
30
|
Karthiga D, Choudhury S, Chandrasekaran N, Mukherjee A. Effect of surface charge on peroxidase mimetic activity of gold nanorods (GNRs). MATERIALS CHEMISTRY AND PHYSICS 2019; 227:242-249. [DOI: 10.1016/j.matchemphys.2019.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
|
31
|
Alex SA, Chandrasekaran N, Mukherjee A. Gold nanorod-based fluorometric ELISA for the sensitive detection of a cancer biomarker. NEW J CHEM 2018; 42:15852-15859. [DOI: 10.1039/c8nj03467b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
A gold nanorod-based fluorometric immunoassay (nanoELIFA) displayed ∼3.5-fold higher sensitivity (amplified signal) when compared to conventional ELIFA.
Collapse
Affiliation(s)
- Sruthi Ann Alex
- Centre for Nanobiotechnology, Vellore Institute of Technology
- Vellore
- India
| | - N. Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology
- Vellore
- India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology
- Vellore
- India
| |
Collapse
|