1
|
Ming S, Chen Z, Yang J, Liu J, Liu X, Yang L, Tan Z, Zhou H, Wu Y, Huang X. Inflammatory CD11c+ B Cells Induced by the TREM2 Signal Accelerate Sepsis Development. J Infect Dis 2025:jiaf112. [PMID: 40207848 DOI: 10.1093/infdis/jiaf112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Indexed: 04/11/2025] Open
Abstract
CD11c+ B cells are an age-associated subset emerging in infections and autoimmune diseases. However, their role in sepsis is poorly clarified. This study identified a class of CD11c+ B cells with a proinflammatory phenotype that is expended in septic patients and mice. Notably, the transfer of these cells accelerates sepsis-induced lung injury and death in mice. Furthermore, the CD11c+ B cells were induced by the triggering receptor expressed on myeloid cells 2 (TREM2) signal, which promotes their generation via the interferon regulatory factor 4 (IRF4) pathway. Moreover, TREM2 directly participates in sepsis regulation mediated by CD11c+ B cells. This study reveals the proinflammatory role of CD11c+ B cells in sepsis and identifies TREM2 as a contributing factor in CD11c+ B-cell-mediated inflammatory injury during sepsis.
Collapse
Affiliation(s)
- Siqi Ming
- Department of Critical Care Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, China
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai Hospital, Zhuhai, Guangdong, China
| | - Zhenxing Chen
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jingwen Yang
- Department of Critical Care Medicine, Qingyuan Hospital of Traditional Chinese Medicine, Qingyuan, Guangdong, China
| | - Jiao Liu
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xi Liu
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai Hospital, Zhuhai, Guangdong, China
| | - Lunhao Yang
- Department of Critical Care Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Zhaofeng Tan
- Department of Critical Care Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Haibo Zhou
- Department of Critical Care Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Xi Huang
- Department of Critical Care Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, China
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| |
Collapse
|
2
|
Srdić T, Đurašević S, Lakić I, Ružičić A, Vujović P, Jevđović T, Dakić T, Đorđević J, Tosti T, Glumac S, Todorović Z, Jasnić N. From Molecular Mechanisms to Clinical Therapy: Understanding Sepsis-Induced Multiple Organ Dysfunction. Int J Mol Sci 2024; 25:7770. [PMID: 39063011 PMCID: PMC11277140 DOI: 10.3390/ijms25147770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Sepsis-induced multiple organ dysfunction arises from the highly complex pathophysiology encompassing the interplay of inflammation, oxidative stress, endothelial dysfunction, mitochondrial damage, cellular energy failure, and dysbiosis. Over the past decades, numerous studies have been dedicated to elucidating the underlying molecular mechanisms of sepsis in order to develop effective treatments. Current research underscores liver and cardiac dysfunction, along with acute lung and kidney injuries, as predominant causes of mortality in sepsis patients. This understanding of sepsis-induced organ failure unveils potential therapeutic targets for sepsis treatment. Various novel therapeutics, including melatonin, metformin, palmitoylethanolamide (PEA), certain herbal extracts, and gut microbiota modulators, have demonstrated efficacy in different sepsis models. In recent years, the research focus has shifted from anti-inflammatory and antioxidative agents to exploring the modulation of energy metabolism and gut microbiota in sepsis. These approaches have shown a significant impact in preventing multiple organ damage and mortality in various animal sepsis models but require further clinical investigation. The accumulation of this knowledge enriches our understanding of sepsis and is anticipated to facilitate the development of effective therapeutic strategies in the future.
Collapse
Affiliation(s)
- Tijana Srdić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Siniša Đurašević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Iva Lakić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Aleksandra Ružičić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Predrag Vujović
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tanja Jevđović
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tamara Dakić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Jelena Đorđević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| | - Tomislav Tosti
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Sofija Glumac
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (S.G.); (Z.T.)
| | - Zoran Todorović
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (S.G.); (Z.T.)
| | - Nebojša Jasnić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (T.S.); (S.Đ.); (I.L.); (A.R.); (P.V.); (T.J.); (T.D.); (J.Đ.)
| |
Collapse
|
3
|
Ye K, Lin X, Chen TZ, Wang LH, Liu SX. Heparin-Binding Protein Promotes Acute Lung Injury in Sepsis Mice by Blocking the Aryl Hydrocarbon Receptor Signaling Pathway. J Inflamm Res 2024; 17:2927-2938. [PMID: 38764496 PMCID: PMC11100518 DOI: 10.2147/jir.s454777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/25/2024] [Indexed: 05/21/2024] Open
Abstract
Purpose This study aimed to explore the therapeutic effect and potential mechanism of heparin-binding protein (HBP) reduction on sepsis-related acute lung injury. Methods We utilized a murine model of sepsis-induced by intraperitoneal injection of lipopolysaccharides (LPS) in C57BL/6J mice divided into four groups: Control, LPS, Anti-HBP, and ceftriaxone (CEF). Following sepsis induction, Anti-HBP or CEF treatments were administered, and survival rates were monitored for 48 h. We then used reverse-transcription quantitative PCR to analyze the expression levels of HBP in lung tissues, immunohistochemistry for protein localization, and Western blotting for protein quantification. Pulmonary inflammation was assessed using enzyme-linked immunosorbent assays of proinflammatory cytokines (tumor necrosis factor-α, interleukin [IL]-1β, IL-6, and interferon-γ). The activation state of the aryl hydrocarbon receptor (AhR) signaling pathway was determined via Western blotting, evaluating both cytoplasmic and nuclear localization of AhR and the expression of cytochrome P450 1A1 protein by its target gene. Results Anti-HBP specifically reduced HBP levels. The survival rate of mice in the Anti-HBP and CEF groups was much higher than that in the LPS group. The severity of lung injury and pulmonary inflammatory response in the Anti-HBP and CEF groups was significantly lower than that in the LPS group. AhR signaling pathway activation was observed in the Anti-HBP and CEF groups. Additionally, there was no significant difference in the above indices between the Anti-HBP and CEF groups. Conclusion HBP downregulation in lung tissues significantly improved LPS-induced lung injury and the pulmonary inflammatory response, thereby prolonging the survival of sepsis mice, suggesting activation of the AhR signaling pathway. Moreover, the effect of lowering the HBP level was equivalent to that of the classical antibiotic CEF. Trial Registration Not applicable.
Collapse
Affiliation(s)
- Kun Ye
- Department of Orthopaedics, Qiantang Campus of Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang, 310018, People’s Republic of China
| | - Xiang Lin
- Department of Orthopaedics, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 570311, People’s Republic of China
| | - Tai-Zhi Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 570311, People’s Republic of China
| | - Long-Hui Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 570311, People’s Republic of China
| | - Sheng-Xing Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 570311, People’s Republic of China
| |
Collapse
|
4
|
Lu Y, Li D, Huang Y, Sun Y, Zhou H, Ye F, Yang H, Xu T, Quan S, Pan J. Pretreatment with Eupatilin Attenuates Inflammation and Coagulation in Sepsis by Suppressing JAK2/STAT3 Signaling Pathway. J Inflamm Res 2023; 16:1027-1042. [PMID: 36926276 PMCID: PMC10013575 DOI: 10.2147/jir.s393850] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Purpose Sepsis is an aggressive and life-threatening organ dysfunction induced by infection. Excessive inflammation and coagulation contribute to the negative outcomes for sepsis, resulting in high morbidity and mortality. In this study, we explored whether Eupatilin could alleviate lung injury, reduce inflammation and coagulation during sepsis. Methods We constructed an in vitro sepsis model by stimulating RAW264.7 cells with 1 μg/mL lipopolysaccharide (LPS) for 6 hours. The cells were divided into control group, LPS group, LPS+ Eupatilin (Eup) group, and Eup group to detect their cell activity and inflammatory cytokines and coagulation factor levels. Cells in LPS+Eup and Eup group were pretreated with Eupatilin (10μM) for 2 hours. In vivo, mice were divided into sham operation group, cecal ligation and puncture (CLP) group and Eup group. Mice in the CLP and Eup groups were pretreated with Eupatilin (10mg/kg) for 2 hours by gavage. Lung tissue and plasma were collected and inflammatory cytokines, coagulation factors and signaling were measured. Results In vitro, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and tissue factor (TF) expression in LPS-stimulated RAW264.7 cells was downregulated by Eupatilin (10μM). Furthermore, Eupatilin inhibited phosphorylation of the JAK2/STAT3 signaling pathway and suppressed p-STAT3 nuclear translocation. In vivo, Eupatilin increased the survival rate of the mice. In septic mice, plasma concentrations of TNF-α, IL-1β and IL-6, as well as TF, plasminogen activator inhibitor 1 (PAI-1), D-dimer, thrombin-antithrombin complex (TAT) and fibrinogen were improved by Eupatilin. Moreover, Eupatilin alleviated lung injury by improving the expression of inflammatory cytokines and TF, fibrin deposition and macrophage infiltration in lung tissue. Conclusion Our results revealed that Eupatilin may modulate inflammation and coagulation indicators as well as improve lung injury in sepsis via the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yilun Lu
- Department of Intensive Care Unit, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, People's Republic of China.,Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, People's Republic of China
| | - Ding Li
- Department of Intensive Care Unit, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, People's Republic of China.,Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, People's Republic of China
| | - Yueyue Huang
- Department of Intensive Care Unit, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, People's Republic of China.,Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, People's Republic of China
| | - Yuanyuan Sun
- Department of Intensive Care Unit, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, People's Republic of China.,Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, People's Republic of China
| | - Hongmin Zhou
- Department of Intensive Care Unit, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, People's Republic of China.,Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, People's Republic of China
| | - Fanrong Ye
- Department of Intensive Care Unit, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, People's Republic of China.,Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, People's Republic of China
| | - Hongjing Yang
- Department of Intensive Care Unit, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, People's Republic of China.,Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, People's Republic of China
| | - Tingting Xu
- Department of Intensive Care Unit, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, People's Republic of China.,Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, People's Republic of China
| | - Shichao Quan
- Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, People's Republic of China.,Collaborative Innovation Center for Intelligence Medical Education, Wenzhou, People's Republic of China.,Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, People's Republic of China.,Department of General Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jingye Pan
- Department of Intensive Care Unit, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, People's Republic of China.,Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, People's Republic of China.,Collaborative Innovation Center for Intelligence Medical Education, Wenzhou, People's Republic of China.,Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, People's Republic of China
| |
Collapse
|
5
|
Garcia LF, Singh V, Mireles B, Dwivedi AK, Walker WE. Common Variables That Influence Sepsis Mortality in Mice. J Inflamm Res 2023; 16:1121-1134. [PMID: 36941984 PMCID: PMC10024505 DOI: 10.2147/jir.s400115] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/18/2023] [Indexed: 03/16/2023] Open
Abstract
Introduction Sepsis is characterized by a dysregulated host immune response to infection, leading to organ dysfunction and a high risk of death. The cecal ligation and puncture (CLP) mouse model is commonly used to study sepsis, but animal mortality rates vary between different studies. Technical factors and animal characteristics may affect this model in unanticipated ways, and if unaccounted for, may lead to serious biases in study findings. We sought to evaluate whether mouse sex, age, weight, surgeon, season of experiments, and timing of antibiotic administration influenced mortality in the CLP model. Methods We created a comprehensive dataset of C57BL/6J mice that had undergone CLP surgery within our lab during years 2015-2020 from published and unpublished studies. The primary outcome was defined as the time from sepsis induction to death or termination of study (14 days). The Log rank test and Cox regression models were used to analyze the dataset. The study included 119 mice, of which 43% were female, with an average age of 12.6 weeks, an average weight of 25.3 g. 38 (32%) of the animals died. Results In the unadjusted analyses, experiments performed in the summer and higher weight predicted a higher risk of mortality. In the stratified Cox model by sex, summer season (adjusted hazard ratio [aHR]=5.61, p=0.004) and delayed antibiotic administration (aHR=1.46, p=0.029) were associated with mortality in males, whereas higher weight (aHR=1.52, p=0.005) significantly affected mortality in females. In addition, delayed antibiotic administration (HR=1.42, p=0.025) was associated with mortality in the non-summer seasons, but not in the summer season. Discussion In conclusion, some factors specific to sex and season have a significant influence on sepsis mortality in the CLP model. Consideration of these factors along with appropriate group matching or adjusted analysis is critical to minimize variability beyond the experimental conditions within a study.
Collapse
Affiliation(s)
- Luiz F Garcia
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Vishwajeet Singh
- Biostatistics and Epidemiology Consulting Lab, Office of Research, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Blake Mireles
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Alok Kumar Dwivedi
- Biostatistics and Epidemiology Consulting Lab, Office of Research, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
- Division of Biostatistics and Epidemiology, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Wendy E Walker
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
- Correspondence: Wendy E Walker, 5001 El Paso Drive, El Paso, TX, 79905, USA, Tel +1 915 215-4268, Fax +1 915 783-1271, Email
| |
Collapse
|
6
|
Lee CG, Park C, Hwang S, Hong JE, Jo M, Eom M, Lee Y, Rhee KJ. Pulsed Electromagnetic Field (PEMF) Treatment Reduces Lipopolysaccharide-Induced Septic Shock in Mice. Int J Mol Sci 2022; 23:ijms23105661. [PMID: 35628471 PMCID: PMC9147061 DOI: 10.3390/ijms23105661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
Despite advances in medicine, mortality due to sepsis has not decreased. Pulsed electromagnetic field (PEMF) therapy is emerging as an alternative treatment in many inflammation-related diseases. However, there are few studies on the application of PEMF therapy to sepsis. In the current study, we examined the effect of PEMF therapy on a mouse model of lipopolysaccharide (LPS)-induced septic shock. Mice injected with LPS and treated with PEMF showed higher survival rates compared with the LPS group. The increased survival was correlated with decreased levels of pro-inflammatory cytokine mRNA expression and lower serum nitric oxide levels and nitric oxide synthase 2 mRNA expression in the liver compared with the LPS group. In the PEMF + LPS group, there was less organ damage in the liver, lungs, spleen, and kidneys compared to the LPS group. To identify potential gene targets of PEMF treatment, microarray analysis was performed, and the results showed that 136 genes were up-regulated, and 267 genes were down-regulated in the PEMF + LPS group compared to the LPS group. These results suggest that PEMF treatment can dramatically decrease septic shock through the reduction of pro-inflammatory cytokine gene expression. In a clinical setting, PEMF may provide a beneficial effect for patients with bacteria-induced sepsis and reduce septic shock-induced mortality.
Collapse
Affiliation(s)
- Chang-Gun Lee
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju 26493, Korea; (C.-G.L.); (C.P.); (S.H.); (J.-E.H.); (M.J.)
- Department of Medical Genetics, School of Medicine, Ajou University, Suwon 16499, Korea
| | - Chanoh Park
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju 26493, Korea; (C.-G.L.); (C.P.); (S.H.); (J.-E.H.); (M.J.)
| | - Soonjae Hwang
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju 26493, Korea; (C.-G.L.); (C.P.); (S.H.); (J.-E.H.); (M.J.)
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, GAIST, College of Medicine, Gachon University, Incheon 21999, Korea
| | - Ju-Eun Hong
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju 26493, Korea; (C.-G.L.); (C.P.); (S.H.); (J.-E.H.); (M.J.)
| | - Minjeong Jo
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju 26493, Korea; (C.-G.L.); (C.P.); (S.H.); (J.-E.H.); (M.J.)
| | - Minseob Eom
- Department of Pathology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Yongheum Lee
- Department of Biomedical Engineering, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju 26493, Korea
- Correspondence: (Y.L.); (K.-J.R.); Tel.: +82-33-760-2863 (Y.L.); +82-33-760-2445 (K.-J.R.); Fax: +82-33-760-2561 (Y.L.); +82-33-760-2195 (K.-J.R.)
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju 26493, Korea; (C.-G.L.); (C.P.); (S.H.); (J.-E.H.); (M.J.)
- Correspondence: (Y.L.); (K.-J.R.); Tel.: +82-33-760-2863 (Y.L.); +82-33-760-2445 (K.-J.R.); Fax: +82-33-760-2561 (Y.L.); +82-33-760-2195 (K.-J.R.)
| |
Collapse
|
7
|
LaFavers K. Disruption of Kidney-Immune System Crosstalk in Sepsis with Acute Kidney Injury: Lessons Learned from Animal Models and Their Application to Human Health. Int J Mol Sci 2022; 23:1702. [PMID: 35163625 PMCID: PMC8835938 DOI: 10.3390/ijms23031702] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
In addition to being a leading cause of morbidity and mortality worldwide, sepsis is also the most common cause of acute kidney injury (AKI). When sepsis leads to the development of AKI, mortality increases dramatically. Since the cardinal feature of sepsis is a dysregulated host response to infection, a disruption of kidney-immune crosstalk is likely to be contributing to worsening prognosis in sepsis with acute kidney injury. Since immune-mediated injury to the kidney could disrupt its protein manufacturing capacity, an investigation of molecules mediating this crosstalk not only helps us understand the sepsis immune response, but also suggests that their supplementation could have a therapeutic effect. Erythropoietin, vitamin D and uromodulin are known to mediate kidney-immune crosstalk and their disrupted production could impact morbidity and mortality in sepsis with acute kidney injury.
Collapse
Affiliation(s)
- Kaice LaFavers
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Evansville, IN 47708, USA
| |
Collapse
|
8
|
Dimitrakakis N, Waterhouse A, Lightbown S, Leslie DC, Jiang A, Bolgen DE, Lightbown K, Cascio K, Aviles G, Pollack E, Jurek S, Donovan K, Hicks-Berthet JB, Imaizumi K, Super M, Ingber DE, Nedder A. Biochemical and Hematologic Reference Intervals for Anesthetized, Female, Juvenile Yorkshire Swine. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:21-30. [PMID: 34903312 PMCID: PMC8786382 DOI: 10.30802/aalas-jaalas-21-000014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/19/2021] [Accepted: 08/05/2021] [Indexed: 06/14/2023]
Abstract
Swine are widely used in biomedical research, translational research, xenotransplantation, and agriculture. For these uses, physiologic reference intervals are extremely important for assessing the health status of the swine and diagnosing disease. However, few biochemical and hematologic reference intervals that comply with guidelines from the Clinical and Laboratory Standards Institute and the American Society for Veterinary Clinical Pathology are available for swine. These guidelines state that reference intervals should be determined by using 120 subjects or more. The aim of this study was to generate hematologic and biochemical reference intervals for female, juvenile Yorkshire swine (Sus scrofa domesticus) and to compare these values with those for humans and baboons (Papio hamadryas). Blood samples were collected from the femoral artery or vein of female, juvenile Yorkshire swine, and standard hematologic and biochemical parameters were analyzed in multiple studies. Hematologic and biochemical reference intervals were calculated for arterial blood samples from Yorkshire swine (n = 121 to 124); human and baboon reference intervals were obtained from the literature. Arterial reference intervals for Yorkshire swine differed significantly from those for humans and baboons in all commonly measured parameters except platelet count, which did not differ significantly from the human value, and glucose, which was not significantly different from the baboon value. These data provide valuable information for investigators using female, juvenile Yorkshire swine for biomedical re- search, as disease models, and in xenotransplantation studies as well as useful physiologic information for veterinarians and livestock producers. Our findings highlight the need for caution when comparing data and study outcomes between species.
Collapse
Affiliation(s)
- Nikolaos Dimitrakakis
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Anna Waterhouse
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Shanda Lightbown
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Daniel C Leslie
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Amanda Jiang
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dana E Bolgen
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Kayla Lightbown
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Kelly Cascio
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Gabriela Aviles
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Elizabeth Pollack
- Animal Research, Boston Children’s Hospital, Boston, Massachusetts; and
| | - Sam Jurek
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Kathryn Donovan
- Animal Research, Boston Children’s Hospital, Boston, Massachusetts; and
| | - Julia B Hicks-Berthet
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Kazuo Imaizumi
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Michael Super
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Arthur Nedder
- Animal Research, Boston Children’s Hospital, Boston, Massachusetts; and
| |
Collapse
|
9
|
Recombinant Fasciola hepatica Fatty Acid Binding Protein as a Novel Anti-Inflammatory Biotherapeutic Drug in an Acute Gram-Negative Nonhuman Primate Sepsis Model. Microbiol Spectr 2021; 9:e0191021. [PMID: 34937173 PMCID: PMC8694124 DOI: 10.1128/spectrum.01910-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Due to their phylogenetic proximity to humans, nonhuman primates (NHPs) are considered an adequate choice for a basic and preclinical model of sepsis. Gram-negative bacteria are the primary causative of sepsis. During infection, bacteria continuously release the potent toxin lipopolysaccharide (LPS) into the bloodstream, which triggers an uncontrolled systemic inflammatory response leading to death. Our previous research has demonstrated in vitro and in vivo using a mouse model of septic shock that Fh15, a recombinant variant of the Fasciola hepatica fatty acid binding protein, acts as an antagonist of Toll-like receptor 4 (TLR4) suppressing the LPS-induced proinflammatory cytokine storm. The present communication is a proof-of concept study aimed to demonstrate that a low-dose of Fh15 suppresses the cytokine storm and other inflammatory markers during the early phase of sepsis induced in rhesus macaques by intravenous (i.v.) infusion with lethal doses of live Escherichia coli. Fh15 was administered as an isotonic infusion 30 min prior to the bacterial infusion. Among the novel findings reported in this communication, Fh15 (i) significantly prevented bacteremia, suppressed LPS levels in plasma, and the production of C-reactive protein and procalcitonin, which are key signatures of inflammation and bacterial infection, respectively; (ii) reduced the production of proinflammatory cytokines; and (iii) increased innate immune cell populations in blood, which suggests a role in promoting a prolonged steady state in rhesus macaques even in the presence of inflammatory stimuli. This report is the first to demonstrate that a F. hepatica-derived molecule possesses potential as an anti-inflammatory drug against sepsis in an NHP model. IMPORTANCE Sepsis caused by Gram-negative bacteria affects 1.7 million adults annually in the United States and is one of the most important causes of death at intensive care units. Although the effective use of antibiotics has resulted in improved prognosis of sepsis, the pathological and deathly effects have been attributed to the persistent inflammatory cascade. There is a present need to develop anti-inflammatory agents that can suppress or neutralize the inflammatory responses and prevent the lethal consequences of sepsis. We demonstrated here that a small molecule of 14.5 kDa can suppress the bacteremia, endotoxemia, and many other inflammatory markers in an acute Gram-negative sepsis rhesus macaque model. These results reinforce the notion that Fh15 constitutes an excellent candidate for drug development against sepsis.
Collapse
|
10
|
Suh HN, Kim YK, Lee JY, Kang GH, Hwang JH. Dissect the immunity using cytokine profiling and NF-kB target gene analysis in systemic inflammatory minipig model. PLoS One 2021; 16:e0252947. [PMID: 34086835 PMCID: PMC8177627 DOI: 10.1371/journal.pone.0252947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/25/2021] [Indexed: 11/18/2022] Open
Abstract
Minipigs have remarkably similar physiology to humans, therefore, they it can be a good animal model for inflammation study. Thus, the conventional (serum chemistry, histopathology) and novel analytic tools [immune cell identification in tissue, cytokine level in peripheral blood mononuclear cells (PBMC) and serum, NF-kB target gene analysis in tissue] were applied to determine inflammation in Chicago Miniature Swine (CMS) minipig. Lipopolysaccharide (LPS)-induced acute systemic inflammation caused liver and kidney damage in serum chemistry and histopathology. Immunohistochemistry (IHC) also showed an increase of immune cell distribution in spleen and lung during inflammation. Moreover, NF-kB-target gene expression was upregulated in lung and kidney in acute inflammation and in heart, liver, and intestine in chronic inflammation. Cytokine mRNA was elevated in PBMC under acute inflammation along with elevated absolute cytokine levels in serum. Overall, LPS-mediated systemic inflammation affects the various organs, and can be detected by IHC of immune cells, gene analysis in PBMC, and measuring the absolute cytokine in serum along with conventional inflammation analytic tools.
Collapse
Affiliation(s)
- Han Na Suh
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup, Jeollabuk-do, Republic of Korea
- * E-mail: (HNS); (JHH)
| | - Young Kyu Kim
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup, Jeollabuk-do, Republic of Korea
| | - Ju Young Lee
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup, Jeollabuk-do, Republic of Korea
| | - Goo-Hwa Kang
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup, Jeollabuk-do, Republic of Korea
| | - Jeong Ho Hwang
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup, Jeollabuk-do, Republic of Korea
- * E-mail: (HNS); (JHH)
| |
Collapse
|
11
|
O'Connell RL, Wakam GK, Siddiqui A, Williams AM, Graham N, Kemp MT, Chtraklin K, Bhatti UF, Shamshad A, Li Y, Alam HB, Biesterveld BE. Development of a large animal model of lethal polytrauma and intra-abdominal sepsis with bacteremia. Trauma Surg Acute Care Open 2021; 6:e000636. [PMID: 33537457 PMCID: PMC7852924 DOI: 10.1136/tsaco-2020-000636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 11/04/2022] Open
Abstract
Background Trauma and sepsis are individually two of the leading causes of death worldwide. When combined, the mortality is greater than 50%. Thus, it is imperative to have a reproducible and reliable animal model to study the effects of polytrauma and sepsis and test novel treatment options. Porcine models are more translatable to humans than rodent models due to the similarities in anatomy and physiological response. We embarked on a study to develop a reproducible model of lethal polytrauma and intra-abdominal sepsis, which was lethal, though potentially salvageable with treatment. Methods Our laboratory has a well-established porcine model that was used as the foundation. Animals were subjected to a rectus crush injury, long bone fracture, liver and spleen laceration, traumatic brain injury and hemorrhage that was used as a foundation. We tested various colon injuries to create intra-abdominal sepsis. All animals underwent injuries followed by a period of shock, then subsequent resuscitation. Results All animals had blood culture-proven sepsis. Attempts at long-term survival of animals after injury were ceased because of poor appetite and energy. We shifted to an 8-hour endpoint. The polytrauma injury pattern remained constant and the colon injury pattern changed with the intention of creating a model that was ultimately lethal but potentially salvageable with a therapeutic drug. An uncontrolled cecal injury (n=4) group resulted in very early deaths. A controlled cecal injury (CCI; n=4) group had prolonged time prior to mortality with one surviving to the endpoint. The sigmoid injury (n=5) produced a similar survival curve to CCI but no animals surviving to the endpoint. Conclusion We have described a porcine model of polytrauma and sepsis that is reproducible and may be used to investigate novel treatments for trauma and sepsis. Level of evidence Not applicable. Animal study.
Collapse
Affiliation(s)
- Rachel L O'Connell
- Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Glenn K Wakam
- Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ali Siddiqui
- Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron M Williams
- Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Nathan Graham
- Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael T Kemp
- Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kiril Chtraklin
- Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Umar F Bhatti
- Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Alizeh Shamshad
- Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yongqing Li
- Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Hasan B Alam
- Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ben E Biesterveld
- Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Abstract
Sepsis in humans and experimental animals is characterized by an acute inflammatory response. glucocorticoids (GCs) are widely used for the treatment of many inflammatory disorders, yet their effectiveness in sepsis is debatable. One of the major anti-inflammatory proteins induced by GCs is glucocorticoid-induced leucine zipper (GILZ, coded by the TSC22D3 gene). We found that TSC22D3 mRNA expression is downregulated in white blood cells of human sepsis patients. Interestingly, transgenic GILZ-overexpressing mice (GILZ-tg) showed better survival rates in the cecal ligation and puncture (CLP) model of mouse sepsis. To our surprise, GILZ had only mild anti-inflammatory effects in this model, as the systemic proinflammatory response was not significantly reduced in GILZ-tg mice compared with control mice. During CLP, we observed reduced bacterial counts in blood of GILZ-tg mice compared with control mice. We found increased expression of Tsc22d3 mRNA specifically in peritoneal exudate cells in the CLP model, as well as increased capacity for bacterial phagocytosis of CD45 GILZ-tg cells compared with CD45 GILZ-wt cells. Hence, we believe that the protective effects of GILZ in the CLP model can be linked to a more efficient phagocytosis.
Collapse
|
13
|
Nault S, Creuze V, Al-Omar S, Levasseur A, Nadeau C, Samson N, Imane R, Tremblay S, Carrault G, Pladys P, Praud JP. Cardiorespiratory Alterations in a Newborn Ovine Model of Systemic Inflammation Induced by Lipopolysaccharide Injection. Front Physiol 2020; 11:585. [PMID: 32625107 PMCID: PMC7311791 DOI: 10.3389/fphys.2020.00585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Although it is well known that neonatal sepsis can induce important alterations in cardiorespiratory control, their detailed early features and the mechanisms involved remain poorly understood. As a first step in resolving this issue, the main goal of this study was to characterize these alterations more extensively by setting up a full-term newborn lamb model of systemic inflammation using lipopolysaccharide (LPS) injection. Two 6-h polysomnographic recordings were performed on two consecutive days on eight full-term lambs: the first after an IV saline injection (control condition, CTRL); the second, after an IV injection of 2.5 μg/kg Escherichia coli LPS 0127:B8 (LPS condition). Rectal temperature, locomotor activity, state of alertness, arterial blood gases, respiratory frequency and heart rate, mean arterial blood pressure, apneas and cardiac decelerations, and heart-rate and respiratory-rate variability (HRV and RRV) were assessed. LPS injection decreased locomotor activity (p = 0.03) and active wakefulness (p = 0.01) compared to the CTRL. In addition, LPS injection led to a biphasic increase in rectal temperature (p = 0.01 at ∼30 and 180 min) and in respiratory frequency and heart rate (p = 0.0005 and 0.005, respectively), and to an increase in cardiac decelerations (p = 0.05). An overall decrease in HRV and RRV was also observed. Interestingly, the novel analysis of the representations of the horizontal and vertical visibility network yielded the most statistically significant alterations in HRV structure, suggesting its potential clinical importance for providing an earlier diagnosis of neonatal bacterial sepsis. A second goal was to assess whether the reflexivity of the autonomic nervous system was altered after LPS injection by studying the cardiorespiratory components of the laryngeal and pulmonary chemoreflexes. No difference was found. Lastly, preliminary results provide proof of principle that brainstem inflammation (increased IL-8 and TNF-α mRNA expression) can be shown 6 h after LPS injection. In conclusion, this full-term lamb model of systemic inflammation reproduces several important aspects of neonatal bacterial sepsis and paves the way for studies in preterm lambs aiming to assess both the effect of prematurity and the central neural mechanisms of cardiorespiratory control alterations observed during neonatal sepsis.
Collapse
Affiliation(s)
- Stéphanie Nault
- Neonatal Respiratory Research Unit, Departments of Pediatrics and Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Sally Al-Omar
- Neonatal Respiratory Research Unit, Departments of Pediatrics and Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Annabelle Levasseur
- Neonatal Respiratory Research Unit, Departments of Pediatrics and Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Charlène Nadeau
- Neonatal Respiratory Research Unit, Departments of Pediatrics and Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nathalie Samson
- Neonatal Respiratory Research Unit, Departments of Pediatrics and Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Roqaya Imane
- CHU Sainte-Justine Research Center, Departments of Neurosciences and Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Sophie Tremblay
- CHU Sainte-Justine Research Center, Departments of Neurosciences and Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Guy Carrault
- Inserm, LTSI - UMR 1099, CHU Rennes, Université Rennes 1, Rennes, France
| | - Patrick Pladys
- Inserm, LTSI - UMR 1099, CHU Rennes, Université Rennes 1, Rennes, France
| | - Jean-Paul Praud
- Neonatal Respiratory Research Unit, Departments of Pediatrics and Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
14
|
Tunctan B, Senol SP, Temiz-Resitoglu M, Guden DS, Sahan-Firat S, Falck JR, Malik KU. Eicosanoids derived from cytochrome P450 pathway of arachidonic acid and inflammatory shock. Prostaglandins Other Lipid Mediat 2019; 145:106377. [PMID: 31586592 DOI: 10.1016/j.prostaglandins.2019.106377] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 09/06/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022]
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Septic shock, the most common form of vasodilatory shock, is a subset of sepsis in which circulatory and cellular/metabolic abnormalities are severe enough to increase mortality. Inflammatory shock constitutes the hallmark of sepsis, but also a final common pathway of any form of severe long-term tissue hypoperfusion. The pathogenesis of inflammatory shock seems to be due to circulating substances released by pathogens (e.g., bacterial endotoxins) and host immuno-inflammatory responses (e.g., changes in the production of histamine, bradykinin, serotonin, nitric oxide [NO], reactive nitrogen and oxygen species, and arachidonic acid [AA]-derived eicosanoids mainly through NO synthase, cyclooxygenase, and cytochrome P450 [CYP] pathways, and proinflammatory cytokine formation). Therefore, refractory hypotension to vasoconstrictors with end-organ hypoperfusion is a life threatening feature of inflammatory shock. This review summarizes the current knowledge regarding the role of eicosanoids derived from CYP pathway of AA in animal models of inflammatory shock syndromes with an emphasis on septic shock in addition to potential therapeutic strategies targeting specific CYP isoforms responsible for proinflammatory/anti-inflammatory mediator production.
Collapse
Affiliation(s)
- Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey.
| | - Sefika Pinar Senol
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | | | - Demet Sinem Guden
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Seyhan Sahan-Firat
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kafait U Malik
- Department of Pharmacology, College of Medicine, University of Tennessee, Center for Health Sciences, Memphis, TN, USA
| |
Collapse
|
15
|
Increased expression of Toll-like receptors 2, 3, 4 and 7 mRNA in the kidney and intestine of a septic mouse model. Sci Rep 2019; 9:4010. [PMID: 30850654 PMCID: PMC6408498 DOI: 10.1038/s41598-019-40537-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/15/2019] [Indexed: 12/15/2022] Open
Abstract
Toll-like receptors (TLRs) are the key regulators of innate and adaptive immunity and are highly expressed during sepsis. Thus, studying the expression of TLRs in an animal septic model might indicate their possible association with acute kidney injury in sepsis. Seventy-two male C57BL/6J mice were used for this study. Randomly, these animals were divided into 6 groups (N = 12/group): 3 control and 3 septic groups depending on the euthanasia time (24 h, 48 h, 72 h). Septic groups underwent cecal ligation and puncture (CLP) to induce peritonitis, while control groups had a sham operation. Hematological tests were performed in serum for immune biomarkers; immunohistochemistry, morphometry and qRT-PCR analysis were used on both kidney and intestine tissues to evaluate the expression of TLR 2, 3, 4 and 7 in a septic process. At the end of each experimental period, we found that TLRs 2, 3, 4 and 7 were expressed in both tissues but there were differences between those at various time points. Also, we found that mRNA levels were significantly higher in qRT-PCR evaluation in septic groups than control groups in both kidney and intestinal tissues (p < 0.05); showing a steady increase in the septic groups as the time to euthanasia was prolonged (p < 0.05). Overall, our study provides a suggestion that TLRs 2, 3, 4 and 7 are highly expressed in the kidneys of septic mice and especially that these TLRs are sensitive and specific markers for sepsis. Finally, our study supports the diagnostic importance of TLRs in AKI and provides an insight on the contribution of septic mice models in the study of multi organ dysfunction syndrome in general.
Collapse
|
16
|
Kohoutová M, Dejmek J, Tůma Z, Kuncová J. Variability of mitochondrial respiration in relation to sepsis-induced multiple organ dysfunction. Physiol Res 2019; 67:S577-S592. [PMID: 30607965 DOI: 10.33549/physiolres.934050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ample experimental evidence suggests that sepsis could interfere with any mitochondrial function; however, the true role of mitochondrial dysfunction in the pathogenesis of sepsis-induced multiple organ dysfunction is still a matter of controversy. This review is primarily focused on mitochondrial oxygen consumption in various animal models of sepsis in relation to human disease and potential sources of variability in experimental results documenting decrease, increase or no change in mitochondrial respiration in various organs and species. To date, at least three possible explanations of sepsis-associated dysfunction of the mitochondrial respiratory system and consequently impaired energy production have been suggested: 1. Mitochondrial dysfunction is secondary to tissue hypoxia. 2. Mitochondria are challenged by various toxins or mediators of inflammation that impair oxygen utilization (cytopathic hypoxia). 3. Compromised mitochondrial respiration could be an active measure of survival strategy resembling stunning or hibernation. To reveal the true role of mitochondria in sepsis, sources of variability of experimental results based on animal species, models of sepsis, organs studied, or analytical approaches should be identified and minimized by the use of appropriate experimental models resembling human sepsis, wider use of larger animal species in preclinical studies, more detailed mapping of interspecies differences and organ-specific features of oxygen utilization in addition to use of complex and standardized protocols evaluating mitochondrial respiration.
Collapse
Affiliation(s)
- M Kohoutová
- Institute of Physiology, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic.
| | | | | | | |
Collapse
|
17
|
Chen L, Welty-Wolf KE, Kraft BD. Nonhuman primate species as models of human bacterial sepsis. Lab Anim (NY) 2019; 48:57-65. [PMID: 30643274 PMCID: PMC6613635 DOI: 10.1038/s41684-018-0217-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/10/2018] [Indexed: 12/24/2022]
Abstract
Sepsis involves a disordered host response to systemic infection leading to high morbidity and mortality. Despite intense research, targeted sepsis therapies beyond antibiotics have remained elusive. The cornerstone of sepsis research is the development of animal models to mimic human bacterial infections and test novel pharmacologic targets. Nonhuman primates (NHPs) have served as an attractive, but expensive, animal to model human bacterial infections due to their nearly identical cardiopulmonary anatomy and physiology, as well as host response to infection. Several NHP species have provided substantial insight into sepsis-mediated inflammation, endothelial dysfunction, acute lung injury, and multi-organ failure. The use of NHPs has usually focused on translating therapies from early preclinical models to human clinical trials. However, despite successful sepsis interventions in NHP models, there are still no FDA-approved sepsis therapies. This review highlights major NHP models of bacterial sepsis and their relevance to clinical medicine. Treatment for bacterial sepsis remains limited beyond the use of antibiotics. Lingye Chen, Karen Welty-Wolf, and Bryan Kraft review nonhuman primate models of sepsis and highlight their advantages and limitations compared to other preclinical models.
Collapse
Affiliation(s)
- Lingye Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| | - Karen E Welty-Wolf
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Bryan D Kraft
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
18
|
Souza AA, Costa AS, Campos DC, Batista AH, Sales GW, Nogueira NA, Alves KM, Coelho-de-Souza AN, Oliveira HD. Lipid transfer protein isolated from noni seeds displays antibacterial activity in vitro and improves survival in lethal sepsis induced by CLP in mice. Biochimie 2018; 149:9-17. [PMID: 29577952 DOI: 10.1016/j.biochi.2018.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 03/20/2018] [Indexed: 12/28/2022]
|
19
|
Aravanis CV, Kapelouzou A, Vagios S, Tsilimigras DI, Katsimpoulas M, Moris D, Demesticha TD, Schizas D, Kostakis A, Machairas A, Liakakos T. Toll-Like Receptors -2, -3, -4 and -7 Expression Patterns in the Liver of a CLP-Induced Sepsis Mouse Model. J INVEST SURG 2018; 33:109-117. [PMID: 29847187 DOI: 10.1080/08941939.2018.1476630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Objective: To investigate the expression of toll-like receptors (TLRs) in the liver of septic mouse model. Materials and methods: For this study seventy-two C57BL/6J mice were utilized. Sepsis was induced by cecal ligation and puncture (CLP) in the mice of the three septic (S) groups (euthanized at 24 hours, 48 hours and 72 hours). Sham (laparotomy)- operated mice constituted the control (C) groups (euthanized at 24, 48 and 72 hours). Blood samples were drawn and liver tissues were extracted and examined histologically. The expression of TLRs 2, 3, 4 and 7 was assessed via immunohistochemistry (IHC) and qrt-PCR (quantitative- Polymerase Chain Reaction). Results: Liver function tests were elevated in all S-groups in contrast to their time-equivalent control groups (S24 versus C24, S48 versus C48 and S72 versus C72) (p < 0.05). Liver histology displayed progressive deterioration in the septic groups. IHC and qrt-PCR both showed an increased expression of all TLRs in the septic mice in comparison to their analogous control ones (p < 0.05). Analysis of livers and intestines of the septic animals proved that all TLRs were significantly expressed in higher levels in the intestinal tissues at 24h and 48h (p < 0.05) except for TLR 3 in S48 (p > 0.05); whereas at 72 hours only TLR 4 levels were significantly elevated in the intestine (p < 0.05). Conclusion: TLRs seem to be expressed in significant levels in the livers of septic rodents, indicating that they have a possible role in the pathophysiology of liver damage in septic conditions.
Collapse
Affiliation(s)
- Chrysostomos V Aravanis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Alkistis Kapelouzou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Stylianos Vagios
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Michalis Katsimpoulas
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Demetrios Moris
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Theano D Demesticha
- Department of Anatomy, Faculty of Medicine, National and Kapodistrian, University of Athens, Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Alkiviadis Kostakis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Anastasios Machairas
- 3rd Department of Surgery, National and Kapodistrian University of Athens, School of Medicine, Attikon University Hospital, Athens, Greece
| | - Theodore Liakakos
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
20
|
Bakopoulos A, Kapelouzou A, Tsilimigras DI, Katsimpoulas M, Schizas D, Aravanis C, Balafas E, Mavroidis M, Pavlakis K, Machairas A, Liakakos T. Expression of Toll-like receptors (TLRs) in the lungs of an experimental sepsis mouse model. PLoS One 2017; 12:e0188050. [PMID: 29136027 PMCID: PMC5685586 DOI: 10.1371/journal.pone.0188050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/31/2017] [Indexed: 01/09/2023] Open
Abstract
Background Sepsis is a condition characterized by high mortality rates and often accompanied by multiple-organ dysfunction. During sepsis, respiratory system may be affected and possibly result in acute respiratory distress syndrome (ARDS). Toll-like receptors (TLRs), as a first line defense against invading pathogens, seem to be highly expressed in septic states. Therefore, expression of TLRs in the lungs of a sepsis animal model could indicate the involvement of the respiratory system and appear as a severity index of the clinical course. Materials and methods A total of 72 C57BL/6J mice, aged 12–14 weeks, were studied. The animals were divided into 3 sepsis (S) groups (24h, 48h and 72h) and 3 control (C) groups (24h, 48h and 72h), each consisting of 12 mice. The S-groups were subjected to cecal ligation and puncture (CLP) while the C-groups had a sham operation performed. Blood samples were drawn from all groups. Total blood count analysis was performed along with the measurement of certain biochemical markers. Additionally, lung tissues were harvested and the expression of TLRs, namely TLR 2, TLR 3, TLR 4 and TLR 7 were evaluated by means of immunofluorescence (IF) and qRT-PCR (quantitative-Polymerase Chain Reaction). Statistical analysis was performed by using one-way ANOVA followed by student t-test. Results were considered statistically significant when p<0.05. Results WBCs and lymphocytes were decreased in all S-groups compared to the corresponding C-groups (p<0.05), while RBCs showed a gradual decline in S-groups with the lowest levels appearing in the S72 group. Only, monocytes were higher in S-groups, especially between S48-C48 (p<0.05) and S72-C72 (p<0.05). Creatinine, IL-10 and IL-6 levels were significantly increased in the S-groups compared to the corresponding C-groups (S24 vs C24, S48 vs C48 and S72 vs C72, p<0.05). IF showed that expression of TLRs 2, 3, 4 and 7 was increased in all S-groups compared to the time-adjusted C-groups (p<0.05). Similarly, qRT-PCR revealed that expression of all TLRs was higher in all S-groups compared to their respective C-groups in both lungs and intestine (p<0.05). Comparing lung and intestinal tissues from S-groups, TLRs 2 and 4 were found increased in the lung at 24, 48 and 72 hours (p<0.05), whereas TLR 3 was higher in the intestine at all time points examined (p<0.05). Finally, TLR 7 levels were significantly higher in the intestinal tissues at 24 hours (p<0.0001), while lungs predominated at 48 hours (p<0.0001). Conclusion TLRs seem to be highly expressed in the lungs of septic mice, therefore suggesting a potential role in the pathogenesis of ARDS during sepsis. While more studies need to be conducted in order to completely understand the underlying mechanisms, TLRs may represent a promising target for establishing novel therapeutic strategies in the treatment of sepsis.
Collapse
Affiliation(s)
- Anargyros Bakopoulos
- Third Department of Surgery, Attikon General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Alkistis Kapelouzou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Michalis Katsimpoulas
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitrios Schizas
- 1st Department of Surgery, Laikon General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Chrysostomos Aravanis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Evaggelos Balafas
- Laboratory Animal Facilities, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Manolis Mavroidis
- Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Kitty Pavlakis
- Department of Pathology, School of Medicine, University of Athens, Athens, Greece
| | - Anastasios Machairas
- Third Department of Surgery, Attikon General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodore Liakakos
- 1st Department of Surgery, Laikon General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
21
|
Xie F, Min S, Chen J, Yang J, Wang X. Ulinastatin inhibited sepsis-induced spinal inflammation to alleviate peripheral neuromuscular dysfunction in an experimental rat model of neuromyopathy. J Neurochem 2017; 143:225-235. [PMID: 28796387 DOI: 10.1111/jnc.14145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/30/2022]
Abstract
Sepsis initiates a neuroinflammatory cascade that contributes to spinal cord inflammation and behavioral impairment, and Toll-like receptor 4 (TLR4) is an important mediator of this cascade. In this study, we tested the hypothesis that ulinastatin (ULI) inhibits sepsis-induced spinal inflammation to alleviate peripheral neuromuscular dysfunction through the TLR4/myeloid differentiation factor 88 (MyD88)/NF-κB signaling pathway. Muscular function, spinal cord water content, and cytokine levels of spinal cord were tested in TLR4-inhibited rats subjected to cecal ligation and puncture (CLP). The normal rats were intrathecally injected with different concentrations of ULI or normal saline 60 min before CLP. At 24 h after CLP, the activation of microglia/macrophage was detected by immunofluorescence staining; and the cytokines were assayed by ELISA. The protein expression level of the TLR4 and its downstream effectors (MyD88 and NF-κB), the neuregulin-1, and the γ- and α7-nicotinic acetylcholine receptor was measured using western blotting. The protein expression of TLR4 in the spinal cord reached a maximum at 24 h post-CLP. Compared to the sham rats, the TLR4-inhibited rats showed attenuated functional impairment and cytokine release. ULI (5000 U/kg ) treatment pre-CLP significantly reduced the number of TLR4-positive microglia/macrophages as well as inflammatory mediator release in septic rats. Furthermore, the levels of TLR4, MyD88, and NF-κB and the expression level of γ-/α7-nicotinic acetylcholine receptors also decreased after ULI treatment. ULI administration may improve patient outcome by reducing the spinal inflammation through a mechanism involving the TLR4/MyD88/NF-κB signaling in sepsis.
Collapse
Affiliation(s)
- Fei Xie
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Su Min
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jingyuan Chen
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Yang
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Wang
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Stortz JA, Raymond SL, Mira JC, Moldawer LL, Mohr AM, Efron PA. Murine Models of Sepsis and Trauma: Can We Bridge the Gap? ILAR J 2017; 58:90-105. [PMID: 28444204 PMCID: PMC5886315 DOI: 10.1093/ilar/ilx007] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 02/06/2023] Open
Abstract
Sepsis and trauma are both leading causes of death in the United States and represent major public health challenges. Murine models have largely been used in sepsis and trauma research to better understand the pathophysiological changes that occur after an insult and to develop potential life-saving therapeutic agents. Mice are favorable subjects for this type of research given the variety of readily available strains including inbred, outbred, and transgenic strains. In addition, they are relatively easy to maintain and have a high fecundity. However, pharmacological therapies demonstrating promise in preclinical mouse models of sepsis and trauma often fail to demonstrate similar efficacy in human clinical trials, prompting considerable criticism surrounding the capacity of murine models to recapitulate complex human diseases like sepsis and traumatic injury. Fundamental differences between the two species include, but are not limited to, the divergence of the transcriptomic response, the mismatch of temporal response patterns, differences in both innate and adaptive immunity, and heterogeneity within the human population in comparison to the homogeneity of highly inbred mouse strains. Given the ongoing controversy, this narrative review aims to not only highlight the historical importance of the mouse as an animal research model but also highlight the current benefits and limitations of the model as it pertains to sepsis and trauma. Lastly, this review will propose future directions that may promote further use of the model.
Collapse
Affiliation(s)
- Julie A. Stortz
- Julie A. Stortz, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Steven L. Raymond, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Juan C. Mira, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Lyle L. Moldawer, PhD, is the Robert H. and Kathleen M. Axline Basic Science Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Alicia M. Mohr, MD, is an Associate Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Philip A. Efron, MD, is an Associate Professor of Surgery and Anesthesiology at the University of Florida College of Medicine and Medical Director for the surgical intensive care unit at the University of Florida Health Shands Hospital, Department of Surgery, University of Florida College of Medicine, Gainesville, FL.
| | - Steven L. Raymond
- Julie A. Stortz, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Steven L. Raymond, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Juan C. Mira, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Lyle L. Moldawer, PhD, is the Robert H. and Kathleen M. Axline Basic Science Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Alicia M. Mohr, MD, is an Associate Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Philip A. Efron, MD, is an Associate Professor of Surgery and Anesthesiology at the University of Florida College of Medicine and Medical Director for the surgical intensive care unit at the University of Florida Health Shands Hospital, Department of Surgery, University of Florida College of Medicine, Gainesville, FL.
| | - Juan C. Mira
- Julie A. Stortz, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Steven L. Raymond, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Juan C. Mira, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Lyle L. Moldawer, PhD, is the Robert H. and Kathleen M. Axline Basic Science Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Alicia M. Mohr, MD, is an Associate Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Philip A. Efron, MD, is an Associate Professor of Surgery and Anesthesiology at the University of Florida College of Medicine and Medical Director for the surgical intensive care unit at the University of Florida Health Shands Hospital, Department of Surgery, University of Florida College of Medicine, Gainesville, FL.
| | - Lyle L. Moldawer
- Julie A. Stortz, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Steven L. Raymond, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Juan C. Mira, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Lyle L. Moldawer, PhD, is the Robert H. and Kathleen M. Axline Basic Science Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Alicia M. Mohr, MD, is an Associate Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Philip A. Efron, MD, is an Associate Professor of Surgery and Anesthesiology at the University of Florida College of Medicine and Medical Director for the surgical intensive care unit at the University of Florida Health Shands Hospital, Department of Surgery, University of Florida College of Medicine, Gainesville, FL.
| | - Alicia M. Mohr
- Julie A. Stortz, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Steven L. Raymond, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Juan C. Mira, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Lyle L. Moldawer, PhD, is the Robert H. and Kathleen M. Axline Basic Science Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Alicia M. Mohr, MD, is an Associate Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Philip A. Efron, MD, is an Associate Professor of Surgery and Anesthesiology at the University of Florida College of Medicine and Medical Director for the surgical intensive care unit at the University of Florida Health Shands Hospital, Department of Surgery, University of Florida College of Medicine, Gainesville, FL.
| | - Philip A. Efron
- Julie A. Stortz, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Steven L. Raymond, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Juan C. Mira, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Lyle L. Moldawer, PhD, is the Robert H. and Kathleen M. Axline Basic Science Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Alicia M. Mohr, MD, is an Associate Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Philip A. Efron, MD, is an Associate Professor of Surgery and Anesthesiology at the University of Florida College of Medicine and Medical Director for the surgical intensive care unit at the University of Florida Health Shands Hospital, Department of Surgery, University of Florida College of Medicine, Gainesville, FL.
| |
Collapse
|
23
|
Jung JY, Kwak YH, Chang I, Kwon WY, Suh GJ, Choi D. Protective effect of hemopexin on systemic inflammation and acute lung injury in an endotoxemia model. J Surg Res 2017; 212:15-21. [DOI: 10.1016/j.jss.2016.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/21/2016] [Accepted: 12/21/2016] [Indexed: 01/17/2023]
|
24
|
Improving animal welfare using continuous nalbuphine infusion in a long-term rat model of sepsis. Intensive Care Med Exp 2017; 5:23. [PMID: 28429311 PMCID: PMC5399012 DOI: 10.1186/s40635-017-0137-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/12/2017] [Indexed: 11/16/2022] Open
Abstract
Background Sepsis research relies on animal models to investigate the mechanisms of the dysregulated host response to infection. Animal welfare concerns request the use of potent analgesics for the Refinement of existing sepsis models, according to the 3Rs principle. Nevertheless, adequate analgesia is often missing, partly because the effects of analgesics in this particular condition are unknown. We evaluated the use of nalbuphine, an opioid with kappa agonistic and mu antagonistic effects, in rats with and without experimental sepsis. Methods Male Wistar rats were anesthetized with isoflurane and instrumented with a venous line for drug administration. Arterial cannulation allowed for blood pressure measurements and blood sampling in short-term experiments of non-septic animals. Nalbuphine (or placebo) was administered intravenously at a dose of 1 mg/kg/h. Long-term (48 h) experiments in awake septic animals included repetitive clinical scoring with the Rat Grimace Scale and continuous heart rate monitoring by telemetry. Sepsis was induced by intraperitoneal injection of faecal slurry. Nalbuphine plasma levels were measured by liquid chromatography—high resolution mass spectrometry. Results In anesthetized healthy animals, nalbuphine led to a significant reduction of respiratory rate, heart rate, and mean arterial pressure during short-term experiments. In awake septic animals, a continuous nalbuphine infusion did not affect heart rate but significantly improved the values of the Rat Grimace Scale. Nalbuphine plasma concentrations remained stable between 4 and 24 h of continuous infusion in septic rats. Conclusions In anaesthetised rats, nalbuphine depresses respiratory rate, heart rate, and blood pressure. In awake animals, nalbuphine analgesia improves animal welfare during sepsis.
Collapse
|
25
|
Coronary Arterial Lesions of Kawasaki Disease Observed in a Mouse Model of Sepsis: A Pilot Study and a Review of the Literature. ACTA ACUST UNITED AC 2017. [DOI: 10.14776/piv.2017.24.2.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Xie F, Min S, Liu L, Peng L, Hao X, Zhu X. Advanced age enhances the sepsis-induced up-regulation of the γ- and α7-nicotinic acetylcholine receptors in different parts of the skeletal muscles. Arch Gerontol Geriatr 2016; 65:1-8. [DOI: 10.1016/j.archger.2016.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/12/2015] [Accepted: 02/06/2016] [Indexed: 11/17/2022]
|
27
|
Sims CR, Nguyen TC, Mayeux PR. Could Biomarkers Direct Therapy for the Septic Patient? J Pharmacol Exp Ther 2016; 357:228-39. [PMID: 26857961 PMCID: PMC4851319 DOI: 10.1124/jpet.115.230797] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/05/2016] [Indexed: 01/25/2023] Open
Abstract
Sepsis is a serious medical condition caused by a severe systemic inflammatory response to a bacterial, fungal, or viral infection that most commonly affects neonates and the elderly. Advances in understanding the pathophysiology of sepsis have resulted in guidelines for care that have helped reduce the risk of dying from sepsis for both children and older adults. Still, over the past three decades, a large number of clinical trials have been undertaken to evaluate pharmacological agents for sepsis. Unfortunately, all of these trials have failed, with the use of some agents even shown to be harmful. One key issue in these trials was the heterogeneity of the patient population that participated. What has emerged is the need to target therapeutic interventions to the specific patient's underlying pathophysiological processes, rather than looking for a universal therapy that would be effective in a "typical" septic patient, who does not exist. This review supports the concept that identification of the right biomarkers that can direct therapy and provide timely feedback on its effectiveness will enable critical care physicians to decrease mortality of patients with sepsis and improve the quality of life of survivors.
Collapse
Affiliation(s)
- Clark R Sims
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.R.S., P.R.M.); and Department of Pediatrics, Section of Critical Care Medicine, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas (T.C.N.)
| | - Trung C Nguyen
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.R.S., P.R.M.); and Department of Pediatrics, Section of Critical Care Medicine, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas (T.C.N.)
| | - Philip R Mayeux
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.R.S., P.R.M.); and Department of Pediatrics, Section of Critical Care Medicine, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas (T.C.N.)
| |
Collapse
|
28
|
Cobrin AR, Blois SL, Abrams-Ogg ACG, Kruth SA, Dewey C, Holowaychuk MK, Gauthier V. Neutrophil gelatinase-associated lipocalin in dogs with chronic kidney disease, carcinoma, lymphoma and endotoxaemia. J Small Anim Pract 2016; 57:291-8. [DOI: 10.1111/jsap.12481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/16/2015] [Accepted: 01/15/2016] [Indexed: 01/03/2023]
Affiliation(s)
- A. R. Cobrin
- Department of Clinical Studies, Ontario Veterinary College; University of Guelph; Guelph Ontario Canada N1G 2W1
| | - S. L. Blois
- Department of Clinical Studies, Ontario Veterinary College; University of Guelph; Guelph Ontario Canada N1G 2W1
| | - A. C. G. Abrams-Ogg
- Department of Clinical Studies, Ontario Veterinary College; University of Guelph; Guelph Ontario Canada N1G 2W1
| | - S. A. Kruth
- Department of Clinical Studies, Ontario Veterinary College; University of Guelph; Guelph Ontario Canada N1G 2W1
| | - C. Dewey
- Department of Population Medicine, Ontario Veterinary College; University of Guelph; Guelph Ontario Canada N1G 2W1
| | - M. K. Holowaychuk
- Department of Clinical Studies, Ontario Veterinary College; University of Guelph; Guelph Ontario Canada N1G 2W1
| | - V. Gauthier
- Department of Clinical Studies, Ontario Veterinary College; University of Guelph; Guelph Ontario Canada N1G 2W1
| |
Collapse
|
29
|
Stojkovic I, Ghalwash M, Cao XH, Obradovic Z. Effectiveness of Multiple Blood-Cleansing Interventions in Sepsis, Characterized in Rats. Sci Rep 2016; 6:24719. [PMID: 27097769 PMCID: PMC4838820 DOI: 10.1038/srep24719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/04/2016] [Indexed: 01/20/2023] Open
Abstract
Sepsis is a serious, life-threatening condition that presents a growing problem in medicine, but there is still no satisfying solution for treating it. Several blood cleansing approaches recently gained attention as promising interventions that target the main site of problem development–the blood. The focus of this study is an evaluation of the theoretical effectiveness of hemoadsorption therapy and pathogen reduction therapy. This is evaluated using the mathematical model of Murine sepsis, and the results of over 2,200 configurations of single and multiple intervention therapies simulated on 5,000 virtual subjects suggest the advantage of pathogen reduction over hemoadsorption therapy. However, a combination of two approaches is found to take advantage of their complementary effects and outperform either therapy alone. The conducted computational experiments provide unprecedented evidence that the combination of two therapies synergistically enhances the positive effects beyond the simple superposition of the benefits of two approaches. Such a characteristic could have a profound influence on the way sepsis treatment is conducted.
Collapse
Affiliation(s)
- Ivan Stojkovic
- Center for Data Analytics and Biomedical Informatics, College of Science and Technology, Temple University, 19122, Philadelphia, PA, USA.,Signals and Systems Department, School of Electrical Engineering, University of Belgrade, 11120, Belgrade, Serbia
| | - Mohamed Ghalwash
- Center for Data Analytics and Biomedical Informatics, College of Science and Technology, Temple University, 19122, Philadelphia, PA, USA.,Mathematics Department, Faculty of Science, Ain Shams University, 11566, Cairo, Egypt
| | - Xi Hang Cao
- Center for Data Analytics and Biomedical Informatics, College of Science and Technology, Temple University, 19122, Philadelphia, PA, USA
| | - Zoran Obradovic
- Center for Data Analytics and Biomedical Informatics, College of Science and Technology, Temple University, 19122, Philadelphia, PA, USA
| |
Collapse
|
30
|
Chu M, Gao Y, Zhang Y, Zhou B, Wu B, Yao J, Xu D. The role of speckle tracking echocardiography in assessment of lipopolysaccharide-induced myocardial dysfunction in mice. J Thorac Dis 2016; 7:2253-61. [PMID: 26793347 DOI: 10.3978/j.issn.2072-1439.2015.12.37] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Sepsis-induced myocardial dysfunction is a common and severe complication of septic shock. Conventional echocardiography often fails to reveal myocardial depression in severe sepsis due to hemodynamic changes; in contrast, decline of strain measurements by speckle tracking echocardiography (STE) may indicate impaired cardiac function. This study investigates the role of STE in detecting lipopolysaccharide (LPS)-induced cardiac dysfunction with mouse models. METHODS We evaluated cardiac function in 20 mice at baseline, 6 h (n=10) and 20 h (n=10) after LPS injection to monitor the development of heart failure induced by severe sepsis using 2-D and M-mode echocardiography. Ejection fraction (EF) and fractional shortening (FS) were measured with standard M-mode tracings, whereas circumferential and radial strain was derived from STE. Serum biochemical and cardiac histopathological examinations were performed to determine sepsis-induced myocardial injury. RESULTS Left ventricular (LV) myocardial function was significantly reduced at 6 h after LPS treatment assessed by circumferential strain (-14.65%±3.00% to -8.48%±1.72%, P=0.006), whereas there were no significant differences between 6 and 20 h group. Conversely, EF and FS were significantly increased at 20 h when comparing to 6 h (P<0.05) accompanied with marked decreases in EF and FS 6 h following LPS administration. Consistent with strain echocardiographic results, we showed that LPS injection leaded to elevated serum level of cardiac Troponin-T (cTnT), CK-MB and rising leucocytes infiltration into myocardium within 20 h. CONCLUSIONS Altogether, these results demonstrate that, circumferential strain by STE is a specific and reliable value for evaluating LPS-induced cardiac dysfunction in mice.
Collapse
Affiliation(s)
- Ming Chu
- 1 Department of Geriatrics, 2 Department of Cardiology, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China ; 3 Departments of Genetics, Pediatrics and Medicine (Cardiology), Albert Einstein College of Medicine of Yeshiva University, New York, NY, USA
| | - Yao Gao
- 1 Department of Geriatrics, 2 Department of Cardiology, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China ; 3 Departments of Genetics, Pediatrics and Medicine (Cardiology), Albert Einstein College of Medicine of Yeshiva University, New York, NY, USA
| | - Yanjuan Zhang
- 1 Department of Geriatrics, 2 Department of Cardiology, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China ; 3 Departments of Genetics, Pediatrics and Medicine (Cardiology), Albert Einstein College of Medicine of Yeshiva University, New York, NY, USA
| | - Bin Zhou
- 1 Department of Geriatrics, 2 Department of Cardiology, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China ; 3 Departments of Genetics, Pediatrics and Medicine (Cardiology), Albert Einstein College of Medicine of Yeshiva University, New York, NY, USA
| | - Bingruo Wu
- 1 Department of Geriatrics, 2 Department of Cardiology, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China ; 3 Departments of Genetics, Pediatrics and Medicine (Cardiology), Albert Einstein College of Medicine of Yeshiva University, New York, NY, USA
| | - Jing Yao
- 1 Department of Geriatrics, 2 Department of Cardiology, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China ; 3 Departments of Genetics, Pediatrics and Medicine (Cardiology), Albert Einstein College of Medicine of Yeshiva University, New York, NY, USA
| | - Di Xu
- 1 Department of Geriatrics, 2 Department of Cardiology, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China ; 3 Departments of Genetics, Pediatrics and Medicine (Cardiology), Albert Einstein College of Medicine of Yeshiva University, New York, NY, USA
| |
Collapse
|
31
|
Abstract
This report aims to facilitate the implementation of the Three Rs (replacement, reduction, and refinement) in the use of animal models or procedures involving sepsis and septic shock, an area where there is the potential of high levels of suffering for animals. The emphasis is on refinement because this has the greatest potential for immediate implementation. Specific welfare issues are identified and discussed, and practical measures are proposed to reduce animal use and suffering as well as reducing experimental variability and increasing translatability. The report is based on discussions and submissions from a nonregulatory expert working group consisting of veterinarians, animal technologists, and scientists with expert knowledge relevant to the field.
Collapse
|
32
|
Park SH, Baek SI, Yun J, Lee S, Yoon DY, Jung JK, Jung SH, Hwang BY, Hong JT, Han SB, Kim Y. IRAK4 as a Molecular Target in the Amelioration of Innate Immunity–Related Endotoxic Shock and Acute Liver Injury by Chlorogenic Acid. THE JOURNAL OF IMMUNOLOGY 2015; 194:1122-1130. [DOI: 10.4049/jimmunol.1402101] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Mice lacking the IL-1R–associated kinase 4 (IRAK4) are completely resistant to LPS-induced endotoxic disorder or the TLR9 agonist CpG DNA plus d-galactosamine–induced acute liver injury (ALI), whereas wild-type strains succumb. However, translational drugs against sepsis or ALI remain elusive. Lonicerae flos extract is undergoing the clinical trial phase I in LPS-injected healthy human volunteers for sepsis treatment. In the current study, chlorogenic acid (CGA), a major anti-inflammatory constituent of lonicerae flos extract, rescued endotoxic mortality of LPS-intoxicated C57BL/6 mice, as well as ameliorated ALI of LPS/d-galactosamine–challenged C57BL/6 mice. As a mechanism, CGA inhibited various TLR agonist–, IL-1α–, or high-mobility group box-1–stimulated autophosphorylation (activation) of IRAK4 in peritoneal macrophages from C57BL/6 or C3H/HeJ mice via directly affecting the kinase activity of IRAK4, a proximal signal transducer in the MyD88-mediated innate immunity that enhances transcriptional activity of NF-κB or AP-1. CGA consequently attenuated protein or mRNA levels of NF-κB/AP-1 target genes encoding TNF-α, IL-1α, IL-6, and high-mobility group box-1 in vivo under endotoxemia or ALI. Finally, this study suggests IRAK4 as a molecular target of CGA in the treatment of innate immunity–related shock and organ dysfunction following insult of various TLR pathogens from bacteria and viruses.
Collapse
Affiliation(s)
- Sun Hong Park
- *College of Pharmacy, Chungbuk National University, Cheongju 362-763, Korea
| | - Seung-Il Baek
- *College of Pharmacy, Chungbuk National University, Cheongju 362-763, Korea
| | - Jieun Yun
- †Bio-evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Ochang 363-883, Korea; and
| | - Seungmin Lee
- *College of Pharmacy, Chungbuk National University, Cheongju 362-763, Korea
| | - Da Young Yoon
- *College of Pharmacy, Chungbuk National University, Cheongju 362-763, Korea
| | - Jae-Kyung Jung
- *College of Pharmacy, Chungbuk National University, Cheongju 362-763, Korea
| | - Sang-Hun Jung
- ‡College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea
| | - Bang Yeon Hwang
- *College of Pharmacy, Chungbuk National University, Cheongju 362-763, Korea
| | - Jin Tae Hong
- *College of Pharmacy, Chungbuk National University, Cheongju 362-763, Korea
| | - Sang-Bae Han
- *College of Pharmacy, Chungbuk National University, Cheongju 362-763, Korea
| | - Youngsoo Kim
- *College of Pharmacy, Chungbuk National University, Cheongju 362-763, Korea
| |
Collapse
|
33
|
Jung JY, Kwak YH, Kim KS, Kwon WY, Suh GJ. Change of hemopexin level is associated with the severity of sepsis in endotoxemic rat model and the outcome of septic patients. J Crit Care 2014; 30:525-30. [PMID: 25588861 DOI: 10.1016/j.jcrc.2014.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 12/19/2022]
Abstract
PURPOSE The purpose of the study is to uncover the role of hemopexin (HPX) as anti-inflammatory mediator in animals and humans. MATERIALS AND METHODS We injected rats with 5 and 10 mg/kg of lipopolysaccharide to induce low- and high-grade endotoxemia (LGE and HGE), respectively, and we measured serum levels of tumor necrosis factor α, interleukin 6, and HPX at 0, 1, 3, and 6 hours after the injection. In a clinical study, we measured the initial serum HPX concentrations of septic shock patients. We evaluated the correlation between HPX levels and sepsis severity in rats and the predictive value of the HPX level for 28-day mortality of patients. RESULTS In rats, serum interleukin 6 and tumor necrosis factor α concentrations were lower in LGE than in HGE, whereas the HPX level in HGE at 6 hours was significantly lower than in LGE (0.88, interquartile range [0.79-1.00] vs 1.33, interquartile range [1.29-1.49] mg/mL, P= .002). In patients, the initial serum HPX level in nonsurvivors was significantly lower than in survivors (0.75 vs 1.02 mg/mL, P< .001). Multivariate logistic regression analysis revealed that HPX exhibited independent prognostic value for 28-day mortality, and its levels were closely related to Acute Physiology and Chronic Health Evaluation II scores. CONCLUSIONS Low serum HPX levels are related to sepsis severity and could indicate poor prognosis for septic shock patients.
Collapse
Affiliation(s)
- Jae Yun Jung
- Department of Emergency Medicine, Seoul National University School of Medicine, Seoul, Republic of Korea.
| | - Young Ho Kwak
- Department of Emergency Medicine, Seoul National University School of Medicine, Seoul, Republic of Korea.
| | - Kyung Su Kim
- Department of Emergency Medicine, Seoul National University School of Medicine, Seoul, Republic of Korea.
| | - Woon Yong Kwon
- Department of Emergency Medicine, Seoul National University School of Medicine, Seoul, Republic of Korea.
| | - Gil Joon Suh
- Department of Emergency Medicine, Seoul National University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
34
|
Starr ME, Steele AM, Saito M, Hacker BJ, Evers BM, Saito H. A new cecal slurry preparation protocol with improved long-term reproducibility for animal models of sepsis. PLoS One 2014; 9:e115705. [PMID: 25531402 PMCID: PMC4274114 DOI: 10.1371/journal.pone.0115705] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/26/2014] [Indexed: 01/29/2023] Open
Abstract
Sepsis, a life-threatening systemic inflammatory response syndrome induced by infection, is widely studied using laboratory animal models. While cecal-ligation and puncture (CLP) is considered the gold standard model for sepsis research, it may not be preferable for experiments comparing animals of different size or under different dietary regimens. By comparing cecum size, shape, and cecal content characteristics in mice under different experimental conditions (aging, diabetes, pancreatitis), we show that cecum variability could be problematic for some CLP experiments. The cecal slurry (CS) injection model, in which the cecal contents of a laboratory animal are injected intraperitoneally to other animals, is an alternative method for inducing polymicrobial sepsis; however, the CS must be freshly prepared under conventional protocols, which is a major disadvantage with respect to reproducibility and convenience. The objective of this study was to develop an improved CS preparation protocol that allows for long-term storage of CS with reproducible results. Using our new CS preparation protocol we found that bacterial viability is maintained for at least 6 months when the CS is prepared in 15% glycerol-PBS and stored at -80°C. To test sepsis-inducing efficacy of stored CS stocks, various amounts of CS were injected to young (4-6 months old), middle-aged (12-14 months old), and aged (24-26 months old) male C57BL/6 mice. Dose- and age-dependent mortality was observed with high reproducibility. Circulating bacteria levels strongly correlated with mortality suggesting an infection-mediated death. Further, injection with heat-inactivated CS resulted in acute hypothermia without mortality, indicating that CS-mediated death is not due to endotoxic shock. This new CS preparation protocol results in CS stocks which are durable for freezing preservation without loss of bacterial viability, allowing experiments to be performed more conveniently and with higher reproducibility than before.
Collapse
Affiliation(s)
- Marlene E. Starr
- Aging and Critical Care Research Laboratory, University of Kentucky, Lexington, Kentucky, 40536, United States of America
- Department of Surgery, University of Kentucky, Lexington, Kentucky, 40536, United States of America
| | - Allison M. Steele
- Aging and Critical Care Research Laboratory, University of Kentucky, Lexington, Kentucky, 40536, United States of America
- Department of Physiology, University of Kentucky, Lexington, Kentucky, 40536, United States of America
| | - Mizuki Saito
- Aging and Critical Care Research Laboratory, University of Kentucky, Lexington, Kentucky, 40536, United States of America
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, 40536, United States of America
| | - Bill J. Hacker
- Department of Surgery, University of Kentucky, Lexington, Kentucky, 40536, United States of America
| | - B. Mark Evers
- Department of Surgery, University of Kentucky, Lexington, Kentucky, 40536, United States of America
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, 40536, United States of America
| | - Hiroshi Saito
- Aging and Critical Care Research Laboratory, University of Kentucky, Lexington, Kentucky, 40536, United States of America
- Department of Surgery, University of Kentucky, Lexington, Kentucky, 40536, United States of America
- Department of Physiology, University of Kentucky, Lexington, Kentucky, 40536, United States of America
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, 40536, United States of America
| |
Collapse
|
35
|
West TE, Myers ND, Chantratita N, Chierakul W, Limmathurotsakul D, Wuthiekanun V, Miao EA, Hajjar AM, Peacock SJ, Liggitt HD, Skerrett SJ. NLRC4 and TLR5 each contribute to host defense in respiratory melioidosis. PLoS Negl Trop Dis 2014; 8:e3178. [PMID: 25232720 PMCID: PMC4169243 DOI: 10.1371/journal.pntd.0003178] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 08/09/2014] [Indexed: 02/02/2023] Open
Abstract
Burkholderia pseudomallei causes the tropical infection melioidosis. Pneumonia is a common manifestation of melioidosis and is associated with high mortality. Understanding the key elements of host defense is essential to developing new therapeutics for melioidosis. As a flagellated bacterium encoding type III secretion systems, B. pseudomallei may trigger numerous host pathogen recognition receptors. TLR5 is a flagellin sensor located on the plasma membrane. NLRC4, along with NAIP proteins, assembles a canonical caspase-1-dependent inflammasome in the cytoplasm that responds to flagellin (in mice) and type III secretion system components (in mice and humans). In a murine model of respiratory melioidosis, Tlr5 and Nlrc4 each contributed to survival. Mice deficient in both Tlr5 and Nlrc4 were not more susceptible than single knockout animals. Deficiency of Casp1/Casp11 resulted in impaired bacterial control in the lung and spleen; in the lung much of this effect was attributable to Nlrc4, despite relative preservation of pulmonary IL-1β production in Nlrc4−/− mice. Histologically, deficiency of Casp1/Casp11 imparted more severe pulmonary inflammation than deficiency of Nlrc4. The human NLRC4 region polymorphism rs6757121 was associated with survival in melioidosis patients with pulmonary involvement. Co-inheritance of rs6757121 and a functional TLR5 polymorphism had an additive effect on survival. Our results show that NLRC4 and TLR5, key components of two flagellin sensing pathways, each contribute to host defense in respiratory melioidosis. Melioidosis is an infection caused by Burkholderia pseudomallei, a bacterium that is found in tropical soil and water. Melioidosis can present in a variety of ways, but lung involvement is common and usually severe. The host response to infection governs outcome. In this study, we examined the role of two host sensors of bacterial components–TLR5 and NLRC4–to determine their necessity in respiratory melioidosis. Although both proteins are involved in detection of bacterial flagellin, in mice we defined specific and individual roles for TLR5 and NLRC4 in protecting against death from melioidosis. In humans with melioidosis involving the lung, genetic variation in these receptors also had independent associations with survival. These results underscore the importance of these elements of host defense in respiratory melioidosis and support further studies of the underlying mechanisms.
Collapse
Affiliation(s)
- T. Eoin West
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- International Respiratory and Severe Illness Center, University of Washington, Seattle, Washington, United States of America
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- * E-mail:
| | - Nicolle D. Myers
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wirongrong Chierakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Vanaporn Wuthiekanun
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Edward A. Miao
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, and Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Adeline M. Hajjar
- Department of Comparative Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Sharon J. Peacock
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - H. Denny Liggitt
- Department of Comparative Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Shawn J. Skerrett
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
36
|
Abstract
Sepsis, a common and potentially fatal systemic illness, is triggered by microbial infection and often leads to impaired function of the lungs, kidneys or other vital organs. Since the early 1980s, a large number of therapeutic agents for the treatment of sepsis have been evaluated in randomized controlled clinical trials. With few exceptions, the results from these trials have been disappointing, and no specific therapeutic agent is currently approved for the treatment of sepsis. To improve upon this dismal record, investigators will need to identify more suitable therapeutic targets, improve their approaches for selecting candidate compounds for clinical development and adopt better designs for clinical trials.
Collapse
Affiliation(s)
- Mitchell P Fink
- Departments of Surgery and Anesthesiology, David Geffen School of Medicine at University of California, Los Angeles, 10833 Le Conte Avenue, 72-160 CHS, Los Angeles California 90095, USA
| | - H Shaw Warren
- Infectious Disease Units, Departments of Pediatrics and Medicine, Massachusetts General Hospital East, 149 13th Street, Fifth Floor, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
37
|
Panda A, Tatarov I, Masek BJ, Hardick J, Crusan A, Wakefield T, Carroll K, Yang S, Hsieh YH, Lipsky MM, McLeod CG, Levine MM, Rothman RE, Gaydos CA, DeTolla LJ. A rabbit model of non-typhoidal Salmonella bacteremia. Comp Immunol Microbiol Infect Dis 2014; 37:211-20. [PMID: 25033732 DOI: 10.1016/j.cimid.2014.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 04/30/2014] [Accepted: 05/14/2014] [Indexed: 11/18/2022]
Abstract
Bacteremia is an important cause of morbidity and mortality in humans. In this study, we focused on the development of an animal model of bacteremia induced by non-typhoidal Salmonella. New Zealand White rabbits were inoculated with a human isolate of non-typhoidal Salmonella strain CVD J73 via the intra-peritoneal route. Blood samples were collected at specific time points and at euthanasia from infected rabbits. Additionally, tissue samples from the heart, lungs, spleen, gastrointestinal tract, liver and kidneys were obtained at euthanasia. All experimentally infected rabbits displayed clinical signs of disease (fever, dehydration, weight loss and lethargy). Tissues collected at necropsy from the animals exhibited histopathological changes indicative of bacteremia. Non-typhoidal Salmonella bacteria were detected in the blood and tissue samples of infected rabbits by microbiological culture and real-time PCR assays. The development of this animal model of bacteremia could prove to be a useful tool for studying how non-typhoidal Salmonella infections disseminate and spread in humans.
Collapse
Affiliation(s)
- Aruna Panda
- Program of Comparative Medicine and Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States.
| | - Ivan Tatarov
- Program of Comparative Medicine and Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Billie Jo Masek
- Department of Emergency Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Justin Hardick
- Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Annabelle Crusan
- Program of Comparative Medicine and Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Teresa Wakefield
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Karen Carroll
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Samuel Yang
- Department of Emergency Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Yu-Hsiang Hsieh
- Department of Emergency Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Michael M Lipsky
- Program of Comparative Medicine and Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Charles G McLeod
- Program of Comparative Medicine and Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Myron M Levine
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Medicine (Infectious Diseases), University of Maryland School of Medicine, Baltimore, MD, United States; Center for Vaccine Development, Division of Infectious Diseases and Tropical Pediatrics, Departments of Pediatrics, Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Richard E Rothman
- Department of Emergency Medicine, Johns Hopkins University, Baltimore, MD, United States; Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Charlotte A Gaydos
- Department of Emergency Medicine, Johns Hopkins University, Baltimore, MD, United States; Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Louis J DeTolla
- Program of Comparative Medicine and Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Medicine (Infectious Diseases), University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
38
|
Starr ME, Saito H. Sepsis in old age: review of human and animal studies. Aging Dis 2014; 5:126-36. [PMID: 24729938 PMCID: PMC3966671 DOI: 10.14336/ad.2014.0500126] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a serious problem among the geriatric population as its incidence and mortality rates dramatically increase with advanced age. Despite a large number of ongoing clinical and basic research studies, there is currently no effective therapeutic strategy that rescues elderly patients with severe sepsis. Recognition of this problem is relatively low as compared to other age-associated diseases. The disparity between clinical and basic studies is a problem, and this is likely due, in part, to the fact that most laboratory animals used for sepsis research are not old while the majority of sepsis cases occur in the geriatric population. The objective of this article is to review recent epidemiological studies and clinical observations, and compare these with findings from basic laboratory studies which have used aged animals in experimental sepsis.
Collapse
Affiliation(s)
- Marlene E Starr
- Department of Surgery, Lexington, KY 40536, USA
- Markey Cancer Center University of Kentucky, Lexington, KY 40536, USA
| | - Hiroshi Saito
- Department of Surgery, Lexington, KY 40536, USA
- Department of Physiology, Lexington, KY 40536, USA
- Markey Cancer Center University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
39
|
Cinel I, Goldfarb RD, Metzger A, Lurie K, Jasti P, Knob CR, Parrillo JE, Phillip Dellinger R. Biphasic intra-thoracic pressure regulation augments cardiac index during porcine peritonitis: a feasibility study. J Med Eng Technol 2013; 38:49-54. [DOI: 10.3109/03091902.2013.857733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
40
|
Chantratita N, Tandhavanant S, Myers ND, Seal S, Arayawichanont A, Kliangsa-ad A, Hittle LE, Ernst RK, Emond MJ, Wurfel MM, Day NPJ, Peacock SJ, West TE. Survey of innate immune responses to Burkholderia pseudomallei in human blood identifies a central role for lipopolysaccharide. PLoS One 2013; 8:e81617. [PMID: 24303060 PMCID: PMC3841221 DOI: 10.1371/journal.pone.0081617] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/25/2013] [Indexed: 12/28/2022] Open
Abstract
B. pseudomallei is a gram-negative bacterium that causes the tropical infection melioidosis. In northeast Thailand, mortality from melioidosis approaches 40%. As exemplified by the lipopolysaccharide-Toll-like receptor 4 interaction, innate immune responses to invading bacteria are precipitated by activation of host pathogen recognition receptors by pathogen associated molecular patterns. Human melioidosis is characterized by up-regulation of pathogen recognition receptors and pro-inflammatory cytokine release. In contrast to many gram-negative pathogens, however, the lipopolysaccharide of B. pseudomallei is considered only weakly inflammatory. We conducted a study in 300 healthy Thai subjects to investigate the ex vivo human blood response to various bacterial pathogen associated molecular patterns, including lipopolysaccharide from several bacteria, and to two heat-killed B. pseudomallei isolates. We measured cytokine levels after stimulation of fresh whole blood with a panel of stimuli. We found that age, sex, and white blood cell count modulate the innate immune response to B. pseudomallei. We further observed that, in comparison to other stimuli, the innate immune response to B. pseudomallei is most highly correlated with the response to lipopolysaccharide. The magnitude of cytokine responses induced by B. pseudomallei lipopolysaccharide was significantly greater than those induced by lipopolysaccharide from Escherichia coli and comparable to many responses induced by lipopolysaccharide from Salmonella minnesota despite lower amounts of lipid A in the B. pseudomallei lipopolysaccharide preparation. In human monocytes stimulated with B. pseudomallei, addition of polymyxin B or a TLR4/MD-2 neutralizing antibody inhibited the majority of TNF-α production. Challenging existing views, our data indicate that the innate immune response to B. pseudomallei in human blood is largely driven by lipopolysaccharide, and that the response to B. pseudomallei lipopolysaccharide in blood is greater than the response to other lipopolysaccharide expressing isolates. Our findings suggest that B. pseudomallei lipopolysaccharide may play a central role in stimulating the host response in melioidosis.
Collapse
Affiliation(s)
- Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- * E-mail:
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicolle D. Myers
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Sudeshna Seal
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | | | - Aroonsri Kliangsa-ad
- Department of Clinical Pathology, Sappasithiprasong Hospital, Ubon Ratchathani, Thailand
| | - Lauren E. Hittle
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Maryland, United States of America
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Maryland, United States of America
| | - Mary J. Emond
- Department of Biostatistics, University of Washington, Seattle, WA, United States of America
| | - Mark M. Wurfel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Nicholas P. J. Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Center for Clinical Vaccinology and Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Sharon J. Peacock
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - T. Eoin West
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- International Respiratory and Severe Illness Center, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
41
|
Inhibition of IRAK-4 activity for rescuing endotoxin LPS-induced septic mortality in mice by lonicerae flos extract. Biochem Biophys Res Commun 2013; 442:183-8. [PMID: 24269819 DOI: 10.1016/j.bbrc.2013.11.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 11/11/2013] [Indexed: 01/15/2023]
Abstract
Lonicerae flos extract (HS-23) is a clinical candidate currently undergoing Phase I trial in lipopolysaccharide (LPS)-injected healthy human volunteers, but its molecular basis remains to be defined. Here, we investigated protective effects of HS-23 or its major constituents on Escherichia coli LPS-induced septic mortality in mice. Intravenous treatment with HS-23 rescued LPS-intoxicated C57BL/6J mice under septic conditions, and decreased the levels of cytokines such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β and high-mobility group box-1 (HMGB-1) in the blood. Chlorogenic acid (CGA) and its isomers were assigned as major constituents of HS-23 in the protection against endotoxemia. As a molecular mechanism, HS-23 or CGA isomers inhibited endotoxin LPS-induced autophosphorylation of the IL-1 receptor-associated kinase 4 (IRAK-4) in mouse peritoneal macrophages as well as the kinase activity of IRAK-4 in cell-free reactions. HS-23 consequently suppressed downstream pathways critical for LPS-induced activation of nuclear factor (NF)-κB or activating protein 1 (AP-1) in the peritoneal macrophages. HS-23 also inhibited various toll-like receptor agonists-induced nitric oxide (NO) production, and down-regulated LPS-induced expression of NF-κB/AP-1-target inflammatory genes in the cells. Taken together, HS-23 or CGA isomers exhibited anti-inflammatory therapy against LPS-induced septic mortality in mice, at least in part, mediated through the inhibition of IRAK-4.
Collapse
|
42
|
Abstract
Sepsis remains a common, serious, and heterogeneous clinical entity that is difficult to define adequately. Despite its importance as a public health problem, efforts to develop and gain regulatory approval for a specific therapeutic agent for the adjuvant treatment of sepsis have been remarkably unsuccessful. One step in the critical pathway for the development of a new agent for adjuvant treatment of sepsis is evaluation in an appropriate animal model of the human condition. Unfortunately, the animal models that have been used for this purpose have often yielded misleading findings. It is likely that there are multiple reasons for the discrepancies between the results obtained in tests of pharmacological agents in animal models of sepsis and the outcomes of human clinical trials. One of important reason may be that the changes in gene expression, which are triggered by trauma or infection, are different in mice, a commonly used species for preclinical testing, and humans. Additionally, many species, including mice and baboons, are remarkably resistant to the toxic effects of bacterial lipopolysaccharide, whereas humans are exquisitely sensitive. New approaches toward the use of animals for sepsis research are being investigated. But, at present, results from preclinical studies of new therapeutic agents for sepsis must be viewed with a degree of skepticism.
Collapse
Affiliation(s)
- Mitchell P Fink
- Departments of Surgery and Anesthesiology; David Geffen School of Medicine at UCLA; Los Angeles, CA USA
| |
Collapse
|
43
|
Hamburger T, Broecker-Preuss M, Hartmann M, Schade FU, de Groot H, Petrat F. Effects of glycine, pyruvate, resveratrol, and nitrite on tissue injury and cytokine response in endotoxemic rats. J Surg Res 2013; 183:e7-e21. [PMID: 23434211 DOI: 10.1016/j.jss.2013.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/15/2012] [Accepted: 01/11/2013] [Indexed: 12/15/2022]
|
44
|
Abstract
Models of sepsis have been instructive in understanding the sequence of events in animals and, to an extent, in humans with sepsis. Events developing early in sepsis suggest that a hyperinflammatory state exists, accompanied by a buildup of oxidants in tissues reflective of a redox imbalance. Development of immunosuppression and degraded innate and adaptive immune responses are well-established complications of sepsis. In addition, there is robust activation of the complement system, which contributes to the harmful effects of sepsis. These events appear to be associated with development of multiorgan failure. The relevance of animal models of sepsis to human sepsis and the failure of human clinical trials are discussed, together with suggestions as to how clinical trial design might be improved.
Collapse
Affiliation(s)
- Peter A Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
45
|
Kieslichova E, Rocen M, Merta D, Kudla M, Splichal I, Cap J, Viklicky O, Gürlich R. The Effect of Immunosuppression on Manifestations of Sepsis in an Animal Model of Cecal Ligation and Puncture. Transplant Proc 2013; 45:770-7. [DOI: 10.1016/j.transproceed.2012.07.159] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 07/04/2012] [Accepted: 07/19/2012] [Indexed: 12/19/2022]
|
46
|
Bosmann M, Ward PA. The inflammatory response in sepsis. Trends Immunol 2012; 34:129-36. [PMID: 23036432 DOI: 10.1016/j.it.2012.09.004] [Citation(s) in RCA: 375] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 12/18/2022]
Abstract
The pathophysiology of sepsis and its accompanying systemic inflammatory response syndrome (SIRS) and the events that lead to multiorgan failure and death are poorly understood. It is known that, in septic humans and rodents, the development of SIRS is associated with a loss of the redox balance, but SIRS can also develop in noninfectious states. In addition, a hyperinflammatory state develops, together with impaired innate immune functions of phagocytes, immunosuppression, and complement activation, collectively leading to septic shock and lethality. Here, we discuss recent insights into the signaling pathways in immune and phagocytic cells that underlie sepsis and SIRS and consider how these might be targeted for therapeutic interventions to reverse or attenuate pathways that lead to lethality during sepsis.
Collapse
Affiliation(s)
- Markus Bosmann
- The University of Michigan Medical School, Department of Pathology, 1301 Catherine Road, Ann Arbor, MI 48109-5602, USA
| | | |
Collapse
|
47
|
Pranskunas A, Pilvinis V, Dambrauskas Z, Rasimaviciute R, Planciuniene R, Dobozinskas P, Veikutis V, Vaitkaitis D, Boerma EC. Early course of microcirculatory perfusion in eye and digestive tract during hypodynamic sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R83. [PMID: 22587828 PMCID: PMC3580626 DOI: 10.1186/cc11341] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/15/2012] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The aim of the study was to evaluate and compare the microcirculatory perfusion during experimental sepsis in different potentially available parts of the body, such as sublingual mucosa, conjunctiva of the eye, and mucosa of jejunum and rectum. METHODS Pigs were randomly assigned to sepsis (n = 9) and sham (n = 4) groups. The sepsis group received a fixed dose of live Escherichia coli infusion over a 1-hour period (1.8 × 10(9)/kg colony-forming units). Animals were observed 5 hours after the start of E. coli infusion. In addition to systemic hemodynamic assessment, we performed conjunctival, sublingual, jejunal, and rectal evaluation of microcirculation by using Sidestream Dark Field (SDF) videomicroscopy at the same time points: at baseline, and at 3 and 5 hours after the start of live E. coli infusion. Assessment of microcirculatory parameters of convective oxygen transport (microvascular flow index (MFI) and proportion of perfused vessels (PPV)), and diffusion distance (perfused vessel density (PVD) and total vessel density (TVD)) was done by using a semiquantitative method. RESULTS Infusion of E. coli resulted in a hypodynamic state of sepsis associated with low cardiac output and increased systemic vascular resistance despite fluid administration. Significant decreases in MFI and PPV of small vessels were observed in sublingual, conjunctival, jejunal, and rectal locations 3 and 5 hours after the start of E. coli infusion in comparison with baseline variables. Correlation between sublingual and conjunctival (r = 0.80; P = 0.036), sublingual and jejunal (r = 0.80; P = 0.044), and sublingual and rectal (r = 0.79; P = 0.03) MFI was observed 3 hours after onset of sepsis. However, this strong correlation between the sublingual and other regions disappeared 5 hours after the start of E. coli infusion. Overall, the sublingual mucosa exhibited the most-pronounced alterations of microcirculatory flow in comparison with conjunctival, jejunal, and rectal microvasculature (P < 0.05). CONCLUSIONS In this pig model, a time-dependent correlation exists between sublingual and microvascular beds during the course of a hypodynamic state of sepsis.
Collapse
|
48
|
Vinokurov M, Ostrov V, Yurinskaya M, Garbuz D, Murashev A, Antonova O, Evgen’ev M. Recombinant human Hsp70 protects against lipoteichoic acid-induced inflammation manifestations at the cellular and organismal levels. Cell Stress Chaperones 2012; 17:89-101. [PMID: 21845530 PMCID: PMC3227847 DOI: 10.1007/s12192-011-0288-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/30/2011] [Accepted: 08/01/2011] [Indexed: 01/13/2023] Open
Abstract
It has been previously reported that pretreatment with exogenous heat shock protein 70 (Hsp70) is able to protect cells and animals from the deleterious effects of bacterial lipopolysaccharide (LPS) produced by Gram-negative bacteria. However, the effects of Hsp70 pretreatment on lipoteichoic acid (LTA) challenge resulted from Gram-positive bacteria infection have not been fully elucidated. In this study, we demonstrated that preconditioning with human recombinant Hsp70 ameliorates various manifestations of systematic inflammation, including reactive oxygen species, TNFα, and CD11b/CD18 adhesion receptor expression induction observed in different myeloid cells after LTA addition. Therefore, exogenous Hsp70 may provide a mechanism for controlling excessive inflammatory responses after macrophage activation. Furthermore, in a rat model of LTA-induced sepsis, we demonstrated that prophylactic administration of exogenous human Hsp70 significantly exacerbated numerous homeostatic and hemodynamic disturbances induced by LTA challenge and partially normalized the coagulation system and multiple biochemical blood parameters, including albumin and bilirubin concentrations, which were severely disturbed after LTA injections. Importantly, prophylactic intravenous injection of Hsp70 before LTA challenge significantly reduced mortality rates. Thus, exogenous mammalian Hsp70 may serve as a powerful cellular defense agent against the deleterious effects of bacterial pathogens, such as LTA and LPS. Taken together, our findings reveal novel functions of this protein and establish exogenous Hsp70 as a promising pharmacological agent for the prophylactic treatment of various types of sepsis.
Collapse
Affiliation(s)
- Maxim Vinokurov
- Institute of Cell Biophysics of RAS, Pushchino, Moscow Region, 142290 Russia
- Pushchino State University, Pushchino, Moscow Region, 142290 Russia
| | - Vladimir Ostrov
- Branch of Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of RAS, Pushchino, Moscow Region, 142290 Russia
| | - Marina Yurinskaya
- Institute of Cell Biophysics of RAS, Pushchino, Moscow Region, 142290 Russia
| | - David Garbuz
- Engelhardt Institute of Molecular Biology of RAS, Vavilova, 32, Moscow, 119991 Russia
| | - Arkady Murashev
- Branch of Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of RAS, Pushchino, Moscow Region, 142290 Russia
| | - Olga Antonova
- Institute of Cell Biophysics of RAS, Pushchino, Moscow Region, 142290 Russia
- Pushchino State University, Pushchino, Moscow Region, 142290 Russia
| | - Mikhail Evgen’ev
- Engelhardt Institute of Molecular Biology of RAS, Vavilova, 32, Moscow, 119991 Russia
- Institute of Cell Biophysics of RAS, Pushchino, Moscow Region, 142290 Russia
| |
Collapse
|
49
|
Regueira T, Andresen M, Mercado M, Downey P. Fisiopatología de la insuficiencia renal aguda durante la sepsis. Med Intensiva 2011; 35:424-32. [DOI: 10.1016/j.medin.2011.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 03/15/2011] [Accepted: 03/24/2011] [Indexed: 01/20/2023]
|
50
|
|