1
|
Wang F, Wang S, Gu Y, Luo S, Chen A, Kong C, Zhou W, Wang L, Wang Z, Zuo G, Gao X, Zhang J, Chen S. Disturbed shear stress promotes atherosclerosis through TRIM21-regulated MAPK6 degradation and consequent endothelial inflammation. Clin Transl Med 2025; 15:e70168. [PMID: 39763069 PMCID: PMC11705438 DOI: 10.1002/ctm2.70168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/27/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
RATIONALE Coronary artery plaques often develop in regions subjected to disturbed shear stress (DSS), yet the mechanisms underlying this phenomenon remain poorly understood. Our study aimed to elucidate the unknown role of MAPK6 in shear stress and plaque formation. METHODS In vitro and in vivo experiments, RNA-seq, CO-IP and proteomic analysis, combined with single-cell RNA-seq datasets were used to reveal the upstream and downstream mechanisms involved. AAV-MAPK6, ApoE-/-MAPK6flox/floxTEKCre mice and the CXCL12 neutraligand were used to confirm the beneficial effects of MAPK6 against atherosclerosis. RESULTS Our study revealed a substantial decrease in MAPK6 protein levels in endothelial cells in response to DSS, both in vivo and in vitro, which was contingent on the binding of the ubiquitin ligase TRIM21 to MAPK6. Endothelium-specific MAPK6 overexpression exerts antiatherosclerotic effects in ApoE-/- mice, elucidating the unexplored role of MAPK6 in atherosclerosis. Comprehensive RNA-seq, integrated single-cell mapping and further experiments unveiled the involvement of MAPK6 in inflammation through the EGR1/CXCL12 axis. ApoE-/-MAPK6flox/floxTEKCre mice finally confirmed that conditional MAPK6 knockout resulted in endothelial inflammation and significant increases in plaque areas. Notably, these effects could be reversed through the neutralization of CXCL12. CONCLUSIONS Our study illuminates the advantages of MAPK6 in decelerating plaque progression, highlighting the potential of safeguarding MAPK6 as a novel therapeutic strategy against atherosclerosis. KEY POINTS Disturbed flow activates the ubiquitin‒proteasome degradation pathway of MAPK6 in endothelial cells, which is contingent on the binding of the ubiquitin ligase TRIM21 to MAPK6. Endothelial MAPK6 has an advantageous impact on decelerating plaque progression. MAPK6 regulates endothelial inflammation via the EGR1/CXCL12 axis.
Collapse
Affiliation(s)
- Feng Wang
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Shu‐Yu Wang
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Yue Gu
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Shuai Luo
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Ai‐Qun Chen
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Chao‐Hua Kong
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Wen‐Ying Zhou
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Li‐Guo Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Zhi‐Mei Wang
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Guang‐Feng Zuo
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Xiao‐Fei Gao
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Jun‐Jie Zhang
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Shao‐Liang Chen
- Division of CardiologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
- College of PharmacyNanjing Medical UniversityNanjingChina
| |
Collapse
|
2
|
Nagar N, Naidu G, Panda SK, Gulati K, Singh RP, Poluri KM. Elucidating the role of chemokines in inflammaging associated atherosclerotic cardiovascular diseases. Mech Ageing Dev 2024; 220:111944. [PMID: 38782074 DOI: 10.1016/j.mad.2024.111944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Age-related inflammation or inflammaging is a critical deciding factor of physiological homeostasis during aging. Cardiovascular diseases (CVDs) are exquisitely associated with aging and inflammation and are one of the leading causes of high mortality in the elderly population. Inflammaging comprises dysregulation of crosstalk between the vascular and cardiac tissues that deteriorates the vasculature network leading to development of atherosclerosis and atherosclerotic-associated CVDs in elderly populations. Leukocyte differentiation, migration and recruitment holds a crucial position in both inflammaging and atherosclerotic CVDs through relaying the activity of an intricate network of inflammation-associated protein-protein interactions. Among these interactions, small immunoproteins such as chemokines play a major role in the progression of inflammaging and atherosclerosis. Chemokines are actively involved in lymphocyte migration and severe inflammatory response at the site of injury. They relay their functions via chemokine-G protein-coupled receptors-glycosaminoglycan signaling axis and is a principal part for the detection of age-related atherosclerosis and related CVDs. This review focuses on highlighting the detailed intricacies of the effects of chemokine-receptor interaction and chemokine oligomerization on lymphocyte recruitment and its evident role in clinical manifestations of atherosclerosis and related CVDs. Further, the role of chemokine mediated signaling for formulating next-generation therapeutics against atherosclerosis has also been discussed.
Collapse
Affiliation(s)
- Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Goutami Naidu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Santosh Kumar Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Khushboo Gulati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ravindra Pal Singh
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Gujarat International Finance Tec-City, Gandhinagar, Gujarat 382355, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
3
|
Bauer A, Boehme C, Mayer-Suess L, Rudzki D, Knoflach M, Kiechl S, Reindl M. Peripheral inflammatory response in people after acute ischaemic stroke and isolated spontaneous cervical artery dissection. Sci Rep 2024; 14:12063. [PMID: 38802464 PMCID: PMC11130263 DOI: 10.1038/s41598-024-62557-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/18/2024] [Indexed: 05/29/2024] Open
Abstract
The systemic inflammatory response following acute ischaemic stroke remains incompletely understood. We characterised the circulating inflammatory profile in 173 acute ischaemic stroke patients by measuring 65 cytokines and chemokines in plasma. Participants were grouped based on their inflammatory response, determined by high-sensitivity C-reactive protein levels in the acute phase. We compared stroke patients' profiles with 42 people experiencing spontaneous cervical artery dissection without stroke. Furthermore, variations in cytokine levels among stroke aetiologies were analysed. Follow-up samples were collected in a subgroup of ischaemic stroke patients at three and twelve months. Ischaemic stroke patients had elevated plasma levels of HGF and SDF-1α, and lower IL-4 levels, compared to spontaneous cervical artery dissection patients without stroke. Aetiology-subgroup analysis revealed reduced levels of nine cytokines/chemokines (HGF, SDF-1α, IL-2R, CD30, TNF-RII, IL-16, MIF, APRIL, SCF), and elevated levels of IL-4 and MIP-1β, in spontaneous cervical artery dissection (with or without ischaemic stroke as levels were comparable between both groups) compared to other aetiologies. The majority of cytokine/chemokine levels remained stable across the study period. Our research indicates that stroke due to large artery atherosclerosis, cardioembolism, and small vessel occlusion triggers a stronger inflammatory response than spontaneous cervical artery dissection.
Collapse
Affiliation(s)
- Angelika Bauer
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Boehme
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Mayer-Suess
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dagmar Rudzki
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Michael Knoflach
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Stefan Kiechl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- VASCage Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
4
|
Pinheiro‐de‐Sousa I, Fonseca‐Alaniz MH, Giudice G, Valadão IC, Modestia SM, Mattioli SV, Junior RR, Zalmas L, Fang Y, Petsalaki E, Krieger JE. Integrated systems biology approach identifies gene targets for endothelial dysfunction. Mol Syst Biol 2023; 19:e11462. [PMID: 38031960 PMCID: PMC10698507 DOI: 10.15252/msb.202211462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Endothelial dysfunction (ED) is critical in the development and progression of cardiovascular (CV) disorders, yet effective therapeutic targets for ED remain elusive due to limited understanding of its underlying molecular mechanisms. To address this gap, we employed a systems biology approach to identify potential targets for ED. Our study combined multi omics data integration, with siRNA screening, high content imaging and network analysis to prioritise key ED genes and identify a pro- and anti-ED network. We found 26 genes that, upon silencing, exacerbated the ED phenotypes tested, and network propagation identified a pro-ED network enriched in functions associated with inflammatory responses. Conversely, 31 genes ameliorated ED phenotypes, pointing to potential ED targets, and the respective anti-ED network was enriched in hypoxia, angiogenesis and cancer-related processes. An independent screen with 17 drugs found general agreement with the trends from our siRNA screen and further highlighted DUSP1, IL6 and CCL2 as potential candidates for targeting ED. Overall, our results demonstrate the potential of integrated system biology approaches in discovering disease-specific candidate drug targets for endothelial dysfunction.
Collapse
Affiliation(s)
- Iguaracy Pinheiro‐de‐Sousa
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteHinxtonUK
| | - Miriam Helena Fonseca‐Alaniz
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
| | - Girolamo Giudice
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteHinxtonUK
| | - Iuri Cordeiro Valadão
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
| | - Silvestre Massimo Modestia
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
| | - Sarah Viana Mattioli
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
- Department of Biophysics and PharmacologyInstitute of Biosciences of Botucatu, Universidade Estadual PaulistaBotucatuBrazil
| | - Ricardo Rosa Junior
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
| | - Lykourgos‐Panagiotis Zalmas
- Wellcome Trust Sanger Institute, Wellcome Trust Genome CampusCambridgeUK
- Open Targets, Wellcome Genome CampusCambridgeUK
| | - Yun Fang
- Department of MedicineUniversity of ChicagoChicagoILUSA
| | - Evangelia Petsalaki
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteHinxtonUK
| | - José Eduardo Krieger
- Laboratory of Genetics and Molecular CardiologyHeart Institute (InCor)/University of São Paulo Medical SchoolSão PauloBrazil
| |
Collapse
|
5
|
You S, Chen H, Miao M, Du J, Che B, Xu T, Liu CF, Zhang Y, He J, Zhong X, Cao Y, Zhong C. Prognostic significance of plasma SDF-1 in acute ischemic stroke patients with diabetes mellitus: the CATIS trial. Cardiovasc Diabetol 2023; 22:274. [PMID: 37817149 PMCID: PMC10566135 DOI: 10.1186/s12933-023-01996-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Evidence on the associations between baseline stromal cell-derived factor (SDF)-1 and clinical outcomes in acute ischemic stroke patients is lacking. The present study aimed to examine the relationship between plasma SDF-1 levels and clinical outcomes based on a large multicenter study of the China Antihypertensive Trial in Acute Ischemic Stroke (CATIS). METHODS Secondary analysis was conducted among 3,255 participants from the CATIS trial with a baseline measurement of plasma SDF-1 levels. We evaluated the associations between plasma SDF-1 levels and one-year recurrent stroke, cardiovascular events, and all-cause mortality using Cox regression models. We further investigated the prognostic effect of SDF-1 on clinical outcomes in patients with different characteristics. RESULTS Higher plasma SDF-1 levels were not associated with recurrent stroke, cardiovascular events, and all-cause mortality at one-year after ischemic stroke (all P trend ≥ 0.05). There were significant interactions between plasma SDF-1 levels and history of diabetes mellitus on recurrent stroke (P = 0.005), cardiovascular events (P = 0.007) and all-cause mortality (P = 0.04) at one year. In patients with diabetes mellitus, plasma SDF-1 was significantly associated with an increased risk of recurrent stroke and cardiovascular events after adjustment for confounders. For example, 1-SD higher log-SDF-1 was associated with a hazard ratio (95% confidence interval) of 1.65 (1.18-2.32) for recurrent stroke and 1.47 (1.08-1.99) for the cardiovascular events, but not all-cause mortality 1.36 (0.96-1.93) at one year. However, there were no associations between plasma SDF-1 and clinical outcomes in patients without diabetes mellitus (all P > 0.05). The addition of plasma SDF-1 to the conventional risk factors model significantly improved the risk prediction of all outcomes. Similarly, findings between elevated SDF-1 levels and two-year outcomes were found only in patients with diabetes mellitus. CONCLUSIONS Elevated plasma SDF-1 was significantly associated with an increased risk of recurrent stroke and cardiovascular events only in ischemic patients with diabetes mellitus.
Collapse
Affiliation(s)
- Shoujiang You
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China
| | - Hongyu Chen
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China
| | - Mengyuan Miao
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China
| | - Jigang Du
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China
| | - Bizhong Che
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China
| | - Tan Xu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China
| | - Chun-Feng Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China
- Institutes of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Xiaoyan Zhong
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, Jiangsu, 215123, China.
| | - Yongjun Cao
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, 215004, China.
- Institutes of Neuroscience, Soochow University, Suzhou, 215123, China.
| | - Chongke Zhong
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China.
| |
Collapse
|
6
|
Guan H, Liu T, Liu M, Wang X, Shi T, Guo F. SFRP4 Reduces Atherosclerosis Plaque Formation in ApoE Deficient Mice. Cardiol Res Pract 2023; 2023:8302289. [PMID: 37143778 PMCID: PMC10154090 DOI: 10.1155/2023/8302289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 05/06/2023] Open
Abstract
Secreted frizzled related protein 4 (SFRP4), a member of the SFRPs family, contributes to a significant function in metabolic and cardiovascular diseases. However, there is not enough evidence to prove the antiatherosclerosis effect of SFRP4 in ApoE knock-out (KO) mice. ApoE KO mice were fed a western diet and injected adenovirus (Ad)-SFRP4 through the tail vein for 12 weeks. Contrasted with the control cohort, the area of atherosclerotic plaque in ApoE KO mice overexpressing SFRP4 was reduced significantly. Plasma high-density lipoprotein cholesterol was elevated in the Ad-SFRP4 group. RNA sequence analysis indicated that there were 96 differentially expressed genes enriched in 10 signaling pathways in the mRNA profile of aortic atherosclerosis lesions. The analysis data also revealed the expression of a number of genes linked to metabolism, organism system, and human disease. In summary, our data demonstrates that SFRP4 could play an important role in improving atherosclerotic plaque formation in the aorta.
Collapse
Affiliation(s)
- Hua Guan
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, Shaanxi, China
| | - Ting Liu
- Department of Nephrology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710004, Shaanxi, China
| | - Miaomiao Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Xue Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Tao Shi
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Fengwei Guo
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| |
Collapse
|
7
|
Langnau C, Janing H, Kocaman H, Gekeler S, Günter M, Petersen-Uribe Á, Jaeger P, Koch B, Kreisselmeier KP, Castor T, Rath D, Gawaz MP, Autenrieth SE, Mueller KAL. Recovery of systemic hyperinflammation in patients with severe SARS-CoV-2 infection. Biomarkers 2023; 28:97-110. [PMID: 36377411 DOI: 10.1080/1354750x.2022.2148745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Patients with cardiovascular disease (CVD) and acute SARS-CoV-2 infection might show an altered immune response during COVID-19. MATERIAL AND METHODS Twenty-three patients with CVD and SARS-CoV-2 infection were prospectively enrolled and received a cardiological assessment at study entry and during follow-up visit. Inclusion criteria of our study were age older than 18 years, presence of CVD, and acute SARS-CoV-2 infection. The median age of the patient cohort was 69 (IQR 55-79) years. 12 (52.2%) patients were men. Peripheral monocytes and chemokine/cytokine profiles were analysed. RESULTS Numbers of classical and non-classical monocytes were significantly decreased during acute SARS-CoV-2 infection compared to 3-month recovery. While classical monocytes reached the expected level in peripheral blood after 3 months, the number of non-classical monocytes remained significantly reduced. DISCUSSION All three monocyte subsets exhibited changes of established adhesion and activation markers. Interestingly, they also expressed higher levels of pro-inflammatory cytokines like macrophage migration inhibitory factor (MIF) at the time of recovery, although MIF was only slightly increased during the acute phase. CONCLUSION Changes of monocyte phenotypes and increased MIF expression after 3-month recovery from acute SARS-CoV-2 infection may indicate persistent, possibly long-lasting, pro-inflammatory monocyte function in CVD patients.
Collapse
Affiliation(s)
- Carolin Langnau
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Henrik Janing
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Hüseyin Kocaman
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Sarah Gekeler
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Manina Günter
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany.,Department of Dendritic Cells in Infection and Cancer, German Cancer Research Centre, Heidelberg, Germany
| | - Álvaro Petersen-Uribe
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Philippa Jaeger
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Barbara Koch
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Klaus-Peter Kreisselmeier
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Tatsiana Castor
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Dominik Rath
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Meinrad Paul Gawaz
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| | - Stella E Autenrieth
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany.,Department of Dendritic Cells in Infection and Cancer, German Cancer Research Centre, Heidelberg, Germany
| | - Karin Anne Lydia Mueller
- Department of Cardiology and Angiology, Eberhard Karls University Tuebingen, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
8
|
Tramadol regulates the activation of human platelets via Rac but not Rho/Rho-kinase. PLoS One 2023; 18:e0279011. [PMID: 36638092 PMCID: PMC9838859 DOI: 10.1371/journal.pone.0279011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 11/29/2022] [Indexed: 01/14/2023] Open
Abstract
Tramadol is a useful analgesic which acts as a serotonin and noradrenaline reuptake inhibitor in addition to μ-opioid receptor agonist. Cytoplasmic serotonin modulates the small GTPase activity through serotonylation, which is closely related to the human platelet activation. We recently reported that the combination of subthreshold collagen and CXCL12 synergistically activates human platelets. We herein investigated the effect and the mechanism of tramadol on the synergistic effect. Tramadol attenuated the synergistically stimulated platelet aggregation (300 μM of tramadol, 64.3% decrease, p<0.05). Not morphine or reboxetine, but duloxetine, fluvoxamine and sertraline attenuated the synergistic effect of the combination on the platelet aggregation (30 μM of fluvoxamine, 67.3% decrease, p<0.05; 30 μM of sertraline, 67.8% decrease, p<0.05). The geranylgeranyltransferase inhibitor GGTI-286 attenuated the aggregation of synergistically stimulated platelet (50 μM of GGTI-286, 80.8% decrease, p<0.05), in which GTP-binding Rac was increased. The Rac1-GEF interaction inhibitor NSC23766 suppressed the platelet activation and the phosphorylation of p38 MAPK and HSP27 induced by the combination of collagen and CXCL12. Tramadol and fluvoxamine almost completely attenuated the levels of GTP-binding Rac and the phosphorylation of both p38 MAPK and HSP27 stimulated by the combination. Suppression of the platelet aggregation after the duloxetine administration was observed in 2 of 5 patients in pain clinic. These results suggest that tramadol negatively regulates the combination of subthreshold collagen and CXCL12-induced platelet activation via Rac upstream of p38 MAPK.
Collapse
|
9
|
Han M, Ma B, She R, Xing Y, Li X. Correlations Between Serum CXCL9/12 and the Severity of Acute Ischemic Stroke, a Retrospective Observational Study. Neuropsychiatr Dis Treat 2023; 19:283-292. [PMID: 36744204 PMCID: PMC9893834 DOI: 10.2147/ndt.s391578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/13/2023] [Indexed: 01/30/2023] Open
Abstract
PURPOSE This retrospective observational study was conducted to determine the correlations between serum CXCL9/12 and the severity of acute ischemic stroke (AIS). METHODS Total 138 patients with AIS were enrolled in the study. These patients underwent Brain CT on admission and blood samples were collected. Serum CXCL9 and CXCL12 were detected by ELISA assay. The correlations of serum CXCL9/12 with AIS was analyzed based on Oxfordshire Community Stroke Project (OCSP) classification, Trial of Org 10,172 in acute stroke treatment (TOAST) classification, National Institutes of Health Stroke Score (NIHSS) score, infarct volume, and modified Rankin scale (mRS) score. RESULTS Compared with the controls, patients with AIS had higher levels of serum CXCL9 and CXCL12. Logistic regression analysis determined that CXCL9 and CXCL12 were independent risk factors for AIS. In addition, the increased serum CXCL9 and CXCL12 were associated with TOAST classification, NIHSS score, and infarct volume. However, serum CXCL9 and CXCL12 were not associated with functional outcomes (mRS score). CXCL9 and CXCL12 both exhibited a high diagnostic value in AIS. CONCLUSION Serum CXCL9 and CXCL12 were elevated in patients with AIS, closely correlated with the severity of AIS.
Collapse
Affiliation(s)
- Miaomiao Han
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan City, People's Republic of China.,Encephalopathy Department, Zibo Hospital of Integrated Traditional Chinese and Western Medicine, Zibo City, People's Republic of China
| | - Bo Ma
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, People's Republic of China
| | - Ruifang She
- Department of Neurology, Tai' an City Central Hospital, Tai' an City, People's Republic of China
| | - Yan Xing
- Zibo Center for Disease Control and Prevention, Zibo City, People's Republic of China
| | - Xiaohong Li
- Department of Neurology, Jinan Central Hospital, Shandong University, Jinan City, People's Republic of China
| |
Collapse
|
10
|
Tay KY, Wu KX, Chioh FWJ, Autio MI, Pek NMQ, Narmada BC, Tan SH, Low AFH, Lian MM, Chew EGY, Lau HH, Kao SL, Teo AKK, Foo JN, Foo RSY, Heng CK, Chan MYY, Cheung C. Trans-interaction of risk loci 6p24.1 and 10q11.21 is associated with endothelial damage in coronary artery disease. Atherosclerosis 2022; 362:11-22. [PMID: 36435092 DOI: 10.1016/j.atherosclerosis.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Single nucleotide polymorphism rs6903956 has been identified as one of the genetic risk factors for coronary artery disease (CAD). However, rs6903956 lies in a non-coding locus on chromosome 6p24.1. We aim to interrogate the molecular basis of 6p24.1 containing rs6903956 risk alleles in endothelial disease biology. METHODS AND RESULTS We generated induced pluripotent stem cells (iPSCs) from CAD patients (AA risk genotype at rs6903956) and non-CAD subjects (GG non-risk genotype at rs6903956). CRISPR-Cas9-based deletions (Δ63-89bp) on 6p24.1, including both rs6903956 and a short tandem repeat variant rs140361069 in linkage disequilibrium, were performed to generate isogenic iPSC-derived endothelial cells. Edited CAD endothelial cells, with removal of 'A' risk alleles, exhibited a global transcriptional downregulation of pathways relating to abnormal vascular physiology and activated endothelial processes. A CXC chemokine ligand on chromosome 10q11.21, CXCL12, was uncovered as a potential effector gene in CAD endothelial cells. Underlying this effect was the preferential inter-chromosomal interaction of 6p24.1 risk locus to a weak promoter of CXCL12, confirmed by chromatin conformation capture assays on our iPSC-derived endothelial cells. Functionally, risk genotypes AA/AG at rs6903956 were associated significantly with elevated levels of circulating damaged endothelial cells in CAD patients. Circulating endothelial cells isolated from patients with risk genotypes AA/AG were also found to have 10 folds higher CXCL12 transcript copies/cell than those with non-risk genotype GG. CONCLUSIONS Our study reveals the trans-acting impact of 6p24.1 with another CAD locus on 10q11.21 and is associated with intensified endothelial injury.
Collapse
Affiliation(s)
- Kai Yi Tay
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Kan Xing Wu
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Florence Wen Jing Chioh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Matias Ilmari Autio
- Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Balakrishnan Chakrapani Narmada
- Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore; Experimental Drug Development Centre, A*STAR, 10 Biopolis Road, Singapore, 138670
| | - Sock-Hwee Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Heart Centre, National University Health System, Singapore
| | - Adrian Fatt-Hoe Low
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Heart Centre, National University Health System, Singapore
| | - Michelle Mulan Lian
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Elaine Guo Yan Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Hwee Hui Lau
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Proteos, 138673, Singapore; School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Shih Ling Kao
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Medicine, National University Hospital and National University Health System, Singapore
| | - Adrian Kee Keong Teo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR, Proteos, 138673, Singapore
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore; Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore
| | - Roger Sik Yin Foo
- Genome Institute of Singapore, 60 Biopolis Street, 138672, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Heart Centre, National University Health System, Singapore
| | - Chew Kiat Heng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat, National University Children's Medical Institute, National University Health System, Singapore
| | - Mark Yan Yee Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Heart Centre, National University Health System, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore; Institute of Molecular and Cell Biology (IMCB), A*STAR, Proteos, 138673, Singapore.
| |
Collapse
|
11
|
Svirshchevskaya EV, Konovalova MV, Snezhkov EV, Poltavtseva RA, Akopov SB. Chemokine Homeostasis in Healthy Volunteers and during Pancreatic and Colorectal Tumor Growth in Murine Models. Curr Issues Mol Biol 2022; 44:4987-4999. [PMID: 36286054 PMCID: PMC9600007 DOI: 10.3390/cimb44100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Chemokines are involved in the humoral regulation of body homeostasis. Changes in the blood level of chemokines were found in cancer, atherosclerosis, diabetes, and other systemic diseases. It is essential to distinguish the effects of co-morbid pathologies and cancer on the level of chemokines in the blood. We aimed to analyze, by multiplex cytometry, the levels of chemokines in the blood of healthy young volunteers as well as of intact mice and mice with CT26 colon and Pan02 pancreatic tumors. Two types of chemokines were identified both in human and murine plasmas: homeostatic ones, which were found in high concentrations (>100 pg/mL), and inducible ones, which can be undetectable or determined at very low levels (0−100 pg/mL). There was a high variability in the chemokine levels, both in healthy humans and mice. To analyze chemokine levels during tumor growth, C57BL/6 and BALB/c were inoculated with Pan02 or CT26 tumor cells, accordingly. The tumors significantly differed in the growth and the mortality of mice. However, the blood chemokine levels did not change in tumor-bearing mice until the very late stages. Taken collectively, blood chemokine level is highly variable and reflects in situ homeostasis. Care should be taken when considering chemokines as prognostic parameters or therapeutic targets in cancer.
Collapse
Affiliation(s)
- Elena V. Svirshchevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
- National Medical Research Center of Obstetrics, Gynecology and Perinatology Named after Academician V. I. Kulakov of the Ministry of Health of the Russian Federation, 4 Oparina Str., 117997 Moscow, Russia
- Correspondence:
| | - Mariya V. Konovalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Eugene V. Snezhkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Rimma A. Poltavtseva
- National Medical Research Center of Obstetrics, Gynecology and Perinatology Named after Academician V. I. Kulakov of the Ministry of Health of the Russian Federation, 4 Oparina Str., 117997 Moscow, Russia
| | - Sergey B. Akopov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
| |
Collapse
|
12
|
Genkel V, Dolgushin I, Baturina I, Savochkina A, Nikushkina K, Minasova A, Pykhova L, Sumerkina V, Kuznetsova A, Shaposhnik I. Circulating Ageing Neutrophils as a Marker of Asymptomatic Polyvascular Atherosclerosis in Statin-Naïve Patients without Established Cardiovascular Disease. Int J Mol Sci 2022; 23:ijms231710195. [PMID: 36077592 PMCID: PMC9456564 DOI: 10.3390/ijms231710195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Current data on the possible involvement of aging neutrophils in atherogenesis are limited. This study aimed to research the diagnostic value of aging neutrophils in their relation to subclinical atherosclerosis in statin-naïve patients without established atherosclerotic cardiovascular diseases (ASCVD). Methods: The study was carried out on 151 statin-naïve patients aged 40–64 years old without ASCVD. All patients underwent duplex scanning of the carotid arteries, lower limb arteries and abdominal aorta. Phenotyping and differentiation of neutrophil subpopulations were performed through flow cytometry (Navios 6/2, Beckman Coulter, USA). Results: The number of CD62LloCXCR4hi-neutrophils is known to be significantly higher in patients with subclinical atherosclerosis compared with patients without atherosclerosis (p = 0.006). An increase in the number of CD62LloCXCR4hi-neutrophils above cut-off values makes it possible to predict atherosclerosis in at least one vascular bed with sensitivity of 35.4–50.5% and specificity of 80.0–92.1%, in two vascular beds with sensitivity of 44.7–84.4% and specificity of 80.8–33.3%. Conclusion: In statin-naïve patients 40–64 years old without established ASCVD with subclinical atherosclerosis, there is an increase in circulating CD62LloCXCR4hi-neutrophils. It was also concluded that the increase in the number of circulating CD62LloCXCR4hi-neutrophils demonstrated moderate diagnostic efficiency (AUC 0.617–0.656) in relation to the detection of subclinical atherosclerosis, including polyvascular atherosclerosis.
Collapse
|
13
|
Zhang S, Ding Y, Feng F, Gao Y. The role of blood CXCL12 level in prognosis of coronary artery disease: A meta-analysis. Front Cardiovasc Med 2022; 9:938540. [PMID: 35966557 PMCID: PMC9363627 DOI: 10.3389/fcvm.2022.938540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Objective The role of C-X-C motif chemokine 12 (CXCL12) in atherosclerotic cardiovascular diseases (ASCVDs) has emerged as one of the research hotspots in recent years. Studies reported that the higher blood CXCL12 level was associated with increased major adverse cardiovascular events (MACEs), but the results were inconsistent. The objective of this study was to clarify the prognostic value of the blood CXCL12 level in patients with coronary artery disease (CAD) through meta-analysis. Methods All related studies about the association between the blood CXCL12 level and the prognosis of CAD were comprehensively searched and screened according to inclusion criteria and exclusion criteria. The quality of the included literature was evaluated using the Newcastle-Ottawa Scale (NOS). The heterogeneity test was conducted, and the pooled hazard risk (HR) or the odds ratio (OR) with a 95% confidence interval (CI) was calculated using the fixed-effect or random-effects model accordingly. Publication bias was evaluated using Begg's funnel plot and Egger's test. Sensitivity analysis and subgroup analysis were also conducted. Results A total of 12 original studies with 2,959 CAD subjects were included in the final data combination. The pooled data indicated a significant association between higher CXCL12 levels and MACEs both in univariate analysis (HR 5.23, 95% CI 2.48–11.04) and multivariate analysis (HR 2.53, 95% CI 2.03–3.16) in the CXCL12 level as the category variable group. In the CXCL12 level as the continuous variable group, the result also indicated that the higher CXCL12 level significantly predicted future MACEs (multivariate OR 1.55, 95% CI 1.02–2.35). Subgroup analysis of the CXCL12 level as the category variable group found significant associations in all acute coronary syndrome (ACS) (univariate HR 9.72, 95% CI 4.69–20.15; multivariate HR 2.47, 95% CI 1.79–3.40), non-ACS (univariate HR 2.73, 95% CI 1.65–4.54; multivariate HR 3.49, 95% CI 1.66–7.33), Asian (univariate HR 7.43, 95% CI 1.70–32.49; multivariate HR 2.21, 95% CI 1.71–2.85), Caucasian (univariate HR 3.90, 95% CI 2.73–5.57; multivariate HR 3.87, 95% CI 2.48–6.04), short-term (univariate HR 9.36, 95% CI 4.10–21.37; multivariate HR 2.72, 95% CI 1.97–3.76), and long-term (univariate HR 2.86, 95% CI 1.62–5.04; multivariate HR 2.38, 95% CI 1.76–3.22) subgroups. Subgroup analysis of the CXCL12 level as the continuous variable group found significant associations in non-ACS (multivariate OR 1.53, 95% CI 1.23–1.92), Caucasian (multivariate OR 3.83, 95% CI 1.44–10.19), and long-term (multivariate OR 1.62, 95% CI 1.37–1.93) subgroups, but not in ACS (multivariate OR 1.36, 95% CI 0.67–2.75), Asian (multivariate OR 1.40, 95% CI 0.91–2.14), and short-term (multivariate OR 1.16, 95% CI 0.28–4.76) subgroups. No significant publication bias was found in this meta-analysis. Conclusion The higher blood CXCL12 level is associated with increased MACEs in patients with CAD, and the blood CXCL12 level may serve as an important prognostic index for CAD. Integrating the blood CXCL12 level into CAD risk assessment tools may provide more comprehensive messages for evaluating and managing patients with CAD.
Collapse
Affiliation(s)
- Shunrong Zhang
- Department of Geriatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Ding
- Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Feng
- Department of Geriatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Gao
- Department of Geriatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Yue Gao
| |
Collapse
|
14
|
Snarski P, Sukhanov S, Yoshida T, Higashi Y, Danchuk S, Chandrasekar B, Tian D, Rivera-Lopez V, Delafontaine P. Macrophage-Specific IGF-1 Overexpression Reduces CXCL12 Chemokine Levels and Suppresses Atherosclerotic Burden in Apoe-Deficient Mice. Arterioscler Thromb Vasc Biol 2022; 42:113-126. [PMID: 34852642 PMCID: PMC8792341 DOI: 10.1161/atvbaha.121.316090] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE IGF-1 (insulin-like growth factor 1) exerts pleiotropic effects including promotion of cellular growth, differentiation, survival, and anabolism. We have shown that systemic IGF-1 administration reduced atherosclerosis in Apoe-/- (apolipoprotein E deficient) mice, and this effect was associated with a reduction in lesional macrophages and a decreased number of foam cells in the plaque. Almost all cell types secrete IGF-1, but the effect of macrophage-derived IGF-1 on the pathogenesis of atherosclerosis is poorly understood. We hypothesized that macrophage-derived IGF-1 will reduce atherosclerosis. Approach and Results: We created macrophage-specific IGF-1 overexpressing mice on an Apoe-/- background. Macrophage-specific IGF-1 overexpression reduced plaque macrophages, foam cells, and atherosclerotic burden and promoted features of stable atherosclerotic plaque. Macrophage-specific IGF1 mice had a reduction in monocyte infiltration into plaque, decreased expression of CXCL12 (CXC chemokine ligand 12), and upregulation of ABCA1 (ATP-binding cassette transporter 1), a cholesterol efflux regulator, in atherosclerotic plaque and in peritoneal macrophages. IGF-1 prevented oxidized lipid-induced CXCL12 upregulation and foam cell formation in cultured THP-1 macrophages and increased lipid efflux. We also found an increase in cholesterol efflux in macrophage-specific IGF1-derived peritoneal macrophages. CONCLUSIONS Macrophage IGF-1 overexpression reduced atherosclerotic burden and increased features of plaque stability, likely via a reduction in CXCL12-mediated monocyte recruitment and an increase in ABCA1-dependent macrophage lipid efflux.
Collapse
Affiliation(s)
- Patricia Snarski
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA,Department of Physiology, Tulane University School of Medicine, New Orleans, LA
| | - Sergiy Sukhanov
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA,Department of Physiology, Tulane University School of Medicine, New Orleans, LA
| | - Tadashi Yoshida
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA,Department of Physiology, Tulane University School of Medicine, New Orleans, LA
| | - Yusuke Higashi
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA,Department of Physiology, Tulane University School of Medicine, New Orleans, LA
| | - Svitlana Danchuk
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA,Department of Physiology, Tulane University School of Medicine, New Orleans, LA
| | - Bysani Chandrasekar
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Di Tian
- Department of Pathology, Tulane University School of Medicine, New Orleans, LA
| | | | - Patrick Delafontaine
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA,Department of Physiology, Tulane University School of Medicine, New Orleans, LA,Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
15
|
Murad HAS, Rafeeq MM, Alqurashi TMA. Role and implications of the CXCL12/CXCR4/CXCR7 axis in atherosclerosis: still a debate. Ann Med 2021; 53:1598-1612. [PMID: 34494495 PMCID: PMC8439212 DOI: 10.1080/07853890.2021.1974084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/23/2021] [Indexed: 01/20/2023] Open
Abstract
Atherosclerosis is one of the leading causes of mortality and morbidity worldwide. Chemokines and their receptors are implicated in the pathogenesis of atherosclerosis. CXCL12 is a member of the chemokine family exerting a myriad role in atherosclerosis through its classical CXCR4 and atypical ACKR3 (CXCR7) receptors. The modulatory and regulatory functional spectrum of CXCL12/CXCR4/ACKR3 axis in atherosclerosis spans from proatherogenic, prothrombotic and proinflammatory to atheroprotective, plaque stabilizer and dyslipidemia rectifier. This diverse continuum is executed in a wide range of biological units including endothelial cells (ECs), progenitor cells, macrophages, monocytes, platelets, lymphocytes, neutrophils and vascular smooth muscle cells (VSMCs) through complex heterogeneous and homogenous coupling of CXCR4 and ACKR3 receptors, employing different downstream signalling pathways, which often cross-talk among themselves and with other signalling interactomes. Hence, a better understanding of this structural and functional heterogeneity and complex phenomenon involving CXCL12/CXCR4/ACKR3 axis in atherosclerosis would not only help in formulation of novel therapeutics, but also in elucidation of the CXCL12 ligand and its receptors, as possible diagnostic and prognostic biomarkers.Key messagesThe role of CXCL12 per se is proatherogenic in atherosclerosis development and progression.The CXCL12 receptors, CXCR4 and ACKR3 perform both proatherogenic and athero-protective functions in various cell typesDue to functional heterogeneity and cross talk of CXCR4 and ACKR3 at receptor level and downstream pathways, regional boosting with specific temporal and spatial modulators of CXCL12, CXCR4 and ACKR3 need to be explored.
Collapse
Affiliation(s)
- Hussam A. S. Murad
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Misbahuddin M. Rafeeq
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Thamer M. A. Alqurashi
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| |
Collapse
|
16
|
Aghamajidi A, Gorgani M, Shahba F, Shafaghat Z, Mojtabavi N. The potential targets in immunotherapy of atherosclerosis. Int Rev Immunol 2021; 42:199-216. [PMID: 34779341 DOI: 10.1080/08830185.2021.1988591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Cardiovascular disease is the most common cause of death, which has the highest mortality rate worldwide. Although a diverse range of inflammatory diseases can affect the cardiovascular system, however, heart failure and stroke occur due to atherosclerosis. Atherosclerosis is a chronic autoinflammatory disease of small to large vessels in which different immune mediators are involved in lipid plaque formation and inflammatory vascular remodeling process. A better understanding of the pathophysiology of atherosclerosis may lead to uncovering immunomodulatory therapies. Despite present diagnostic and therapeutic methods, the lack of immunotherapy in the prevention and treatment of atherosclerosis is perceptible. In this review, we will discuss the promising immunological-based therapeutics and novel preventive approaches for atherosclerosis. This study could provide new insights into a better perception of targeted therapeutic pathways and biological therapies.
Collapse
Affiliation(s)
- Azin Aghamajidi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Melika Gorgani
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Faezeh Shahba
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shafaghat
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Dong J, Xia R, Zhang Z, Xu C. lncRNA MEG3 aggravated neuropathic pain and astrocyte overaction through mediating miR-130a-5p/CXCL12/CXCR4 axis. Aging (Albany NY) 2021; 13:23004-23019. [PMID: 34609952 PMCID: PMC8544300 DOI: 10.18632/aging.203592] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Long non-coding RNAs (lncRNAs) exert a critical function in mediating neuropathic pain (NP). MEG3, a novel lncRNA, contributes to astrocyte activation and inflammation. However, its role in NP remains unclear. METHODS The chronic constriction injury (CCI) method was employed to construct an NP rat model. Astrocyte activation was induced by lipopolysaccharide (LPS). The profiles of MEG3, microRNA (miR)-130a-5p, CXC motif chemokine receptor 12 (CXCL12)/CXC motif chemokine receptor 4 (CXCR4), and the Rac1/NF-κB pathway in CCI rats' spinal cord tissues and astrocytes were monitored by reverse transcription-quantitative PCR (RT-qPCR) and western blot (WB). Pain scores of CCI rats were assessed. Enzyme-linked immunosorbent assay (ELISA) was adopted to monitor neuroinflammation alteration. The glial fibrillary acidic protein (GFAP)-labeled astrocytes were tested by immunohistochemistry (IHC). Bioinformatics, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) were utilized to verify the molecular mechanism between MEG3 and miR-130a-3p. RESULTS MEG3, CXCL12 and CXCR4 were overexpressed and miR-130a-5p was knocked down in CCI rats and LPS-induced astrocytes. Up-regulating MEG3 aggravated NP, enhanced inflammatory cytokines interleukin-1β (IL-1β), tumor necrosis factor (TNF)-α, and interleukin-6 (IL-6) expression and release in CCI rats and LPS-induced astrocytes. Up-regulating miR-130-5p repressed LPS-induced inflammation in astrocytes. AS verified by the dual-luciferase reporter assay and RIP assay, MEG3 sponged miR-130a-5p as a competitive endogenous RNA (ceRNA). What's more, miR-130a-5p up-regulation weakened the MEG3-induced proinflammatory effects on LPS-induced astrocytes. CONCLUSIONS MEG3 aggravates NP and astrocyte activation via the miR-130a-5p/CXCL12/CXCR4 axis, which is a potential therapeutic target for NP.
Collapse
Affiliation(s)
- Jiacai Dong
- Department of Anesthesiology, Qianjiang Hospital Affiliated to Renmin Hospital of Wuhan University, Qianjiang 433100, Hubei, China
| | - Rui Xia
- Department of Anesthesiology, The First People's Hospital of Jingzhou, Jingzhou 434000, Hubei, China
| | - Zhonggui Zhang
- Department of Pain, The First People's Hospital of Jingzhou, Jingzhou 434000, Hubei, China
| | - Cheng Xu
- Department of Pain, The First People's Hospital of Jingzhou, Jingzhou 434000, Hubei, China
| |
Collapse
|
18
|
Jovani M, Liu EE, Paniagua SM, Lau ES, Li SX, Takvorian KS, Kreger BE, Splansky GL, de Boer RA, Joshi AD, Hwang SJ, Yao C, Huan T, Courchesne P, Larson MG, Levy D, Chan AT, Ho JE. Cardiovascular disease related circulating biomarkers and cancer incidence and mortality: is there an association? Cardiovasc Res 2021; 118:2317-2328. [PMID: 34469519 DOI: 10.1093/cvr/cvab282] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2020] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
AIMS Recent studies suggest an association between cardiovascular disease (CVD) and cancer incidence/mortality, but the pathophysiological mechanisms underlying these associations are unclear. We aimed to examine biomarkers previously associated with CVD and study their association with incident cancer and cancer-related death in a prospective cohort study. METHODS AND RESULTS We used a proteomic platform to measure 71 cardiovascular biomarkers among 5,032 participants in the Framingham Heart Study who were free of cancer at baseline. We used multivariable-adjusted Cox models to examine the association of circulating protein biomarkers with risk of cancer incidence and mortality. To account for multiple testing, we set a 2-sided false discovery rate (FDR Q-value) <0.05.Growth differentiation factor-15 (GDF15; also known as macrophage inhibitory cytokine-1 [MIC1])) was associated with increased risk of incident cancer (hazards ratio [HR] per 1 standard deviation increment 1.31, 95% CI 1.17-1.47), incident gastrointestinal cancer (HR 1.85, 95% CI 1.37-2.50), incident colorectal cancer (HR 1.94, 95% CI 1.29-2.91) and cancer-related death (HR 2.15, 95% CI 1.72-2.70). Stromal cell-derived factor-1 (SFD1) showed an inverse association with cancer-related death (HR 0.75, 95% CI 0.65-0.86). Fibroblast growth factor-23 (FGF23) showed an association with colorectal cancer (HR 1.55, 95% CI 1.20-2.00), and granulin (GRN) was associated with hematologic cancer (HR 1.61, 95% CI 1.30-1.99). Other circulating biomarkers of inflammation, immune activation, metabolism, and fibrosis showed suggestive associations with future cancer diagnosis. CONCLUSION We observed several significant associations between circulating CVD biomarkers and cancer, supporting the idea that shared biological pathways underlie both diseases. Further investigations of specific mechanisms that lead to both CVD and cancer are warranted. TRANSLATIONAL PERSPECTIVE In our prospective cohort study, baseline levels of biomarkers previously associated with CVD were found to be associated with future development of cancer. In particular, GDF15 was associated with increased risk of cancer incidence and mortality, including gastrointestinal and colorectal cancers; SDF1 was inversely associated with cancer-related death, and FGF23 and GRN were associated with increased risk of colorectal and hematologic cancers, respectively. Other biomarkers of inflammation, immune activation, metabolism, and fibrosis showed suggestive associations. These results suggest potential shared biological pathways that underlie both development of cancer and CVD.
Collapse
Affiliation(s)
- Manol Jovani
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA.,Harvard Medical School, Boston, MA.,Division of Gastroenterology; University of Kentucky Albert B. Chandler Hospital
| | - Elizabeth E Liu
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | | | - Emily S Lau
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, MA.,Cardiology Division, Massachusetts General Hospital, Boston, MA.,Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Shawn X Li
- Department of Medicine, Massachusetts General Hospital, Boston, MA
| | | | - Bernard E Kreger
- General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA.,The Framingham Heart Study, Framingham, MA
| | | | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Amit D Joshi
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Shih-Jen Hwang
- The Framingham Heart Study, Framingham, MA.,Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda MD
| | - Chen Yao
- The Framingham Heart Study, Framingham, MA.,Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda MD
| | - Tianxiao Huan
- The Framingham Heart Study, Framingham, MA.,Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda MD
| | - Paul Courchesne
- The Framingham Heart Study, Framingham, MA.,Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda MD
| | - Martin G Larson
- The Framingham Heart Study, Framingham, MA.,Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Daniel Levy
- The Framingham Heart Study, Framingham, MA.,Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda MD
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Jennifer E Ho
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA.,Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA.,Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, MA.,Cardiology Division, Massachusetts General Hospital, Boston, MA.,Department of Medicine, Massachusetts General Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| |
Collapse
|
19
|
Xue S, Tang H, Zhao G, Shen Y, Yang EY, Fu W, Shi Z, Tang X, Guo D. C-C Motif Chemokine 8 promotes angiogenesis in vascular endothelial cells. Vascular 2021; 29:429-441. [PMID: 32972333 DOI: 10.1177/1708538120959972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Angiogenesis is an important progress associated with several pathological situations. Several chemokines have been reported to act as regulators of angiogenesis. The current study aimed to find whether C-C Motif Chemokine 8 is involved in angiogenesis regulation. METHODS To verify whether C-C Motif Chemokine 8 is related to angiogenesis in plaques, carotid plaques were collected from patients with severe carotid stenosis and analysed using CD31 immunohistochemistry and real-time PCR. To further clarify the relation between C-C Motif Chemokine 8 and angiogenesis, human umbilical vein endothelium cells and human dermal microvascular endothelial cells were treated with C-C Motif Chemokine 8 in the presence or absence of C-C motif chemokine receptor 2-Ab and extracellular regulated MAP kinase 1/2 inhibition (FR180204). Proliferation and migration of human umbilical vein endothelium cells and human dermal microvascular endothelial cells were examined with Cell Counting Kit-8 and Transwell chamber assay, respectively. In vitro angiogenesis stimulated by C-C Motif Chemokine 8 was examined using tube formation assay. Ex vivo and in vivo angiogenesis were assessed by mice aortic ring assay and Matrigel plug assay, respectively. C-C motif chemokine receptors of human umbilical vein endothelium cells were examined with real-time PCR, and C-C motif chemokine receptor 1, C-C motif chemokine receptor 2, extracellular regulated MAP kinase 1/2 and phosphorylation-extracellular regulated MAP kinase 1/2 were examined with western blotting assay. RESULTS C-C Motif Chemokine 8 was increased in carotid plaques with severe angiogenesis in both RNA and protein level. C-C Motif Chemokine 8 (5 ng/ml) weakly increased human umbilical vein endothelium cell proliferation, but not on human dermal microvascular endothelial cells. Migration and tube formation could be induced by C-C Motif Chemokine 8 in both human umbilical vein endothelium cells and human dermal microvascular endothelial cells. In mice aortic ring assay and Matrigel plug assay, C-C Motif Chemokine 8 could promote angiogenesis compared to vehicle groups. Phosphorylation of extracellular regulated MAP kinase 1/2 was increased with C-C Motif Chemokine 8 stimulation. The migration and tube formation promoted by C-C Motif Chemokine 8 could be largely blocked by C-C motif chemokine receptor 2-Ab or extracellular regulated MAP kinase 1/2 inhibition (FR180204). CONCLUSIONS C-C Motif Chemokine 8 could promote both in vitro and in vivo angiogenesis. C-C motif chemokine receptor 2 played an important role in the activation of C-C Motif Chemokine 8 and extracellular regulated MAP kinase 1/2 signalling pathway was involved in this mechanism.
Collapse
Affiliation(s)
- Song Xue
- Department of Vascular Surgery, Fudan University, Shanghai, China
| | - Hanfei Tang
- Department of Vascular Surgery, Fudan University, Shanghai, China
| | - Gefei Zhao
- Department of Vascular Surgery, Fudan University, Shanghai, China
| | - Yang Shen
- Department of Vascular Surgery, Fudan University, Shanghai, China
| | - Ethan Yibo Yang
- Department of Vascular Surgery, Fudan University, Shanghai, China
| | - Weiguo Fu
- Department of Vascular Surgery, Fudan University, Shanghai, China
| | - Zhenyu Shi
- Department of Vascular Surgery, Fudan University, Shanghai, China
| | - Xiao Tang
- Department of Vascular Surgery, Fudan University, Shanghai, China
| | - Daqiao Guo
- Department of Vascular Surgery, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Marcos-Jubilar M, Orbe J, Roncal C, Machado FJD, Rodriguez JA, Fernández-Montero A, Colina I, Rodil R, Pastrana JC, Páramo JA. Association of SDF1 and MMP12 with Atherosclerosis and Inflammation: Clinical and Experimental Study. Life (Basel) 2021; 11:life11050414. [PMID: 34062730 PMCID: PMC8147178 DOI: 10.3390/life11050414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Atherosclerosis is the main etiology of cardiovascular diseases (CVD), associated to systemic inflammation. Matrix metalloproteinases (MMPs) are related to atherosclerosis progression through the SDF1/CXCR4 axis promoting macrophages recruitment within the vascular wall. The goal was to assess new circulatory inflammatory markers in relation to atherosclerosis. METHODS Measurement of SDF1, MMP12 and CRP in blood samples of 298 prospective patients with cardiovascular risk. To explore atherosclerosis progression, CXCR4/SDF1 axis and MMP12 expression were determined by RT-qPCR and by immunohistochemistry in the aorta of accelerated and delayed atherosclerosis mice models (Apoe-/- and Apoe-/-Mmp10-/-). RESULTS SDF1, MMP12 and CRP were elevated in patients with clinical atherosclerosis, but after controlling by confounding factors, only SDF1 and CRP remained increased. Having high levels of both biomarkers showed 2.8-fold increased risk of presenting clinical atherosclerosis (p = 0.022). Patients with elevated SDF1, MMP12 and CRP showed increased risk of death in follow-up (HR = 3.2, 95%CI: 1.5-7.0, p = 0.004). Gene and protein expression of CXCR4 and MMP12 were increased in aortas from Apoe-/- mice. CONCLUSIONS The combination of high circulating SDF1, MMP12 and CRP identified patients with particular inflammatory cardiovascular risk and increased mortality. SDF1/CXCR4 axis and MMP12 involvement in atherosclerosis development suggests that they could be possible atherosclerotic targets.
Collapse
Affiliation(s)
- María Marcos-Jubilar
- Haematology Service, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Correspondence: (M.M.-J.); (J.A.P.)
| | - Josune Orbe
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; (J.O.); (C.R.); (F.J.D.M.); (J.A.R.)
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Roncal
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; (J.O.); (C.R.); (F.J.D.M.); (J.A.R.)
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Florencio J. D. Machado
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; (J.O.); (C.R.); (F.J.D.M.); (J.A.R.)
| | - José Antonio Rodriguez
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; (J.O.); (C.R.); (F.J.D.M.); (J.A.R.)
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Inmaculada Colina
- Internal Medicine Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (I.C.); (J.C.P.)
| | - Raquel Rodil
- Internal Medicine Department, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain;
| | - Juan C. Pastrana
- Internal Medicine Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (I.C.); (J.C.P.)
| | - José A. Páramo
- Haematology Service, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; (J.O.); (C.R.); (F.J.D.M.); (J.A.R.)
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (M.M.-J.); (J.A.P.)
| |
Collapse
|
21
|
Su G, Sun G, Lv J, Zhang W, Liu H, Tang Y, Su H. Hsa_circ_0004831 downregulation is partially responsible for atorvastatinalleviated human umbilical vein endothelial cell injuries induced by ox-LDL through targeting the miR-182-5p/CXCL12 axis. BMC Cardiovasc Disord 2021; 21:221. [PMID: 33932991 PMCID: PMC8088699 DOI: 10.1186/s12872-021-01998-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The dysfunction and injury of human umbilical vein endothelial cells (HUVECs) are key events of atherosclerosis (AS). Atorvastatin (ATV) has been shown to play a protective role on endothelial cells. However, the associated molecular mechanisms remain not fully illustrated. METHODS HUVECs were treated with oxidized low-density lipoprotein (ox-LDL) to mimic the pathological conditions of endothelial cell injury in AS. Cell injuries were assessed according to cell viability, cell apoptosis, cycle progression, oxidative stress and inflammatory responses using CCK-8 assay, flow cytometry assay or commercial kits. The expression of hsa_circ_0004831, miR-182-5p, and C-X-C motif chemokine 12 (CXCL12) mRNA was examined using quantitative real-time PCR (qPCR). The expression of CXCL12 protein was quantitated by western blot. The predicted target relationship between miR-182-5p and hsa_circ_0004831 or CXCL12 was verified by pull-down assay, dual-luciferase reporter assay or RIP assay. RESULTS The expression of hsa_circ_0004831 was upregulated by ox-LDL but downregulated by ATV in HUVECs. ATV promoted cell viability and cell cycle progression but inhibited apoptosis, oxidative stress and inflammation in ox-LDL-treated HUVECs, while the role of ATV was partially reversed by hsa_circ_0004831 overexpression. MiR-182-5p was targeted by hsa_circ_0004831, and hsa_circ_0004831 overexpression-restored apoptosis, oxidative stress and inflammation were blocked by miR-182-5p restoration. Further, CXCL12 was targeted by miR-182-5p, and miR-182-5p inhibition-stimulated apoptosis, oxidative stress and inflammation were lessened by CXCL12 knockdown. CONCLUSION Hsa_circ_0004831-targeted miR-182-5p/CXCL12 regulatory network is one of the pathways by which ATV protects against ox-LDL-induced endothelial injuries.
Collapse
Affiliation(s)
- Gang Su
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 453100, China
| | - Guangli Sun
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 453100, China.
| | - Jian Lv
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 453100, China.
| | - Weiwei Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 453100, China
| | - Hai Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 453100, China
| | - Yajing Tang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 453100, China
| | - Haoang Su
- The Second School of Clinical Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
22
|
Bennington J, Lankford S, Magalhaes RS, Shankle D, Fanning J, Kartini C, Suparto I, Kusumawardhani W, Putra MA, Mariya S, Badlani G, Williams JK. Chemokine Therapy in Cats With Experimental Renal Fibrosis and in a Kidney Disease Pilot Study. Front Vet Sci 2021; 8:646087. [PMID: 33748219 PMCID: PMC7969654 DOI: 10.3389/fvets.2021.646087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Chronic tubulointerstitial fibrosis is a common final pathway leading to end stage kidney disease in cats and has no effective treatment. The use of cell-based molecules to treat kidney fibrosis may be a promising approach. The objectives were to test the effects of intra-renal chemokine CXCL12 injection in a pre-clinical cat model of unilateral ischemia/reperfusion (I/R)-induced kidney fibrosis and then, within a clinical pilot study, test the safety/feasibility of CXCL12 injection in cats that might have early chronic kidney disease (CKD). Methods: Pre-clinical: Thirty cats received intra-renal injection of 100, 200, or 400 ng of recombinant human CXCL12, or sterile saline, into the I/R kidney 70 days post-injury, or were non-injured, non-injected controls (n = 6/group). Kidney collagen content was quantified 4 months post-treatment using Masson's Trichrome and Picrosirius Red (PSR) stained tissues. In a separate study (n = 2) exploring short-term effects of CXCL12, 200 ng CXCL12 was injected into I/R kidneys and then harvested either 30 min (n = 1) or 1 month (n = 1) post-injection. Kidney concentrations of CXCL12, matrix metalloproteinase 1 (MMP-1), and lysyl oxidase-like enzyme 2 (LOXL-2) were quantified via ELISA. Clinical Pilot: 14 client-owned cats with potential early kidney disease received a single-treatment, bilateral intra-renal injection of 200 ng CXCL12 (n = 7), or received no injection (n = 7). Blood/urine samples were collected monthly for 9 months to assess renal function and CKD staging. Results: Pre-clinical: I/R increased the affected kidney collagen content, which both mid and high doses of CXCL12 restored to normal (ps < 0.05 vs. untreated). I/R increased collagen fiber width, which both mid and high doses of CXCL12 restored to normal (p < 0.001 vs. untreated). Early changes in kidney MMP-1, associated with collagen breakdown, and subsequent decreases in LOXL-2, associated with collagen cross-linking, in response to CXCL12 treatment may contribute to these findings. Clinical Pilot: Bilateral intra-renal injection of CXCL12 using ultrasound guidance in cats with CKD was feasible and safe in a general practice clinical setting with no obvious side effects noted during the 9-month follow-up period. Conclusions: Intra-renal injection of CXCL12 may prove to be an effective treatment for kidney fibrosis in cats with CKD. Additional mechanistic and clinical evaluations are needed.
Collapse
Affiliation(s)
- Julie Bennington
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Shannon Lankford
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Renata S. Magalhaes
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Douglas Shankle
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Jason Fanning
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC, United States
| | - Cucu Kartini
- Praktek Dokter Hewan Bersama Joint Veterinary Practice, Sunter, Indonesia
| | - Irma Suparto
- Primate Research Center, Institut Pertanian Bogor, Bogor Agricultural University, Bogor, Indonesia
| | | | - M. ArRaniri Putra
- Praktek Dokter Hewan Bersama Joint Veterinary Practice, Sunter, Indonesia
| | - Silmi Mariya
- Primate Research Center, Institut Pertanian Bogor, Bogor Agricultural University, Bogor, Indonesia
| | - Gopal Badlani
- Department of Urology, Wake Forest Baptist Health, Winston-Salem, NC, United States
| | - J. Koudy Williams
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| |
Collapse
|
23
|
Nakashima D, Onuma T, Tanabe K, Kito Y, Uematsu K, Mizutani D, Enomoto Y, Tsujimoto M, Doi T, Matsushima-Nishiwaki R, Tokuda H, Ogura S, Iwama T, Kozawa O, Iida H. Synergistic effect of collagen and CXCL12 in the low doses on human platelet activation. PLoS One 2020; 15:e0241139. [PMID: 33119719 PMCID: PMC7595269 DOI: 10.1371/journal.pone.0241139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 10/08/2020] [Indexed: 11/30/2022] Open
Abstract
CXCL12, also known as stromal cell-derived factor-1, is a chemokine classified into CXC families, which exerts its function by binding to specific receptors called CXCR4 and CXCR7. Human platelets express CXCR4 and CXCR7 on the plasma membrane. It has been reported that CXCL12 potentiates to induce platelet aggregation in cooperation with agonists including collagen. However, the precise roles and mechanisms of CXCL12 in human platelet activation are not fully elucidated. In the present study, we investigated the effect of simultaneous stimulation with low doses of collagen and CXCL12 on the activation of human platelets. The simultaneous stimulation with collagen and CXCL12 induced the secretion of platelet-derived growth factor (PDGF)-AB and the release of soluble CD40 ligand (sCD40L) from human platelets in addition to their aggregation, despite the fact that the simultaneous stimulation with thrombin receptor-activating peptide (TRAP) or adenosine diphosphate (ADP), and CXCL12 had little effects on the platelet aggregation. The agonist of Glycoprotein (GP) Ⅵ convulxin and CXCL12 also induced platelet aggregation synergistically. The monoclonal antibody against CXCR4 but not CXCR7 suppressed the platelet aggregation induced by simultaneous stimulation with collagen and CXCL12. The phosphorylation of p38 mitogen-activated protein kinase (MAPK), but not p44/p42 MAPK, was induced by the simultaneous stimulation. In addition, the simultaneous stimulation with collagen and CXCL12 induced the phosphorylation of HSP27 and the subsequent release of phosphorylated-HSP27 from human platelets. SB203580, a specific inhibitor of p38 MAPK, attenuated the platelet aggregation, the phosphorylation of p38 MAPK and HSP27, the PDGF-AB secretion, the sCD40L release and the phosphorylated-HSP27 release induced by the simultaneous stimulation with collagen and CXCL12. These results strongly suggest that collagen and CXCL12 in low doses synergistically act to induce PDGF-AB secretion, sCD40L release and phosphorylated-HSP27 release from activated human platelets via p38 MAPK activation.
Collapse
Affiliation(s)
- Daiki Nakashima
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takashi Onuma
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kumiko Tanabe
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuko Kito
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kodai Uematsu
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Daisuke Mizutani
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yukiko Enomoto
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masanori Tsujimoto
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomoaki Doi
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Clinical Laboratory/Medical Genome Center Biobank, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Shinji Ogura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toru Iwama
- Department of Clinical Laboratory/Medical Genome Center Biobank, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- * E-mail:
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
24
|
Nording H, Baron L, Langer HF. Platelets as therapeutic targets to prevent atherosclerosis. Atherosclerosis 2020; 307:97-108. [DOI: 10.1016/j.atherosclerosis.2020.05.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/30/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
|
25
|
Sun Y, Li L, Wu Y, Yang K. PD-1/PD-L1 in cardiovascular disease. Clin Chim Acta 2020; 505:26-30. [PMID: 32084380 DOI: 10.1016/j.cca.2020.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 01/03/2023]
Abstract
The PD-1/PD-L1 coinhibitory pathway has critical roles in the immune response and autoimmunity via the regulation of T cell activity. Excessive activity and high expression of this pathway suppresses the function of T cells and immunity. Recent research has indicated that tumour cells express high levels of PD-L1, which has an immunosuppressive effect and can result in treatment failure. Anti-PD-L1 or anti-PD-1 agents have well-established beneficial effects on mortality and quality of life in cancer patients. Based on the regulatory effects and therapeutic value of the PD-1/PD-L1 pathway in malignant disorders, we propose that it also regulates cell immunity and in CHD and atherosclerosis. Low expression level of PD-1/ PD-L1 or anti-PD-1/PD-L1 therapy accelerates the immune processes in CHD and aggravates disease according to numerous studies. A few studies have provided strong evidence that changes in the expression levels of PD-1 or PD-L1 can alter the degree of inflammation and the state of coronary plaques in atherosclerosis. In this review, we summarise the alterations of the PD-1/PD-L1 pathway and discuss its role in CHD.
Collapse
Affiliation(s)
- YunFeng Sun
- Yangtze University Health Science Center, 434020 Jingzhou City, Hubei Province, China
| | - Liang Li
- Yangtze University Health Science Center, 434020 Jingzhou City, Hubei Province, China
| | - YaWei Wu
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, 830000 Urumqi, Xinjiang, China
| | - KePing Yang
- Yangtze University Health Science Center, 434020 Jingzhou City, Hubei Province, China; Department of Cardiology, Jingzhou Central Hospital, 434020 Jingzhou City, Hubei Province, China.
| |
Collapse
|
26
|
Adeyemo A, Johnson C, Stiene A, LaSance K, Qi Z, Lemen L, Schultz JEJ. Limb functional recovery is impaired in fibroblast growth factor-2 (FGF2) deficient mice despite chronic ischaemia-induced vascular growth. Growth Factors 2020; 38:75-93. [PMID: 32496882 PMCID: PMC8601595 DOI: 10.1080/08977194.2020.1767612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/05/2020] [Indexed: 01/07/2023]
Abstract
FGF2 is a potent stimulator of vascular growth; however, even with a deficiency of FGF2 (Fgf2-/-), developmental vessel growth or ischaemia-induced revascularization still transpires. It remains to be elucidated as to what function, if any, FGF2 has during ischaemic injury. Wildtype (WT) or Fgf2-/- mice were subjected to hindlimb ischaemia for up to 42 days. Limb function, vascular growth, inflammatory- and angiogenesis-related proteins, and inflammatory cell infiltration were assessed in sham and ischaemic limbs at various timepoints. Recovery of ischaemic limb function was delayed in Fgf2-/- mice. Yet, vascular growth response to ischaemia was similar between WT and Fgf2-/- hindlimbs. Several angiogenesis- and inflammatory-related proteins (MCP-1, CXCL16, MMPs and PAI-1) were increased in Fgf2-/- ischaemic muscle. Neutrophil or monocyte recruitment/infiltration was elevated in Fgf2-/- ischaemic muscle. In summary, our study indicates that loss of FGF2 induces a pro-inflammatory microenvironment in skeletal muscle which exacerbates ischaemic injury and delays functional limb use.
Collapse
Affiliation(s)
- Adeola Adeyemo
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Christopher Johnson
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Andrew Stiene
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Kathleen LaSance
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
- Preclinical Imaging Core, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Zhihua Qi
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
- Preclinical Imaging Core, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Lisa Lemen
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
- Preclinical Imaging Core, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Jo El J. Schultz
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| |
Collapse
|
27
|
Li L, Du Z, Rong B, Zhao D, Wang A, Xu Y, Zhang H, Bai X, Zhong J. Foam cells promote atherosclerosis progression by releasing CXCL12. Biosci Rep 2020; 40:BSR20193267. [PMID: 31894855 PMCID: PMC6970083 DOI: 10.1042/bsr20193267] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/02/2019] [Accepted: 12/27/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Atherosclerosis (AS) is a chronic inflammatory disease that contributes to multiple cardiovascular diseases (CVDs), and foam cell formation plays important roles in the progression of AS. There is an urgent need to identify new molecular targets for treating AS, and thereby improve the quality of life and reduce the financial burden of individuals with CVD. METHODS An in vitro model of AS was generated by treating THP-1 cells and human aortic vascular smooth muscle cells (HA-VSMCs) with oxidized low-density lipoproteins (ox-LDLs). HA-VSMC proliferation and foam cell formation were detected by the MTT assay and Oil Red O staining. C-X-C motif chemokine 12 (CXCL12) expression was suppressed by siRNA. An AS rat model was established by feeding rats a high-fat diet and vitamin D2 for 3 weeks. Histopathology examinations were conducted by Hematoxylin and Eosin (H&E) staining and the levels ionized calcium-binding adapter molecule 1 (IBA1) and α smooth muscle actin (α-SMA) expression were determined by ELISA assays and immunohistochemistry. RESULTS An in vitro model of AS was established with THP-1 cells. CXCL12 expression in the model THP-1 cells was significantly increased when compared with its expression in control cells. Suppression of CXCL12 expression reduced the progression of AS in the cell model. Moreover, CXCL12 promoted AS in the in vivo rat model. CONCLUSION Our results suggest that CXCL12 plays an important role in promoting the progression of AS. Furthermore, inhibition of CXCL12 might suppress the development of AS by inhibiting HA-VSMC proliferation and their transformation to foam cells.
Collapse
Affiliation(s)
- Lingxing Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiovascular Medicine, Tai’an City Central Hospital, Taian, China
| | - Zhenlan Du
- Department of Cardiovascular Medicine, Tai’an City Central Hospital, Taian, China
| | - Bing Rong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Dapeng Zhao
- Department of Neurology, Tai’an City Central Hospital, Taian, China
| | - Aiping Wang
- Department of Cardiovascular Medicine, Tai’an City Central Hospital, Taian, China
| | - Yuzhen Xu
- Department of Neurology, Tai’an City Central Hospital, Taian, China
| | - Huanyi Zhang
- Department of Cardiovascular Medicine, Tai’an City Central Hospital, Taian, China
| | - Xue Bai
- Department of Cardiovascular Medicine, Tai’an City Central Hospital, Taian, China
| | - Jingquan Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
28
|
Gao JH, He LH, Yu XH, Zhao ZW, Wang G, Zou J, Wen FJ, Zhou L, Wan XJ, Zhang DW, Tang CK. CXCL12 promotes atherosclerosis by downregulating ABCA1 expression via the CXCR4/GSK3β/β-catenin T120/TCF21 pathway. J Lipid Res 2019; 60:2020-2033. [PMID: 31662443 DOI: 10.1194/jlr.ra119000100] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
CXC chemokine ligand 12 (CXCL12) is a member of the CXC chemokine family and mainly acts on cell chemotaxis. CXCL12 also elicits a proatherogenic role, but the molecular mechanisms have not been fully defined yet. We aimed to reveal if and how CXCL12 promoted atherosclerosis via regulating lipid metabolism. In vitro, our data showed that CXCL12 could reduce ABCA1 expression, and it mediated cholesterol efflux from THP-1-derived macrophages to apoA-I. Data from the luciferase reporter gene and chromatin immunoprecipitation assays revealed that transcription factor 21 (TCF21) stimulated the transcription of ABCA1 via binding to its promoter region, which was repressed by CXCL12. We found that CXCL12 increased the levels of phosphorylated glycogen synthase kinase 3β (GSK3β) and the phosphorylation of β-catenin at the Thr120 position. Inactivation of GSK3β or β-catenin increased the expression of TCF21 and ABCA1. Further, knockdown or inhibition of CXC chemokine receptor 4 (CXCR4) blocked the effects of CXCL12 on TCF21 and ABCA1 expression and the phosphorylation of GSK3β and β-catenin. In vivo, the overexpression of CXCL12 in Apoe-/- mice via lentivirus enlarged the atherosclerotic lesion area and increased macrophage infiltration in atherosclerotic plaques. We further found that the overexpression of CXCL12 reduced the efficiency of reverse cholesterol transport and plasma HDL-C levels, decreased ABCA1 expression in the aorta and mouse peritoneal macrophages (MPMs), and suppressed cholesterol efflux from MPMs to apoA-I in Apoe-/- mice. Collectively, these findings suggest that CXCL12 interacts with CXCR4 and then activates the GSK-3β/β-cateninT120/TCF21 signaling pathway to inhibit ABCA1-dependent cholesterol efflux from macrophages and aggravate atherosclerosis. Targeting CXCL12 may be a novel and promising strategy for the prevention and treatment of atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Jia-Hui Gao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Lin-Hao He
- School of Pharmacy and Life Science College, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Xiao-Hua Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zhen-Wang Zhao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Gang Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Jin Zou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Feng-Jiao Wen
- School of Pharmacy and Life Science College, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Li Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Xiang-Jun Wan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| |
Collapse
|