1
|
Coelho MA, Strauss ME, Watterson A, Cooper S, Bhosle S, Illuzzi G, Karakoc E, Dinçer C, Vieira SF, Sharma M, Moullet M, Conticelli D, Koeppel J, McCarten K, Cattaneo CM, Veninga V, Picco G, Parts L, Forment JV, Voest EE, Marioni JC, Bassett A, Garnett MJ. Base editing screens define the genetic landscape of cancer drug resistance mechanisms. Nat Genet 2024; 56:2479-2492. [PMID: 39424923 PMCID: PMC11549056 DOI: 10.1038/s41588-024-01948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Drug resistance is a principal limitation to the long-term efficacy of cancer therapies. Cancer genome sequencing can retrospectively delineate the genetic basis of drug resistance, but this requires large numbers of post-treatment samples to nominate causal variants. Here we prospectively identify genetic mechanisms of resistance to ten oncology drugs from CRISPR base editing mutagenesis screens in four cancer cell lines using a guide RNA library predicted to install 32,476 variants in 11 cancer genes. We identify four functional classes of protein variants modulating drug sensitivity and use single-cell transcriptomics to reveal how these variants operate through distinct mechanisms, including eliciting a drug-addicted cell state. We identify variants that can be targeted with alternative inhibitors to overcome resistance and functionally validate an epidermal growth factor receptor (EGFR) variant that sensitizes lung cancer cells to EGFR inhibitors. Our variant-to-function map has implications for patient stratification, therapy combinations and drug scheduling in cancer treatment.
Collapse
Affiliation(s)
- Matthew A Coelho
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK.
- Cancer Genome Editing, Wellcome Sanger Institute, Hinxton, UK.
- Open Targets, Cambridge, UK.
| | - Magdalena E Strauss
- EMBL-European Bioinformatics Institute, Cambridge, UK
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
- Gene Editing and Cellular Research and Development, Wellcome Sanger Institute, Hinxton, UK
- Department of Mathematics and Statistics, University of Exeter, Exeter, UK
| | - Alex Watterson
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Sarah Cooper
- Gene Editing and Cellular Research and Development, Wellcome Sanger Institute, Hinxton, UK
| | - Shriram Bhosle
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | | | - Emre Karakoc
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
- Open Targets, Cambridge, UK
| | - Cansu Dinçer
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Sara F Vieira
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
- Open Targets, Cambridge, UK
| | - Mamta Sharma
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Marie Moullet
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Daniela Conticelli
- Department of Oncology, University of Turin, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Jonas Koeppel
- Generative and Synthetic Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Katrina McCarten
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Chiara M Cattaneo
- Department of Immunology and Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vivien Veninga
- Department of Immunology and Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Gabriele Picco
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
- Open Targets, Cambridge, UK
| | - Leopold Parts
- Generative and Synthetic Genomics, Wellcome Sanger Institute, Hinxton, UK
| | | | - Emile E Voest
- Department of Immunology and Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - John C Marioni
- EMBL-European Bioinformatics Institute, Cambridge, UK
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
- Genentech, South San Francisco, CA, USA
| | - Andrew Bassett
- Gene Editing and Cellular Research and Development, Wellcome Sanger Institute, Hinxton, UK
| | - Mathew J Garnett
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK.
- Open Targets, Cambridge, UK.
| |
Collapse
|
2
|
Chhabra Y, Fane ME, Pramod S, Hüser L, Zabransky DJ, Wang V, Dixit A, Zhao R, Kumah E, Brezka ML, Truskowski K, Nandi A, Marino-Bravante GE, Carey AE, Gour N, Maranto DA, Rocha MR, Harper EI, Ruiz J, Lipson EJ, Jaffee EM, Bibee K, Sunshine JC, Ji H, Weeraratna AT. Sex-dependent effects in the aged melanoma tumor microenvironment influence invasion and resistance to targeted therapy. Cell 2024; 187:6016-6034.e25. [PMID: 39243764 DOI: 10.1016/j.cell.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/19/2024] [Accepted: 08/07/2024] [Indexed: 09/09/2024]
Abstract
There is documented sex disparity in cutaneous melanoma incidence and mortality, increasing disproportionately with age and in the male sex. However, the underlying mechanisms remain unclear. While biological sex differences and inherent immune response variability have been assessed in tumor cells, the role of the tumor-surrounding microenvironment, contextually in aging, has been overlooked. Here, we show that skin fibroblasts undergo age-mediated, sex-dependent changes in their proliferation, senescence, ROS levels, and stress response. We find that aged male fibroblasts selectively drive an invasive, therapy-resistant phenotype in melanoma cells and promote metastasis in aged male mice by increasing AXL expression. Intrinsic aging in male fibroblasts mediated by EZH2 decline increases BMP2 secretion, which in turn drives the slower-cycling, highly invasive, and therapy-resistant melanoma cell phenotype, characteristic of the aged male TME. Inhibition of BMP2 activity blocks the emergence of invasive phenotypes and sensitizes melanoma cells to BRAF/MEK inhibition.
Collapse
Affiliation(s)
- Yash Chhabra
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | - Mitchell E Fane
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Sneha Pramod
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Laura Hüser
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Daniel J Zabransky
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Vania Wang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Agrani Dixit
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Ruzhang Zhao
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Edwin Kumah
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Megan L Brezka
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Kevin Truskowski
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Asmita Nandi
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Gloria E Marino-Bravante
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Alexis E Carey
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Naina Gour
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Devon A Maranto
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Murilo R Rocha
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Elizabeth I Harper
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Justin Ruiz
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Evan J Lipson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205, USA; The Cancer Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kristin Bibee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joel C Sunshine
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Amarillo D, Flaherty KT, Sullivan RJ. Targeted Therapy Innovations for Melanoma. Hematol Oncol Clin North Am 2024; 38:973-995. [PMID: 38971651 DOI: 10.1016/j.hoc.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Melanoma, a malignant tumor of melanocytes, poses a significant clinical challenge due to its aggressive nature and high potential for metastasis. The advent of targeted therapy has revolutionized the treatment landscape of melanoma, particularly for tumors harboring specific genetic alterations such as BRAF V600E mutations. Despite the initial success of targeted agents, resistance inevitably arises, underscoring the need for novel therapeutic strategies. This review explores the latest advances in targeted therapy for melanoma, focusing on new molecular targets, combination therapies, and strategies to overcome resistance.
Collapse
Affiliation(s)
- Dahiana Amarillo
- Oncóloga Médica, Departamento Básico de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Keith T Flaherty
- Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ryan J Sullivan
- Mass General Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
4
|
Scardaci R, Berlinska E, Scaparone P, Vietti Michelina S, Garbo E, Novello S, Santamaria D, Ambrogio C. Novel RAF-directed approaches to overcome current clinical limits and block the RAS/RAF node. Mol Oncol 2024; 18:1355-1377. [PMID: 38362705 PMCID: PMC11161739 DOI: 10.1002/1878-0261.13605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Mutations in the RAS-RAF-MEK-ERK pathway are frequent alterations in cancer and RASopathies, and while RAS oncogene activation alone affects 19% of all patients and accounts for approximately 3.4 million new cases every year, less frequent alterations in the cascade's downstream effectors are also involved in cancer etiology. RAS proteins initiate the signaling cascade by promoting the dimerization of RAF kinases, which can act as oncoproteins as well: BRAFV600E is the most common oncogenic driver, mutated in the 8% of all malignancies. Research in this field led to the development of drugs that target the BRAFV600-like mutations (Class I), which are now utilized in clinics, but cause paradoxical activation of the pathway and resistance development. Furthermore, they are ineffective against non-BRAFV600E malignancies that dimerize and could be either RTK/RAS independent or dependent (Class II and III, respectively), which are still lacking an effective treatment. This review discusses the recent advances in anti-RAF therapies, including paradox breakers, dimer-inhibitors, immunotherapies, and other novel approaches, critically evaluating their efficacy in overcoming the therapeutic limitations, and their putative role in blocking the RAS pathway.
Collapse
Affiliation(s)
- Rossella Scardaci
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Ewa Berlinska
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Pietro Scaparone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Sandra Vietti Michelina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Edoardo Garbo
- Department of OncologyUniversity of Torino, San Luigi HospitalOrbassanoItaly
| | - Silvia Novello
- Department of OncologyUniversity of Torino, San Luigi HospitalOrbassanoItaly
| | - David Santamaria
- Centro de Investigación del CáncerCSIC‐Universidad de SalamancaSpain
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| |
Collapse
|
5
|
Ponzone L, Audrito V, Landi C, Moiso E, Levra Levron C, Ferrua S, Savino A, Vitale N, Gasparrini M, Avalle L, Vantaggiato L, Shaba E, Tassone B, Saoncella S, Orso F, Viavattene D, Marina E, Fiorilla I, Burrone G, Abili Y, Altruda F, Bini L, Deaglio S, Defilippi P, Menga A, Poli V, Porporato PE, Provero P, Raffaelli N, Riganti C, Taverna D, Cavallo F, Calautti E. RICTOR/mTORC2 downregulation in BRAF V600E melanoma cells promotes resistance to BRAF/MEK inhibition. Mol Cancer 2024; 23:105. [PMID: 38755661 PMCID: PMC11097536 DOI: 10.1186/s12943-024-02010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND The main drawback of BRAF/MEK inhibitors (BRAF/MEKi)-based targeted therapy in the management of BRAF-mutated cutaneous metastatic melanoma (MM) is the development of therapeutic resistance. We aimed to assess in this context the role of mTORC2, a signaling complex defined by the presence of the essential RICTOR subunit, regarded as an oncogenic driver in several tumor types, including MM. METHODS After analyzing The Cancer Genome Atlas MM patients' database to explore both overall survival and molecular signatures as a function of intra-tumor RICTOR levels, we investigated the effects of RICTOR downregulation in BRAFV600E MM cell lines on their response to BRAF/MEKi. We performed proteomic screening to identify proteins modulated by changes in RICTOR expression, and Seahorse analysis to evaluate the effects of RICTOR depletion on mitochondrial respiration. The combination of BRAFi with drugs targeting proteins and processes emerged in the proteomic screening was carried out on RICTOR-deficient cells in vitro and in a xenograft setting in vivo. RESULTS Low RICTOR levels in BRAF-mutated MM correlate with a worse clinical outcome. Gene Set Enrichment Analysis of low-RICTOR tumors display gene signatures suggestive of activation of the mitochondrial Electron Transport Chain (ETC) energy production. RICTOR-deficient BRAFV600E cells are intrinsically tolerant to BRAF/MEKi and anticipate the onset of resistance to BRAFi upon prolonged drug exposure. Moreover, in drug-naïve cells we observed a decline in RICTOR expression shortly after BRAFi exposure. In RICTOR-depleted cells, both mitochondrial respiration and expression of nicotinamide phosphoribosyltransferase (NAMPT) are enhanced, and their pharmacological inhibition restores sensitivity to BRAFi. CONCLUSIONS Our work unveils an unforeseen tumor-suppressing role for mTORC2 in the early adaptation phase of BRAFV600E melanoma cells to targeted therapy and identifies the NAMPT-ETC axis as a potential therapeutic vulnerability of low RICTOR tumors. Importantly, our findings indicate that the evaluation of intra-tumor RICTOR levels has a prognostic value in metastatic melanoma and may help to guide therapeutic strategies in a personalized manner.
Collapse
Affiliation(s)
- Luca Ponzone
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Valentina Audrito
- Department of Science and Technological Innovation, University of Piemonte Orientale, Alessandria, 15121, Italy
| | - Claudia Landi
- Functional Proteomic Section, Department of Life Sciences, University of Siena, Siena, 53100, Italy
| | - Enrico Moiso
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Chiara Levra Levron
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Life Sciences and Systems Biology, University of Turin, Turin, 10126, Italy
| | - Sara Ferrua
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Aurora Savino
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Nicoletta Vitale
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Massimiliano Gasparrini
- Department of Agriculture, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Lidia Avalle
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
- Department of Science and Technological Innovation, University of Piemonte Orientale, Alessandria, 15121, Italy
| | - Lorenza Vantaggiato
- Functional Proteomic Section, Department of Life Sciences, University of Siena, Siena, 53100, Italy
| | - Enxhi Shaba
- Functional Proteomic Section, Department of Life Sciences, University of Siena, Siena, 53100, Italy
| | - Beatrice Tassone
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
- Department of Personal Care, dsm-firmenich, Kaiseraugst, 4303, Switzerland
| | - Stefania Saoncella
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Francesca Orso
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Daniele Viavattene
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Eleonora Marina
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Irene Fiorilla
- Department of Science and Technological Innovation, University of Piemonte Orientale, Alessandria, 15121, Italy
| | - Giulia Burrone
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
- Department of Clinical and Biological Sciences, University of Turin, Turin, 10124, Italy
| | - Youssef Abili
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
- GenomeUp, Rome, 00144, Italy
| | - Fiorella Altruda
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Luca Bini
- Functional Proteomic Section, Department of Life Sciences, University of Siena, Siena, 53100, Italy
| | - Silvia Deaglio
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Medical Sciences, University of Turin, Turin, 10124, Italy
| | - Paola Defilippi
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Alessio Menga
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Valeria Poli
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Paolo Ettore Porporato
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Paolo Provero
- Neuroscience Department "Rita Levi Montalcini", University of Turin, Turin, 10126, Italy
| | - Nadia Raffaelli
- Department of Agriculture, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Chiara Riganti
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Oncology, University of Turin, Turin, 10124, Italy
| | - Daniela Taverna
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Federica Cavallo
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy
| | - Enzo Calautti
- Molecular Biotechnology Center "Guido Tarone", University of Turin, Turin, 10126, Italy.
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, 10126, Italy.
| |
Collapse
|
6
|
Aya F, Lanuza-Gracia P, González-Pérez A, Bonnal S, Mancini E, López-Bigas N, Arance A, Valcárcel J. Genomic deletions explain the generation of alternative BRAF isoforms conferring resistance to MAPK inhibitors in melanoma. Cell Rep 2024; 43:114048. [PMID: 38614086 DOI: 10.1016/j.celrep.2024.114048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/06/2024] [Accepted: 03/19/2024] [Indexed: 04/15/2024] Open
Abstract
Resistance to MAPK inhibitors (MAPKi), the main cause of relapse in BRAF-mutant melanoma, is associated with the production of alternative BRAF mRNA isoforms (altBRAFs) in up to 30% of patients receiving BRAF inhibitor monotherapy. These altBRAFs have been described as being generated by alternative pre-mRNA splicing, and splicing modulation has been proposed as a therapeutic strategy to overcome resistance. In contrast, we report that altBRAFs are generated through genomic deletions. Using different in vitro models of altBRAF-mediated melanoma resistance, we demonstrate the production of altBRAFs exclusively from the BRAF V600E allele, correlating with corresponding genomic deletions. Genomic deletions are also detected in tumor samples from melanoma and breast cancer patients expressing altBRAFs. Along with the identification of altBRAFs in BRAF wild-type and in MAPKi-naive melanoma samples, our results represent a major shift in our understanding of mechanisms leading to the generation of BRAF transcripts variants associated with resistance in melanoma.
Collapse
Affiliation(s)
- Francisco Aya
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Medical Oncology Department, Hospital Clinic, Barcelona, Spain; Institut de Investigacions Biomedicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pablo Lanuza-Gracia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Abel González-Pérez
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sophie Bonnal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Estefania Mancini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nuria López-Bigas
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ana Arance
- Medical Oncology Department, Hospital Clinic, Barcelona, Spain; Institut de Investigacions Biomedicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
7
|
Liguoro D, Frigerio R, Ortolano A, Sacconi A, Acunzo M, Romano G, Nigita G, Bellei B, Madonna G, Capone M, Ascierto PA, Mancini R, Ciliberto G, Fattore L. The MITF/mir-579-3p regulatory axis dictates BRAF-mutated melanoma cell fate in response to MAPK inhibitors. Cell Death Dis 2024; 15:208. [PMID: 38472212 DOI: 10.1038/s41419-024-06580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
Therapy of melanoma has improved dramatically over the last years thanks to the development of targeted therapies (MAPKi) and immunotherapies. However, drug resistance continues to limit the efficacy of these therapies. Our research group has provided robust evidence as to the involvement of a set of microRNAs in the development of resistance to target therapy in BRAF-mutated melanomas. Among them, a pivotal role is played by the oncosuppressor miR-579-3p. Here we show that miR-579-3p and the microphthalmia-associated transcription factor (MITF) influence reciprocally their expression through positive feedback regulatory loops. In particular we show that miR-579-3p is specifically deregulated in BRAF-mutant melanomas and that its expression levels mirror those of MITF. Luciferase and ChIP studies show that MITF is a positive regulator of miR-579-3p, which is located in the intron 11 of the human gene ZFR (Zink-finger recombinase) and is co-transcribed with its host gene. Moreover, miR-579-3p, by targeting BRAF, is able to stabilize MITF protein thus inducing its own transcription. From biological points of view, early exposure to MAPKi or, alternatively miR-579-3p transfection, induce block of proliferation and trigger senescence programs in BRAF-mutant melanoma cells. Finally, the long-term development of resistance to MAPKi is able to select cells characterized by the loss of both miR-579-3p and MITF and the same down-regulation is also present in patients relapsing after treatments. Altogether these findings suggest that miR-579-3p/MITF interplay potentially governs the balance between proliferation, senescence and resistance to therapies in BRAF-mutant melanomas.
Collapse
Affiliation(s)
- Domenico Liguoro
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Rachele Frigerio
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, 88100, Catanzaro, Italy
| | - Arianna Ortolano
- Department of Anatomy, Histology, Forensic- Medicine and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy
| | - Andrea Sacconi
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Mario Acunzo
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Giulia Romano
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute, IRCCS, 00144, Rome, Italy
| | - Gabriele Madonna
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Mariaelena Capone
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Paolo Antonio Ascierto
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy
- Faculty of Medicine and Psychology, Department Clinical and Molecular Medicine, Sant'Andrea Hospital-Sapienza University of Rome, 00118, Rome, Italy
| | - Gennaro Ciliberto
- Scientific Directorate, IRCSS Regina Elena National Cancer Institute, 00144, Rome, Italy.
| | - Luigi Fattore
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| |
Collapse
|
8
|
Fletcher KA, Johnson DB. Investigational Approaches for Treatment of Melanoma Patients Progressing After Standard of Care. Cancer J 2024; 30:126-131. [PMID: 38527267 DOI: 10.1097/ppo.0000000000000702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
ABSTRACT The advent of effective immunotherapy, specifically cytotoxic T-lymphocyte associated protein 4 and programmed cell death 1 inhibitors, as well as targeted therapy including BRAF/MEK inhibitors, has dramatically changed the prognosis for metastatic melanoma patients. Up to 50% of patients may experience long-term survival currently. Despite these advances in melanoma treatment, many patients still progress and die of their disease. As such, there are many studies aimed at providing new treatment options for this population. Therapies currently under investigation include, but are not limited to, novel immunotherapies, targeted therapies, tumor-infiltrating lymphocytes and other cellular therapies, oncolytic viral therapy and other injectables, and fecal microbiota transplant. In this review, we discuss the emerging treatment options for metastatic melanoma patients who have progressed on standard of care treatments.
Collapse
Affiliation(s)
| | - Douglas B Johnson
- Department of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
9
|
Hanrahan AJ, Chen Z, Rosen N, Solit DB. BRAF - a tumour-agnostic drug target with lineage-specific dependencies. Nat Rev Clin Oncol 2024; 21:224-247. [PMID: 38278874 DOI: 10.1038/s41571-023-00852-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
In June 2022, the FDA granted Accelerated Approval to the BRAF inhibitor dabrafenib in combination with the MEK inhibitor trametinib for the treatment of adult and paediatric patients (≥6 years of age) with unresectable or metastatic BRAFV600E-mutant solid tumours, except for BRAFV600E-mutant colorectal cancers. The histology-agnostic approval of dabrafenib plus trametinib marks the culmination of two decades of research into the landscape of BRAF mutations in human cancers, the biochemical mechanisms underlying BRAF-mediated tumorigenesis, and the clinical development of selective RAF and MEK inhibitors. Although the majority of patients with BRAFV600E-mutant tumours derive clinical benefit from BRAF inhibitor-based combinations, resistance to treatment develops in most. In this Review, we describe the biochemical basis for oncogenic BRAF-induced activation of MAPK signalling and pan-cancer and lineage-specific mechanisms of intrinsic, adaptive and acquired resistance to BRAF inhibitors. We also discuss novel RAF inhibitors and drug combinations designed to delay the emergence of treatment resistance and/or expand the population of patients with BRAF-mutant cancers who benefit from molecularly targeted therapies.
Collapse
Affiliation(s)
- Aphrothiti J Hanrahan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ziyu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Physiology, Biophysics & Systems Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Neal Rosen
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, Cornell University, New York, NY, USA.
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
10
|
Yan C, Zhao L, Zhang X, Chu Z, Zhou T, Zhang Y, Geng S, Guo K. Cold atmospheric plasma sensitizes melanoma cells to targeted therapy agents in vitro. JOURNAL OF BIOPHOTONICS 2024; 17:e202300356. [PMID: 38041219 DOI: 10.1002/jbio.202300356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Cold atmospheric plasma (CAP) has been reported to kill melanoma cells in vitro and in vivo. BRAF and MEK inhibitors are targeted therapy agents for advanced melanoma patients with BRAF mutations. However, low overall survival and relapse-free survival are still tough challenges due to drug resistance. In this study, we confirmed that CAP alleviated innate drug resistance and promoted the anti-tumor effect of targeted therapy in A875 and WM115 melanoma cells in vitro. Further, we revealed that CAP altered the expression of various molecules concerning MAPK and PI3K-AKT pathways in A875 cells. This study demonstrates that CAP promises to work as adjuvant treatment with targeted therapy to overcome drug resistance for malignant tumors in future.
Collapse
Affiliation(s)
- Cong Yan
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lihong Zhao
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xinyue Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhaowei Chu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tong Zhou
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yanbin Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| | - Kun Guo
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| |
Collapse
|
11
|
Marsiglia WM, Chow A, Khan ZM, He L, Dar AC. Live-cell target engagement of allosteric MEKi on MEK-RAF/KSR-14-3-3 complexes. Nat Chem Biol 2024; 20:373-381. [PMID: 37919548 PMCID: PMC10948974 DOI: 10.1038/s41589-023-01454-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/19/2023] [Indexed: 11/04/2023]
Abstract
The RAS-mitogen-activated protein kinase (MAPK) pathway includes KSR, RAF, MEK and the phospho-regulatory sensor 14-3-3. Specific assemblies among these components drive various diseases and likely dictate efficacy for numerous targeted therapies, including allosteric MEK inhibitors (MEKi). However, directly measuring drug interactions on physiological RAS-MAPK complexes in live cells has been inherently challenging to query and therefore remains poorly understood. Here we present a series of NanoBRET-based assays to quantify direct target engagement of MEKi on MEK1 and higher-order MEK1-bound complexes with ARAF, BRAF, CRAF, KSR1 and KSR2 in the presence and absence of 14-3-3 in living cells. We find distinct MEKi preferences among these complexes that can be compiled to generate inhibitor binding profiles. Further, these assays can report on the influence of the pathogenic BRAF-V600E mutant on MEKi binding. Taken together, these approaches can be used as a platform to screen for compounds intended to target specific complexes in the RAS-MAPK cascade.
Collapse
Affiliation(s)
- William M Marsiglia
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Center for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacological Sciences, The Tisch Cancer Institute, Mount Sinai Center for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacology and Toxicology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Arthur Chow
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Center for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, The Tisch Cancer Institute, Mount Sinai Center for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Program in Chemical Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zaigham M Khan
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Center for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, The Tisch Cancer Institute, Mount Sinai Center for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Liu He
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Center for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, The Tisch Cancer Institute, Mount Sinai Center for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Program in Chemical Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arvin C Dar
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Center for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacological Sciences, The Tisch Cancer Institute, Mount Sinai Center for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Program in Chemical Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
12
|
Dhanyamraju PK. Drug resistance mechanisms in cancers: Execution of pro-survival strategies. J Biomed Res 2024; 38:95-121. [PMID: 38413011 PMCID: PMC11001593 DOI: 10.7555/jbr.37.20230248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 02/29/2024] Open
Abstract
One of the quintessential challenges in cancer treatment is drug resistance. Several mechanisms of drug resistance have been described to date, and new modes of drug resistance continue to be discovered. The phenomenon of cancer drug resistance is now widespread, with approximately 90% of cancer-related deaths associated with drug resistance. Despite significant advances in the drug discovery process, the emergence of innate and acquired mechanisms of drug resistance has impeded the progress in cancer therapy. Therefore, understanding the mechanisms of drug resistance and the various pathways involved is integral to treatment modalities. In the present review, I discuss the different mechanisms of drug resistance in cancer cells, including DNA damage repair, epithelial to mesenchymal transition, inhibition of cell death, alteration of drug targets, inactivation of drugs, deregulation of cellular energetics, immune evasion, tumor-promoting inflammation, genome instability, and other contributing epigenetic factors. Furthermore, I highlight available treatment options and conclude with future directions.
Collapse
Affiliation(s)
- Pavan Kumar Dhanyamraju
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
13
|
Fischer MM, Blüthgen N. On minimising tumoural growth under treatment resistance. J Theor Biol 2024; 579:111716. [PMID: 38135033 DOI: 10.1016/j.jtbi.2023.111716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Drug resistance is a major challenge for curative cancer treatment, representing the main reason of death in patients. Evolutionary biology suggests pauses between treatment rounds as a way to delay or even avoid resistance emergence. Indeed, this approach has already shown promising preclinical and early clinical results, and stimulated the development of mathematical models for finding optimal treatment protocols. Due to their complexity, however, these models do not lend themself to a rigorous mathematical analysis, hence so far clinical recommendations generally relied on numerical simulations and ad-hoc heuristics. Here, we derive two mathematical models describing tumour growth under genetic and epigenetic treatment resistance, respectively, which are simple enough for a complete analytical investigation. First, we find key differences in response to treatment protocols between the two modes of resistance. Second, we identify the optimal treatment protocol which leads to the largest possible tumour shrinkage rate. Third, we fit the "epigenetic model" to previously published xenograft experiment data, finding excellent agreement, underscoring the biological validity of our approach. Finally, we use the fitted model to calculate the optimal treatment protocol for this specific experiment, which we demonstrate to cause curative treatment, making it superior to previous approaches which generally aimed at stabilising tumour burden. Overall, our approach underscores the usefulness of simple mathematical models and their analytical examination, and we anticipate our findings to guide future preclinical and, ultimately, clinical research in optimising treatment regimes.
Collapse
Affiliation(s)
- Matthias M Fischer
- Institute for Theoretical Biology, Charité and Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - Nils Blüthgen
- Institute for Theoretical Biology, Charité and Humboldt Universität zu Berlin, 10115 Berlin, Germany.
| |
Collapse
|
14
|
Kozyra P, Pitucha M. Revisiting the Role of B-RAF Kinase as a Therapeutic Target in Melanoma. Curr Med Chem 2024; 31:2003-2020. [PMID: 37855341 DOI: 10.2174/0109298673258495231011065225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/19/2023] [Accepted: 08/17/2023] [Indexed: 10/20/2023]
Abstract
Malignant melanoma is the rarest but most aggressive and deadly skin cancer. Melanoma is the result of a malignant transformation of melanocytes, which leads to their uncontrolled proliferation. Mutations in the mitogen-activated protein kinase (MAPK) pathway, which are crucial for the control of cellular processes, such as apoptosis, division, growth, differentiation, and migration, are one of its most common causes. BRAF kinase, as one of the known targets of this pathway, has been known for many years as a prominent molecular target in melanoma therapy, and the following mini-review outlines the state-of-the-art knowledge regarding its structure, mutations and mechanisms.
Collapse
Affiliation(s)
- Paweł Kozyra
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, Lublin, PL, 20093, Poland
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, Lublin, PL-20093, Poland
| |
Collapse
|
15
|
Maltas J, Killarney ST, Singleton KR, Strobl MAR, Washart R, Wood KC, Wood KB. Drug dependence in cancer is exploitable by optimally constructed treatment holidays. Nat Ecol Evol 2024; 8:147-162. [PMID: 38012363 PMCID: PMC10918730 DOI: 10.1038/s41559-023-02255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/19/2023] [Indexed: 11/29/2023]
Abstract
Cancers with acquired resistance to targeted therapy can become simultaneously dependent on the presence of the targeted therapy drug for survival, suggesting that intermittent therapy may slow resistance. However, relatively little is known about which tumours are likely to become dependent and how to schedule intermittent therapy optimally. Here we characterized drug dependence across a panel of over 75 MAPK-inhibitor-resistant BRAFV600E mutant melanoma models at the population and single-clone levels. Melanocytic differentiated models exhibited a much greater tendency to give rise to drug-dependent progeny than their dedifferentiated counterparts. Mechanistically, acquired loss of microphthalmia-associated transcription factor in differentiated melanoma models drives ERK-JunB-p21 signalling to enforce drug dependence. We identified the optimal scheduling of 'drug holidays' using simple mathematical models that we validated across short and long timescales. Without detailed knowledge of tumour characteristics, we found that a simple adaptive therapy protocol can produce near-optimal outcomes using only measurements of total population size. Finally, a spatial agent-based model showed that optimal schedules derived from exponentially growing cells in culture remain nearly optimal in the context of tumour cell turnover and limited environmental carrying capacity. These findings may guide the implementation of improved evolution-inspired treatment strategies for drug-dependent cancers.
Collapse
Affiliation(s)
- Jeff Maltas
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Shane T Killarney
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | | | - Maximilian A R Strobl
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - Rachel Washart
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| | - Kevin B Wood
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA.
- Department of Physics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
16
|
Fumero-Velázquez M, Hagstrom M, Dhillon S, Geraminejad T, Olivares S, Donati M, Nosek D, Waldenbäck P, Kazakov D, Sheffield BS, Tron VA, Gerami P. Clinical, Morphologic, and Molecular Features of Benign and Intermediate-grade Melanocytic Tumors With Activating Mutations in MAP2K1. Am J Surg Pathol 2023; 47:1438-1448. [PMID: 37773074 DOI: 10.1097/pas.0000000000002131] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Activating mutations in MAP2K1 can be seen in benign and intermediate-grade melanocytic neoplasms with spitzoid morphology. We analyzed the clinical, histopathologic, and genetic features for 16 cases of benign and intermediate-grade melanocytic tumors harboring activating MAP2K1 mutations. We compared them to Spitz neoplasms with characteristic Spitz fusions or HRAS mutation. We also compared the mutational pattern of benign and intermediate-grade MAP2K1 -mutated neoplasms and melanomas with activating MAP2K1 mutations. Among the 16 cases, the favored morphologic diagnosis was Spitz nevus (8/16), atypical Spitz tumors (6/16), and deep penetrating nevus (2/16). The 2 most common architectural patterns seen included a plaque-like silhouette with fibroplasia around the rete reminiscent of a dysplastic nevus (n=7) or a wedge-shaped or nodular pattern with the plexiform arrangement of the nests aggregating around the adnexa or neurovascular bundle (n=8). The cases with dysplastic architecture and spitzoid cytology resembled dysplastic Spitz nevi. Compared with true Spitz neoplasms, MAP2K1 -mutated neoplasms occurred in older age groups and had more frequent pagetosis and a lower average mitotic count. The most common type of mutation in the benign and intermediate-grade cases in the literature involves an in-frame deletion, while, in melanomas, missense mutations are predominant. Benign and intermediate-grade melanocytic neoplasms with activating mutations in MAP2K1 can have morphologic overlap with Spitz neoplasms. A significant proportion of melanomas also have activating MAP2K1 mutations. In-frame deletions are predominantly seen in the benign and intermediate-grade cases, and missense mutations are predominantly seen in melanomas.
Collapse
Affiliation(s)
- Mónica Fumero-Velázquez
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Michael Hagstrom
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Soneet Dhillon
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Tara Geraminejad
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Shantel Olivares
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Michele Donati
- Department of Pathology, University Hospital Campus Bio-Medico, Rome, Italy
| | - Daniel Nosek
- Department of Pathology, Umeå University, Umeå, Sweden
| | | | - Dmitry Kazakov
- Institute for Dermatohistopathology, Pathology Institute Enge, Zürich, Switzerland
| | | | - Victor A Tron
- Department of Laboratory Medicine and Pathology, University of Toronto
- Department of Laboratory Medicine, Lifelabs LP, Toronto, ON, Canada
| | - Pedram Gerami
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
17
|
Castaldo V, Minopoli M, Di Modugno F, Sacconi A, Liguoro D, Frigerio R, Ortolano A, Di Martile M, Gesualdi L, Madonna G, Capone M, Cirombella R, Catizone A, Del Bufalo D, Vecchione A, Carriero MV, Ascierto PA, Mancini R, Fattore L, Ciliberto G. Upregulated expression of miR-4443 and miR-4488 in drug resistant melanomas promotes migratory and invasive phenotypes through downregulation of intermediate filament nestin. J Exp Clin Cancer Res 2023; 42:317. [PMID: 38008717 PMCID: PMC10680267 DOI: 10.1186/s13046-023-02878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/29/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND BRAF-mutant melanoma patients benefit from the combinatorial treatments with BRAF and MEK inhibitors. However, acquired drug resistance strongly limits the efficacy of these targeted therapies in time. Recently, many findings have underscored the involvement of microRNAs as main drivers of drug resistance. In this context, we previously identified a subset of oncomiRs strongly up-regulated in drug-resistant melanomas. In this work, we shed light on the molecular role of two as yet poorly characterized oncomiRs, miR-4443 and miR-4488. METHODS Invasion and migration have been determined by wound healing, transwell migration/invasion assays and Real Time Cell Analysis (RTCA) technology. miR-4488 and miR-4443 have been measured by qRT-PCR. Nestin levels have been tested by western blot, confocal immunofluorescence, immunohistochemical and flow cytometry analyses. RESULTS We demonstrate that the two oncomiRs are responsible for the enhanced migratory and invasive phenotypes, that are a hallmark of drug resistant melanoma cells. Moreover, miR-4443 and miR-4488 promote an aberrant cytoskeletal reorganization witnessed by the increased number of stress fibers and cellular protrusions-like cancer cell invadopodia. Mechanistically, we identified the intermediate filament nestin as a molecular target of both oncomiRs. Finally, we have shown that nestin levels are able to predict response to treatments in melanoma patients. CONCLUSIONS Altogether these findings have profound translational implications in the attempt i) to develop miRNA-targeting therapies to mitigate the metastatic phenotypes of BRAF-mutant melanomas and ii) to identify novel biomarkers able to guide clinical decisions.
Collapse
Affiliation(s)
- Vittorio Castaldo
- Department of Anatomy, Histology, Forensic- Medicine and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy
| | - Michele Minopoli
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS 'Fondazione G. Pascale', 80131, Naples, Italy
| | - Francesca Di Modugno
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Andrea Sacconi
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Domenico Liguoro
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Rachele Frigerio
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Arianna Ortolano
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Luisa Gesualdi
- Department of Anatomy, Histology, Forensic- Medicine and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy
| | - Gabriele Madonna
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS 'Fondazione G. Pascale', 80131, Naples, Italy
| | - Mariaelena Capone
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS 'Fondazione G. Pascale', 80131, Naples, Italy
| | - Roberto Cirombella
- Faculty of Medicine and Psychology, Department Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, 00118, Rome, Italy
| | - Angiolina Catizone
- Department of Anatomy, Histology, Forensic- Medicine and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Andrea Vecchione
- Faculty of Medicine and Psychology, Department Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, 00118, Rome, Italy
| | - Maria Vincenza Carriero
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS 'Fondazione G. Pascale', 80131, Naples, Italy
| | - Paolo Antonio Ascierto
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS 'Fondazione G. Pascale', 80131, Naples, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy
- Faculty of Medicine and Psychology, Department Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, 00118, Rome, Italy
| | - Luigi Fattore
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy.
| | - Gennaro Ciliberto
- Scientific Directorate, IRCSS Regina Elena National Cancer Institute, 00144, Rome, Italy
| |
Collapse
|
18
|
Gunda V, Ghosh C, Hu J, Zhang L, Zhang YQ, Shen M, Kebebew E. Combination BRAFV600E Inhibition with the Multitargeting Tyrosine Kinase Inhibitor Axitinib Shows Additive Anticancer Activity in BRAFV600E-Mutant Anaplastic Thyroid Cancer. Thyroid 2023; 33:1201-1214. [PMID: 37675898 PMCID: PMC10625471 DOI: 10.1089/thy.2023.0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Background: Anaplastic thyroid cancer (ATC) is uniformly lethal. BRAFV600E mutation is present in 45% of patients with ATC. Targeted therapy with combined BRAF and MEK inhibition in BRAFV600E-mutant ATC can be effective, but acquired resistance is common because this combination targets the same pathway. Drug matrix screening, in BRAFV600E ATC cells, of highly active compounds in combination with BRAF inhibition showed multitargeting tyrosine kinase inhibitors (MTKIs) had the highest synergistic/additive activity. Thus, we hypothesized that the combination of BRAFV600E inhibition and an MTKI is more effective than a single drug or combined BRAF and MEK inhibition in BRAFV600E-mutant ATC. We evaluated the effect of BRAFV600E inhibitors in combination with the MTKI axitinib and its mechanism(s) of action. Methods: We evaluated the effects of BRAFV600E inhibitors and axitinib alone and in combination in in vitro and in vivo models of BRAFV600E-mutant and wild-type ATC. Results: The combination of axitinib and BRAFV600E inhibitors (dabrafenib and PLX4720) showed an additive effect on inhibiting cell proliferation based on the Chou-Talalay algorithm in BRAFV600E-mutant ATC cell lines. This combination also significantly inhibited cell invasion and migration (p < 0.001) compared with the control. Dabrafenib and PLX4720 arrested ATC cells in the G0/G1 phase. Axitinib arrested ATC cells in the G2/M phase by decreasing phosphorylation of aurora kinase B (Thr232) and histone H3 (Ser10) proteins and by upregulating the c-JUN signaling pathway. The combination of BRAF inhibition and axitinib significantly inhibited tumor growth and was associated with improved survival in an orthotopic ATC model. Conclusions: The novel combination of axitinib and BRAFV600E inhibition enhanced anticancer activity in in vitro and in vivo models of BRAFV600E-mutant ATC. This combination may have clinical utility in BRAFV600E-mutant ATC that is refractory to current standard therapy, namely combined BRAF and MEK inhibition.
Collapse
Affiliation(s)
- Viswanath Gunda
- Department of Surgery, Stanford University, Stanford, California, USA
| | - Chandrayee Ghosh
- Department of Surgery, Stanford University, Stanford, California, USA
| | - Jiangnan Hu
- Department of Surgery, Stanford University, Stanford, California, USA
| | - Lisa Zhang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Ya qin Zhang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Electron Kebebew
- Department of Surgery, Stanford University, Stanford, California, USA
- Stanford Cancer Institute, Stanford University, Stanford, California, USA
| |
Collapse
|
19
|
Chiou LW, Chan CH, Jhuang YL, Yang CY, Jeng YM. DNA replication stress and mitotic catastrophe mediate sotorasib addiction in KRAS G12C-mutant cancer. J Biomed Sci 2023; 30:50. [PMID: 37386628 DOI: 10.1186/s12929-023-00940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/18/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Sotorasib is the first KRASG12C inhibitor approved by the US Food and Drug Administration for treating KRASG12C-mutant non-small-cell lung cancer (NSCLC). Clinical trials on the therapeutic use of sotorasib for cancer have reported promising results. However, KRASG12C-mutant cancers can acquire resistance to sotorasib after treatment. We incidentally discovered that sotorasib-resistant (SR) cancer cells are addicted to this inhibitor. In this study, we investigated the mechanisms underlying sotorasib addiction. METHODS Sotorasib-resistant cells were established using KRASG12C-mutant pancreatic cancer and NSCLC cell lines. Cell viability in the presence or absence of sotorasib and in combination with multiple inhibitors was assessed through proliferation assay and annexin V/propidium iodide (PI) flow cytometry assays. The mechanisms underlying drug addiction were elucidated through 5-bromo-2'-deoxyuridine (BrdU) incorporation assay, immunofluorescence staining, time-lapse microscopy, and comet assay. Furthermore, a subcutaneous xenograft model was used to demonstrate sotorasib addiction in vivo. RESULTS In the absence of sotorasib, the sotorasib-resistant cells underwent p21Waf1/Cip1-mediated cell cycle arrest and caspase-dependent apoptosis. Sotorasib withdrawal resulted in robust activation of mitogen-activated protein kinase (MAPK) pathway, inducing severe DNA damage and replication stress, which activated the DNA damage response (DDR) pathway. Persistent MAPK pathway hyperactivation with DDR exhaustion led to premature mitotic entry and aberrant mitosis, followed by micronucleus and nucleoplasmic bridge formation. Pharmacologic activation of the MAPK pathway with a type I BRAF inhibitor could further enhance the effects of sotorasib withdrawal on sotorasib-resistant cancer cells both in vitro and in vivo. CONCLUSIONS We elucidated the mechanisms underlying the sotorasib addiction of cancer cells. Sotorasib addiction appears to be mediated through MAPK pathway hyperactivity, DNA damage, replication stress, and mitotic catastrophe. Moreover, we devised a therapeutic strategy involving a type I BRAF inhibitor to strengthen the effects of sotorasib addiction; this strategy may provide clinical benefit for patients with cancer.
Collapse
Affiliation(s)
- Li-Wen Chiou
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Hui Chan
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Ling Jhuang
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Yao Yang
- Department of Surgery, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, 100, Taiwan.
- Department of Surgery, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yung-Ming Jeng
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Pathology, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, 100, Taiwan.
| |
Collapse
|
20
|
Kim S, Carvajal R, Kim M, Yang HW. Kinetics of RTK activation determine ERK reactivation and resistance to dual BRAF/MEK inhibition in melanoma. Cell Rep 2023; 42:112570. [PMID: 37252843 DOI: 10.1016/j.celrep.2023.112570] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/31/2023] [Accepted: 05/12/2023] [Indexed: 06/01/2023] Open
Abstract
The combination of BRAF and MEK inhibitors (BRAFi/MEKi) has shown promising response rates in treating BRAF-mutant melanoma by inhibiting ERK activation. However, treatment efficacy is limited by the emergence of drug-tolerant persister cells (persisters). Here, we show that the magnitude and duration of receptor tyrosine kinase (RTK) activation determine ERK reactivation and persister development. Our single-cell analysis reveals that only a small subset of melanoma cells exhibits effective RTK and ERK activation and develops persisters, despite uniform external stimuli. The kinetics of RTK activation directly influence ERK signaling dynamics and persister development. These initially rare persisters form major resistant clones through effective RTK-mediated ERK activation. Consequently, limiting RTK signaling suppresses ERK activation and cell proliferation in drug-resistant cells. Our findings provide non-genetic mechanistic insights into the role of heterogeneity in RTK activation kinetics in ERK reactivation and BRAFi/MEKi resistance, suggesting potential strategies for overcoming drug resistance in BRAF-mutant melanoma.
Collapse
Affiliation(s)
- Sungsoo Kim
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Richard Carvajal
- Department of Medicine, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Minah Kim
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Hee Won Yang
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
21
|
Haist M, Stege H, Kuske M, Bauer J, Klumpp A, Grabbe S, Bros M. Combination of immune-checkpoint inhibitors and targeted therapies for melanoma therapy: The more, the better? Cancer Metastasis Rev 2023; 42:481-505. [PMID: 37022618 PMCID: PMC10348973 DOI: 10.1007/s10555-023-10097-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/27/2023] [Indexed: 04/07/2023]
Abstract
The approval of immune-checkpoint inhibitors (CPI) and mitogen activated protein kinase inhibitors (MAPKi) in recent years significantly improved the treatment management and survival of patients with advanced malignant melanoma. CPI aim to counter-act receptor-mediated inhibitory effects of tumor cells and immunomodulatory cell types on effector T cells, whereas MAPKi are intended to inhibit tumor cell survival. In agreement with these complementary modes of action preclinical data indicated that the combined application of CPI and MAPKi or their optimal sequencing might provide additional clinical benefit. In this review the rationale and preclinical evidence that support the combined application of MAPKi and CPI either in concurrent or consecutive regimens are presented. Further, we will discuss the results from clinical trials investigating the sequential or combined application of MAPKi and CPI for advanced melanoma patients and their implications for clinical practice. Finally, we outline mechanisms of MAPKi and CPI cross-resistance which limit the efficacy of currently available treatments, as well as combination regimens.
Collapse
Affiliation(s)
- Maximilian Haist
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Henner Stege
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Michael Kuske
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Julia Bauer
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Annika Klumpp
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| |
Collapse
|
22
|
Liu S, Dharanipragada P, Lomeli SH, Wang Y, Zhang X, Yang Z, Lim RJ, Dumitras C, Scumpia PO, Dubinett SM, Moriceau G, Johnson DB, Moschos SJ, Lo RS. Multi-organ landscape of therapy-resistant melanoma. Nat Med 2023; 29:1123-1134. [PMID: 37106167 PMCID: PMC10202813 DOI: 10.1038/s41591-023-02304-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 03/14/2023] [Indexed: 04/29/2023]
Abstract
Metastasis and failure of present-day therapies represent the most common causes of mortality in patients with cutaneous melanoma. To identify the underlying genetic and transcriptomic landscapes, in this study we analyzed multi-organ metastases and tumor-adjacent tissues from 11 rapid autopsies after treatment with MAPK inhibitor (MAPKi) and/or immune checkpoint blockade (ICB) and death due to acquired resistance. Either treatment elicits shared genetic alterations that suggest immune-evasive, cross-therapy resistance mechanisms. Large, non-clustered deletions, inversions and inter-chromosomal translocations dominate rearrangements. Analyzing data from separate melanoma cohorts including 345 therapy-naive patients and 35 patients with patient-matched pre-treatment and post-acquired resistance tumor samples, we performed cross-cohort analyses to identify MAPKi and ICB as respective contributors to gene amplifications and deletions enriched in autopsy versus therapy-naive tumors. In the autopsy cohort, private/late mutations and structural variants display shifted mutational and rearrangement signatures, with MAPKi specifically selecting for signatures of defective homologous-recombination, mismatch and base-excision repair. Transcriptomic signatures and crosstalks with tumor-adjacent macroenvironments nominated organ-specific adaptive pathways. An immune-desert, CD8+-macrophage-biased archetype, T-cell exhaustion and type-2 immunity characterized the immune contexture. This multi-organ analysis of therapy-resistant melanoma presents preliminary insights with potential to improve therapeutic strategies.
Collapse
Affiliation(s)
- Sixue Liu
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Prashanthi Dharanipragada
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shirley H Lomeli
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yan Wang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xiao Zhang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zhentao Yang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Raymond J Lim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Camelia Dumitras
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Philip O Scumpia
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Dermatology, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Steve M Dubinett
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gatien Moriceau
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Douglas B Johnson
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stergios J Moschos
- Division of Medical Oncology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Roger S Lo
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Koziej P, Kluszczynska K, Hartman ML, Czyz M. Trametinib-Resistant Melanoma Cells Displaying MITF high/NGFR low/IL-8 low Phenotype Are Highly Responsive to Alternating Periods of Drug Withdrawal and Drug Rechallenge. Int J Mol Sci 2023; 24:ijms24097891. [PMID: 37175614 PMCID: PMC10178474 DOI: 10.3390/ijms24097891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Despite significant advances in targeted therapies against the hyperactivated BRAFV600/MEK pathway for patients with unresectable metastatic melanoma, acquired resistance remains an unsolved clinical problem. In this study, we focused on melanoma cells resistant to trametinib, an agent broadly used in combination therapies. Molecular and cellular changes were assessed during alternating periods of trametinib withdrawal and rechallenge in trametinib-resistant cell lines displaying either a differentiation phenotype (MITFhigh/NGFRlow) or neural crest stem-like dedifferentiation phenotype (NGFRhigh/MITFlow). Neither drug withdrawal nor drug rechallenge induced cell death, and instead of loss of fitness, trametinib-resistant melanoma cells adapted to altered conditions by phenotype switching. In resistant cells displaying a differentiation phenotype, trametinib withdrawal markedly decreased MITF level and activity, which was associated with reduced cell proliferation capacity, and induced stemness assessed as NGFR-positive cells and senescence features, including IL-8 expression and secretion. All these changes could be reversed by trametinib re-exposure, which emphasizes melanoma cell plasticity. Trametinib-resistant cells displaying a dedifferentiation phenotype were less responsive presumably due to the already low level of MITF, a master regulator of the melanoma phenotype. Considering new directions of the development of anti-melanoma treatment, our study suggests that the phenotype of melanomas resistant to targeted therapy might be a crucial determinant of the selection of second-line therapy for melanoma patients.
Collapse
Affiliation(s)
- Paulina Koziej
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| | - Katarzyna Kluszczynska
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| | - Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| |
Collapse
|
24
|
Howell R, Davies J, Clarke MA, Appios A, Mesquita I, Jayal Y, Ringham-Terry B, Boned Del Rio I, Fisher J, Bennett CL. Localized immune surveillance of primary melanoma in the skin deciphered through executable modeling. SCIENCE ADVANCES 2023; 9:eadd1992. [PMID: 37043573 PMCID: PMC10096595 DOI: 10.1126/sciadv.add1992] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
While skin is a site of active immune surveillance, primary melanomas often escape detection. Here, we have developed an in silico model to determine the local cross-talk between melanomas and Langerhans cells (LCs), the primary antigen-presenting cells at the site of melanoma development. The model predicts that melanomas fail to activate LC migration to lymph nodes until tumors reach a critical size, which is determined by a positive TNF-α feedback loop within melanomas, in line with our observations of murine tumors. In silico drug screening, supported by subsequent experimental testing, shows that treatment of primary tumors with MAPK pathway inhibitors may further prevent LC migration. In addition, our in silico model predicts treatment combinations that bypass LC dysfunction. In conclusion, our combined approach of in silico and in vivo studies suggests a molecular mechanism that explains how early melanomas develop under the radar of immune surveillance by LC.
Collapse
Affiliation(s)
| | | | - Matthew A. Clarke
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Anna Appios
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Inês Mesquita
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Yashoda Jayal
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Ben Ringham-Terry
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Isabel Boned Del Rio
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | | | | |
Collapse
|
25
|
Dharanipragada P, Zhang X, Liu S, Lomeli SH, Hong A, Wang Y, Yang Z, Lo KZ, Vega-Crespo A, Ribas A, Moschos SJ, Moriceau G, Lo RS. Blocking Genomic Instability Prevents Acquired Resistance to MAPK Inhibitor Therapy in Melanoma. Cancer Discov 2023; 13:880-909. [PMID: 36700848 PMCID: PMC10068459 DOI: 10.1158/2159-8290.cd-22-0787] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/27/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Blocking cancer genomic instability may prevent tumor diversification and escape from therapies. We show that, after MAPK inhibitor (MAPKi) therapy in patients and mice bearing patient-derived xenografts (PDX), acquired resistant genomes of metastatic cutaneous melanoma specifically amplify resistance-driver, nonhomologous end-joining (NHEJ), and homologous recombination repair (HRR) genes via complex genomic rearrangements (CGR) and extrachromosomal DNAs (ecDNA). Almost all sensitive and acquired-resistant genomes harbor pervasive chromothriptic regions with disproportionately high mutational burdens and significant overlaps with ecDNA and CGR spans. Recurrently, somatic mutations within ecDNA and CGR amplicons enrich for HRR signatures, particularly within acquired resistant tumors. Regardless of sensitivity or resistance, breakpoint-junctional sequence analysis suggests NHEJ as critical to double-stranded DNA break repair underlying CGR and ecDNA formation. In human melanoma cell lines and PDXs, NHEJ targeting by a DNA-PKCS inhibitor prevents/delays acquired MAPKi resistance by reducing the size of ecDNAs and CGRs early on combination treatment. Thus, targeting the causes of genomic instability prevents acquired resistance. SIGNIFICANCE Acquired resistance often results in heterogeneous, redundant survival mechanisms, which challenge strategies aimed at reversing resistance. Acquired-resistant melanomas recurrently evolve resistance-driving and resistance-specific amplicons via ecDNAs and CGRs, thereby nominating chromothripsis-ecDNA-CGR biogenesis as a resistance-preventive target. Specifically, targeting DNA-PKCS/NHEJ prevents resistance by suppressing ecDNA/CGR rearrangements in MAPKi-treated melanomas. This article is highlighted in the In This Issue feature, p. 799.
Collapse
Affiliation(s)
- Prashanthi Dharanipragada
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Xiao Zhang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Sixue Liu
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Shirley H. Lomeli
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Aayoung Hong
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Yan Wang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Zhentao Yang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Kara Z. Lo
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Agustin Vega-Crespo
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Antoni Ribas
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Stergios J. Moschos
- Division of Medical Oncology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gatien Moriceau
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Roger S. Lo
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
26
|
Mizuno S, Ikegami M, Koyama T, Sunami K, Ogata D, Kage H, Yanagaki M, Ikeuchi H, Ueno T, Tanikawa M, Oda K, Osuga Y, Mano H, Kohsaka S. High-Throughput Functional Evaluation of MAP2K1 Variants in Cancer. Mol Cancer Ther 2023; 22:227-239. [PMID: 36442478 PMCID: PMC9890140 DOI: 10.1158/1535-7163.mct-22-0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/01/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022]
Abstract
Activating mutations in mitogen-activated protein kinase kinase 1 (MAP2K1) are involved in a variety of cancers and may be classified according to their RAF dependence. Sensitivity to combined BRAF and MEK treatments is associated with co-mutations of MAP2K1 and BRAF; however, the significance of less frequent MAP2K1 mutations is largely unknown. The transforming potential and drug sensitivity of 100 MAP2K1 variants were evaluated using individual assays and the mixed-all-nominated-in-one method. In addition, A375, a melanoma cell line harboring the BRAF V600E mutation, was used to evaluate the function of the MAP2K1 variants in combination with active RAF signaling. Among a total of 67 variants of unknown significance, 16 were evaluated as oncogenic or likely oncogenic. The drug sensitivity of the individual variants did not vary with respect to BRAF inhibitors, MEK inhibitors (MEKi), or their combination. Sensitivity to BRAF inhibitors was associated with the RAF dependency of the MAP2K1 variants, whereas resistance was higher in RAF-regulated or independent variants compared with RAF-dependent variants. Thus, the synergistic effect of BRAF and MEKis may be observed in RAF-regulated and RAF-dependent variants. MAP2K1 variants exhibit differential sensitivity to BRAF and MEKis, suggesting the importance of individual functional analysis for the selection of optimal treatments for each patient. This comprehensive evaluation reveals precise functional information and provides optimal combination treatment for individual MAP2K1 variants.
Collapse
Affiliation(s)
- Sho Mizuno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan.,Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan.,Department of Gynecology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Honkomagome, Bunkyo-ku, Tokyo, Japan
| | - Masachika Ikegami
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan.,Department of Musculoskeletal Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Honkomagome, Bunkyo-ku, Tokyo, Japan
| | - Takafumi Koyama
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Kuniko Sunami
- Department of Laboratory Medicine, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Dai Ogata
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Hidenori Kage
- Department of Next Generation Precision Medicine Development Laboratory, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Mitsuru Yanagaki
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan.,Department of Surgery, The Jikei University School of Medicine, Nishishimbashi, Minato-ku, Tokyo, Japan
| | - Hiroshi Ikeuchi
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan.,Department of General Thoracic Surgery, Juntendo University School of Medicine, Hongo, Bunkyo-Ku, Tokyo, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Michihiro Tanikawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan.,Department of Gynecology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Honkomagome, Bunkyo-ku, Tokyo, Japan
| | - Katsutoshi Oda
- Division of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yutaka Osuga
- Department of Gynecology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Honkomagome, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan.,Corresponding Author: Shinji Kohsaka, Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan. Phone: 81-3-3547-5201; Fax: 81-3-5565-0727; E-mail:
| |
Collapse
|
27
|
Hofmann WK, Trumpp A, Müller-Tidow C. Therapy resistance mechanisms in hematological malignancies. Int J Cancer 2023; 152:340-347. [PMID: 35962946 DOI: 10.1002/ijc.34243] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 02/01/2023]
Abstract
Hematologic malignancies are model diseases for understanding neoplastic transformation and serve as prototypes for developing effective therapies. Indeed, the concept of systemic cancer therapy originated in hematologic malignancies and has guided the development of chemotherapy, cellular therapies, immunotherapy and modern precision oncology. Despite significant advances in the treatment of leukemias, lymphomas and multiple myelomas, treatment resistance associated with molecular and clinical relapse remains very common. Therapy of relapsed and refractory disease remains extremely difficult, and failure of disease control at this stage remains the leading cause of mortality in patients with hematologic malignancies. In recent years, many efforts have been made to identify the genetic and epigenetic mechanisms that drive the development of hematologic malignancies to the stage of full-blown disease requiring clinical intervention. In contrast, the mechanisms responsible for treatment resistance in hematologic malignancies remain poorly understood. For example, the molecular characteristics of therapy-resistant persisting cells in minimal residual disease (MRD) remain rather elusive. In this mini-review we want to discuss that cellular heterogeneity and plasticity, together with adaptive genetic and epigenetic processes, lead to reduced sensitivity to various treatment regimens such as chemotherapy and pathway inhibitors such as tyrosine kinase inhibitors. However, resistance mechanisms may be conserved across biologically distinct cancer entities. Recent technological advances have made it possible to explore the underlying mechanisms of therapy resistance with unprecedented resolution and depth. These include novel multi-omics technologies with single cell resolution combined with advanced biocomputational approaches, along with artificial intelligence (AI) and sophisticated disease models for functional validation.
Collapse
Affiliation(s)
- Wolf-Karsten Hofmann
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Heidelberg, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH) and Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
28
|
Tsai CH, Chuang YM, Li X, Yu YR, Tzeng SF, Teoh ST, Lindblad KE, Di Matteo M, Cheng WC, Hsueh PC, Kao KC, Imrichova H, Duan L, Gallart-Ayala H, Hsiao PW, Mazzone M, Ivanesevic J, Liu X, de Visser KE, Lujambio A, Lunt SY, Kaech SM, Ho PC. Immunoediting instructs tumor metabolic reprogramming to support immune evasion. Cell Metab 2023; 35:118-133.e7. [PMID: 36599297 PMCID: PMC10375941 DOI: 10.1016/j.cmet.2022.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/06/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023]
Abstract
Immunoediting sculpts immunogenicity and thwarts host anti-tumor responses in tumor cells during tumorigenesis; however, it remains unknown whether metabolic programming of tumor cells can be guided by immunosurveillance. Here, we report that T cell-mediated immunosurveillance in early-stage tumorigenesis instructs c-Myc upregulation and metabolic reprogramming in tumor cells. This previously unexplored tumor-immune interaction is controlled by non-canonical interferon gamma (IFNγ)-STAT3 signaling and supports tumor immune evasion. Our findings uncover that immunoediting instructs deregulated bioenergetic programs in tumor cells to empower them to disarm the T cell-mediated immunosurveillance by imposing metabolic tug-of-war between tumor and infiltrating T cells and forming the suppressive tumor microenvironment.
Collapse
Affiliation(s)
- Chin-Hsien Tsai
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland; Graduate Institute of Life Sciences, National Defense Medical Center, Taipei City, Taiwan
| | - Yu-Ming Chuang
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Xiaoyun Li
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Yi-Ru Yu
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Sheue-Fen Tzeng
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland; Graduate Institute of Life Sciences, National Defense Medical Center, Taipei City, Taiwan
| | - Shao Thing Teoh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Katherine E Lindblad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mario Di Matteo
- Laboratory of Tumor Inflammation and angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Wan-Chen Cheng
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Pei-Chun Hsueh
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Kung-Chi Kao
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Hana Imrichova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Wien, Austria
| | - Likun Duan
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Pei-Wen Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei City, Taiwan
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Julijana Ivanesevic
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Wien, Austria
| | - Xiaojing Liu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Karin E de Visser
- Division of Tumor Biology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ping-Chih Ho
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
29
|
Oncosuppressive miRNAs loaded in lipid nanoparticles potentiate targeted therapies in BRAF-mutant melanoma by inhibiting core escape pathways of resistance. Oncogene 2023; 42:293-307. [PMID: 36418472 PMCID: PMC9684877 DOI: 10.1038/s41388-022-02547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022]
Abstract
BRAF-mutated melanoma relapsing after targeted therapies is an aggressive disease with unmet clinical need. Hence the need to identify novel combination therapies able to overcome drug resistance. miRNAs have emerged as orchestrators of non-genetic mechanisms adopted by melanoma cells to challenge therapies. In this context we previously identified a subset of oncosuppressor miRNAs downregulated in drug-resistant melanomas. Here we demonstrate that lipid nanoparticles co-encapsulating two of them, miR-199-5p and miR-204-5p, inhibit tumor growth both in vitro and in vivo in combination with target therapy and block the development of drug resistance. Mechanistically they act by directly reducing melanoma cell growth and also indirectly by hampering the recruitment and reprogramming of pro-tumoral macrophages. Molecularly, we demonstrate that the effects on macrophages are mediated by the dysregulation of a newly identified miR-204-5p-miR-199b-5p/CCL5 axis. Finally, we unveiled that M2 macrophages programs are molecular signatures of resistance and predict response to therapy in patients. Overall, these findings have strong translational implications to propose new combination therapies making use of RNA therapeutics for metastatic melanoma patients.
Collapse
|
30
|
Song Y, Bi Z, Liu Y, Qin F, Wei Y, Wei X. Targeting RAS-RAF-MEK-ERK signaling pathway in human cancer: Current status in clinical trials. Genes Dis 2023; 10:76-88. [PMID: 37013062 PMCID: PMC10066287 DOI: 10.1016/j.gendis.2022.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Molecular target inhibitors have been regularly approved by Food and Drug Administration (FDA) for tumor treatment, and most of them intervene in tumor cell proliferation and metabolism. The RAS-RAF-MEK-ERK pathway is a conserved signaling pathway that plays vital roles in cell proliferation, survival, and differentiation. The aberrant activation of the RAS-RAF-MEK-ERK signaling pathway induces tumors. About 33% of tumors harbor RAS mutations, while 8% of tumors are driven by RAF mutations. Great efforts have been dedicated to targeting the signaling pathway for cancer treatment in the past decades. In this review, we summarized the development of inhibitors targeting the RAS-RAF-MEK-ERK pathway with an emphasis on those used in clinical treatment. Moreover, we discussed the potential combinations of inhibitors that target the RAS-RAF-MEK-ERK signaling pathway and other signaling pathways. The inhibitors targeting the RAS-RAF-MEK-ERK pathway have essentially modified the therapeutic strategy against various cancers and deserve more attention in the current cancer research and treatment.
Collapse
Affiliation(s)
| | | | - Yu Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Furong Qin
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
31
|
Eriksen M, Pfeiffer P, Rohrberg KS, Yde CW, Petersen LN, Poulsen LØ, Qvortrup C. A phase II study of daily encorafenib in combination with biweekly cetuximab in patients with BRAF V600E mutated metastatic colorectal cancer: the NEW BEACON study. BMC Cancer 2022; 22:1321. [PMID: 36527039 PMCID: PMC9758813 DOI: 10.1186/s12885-022-10420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Patients with BRAF V600E mutated metastatic colorectal cancer (mCRC) have a poor prognosis. The introduction of BRAF targeted therapy with encorafenib and weekly administered cetuximab have shown improved survival with a median progression free survival (PFS) of 4.3 months. However, a regimen with cetuximab given every second week may have comparable efficacy and is more convenient for patients. While BRAF targeted therapy is a new standard therapy in pre-treated patients with BRAF V600E mutated mCRC, resistance invariably occurs and is an emerging challenge. The aim of this study is to investigate the efficacy and tolerability of cetuximab given every second week in combination with daily encorafenib and to explore the correlation between markers of resistance and outcome. METHODS The study is an open label, single arm, phase II study, investigating the efficacy and tolerability of cetuximab given every second week in combination with encorafenib in patients with BRAF V600E mutated mCRC. Furthermore, we will be investigating mechanisms of response and resistance against BRAF targeted therapy though comprehensive genomic profiling on tumor tissue and blood for circulating tumor DNA analysis. A total of 53 patients (19 + 34 in two steps) will be included according to Simon's optimal two stage design. The primary end point of the study is 2 months PFS rate. DISCUSSION By combining BRAF inhibitor with cetuximab given every second week we can halve the number of visits in the hospital compared to the currently approved regimen with weekly cetuximab. This seems particularly relevant in a group of patients with a median overall survival of 9.3 months. Resistance after initial response to targeted therapy can be either adaptive (e.g., epigenetic, or transcriptomic alterations) or acquired (selective genetic alterations - e.g., activating de novo mutations) resistance. It is of great importance to untangle these complex mechanisms of resistance in patients with BRAF V600E mutated mCRC to improve treatment strategies in the future potentially even further. TRIAL REGISTRATION EU Clinical Trial Register, Eudract no. 2020-003283-10 . Registered on 11 November 2020.
Collapse
Affiliation(s)
- Martina Eriksen
- grid.475435.4Department of Oncology, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XFaculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per Pfeiffer
- grid.7143.10000 0004 0512 5013Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Kristoffer Staal Rohrberg
- grid.475435.4Department of Oncology, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Christina Westmose Yde
- grid.475435.4Department of Genomic Medicine, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Lone Nørgård Petersen
- grid.475435.4Department of Oncology, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | | | - Camilla Qvortrup
- grid.475435.4Department of Oncology, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XFaculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Ren L, Guo JS, Li YH, Dong G, Li XY. Structural classification of MELK inhibitors and prospects for the treatment of tumor resistance: A review. Biomed Pharmacother 2022; 156:113965. [DOI: 10.1016/j.biopha.2022.113965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
|
33
|
Farnsworth DA, Inoue Y, Johnson FD, de Rappard-Yuswack G, Lu D, Shi R, Ma LIJ, Mattar MS, Somwar R, Ladanyi M, Unni AM, Lockwood WW. MEK inhibitor resistance in lung adenocarcinoma is associated with addiction to sustained ERK suppression. NPJ Precis Oncol 2022; 6:88. [PMID: 36418460 PMCID: PMC9684561 DOI: 10.1038/s41698-022-00328-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
MEK inhibitors (MEKi) have limited efficacy in KRAS mutant lung adenocarcinoma (LUAD) patients, and this is attributed to both intrinsic and adaptive mechanisms of drug resistance. While many studies have focused on the former, there remains a dearth of data regarding acquired resistance to MEKi in LUAD. We established trametinib-resistant KRAS mutant LUAD cells through dose escalation and performed targeted MSK-IMPACT sequencing to identify drivers of MEKi resistance. Comparing resistant cells to their sensitive counterparts revealed alteration of genes associated with trametinib response. We describe a state of "drug addiction" in resistant cases where cells are dependent on continuous culture in trametinib for survival. We show that dependence on ERK2 suppression underlies this phenomenon and that trametinib removal hyperactivates ERK, resulting in ER stress and apoptosis. Amplification of KRASG12C occurs in drug-addicted cells and blocking mutant-specific activity with AMG 510 rescues the lethality associated with trametinib withdrawal. Furthermore, we show that increased KRASG12C expression is lethal to other KRAS mutant LUAD cells, consequential to ERK hyperactivation. Our study determines the drug-addicted phenotype in lung cancer is associated with KRAS amplification and demonstrates that toxic acquired genetic changes can develop de novo in the background of MAPK suppression with MEK inhibitors. We suggest that the presence of mutant KRAS amplification in patients may identify those that may benefit from a "drug holiday" to circumvent drug resistance. These findings demonstrate the toxic potential of hyperactive ERK signaling and highlight potential therapeutic opportunities in patients bearing KRAS mutations.
Collapse
Affiliation(s)
- Dylan A. Farnsworth
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
| | - Yusuke Inoue
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
| | - Fraser D. Johnson
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
| | | | - Daniel Lu
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
| | - Rocky Shi
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
| | - Lok In Josephine Ma
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada
| | - Marissa S. Mattar
- grid.51462.340000 0001 2171 9952Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Romel Somwar
- grid.51462.340000 0001 2171 9952Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA ,grid.51462.340000 0001 2171 9952Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Marc Ladanyi
- grid.51462.340000 0001 2171 9952Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY USA ,grid.51462.340000 0001 2171 9952Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Arun M. Unni
- grid.5386.8000000041936877XMeyer Cancer Center, Weill Cornell Medicine, New York, NY USA
| | - William W. Lockwood
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada ,grid.17091.3e0000 0001 2288 9830Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
34
|
Vera J, Lai X, Baur A, Erdmann M, Gupta S, Guttà C, Heinzerling L, Heppt MV, Kazmierczak PM, Kunz M, Lischer C, Pützer BM, Rehm M, Ostalecki C, Retzlaff J, Witt S, Wolkenhauer O, Berking C. Melanoma 2.0. Skin cancer as a paradigm for emerging diagnostic technologies, computational modelling and artificial intelligence. Brief Bioinform 2022; 23:6761961. [PMID: 36252807 DOI: 10.1093/bib/bbac433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/28/2022] [Accepted: 09/08/2022] [Indexed: 12/19/2022] Open
Abstract
We live in an unprecedented time in oncology. We have accumulated samples and cases in cohorts larger and more complex than ever before. New technologies are available for quantifying solid or liquid samples at the molecular level. At the same time, we are now equipped with the computational power necessary to handle this enormous amount of quantitative data. Computational models are widely used helping us to substantiate and interpret data. Under the label of systems and precision medicine, we are putting all these developments together to improve and personalize the therapy of cancer. In this review, we use melanoma as a paradigm to present the successful application of these technologies but also to discuss possible future developments in patient care linked to them. Melanoma is a paradigmatic case for disruptive improvements in therapies, with a considerable number of metastatic melanoma patients benefiting from novel therapies. Nevertheless, a large proportion of patients does not respond to therapy or suffers from adverse events. Melanoma is an ideal case study to deploy advanced technologies not only due to the medical need but also to some intrinsic features of melanoma as a disease and the skin as an organ. From the perspective of data acquisition, the skin is the ideal organ due to its accessibility and suitability for many kinds of advanced imaging techniques. We put special emphasis on the necessity of computational strategies to integrate multiple sources of quantitative data describing the tumour at different scales and levels.
Collapse
Affiliation(s)
- Julio Vera
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Xin Lai
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Andreas Baur
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Michael Erdmann
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, Institute of Computer Science, University of Rostock, Rostock 18051, Germany
| | - Cristiano Guttà
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany
| | - Lucie Heinzerling
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany.,Department of Dermatology, LMU University Hospital, Munich, Germany
| | - Markus V Heppt
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | | | - Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University of Leipzig, 04103 Leipzig, Germany
| | - Christopher Lischer
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, 18057 Rostock, Germany
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, 70569 Stuttgart, Germany
| | - Christian Ostalecki
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Jimmy Retzlaff
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | | | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, Institute of Computer Science, University of Rostock, Rostock 18051, Germany
| | - Carola Berking
- Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| |
Collapse
|
35
|
Hung KL, Luebeck J, Dehkordi SR, Colón CI, Li R, Wong ITL, Coruh C, Dharanipragada P, Lomeli SH, Weiser NE, Moriceau G, Zhang X, Bailey C, Houlahan KE, Yang W, González RC, Swanton C, Curtis C, Jamal-Hanjani M, Henssen AG, Law JA, Greenleaf WJ, Lo RS, Mischel PS, Bafna V, Chang HY. Targeted profiling of human extrachromosomal DNA by CRISPR-CATCH. Nat Genet 2022; 54:1746-1754. [PMID: 36253572 PMCID: PMC9649439 DOI: 10.1038/s41588-022-01190-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 08/22/2022] [Indexed: 12/15/2022]
Abstract
Extrachromosomal DNA (ecDNA) is a common mode of oncogene amplification but is challenging to analyze. Here, we adapt CRISPR-CATCH, in vitro CRISPR-Cas9 treatment and pulsed field gel electrophoresis of agarose-entrapped genomic DNA, previously developed for bacterial chromosome segments, to isolate megabase-sized human ecDNAs. We demonstrate strong enrichment of ecDNA molecules containing EGFR, FGFR2 and MYC from human cancer cells and NRAS ecDNA from human metastatic melanoma with acquired therapeutic resistance. Targeted enrichment of ecDNA versus chromosomal DNA enabled phasing of genetic variants, identified the presence of an EGFRvIII mutation exclusively on ecDNAs and supported an excision model of ecDNA genesis in a glioblastoma model. CRISPR-CATCH followed by nanopore sequencing enabled single-molecule ecDNA methylation profiling and revealed hypomethylation of the EGFR promoter on ecDNAs. We distinguished heterogeneous ecDNA species within the same sample by size and sequence with base-pair resolution and discovered functionally specialized ecDNAs that amplify select enhancers or oncogene-coding sequences.
Collapse
Affiliation(s)
- King L Hung
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Jens Luebeck
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Siavash R Dehkordi
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Caterina I Colón
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Ivy Tsz-Lo Wong
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Ceyda Coruh
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Prashanthi Dharanipragada
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Shirley H Lomeli
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Natasha E Weiser
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Gatien Moriceau
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Xiao Zhang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Chris Bailey
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Kathleen E Houlahan
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Wenting Yang
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Rocío Chamorro González
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, University College London, London, UK
- University College London Hospitals NHS Trust, London, UK
| | - Christina Curtis
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, University College London, London, UK
- University College London Hospitals NHS Trust, London, UK
| | - Anton G Henssen
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center DKFZ, Heidelberg, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Julie A Law
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - William J Greenleaf
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Roger S Lo
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Paul S Mischel
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
36
|
Cheng ML, Lee JK, Kumar R, Klein H, Raskina K, Schrock AB, Michael KS, Mazor T, Cerami E, Oxnard GR, Liu D, Beltran H, Sholl LM, Nishino M, Jänne PA. Response to MEK Inhibitor Therapy in MAP2K1 ( MEK1) K57N Non-Small-Cell Lung Cancer and Genomic Landscape of MAP2K1 Mutations in Non-Small-Cell Lung Cancer. JCO Precis Oncol 2022; 6:e2200382. [PMID: 36455195 DOI: 10.1200/po.22.00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Michael L Cheng
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA.,Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,Present address: Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | | | - Rachit Kumar
- Harold Alfond Center for Cancer Care, MaineHealth, Augusta, MA
| | - Harry Klein
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | | | | | - Kesi S Michael
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA.,Present address: Foundation Medicine, Cambridge, MA
| | - Tali Mazor
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Ethan Cerami
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | | | - David Liu
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Himisha Beltran
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Mizuki Nishino
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Department of Imaging, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA.,Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
37
|
Poulikakos PI, Sullivan RJ, Yaeger R. Molecular Pathways and Mechanisms of BRAF in Cancer Therapy. Clin Cancer Res 2022; 28:4618-4628. [PMID: 35486097 PMCID: PMC9616966 DOI: 10.1158/1078-0432.ccr-21-2138] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/08/2022] [Accepted: 03/30/2022] [Indexed: 01/24/2023]
Abstract
With the identification of activating mutations in BRAF across a wide variety of malignancies, substantial effort was placed in designing safe and effective therapeutic strategies to target BRAF. These efforts have led to the development and regulatory approval of three BRAF inhibitors as well as five combinations of a BRAF inhibitor plus an additional agent(s) to manage cancer such as melanoma, non-small cell lung cancer, anaplastic thyroid cancer, and colorectal cancer. To date, each regimen is effective only in patients with tumors harboring BRAFV600 mutations and the duration of benefit is often short-lived. Further limitations preventing optimal management of BRAF-mutant malignancies are that treatments of non-V600 BRAF mutations have been less profound and combination therapy is likely necessary to overcome resistance mechanisms, but multi-drug regimens are often too toxic. With the emergence of a deeper understanding of how BRAF mutations signal through the RAS/MAPK pathway, newer RAF inhibitors are being developed that may be more effective and potentially safer and more rational combination therapies are being tested in the clinic. In this review, we identify the mechanics of RAF signaling through the RAS/MAPK pathway, present existing data on single-agent and combination RAF targeting efforts, describe emerging combinations, summarize the toxicity of the various agents in clinical testing, and speculate as to where the field may be headed.
Collapse
Affiliation(s)
- Poulikos I. Poulikakos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ryan J. Sullivan
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
38
|
Kim TW, Kim Y, Keum H, Jung W, Kang M, Jon S. Combination of a STAT3 inhibitor with anti-PD-1 immunotherapy is an effective treatment regimen for a vemurafenib-resistant melanoma. Mol Ther Oncolytics 2022; 26:1-14. [PMID: 35784401 PMCID: PMC9218293 DOI: 10.1016/j.omto.2022.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/01/2022] [Indexed: 11/29/2022] Open
Abstract
Patients with BRAFV600E-mutant melanoma are effectively treated with the BRAF-inhibiting drug, vemurafenib, but soon develop drug resistance, limiting vemurafenib’s therapeutic efficacy. Constitutive activation of STAT3 in cancer cells and immune cells in the tumor microenvironment (TME) is a crucial contributor to the development of drug resistance and immune evasion in most cancers. Here, we investigated the antitumor efficacy and TME remodeling by APTSTAT3-9R, a cell-permeable STAT3 inhibitory peptide, as a strategy to treat vemurafenib-resistant melanoma. We found that vemurafenib-resistant melanoma remodels into immunosuppressive TME by increasing the expression of specific chemokines to facilitate the infiltration of immunosuppressive immune cells, such as myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). Intratumoral treatment of APTSTAT3-9R led to a reduction in the population of MDSCs and TAMs, while increasing infiltration of cytotoxic T lymphocytes in the TME. Moreover, combination therapy with APTSTAT3-9R and an anti-PD-1 antibody enhanced significant suppression of tumor growth by decreasing infiltration of these immunosuppressive immune cells while increasing the infiltration and cytotoxicity of CD8+ T cells. These findings suggest that combined blockade of STAT3 and PD-1 signaling pathways may be an effective treatment option for overcoming poor therapeutic outcomes associated with drug-resistant BRAF-mutant melanoma.
Collapse
Affiliation(s)
- Tae Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Yujin Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Hyeongseop Keum
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Wonsik Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Minho Kang
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Republic of Korea
| | - Sangyong Jon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
- Corresponding author Sangyong Jon, PhD, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea.
| |
Collapse
|
39
|
Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, Chen Y, Han B. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther 2022; 7:286. [PMID: 35963853 PMCID: PMC9376115 DOI: 10.1038/s41392-022-01110-y] [Citation(s) in RCA: 259] [Impact Index Per Article: 129.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023] Open
Abstract
Regulated cell death (RCD), also well-known as programmed cell death (PCD), refers to the form of cell death that can be regulated by a variety of biomacromolecules, which is distinctive from accidental cell death (ACD). Accumulating evidence has revealed that RCD subroutines are the key features of tumorigenesis, which may ultimately lead to the establishment of different potential therapeutic strategies. Hitherto, targeting the subroutines of RCD with pharmacological small-molecule compounds has been emerging as a promising therapeutic avenue, which has rapidly progressed in many types of human cancers. Thus, in this review, we focus on summarizing not only the key apoptotic and autophagy-dependent cell death signaling pathways, but the crucial pathways of other RCD subroutines, including necroptosis, pyroptosis, ferroptosis, parthanatos, entosis, NETosis and lysosome-dependent cell death (LCD) in cancer. Moreover, we further discuss the current situation of several small-molecule compounds targeting the different RCD subroutines to improve cancer treatment, such as single-target, dual or multiple-target small-molecule compounds, drug combinations, and some new emerging therapeutic strategies that would together shed new light on future directions to attack cancer cell vulnerabilities with small-molecule drugs targeting RCD for therapeutic purposes.
Collapse
Affiliation(s)
- Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minru Liao
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shiou Zhu
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yi Chen
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
40
|
Zerfaoui M, Tsumagari K, Toraih E, Errami Y, Ruiz E, Elaasar MSM, Krzysztof M, Sholl AB, Magdeldin S, Soudy M, Abd Elmageed ZY, Boulares AH, Kandil E. Nuclear interaction of Arp2/3 complex and BRAF V600E promotes aggressive behavior and vemurafenib resistance of thyroid cancer. Am J Cancer Res 2022; 12:3014-3033. [PMID: 35968344 PMCID: PMC9360225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/12/2022] [Indexed: 04/22/2023] Open
Abstract
The presence of mutant BRAF V600E correlates with the risk of recurrence in papillary thyroid cancer (PTC) patients. However, not all PTC patients with BRAF V600E are associated with poor prognosis. Thus, understanding the mechanisms by which certain PTC patients with nuclear BRAF V600E become aggressive and develop resistance to a selective BRAF inhibitor, PLX-4032, is urgently needed. The effect of nuclear localization of BRAFV600E using in vitro studies, xenograft mouse-model and human tissues was evaluated. PTC cells harboring a nuclear localization signal (NLS) of BRAFV600E were established and examined in nude mice implanted with TPC1-NLS-BRAFV600E cells followed by PLX-4032 treatment. Immunohistochemical (IHC) analysis was performed on 100 PTC specimens previously confirmed that they have BRAFV600E mutations. Our results demonstrate that 21 of 100 (21%) PTC tissues stained with specific BRAFV600E antibody had nuclear staining with more aggressive features compared to their cytosolic counterparts. In vitro studies show that BRAFV600E is transported between the nucleus and the cytosol through CRM1 and importin (α/β) system. Sequestration of BRAFV600E in the cytosol sensitized resistant cells to PLX-4032, whereas nuclear BRAFV600E was associated with aggressive phenotypes and developed drug resistance. Proteomic analysis revealed Arp2/3 complex members, actin-related protein 2 (ACTR2 aliases ARP2) and actin-related protein 3 (ACTR3 aliases ARP3), as the most enriched nuclear BRAFV600E partners. ACTR3 was highly correlated to lymph node stage and extrathyroidal extension and was validated with different functional assays. Our findings provide new insights into the clinical utility of the nuclear BRAFV600E as a prognostic marker for PTC aggressiveness and determine the efficacy of selective BRAFV600E inhibitor treatment which opens new avenues for future treatment options.
Collapse
Affiliation(s)
- Mourad Zerfaoui
- Department of Surgery, Tulane University School of MedicineUSA
| | - Koji Tsumagari
- Department of Surgery, Tulane University School of MedicineUSA
| | - Eman Toraih
- Department of Surgery, Tulane University School of MedicineUSA
| | - Youssef Errami
- Department of Surgery, Tulane University School of MedicineUSA
| | - Emmanuelle Ruiz
- Department of Surgery, Tulane University School of MedicineUSA
| | | | - Moroz Krzysztof
- Department of Pathology, Tulane University School of MedicineUSA
| | - Andrew B Sholl
- Department of Otolaryngology, Tulane University School of MedicineUSA
| | - Sameh Magdeldin
- Proteomics Research Program Unit, Basic Research Department, Children Cancer Hospital CairoEgypt
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal UniversityIsmailia 41522, Egypt
| | - Mohamed Soudy
- Proteomics Research Program Unit, Basic Research Department, Children Cancer Hospital CairoEgypt
| | - Zakaria Y Abd Elmageed
- Department of Surgery, Tulane University School of MedicineUSA
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, University of LouisianaMonroe, USA
| | - A Hamid Boulares
- Department of Pharmacology, LSU Health Sciences CenterNew Orleans, LA, USA
| | - Emad Kandil
- Department of Surgery, Tulane University School of MedicineUSA
| |
Collapse
|
41
|
Moral-Sanz J, Fernandez-Rojo MA, Colmenarejo G, Kurdyukov S, Brust A, Ragnarsson L, Andersson Å, Vila SF, Cabezas-Sainz P, Wilhelm P, Vela-Sebastian A, Fernández-Carrasco I, Chin YKY, López-Mancheño Y, Smallwood TB, Clark RJ, Fry BG, King GF, Ramm GA, Alewood PF, Lewis RJ, Mulvenna JP, Boyle GM, Sanchez LE, Neely GG, Miles JJ, Ikonomopoulou MP. The structural conformation of the tachykinin domain drives the anti-tumoral activity of an octopus peptide in melanoma BRAF V600E. Br J Pharmacol 2022; 179:4878-4896. [PMID: 35818835 DOI: 10.1111/bph.15923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Over the past decades, targeted therapies and immunotherapy have vastly improved survival and reduced the morbidity of patients with BRAF-mutated melanoma. However, drug resistance and relapse hinder overall success. Therefore, there is an urgent need for novel compounds with therapeutic efficacy against BRAF- melanoma. This prompted us to investigate the antiproliferative profile of a tachykinin-peptide from the Octopus kaurna, Octpep-1 in melanoma. EXPERIMENTAL APPROACH We evaluated the cytotoxicity of Octpep-1 by MTT assay. Mechanistic insights on viability and cellular damage caused by Octpep-1 were gained via flow cytometry and bioenergetics. Structural and pharmacological characterization was conducted by molecular modelling, molecular biology, CRISPR/Cas9 technology, high-throughput mRNA and calcium flux analysis. In-vivo efficacy was validated in two independent xerograph animal models (mice and zebrafish). KEY RESULTS Octpep-1 selectively reduced the proliferative capacity of human melanoma BRAFV600E -mutated cells with minimal effects on fibroblasts. In melanoma-treated cells, Octpep-1 increased ROS with unaltered mitochondrial membrane potential and promoted non-mitochondrial and mitochondrial respiration with inefficient ATP coupling. Despite similarities with tachykinin peptides, knock-out or pharmacological blockade of tachykinin receptors suggested that Octpep-1 acts via a tachykinin-independent mechanism. Molecular modelling revealed that the cytotoxicity of Octpep-1 depends upon the α-helix and polyproline conformation in the C-terminal region of the peptide. Indeed, a truncated form of the C-terminal end of Octpep-1 displayed enhanced potency and efficacy against melanoma. Octpep-1 reduced the progression of tumors in xenograft melanoma mice and zebrafish, confirming its therapeutic potential in human BRAF-mutated melanoma. CONCLUSION AND IMPLICATIONS We unravel the intrinsic anti-tumoral properties of a tachykinin peptide, possessing a pharmacology independent of tachykinin-receptors. This peptide mediates the selective cytotoxicity in BRAF-mutated melanoma in-vitro and prevents tumor progression in-vivo, providing the foundation for a potential therapy against melanoma.
Collapse
Affiliation(s)
- Javier Moral-Sanz
- Translational Venomics Group, Madrid Institute for Advanced Studies in Food, Madrid, Spain
| | - Manuel A Fernandez-Rojo
- Hepatic Regenerative Medicine Group, Madrid Institute for Advanced Studies in Food, Madrid, Spain.,Hepatic Fibrosis Group, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Queensland, Australia.,Diamantina Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Gonzalo Colmenarejo
- Biostatistics & Bioinformatics Unit, Madrid Institute for Advances Studies in Food, Madrid, Spain
| | - Sergey Kurdyukov
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Andreas Brust
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Lotten Ragnarsson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Åsa Andersson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Sabela F Vila
- Translational Venomics Group, Madrid Institute for Advanced Studies in Food, Madrid, Spain.,Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Lugo, Spain
| | - Pablo Cabezas-Sainz
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Lugo, Spain
| | - Patrick Wilhelm
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Ana Vela-Sebastian
- Translational Venomics Group, Madrid Institute for Advanced Studies in Food, Madrid, Spain
| | | | - Yanni K Y Chin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, Australia
| | - Yaiza López-Mancheño
- Hepatic Regenerative Medicine Group, Madrid Institute for Advanced Studies in Food, Madrid, Spain
| | - Taylor B Smallwood
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Richard J Clark
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.,School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Bryan G Fry
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, QLD, Australia
| | - Grant A Ramm
- Hepatic Fibrosis Group, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Jason P Mulvenna
- Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Glen M Boyle
- Department of Cell and Molecular Biology, Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Laura E Sanchez
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Lugo, Spain
| | - G Gregory Neely
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - John J Miles
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,James Cook University, Centre for Biodiscovery and Molecular Development of Therapeutics and Centre for Biosecurity in Tropical Infectious Diseases, Cairns, Australia.,The Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, Australia.,Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
| | - Maria P Ikonomopoulou
- Translational Venomics Group, Madrid Institute for Advanced Studies in Food, Madrid, Spain.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.,Department of Cell and Molecular Biology, Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
42
|
Ohanna M, Biber P, Deckert M. Emerging Role of Deubiquitinating Enzymes (DUBs) in Melanoma Pathogenesis. Cancers (Basel) 2022; 14:3371. [PMID: 35884430 PMCID: PMC9322030 DOI: 10.3390/cancers14143371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Metastatic melanoma is the leading cause of death from skin cancer. Therapies targeting the BRAF oncogenic pathway and immunotherapies show remarkable clinical efficacy. However, these treatments are limited to subgroups of patients and relapse is common. Overall, the majority of patients require additional treatments, justifying the development of new therapeutic strategies. Non-genetic and genetic alterations are considered to be important drivers of cellular adaptation mechanisms to current therapies and disease relapse. Importantly, modification of the overall proteome in response to non-genetic and genetic events supports major cellular changes that are required for the survival, proliferation, and migration of melanoma cells. However, the mechanisms underlying these adaptive responses remain to be investigated. The major contributor to proteome remodeling involves the ubiquitin pathway, ubiquitinating enzymes, and ubiquitin-specific proteases also known as DeUBiquitinases (DUBs). In this review, we summarize the current knowledge regarding the nature and roles of the DUBs recently identified in melanoma progression and therapeutic resistance and discuss their potential as novel sources of vulnerability for melanoma therapy.
Collapse
Affiliation(s)
- Mickael Ohanna
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (P.B.); (M.D.)
- Team MicroCan, Equipe Labellisée Ligue Contre le Cancer, 06204 Nice, France
| | - Pierric Biber
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (P.B.); (M.D.)
- Team MicroCan, Equipe Labellisée Ligue Contre le Cancer, 06204 Nice, France
| | - Marcel Deckert
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (P.B.); (M.D.)
- Team MicroCan, Equipe Labellisée Ligue Contre le Cancer, 06204 Nice, France
| |
Collapse
|
43
|
Jandova J, Park SL, Corenblum MJ, Madhavan L, Snell JA, Rounds L, Wondrak GT. Mefloquine induces ER stress and apoptosis in BRAFi-resistant A375-BRAF V600E /NRAS Q61K malignant melanoma cells targeting intracranial tumors in a bioluminescent murine model. Mol Carcinog 2022; 61:603-614. [PMID: 35417045 PMCID: PMC9133119 DOI: 10.1002/mc.23407] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/15/2022] [Accepted: 03/27/2022] [Indexed: 02/03/2023]
Abstract
Molecularly targeted therapeutics have revolutionized the treatment of BRAFV600E -driven malignant melanoma, but the rapid development of resistance to BRAF kinase inhibitors (BRAFi) presents a significant obstacle. The use of clinical antimalarials for the investigational treatment of malignant melanoma has shown only moderate promise, attributed mostly to inhibition of lysosomal-autophagic adaptations of cancer cells, but identification of specific antimalarials displaying single-agent antimelanoma activity has remained elusive. Here, we have screened a focused library of clinically used artemisinin-combination therapeutic (ACT) antimalarials for the apoptotic elimination of cultured malignant melanoma cell lines, also examining feasibility of overcoming BRAFi-resistance comparing isogenic melanoma cells that differ only by NRAS mutational status (BRAFi-sensitive A375-BRAFV600E /NRASQ61 vs. BRAFi-resistant A375-BRAFV600E /NRASQ61K ). Among ACT antimalarials tested, mefloquine (MQ) was the only apoptogenic agent causing melanoma cell death at low micromolar concentrations. Comparative gene expression-array analysis (A375-BRAFV600E /NRASQ61 vs. A375-BRAFV600E /NRASQ61K ) revealed that MQ is a dual inducer of endoplasmic reticulum (ER) and redox stress responses that precede MQ-induced loss of viability. ER-trackerTM DPX fluorescence imaging and electron microscopy indicated ER swelling, accompanied by rapid induction of ER stress signaling (phospho-eIF2α, XBP-1s, ATF4). Fluo-4 AM-fluorescence indicated the occurrence of cytosolic calcium overload observable within seconds of MQ exposure. In a bioluminescent murine model employing intracranial injection of A375-Luc2 (BRAFV600E /NRASQ61K ) cells, an oral MQ regimen efficiently antagonized brain tumor growth. Taken together, these data suggest that the clinical antimalarial MQ may be a valid candidate for drug repurposing aiming at chemotherapeutic elimination of malignant melanoma cells, even if metastasized to the brain and BRAFi-resistant.
Collapse
Affiliation(s)
- Jana Jandova
- Department of Pharmacology and Toxicology, RK Coit College of Pharmacy & UA Cancer Center, University of Arizona, Tucson, Arizona, USA
| | - Sophia L. Park
- Department of Pharmacology and Toxicology, RK Coit College of Pharmacy & UA Cancer Center, University of Arizona, Tucson, Arizona, USA
| | - Mandi J. Corenblum
- Department of Neurology, Evelyn F McKnight Brain Institute and BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Lalitha Madhavan
- Department of Neurology, Evelyn F McKnight Brain Institute and BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Jeremy A. Snell
- Department of Pharmacology and Toxicology, RK Coit College of Pharmacy & UA Cancer Center, University of Arizona, Tucson, Arizona, USA
| | - Liliana Rounds
- Department of Pharmacology and Toxicology, RK Coit College of Pharmacy & UA Cancer Center, University of Arizona, Tucson, Arizona, USA
| | - Georg T. Wondrak
- Department of Pharmacology and Toxicology, RK Coit College of Pharmacy & UA Cancer Center, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
44
|
Gutierrez-Prat N, Zuberer HL, Mangano L, Karimaddini Z, Wolf L, Tyanova S, Wellinger LC, Marbach D, Griesser V, Pettazzoni P, Bischoff JR, Rohle D, Palladino C, Vivanco I. DUSP4 protects BRAF- and NRAS-mutant melanoma from oncogene overdose through modulation of MITF. Life Sci Alliance 2022; 5:5/9/e202101235. [PMID: 35580987 PMCID: PMC9113946 DOI: 10.26508/lsa.202101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
MAPK inhibitors (MAPKi) remain an important component of the standard of care for metastatic melanoma. However, acquired resistance to these drugs limits their therapeutic benefit. Tumor cells can become refractory to MAPKi by reactivation of ERK. When this happens, tumors often become sensitive to drug withdrawal. This drug addiction phenotype results from the hyperactivation of the oncogenic pathway, a phenomenon commonly referred to as oncogene overdose. Several feedback mechanisms are involved in regulating ERK signaling. However, the genes that serve as gatekeepers of oncogene overdose in mutant melanoma remain unknown. Here, we demonstrate that depletion of the ERK phosphatase, DUSP4, leads to toxic levels of MAPK activation in both drug-naive and drug-resistant mutant melanoma cells. Importantly, ERK hyperactivation is associated with down-regulation of lineage-defining genes including MITF Our results offer an alternative therapeutic strategy to treat mutant melanoma patients with acquired MAPKi resistance and those unable to tolerate MAPKi.
Collapse
Affiliation(s)
- Nuria Gutierrez-Prat
- Roche Pharma Research and Early Development, Oncology Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Hedwig L Zuberer
- Roche Pharma Research and Early Development, Oncology Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Luca Mangano
- Roche Pharma Research and Early Development, Oncology Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Zahra Karimaddini
- Roche Pharma Research and Early Development, Informatics, Roche Innovation Center Basel, Basel, Switzerland
| | - Luise Wolf
- Roche Pharma Research and Early Development, Informatics, Roche Innovation Center Basel, Basel, Switzerland
| | - Stefka Tyanova
- Roche Pharma Research and Early Development, Informatics, Roche Innovation Center Basel, Basel, Switzerland
| | | | - Daniel Marbach
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Vera Griesser
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Piergiorgio Pettazzoni
- Roche Pharma Research and Early Development, Oncology Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - James R Bischoff
- Roche Pharma Research and Early Development, Oncology Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | | | - Chiara Palladino
- Roche Pharma Research and Early Development, Oncology Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Igor Vivanco
- Institute of Pharmaceutical Science, King's College London, London, UK
| |
Collapse
|
45
|
Zhao J, Luo Z. Discovery of Raf Family Is a Milestone in Deciphering the Ras-Mediated Intracellular Signaling Pathway. Int J Mol Sci 2022; 23:ijms23095158. [PMID: 35563547 PMCID: PMC9101324 DOI: 10.3390/ijms23095158] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/27/2023] Open
Abstract
The Ras-Raf-MEK-ERK signaling pathway, the first well-established MAPK pathway, plays essential roles in cell proliferation, survival, differentiation and development. It is activated in over 40% of human cancers owing to mutations of Ras, membrane receptor tyrosine kinases and other oncogenes. The Raf family consists of three isoforms, A-Raf, B-Raf and C-Raf. Since the first discovery of a truncated mutant of C-Raf as a transforming oncogene carried by a murine retrovirus, forty years of extensive studies have provided a wealth of information on the mechanisms underlying the activation, regulation and biological functions of the Raf family. However, the mechanisms by which activation of A-Raf and C-Raf is accomplished are still not completely understood. In contrast, B-Raf can be easily activated by binding of Ras-GTP, followed by cis-autophosphorylation of the activation loop, which accounts for the fact that this isoform is frequently mutated in many cancers, especially melanoma. The identification of oncogenic B-Raf mutations has led to accelerated drug development that targets Raf signaling in cancer. However, the effort has not proved as effective as anticipated, inasmuch as the mechanism of Raf activation involves multiple steps, factors and phosphorylation of different sites, as well as complex interactions between Raf isoforms. In this review, we will focus on the physiological complexity of the regulation of Raf kinases and their connection to the ERK phosphorylation cascade and then discuss the role of Raf in tumorigenesis and the clinical application of Raf inhibitors in the treatment of cancer.
Collapse
Affiliation(s)
- Jingtong Zhao
- Queen Mary School, Nanchang University, Nanchang 330031, China;
| | - Zhijun Luo
- Queen Mary School, Nanchang University, Nanchang 330031, China;
- Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang 330031, China
- NCU-QMUL Joint Research Institute of Precision Medical Science, Nanchang 330031, China
- Correspondence:
| |
Collapse
|
46
|
Riudavets M, Cascetta P, Planchard D. Targeting BRAF-mutant non-small cell lung cancer: current status and future directions. Lung Cancer 2022; 169:102-114. [DOI: 10.1016/j.lungcan.2022.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
|
47
|
Cathcart AM, Smith H, Labrie M, Mills GB. Characterization of anticancer drug resistance by reverse-phase protein array: new targets and strategies. Expert Rev Proteomics 2022; 19:115-129. [PMID: 35466854 PMCID: PMC9215307 DOI: 10.1080/14789450.2022.2070065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Drug resistance is the main barrier to achieving cancer cures with medical therapy. Cancer drug resistance occurs, in part, due to adaptation of the tumor and microenvironment to therapeutic stress at a proteomic level. Reverse-phase protein arrays (RPPA) are well suited to proteomic analysis of drug resistance due to high sample throughput, sensitive detection of phosphoproteins, and validation for a large number of critical cellular pathways. AREAS COVERED This review summarizes contributions of RPPA to understanding and combating drug resistance. In particular, contributions of RPPA to understanding resistance to PARP inhibitors, BRAF inhibitors, immune checkpoint inhibitors, and breast cancer investigational therapies are discussed. Articles reviewed were identified by MEDLINE, Scopus, and Cochrane search for keywords 'proteomics,' 'reverse-phase protein array,' 'drug resistance,' 'PARP inhibitor,' 'BRAF inhibitor,' 'immune checkpoint inhibitor,' and 'I-SPY' spanning October 1, 1960 - October 1, 2021. EXPERT OPINION Precision oncology has thus far failed to convert the armament of targeted therapies into durable responses for most patients, highlighting that genetic sequencing alone is insufficient to guide therapy selection and overcome drug resistance. Combined genomic and proteomic analyses paired with creative drug combinations and dosing strategies hold promise for maturing precision oncology into an era of improved patient outcomes.
Collapse
Affiliation(s)
- Ann M Cathcart
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Hannah Smith
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Marilyne Labrie
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Department of Immunology and Cellular Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Gordon B Mills
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
48
|
Misek SA, Foda BM, Dexheimer TS, Akram M, Conrad SE, Schmidt JC, Neubig RR, Gallo KA. BRAF Inhibitor Resistance Confers Increased Sensitivity to Mitotic Inhibitors. Front Oncol 2022; 12:766794. [PMID: 35444937 PMCID: PMC9015667 DOI: 10.3389/fonc.2022.766794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Single agent and combination therapy with BRAFV600E/K and MEK inhibitors have remarkable efficacy against melanoma tumors with activating BRAF mutations, but in most cases BRAF inhibitor (BRAFi) resistance eventually develops. One resistance mechanism is reactivation of the ERK pathway. However, only about half of BRAFi resistance is due to ERK reactivation. The purpose of this study is to uncover pharmacological vulnerabilities of BRAFi-resistant melanoma cells, with the goal of identifying new therapeutic options for patients whose tumors have developed resistance to BRAFi/MEKi therapy. We screened a well-annotated compound library against a panel of isogenic pairs of parental and BRAFi-resistant melanoma cell lines to identify classes of compounds that selectively target BRAFi-resistant cells over their BRAFi-sensitive counterparts. Two distinct patterns of increased sensitivity to classes of pharmacological inhibitors emerged. In two cell line pairs, BRAFi resistance conferred increased sensitivity to compounds that share the property of cell cycle arrest at M-phase, including inhibitors of aurora kinase (AURK), polo-like kinase (PLK), tubulin, and kinesin. Live cell microscopy, used to track mitosis in real time, revealed that parental but not BRAFi-resistant melanoma cells were able to exit from compound-induced mitotic arrest through mitotic slippage, thus escaping death. Consistent with the key role of Cyclin B1 levels in regulating mitosis at the spindle checkpoint in arrested cells, we found lower Cyclin B1 levels in parental compared with BRAFi-resistant melanoma cells, suggesting that inability to down-regulate Cyclin B1 expression levels may explain the increased vulnerability of resistant cells to mitotic inhibitors. Another BRAFi-resistant cell line showed increased sensitivity to Chk1/2 inhibitors, which was associated with an accumulation of DNA damage, resulting in mitotic failure. This study demonstrates that BRAFi-resistance, in at least a subset of melanoma cells, confers vulnerability to pharmacological disruption of mitosis and suggests a targeted synthetic lethal approach for overcoming resistance to BRAF/MEK-directed therapies.
Collapse
Affiliation(s)
- Sean A Misek
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Bardees M Foda
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States.,Molecular Genetics and Enzymology Department, National Research Centre, Dokki, Egypt
| | - Thomas S Dexheimer
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Maisah Akram
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Susan E Conrad
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Jens C Schmidt
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, United States.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States.,"Nicholas V. Perricone, M.D.", Division of Dermatology, Department of Medicine, Michigan State University, East Lansing, MI, United States
| | - Kathleen A Gallo
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
49
|
Song K, Minami JK, Huang A, Dehkordi SR, Lomeli SH, Luebeck J, Goodman MH, Moriceau G, Krijgsman O, Dharanipragada P, Ridgley T, Crosson WP, Salazar J, Pazol E, Karin G, Jayaraman R, Balanis NG, Alhani S, Sheu K, Hoeve JT, Palermo A, Motika SE, Senaratne TN, Paraiso KH, Hergenrother PJ, Rao PN, Multani AS, Peeper DS, Bafna V, Lo RS, Graeber TG. Plasticity of Extrachromosomal and Intrachromosomal BRAF Amplifications in Overcoming Targeted Therapy Dosage Challenges. Cancer Discov 2022; 12:1046-1069. [PMID: 34930786 PMCID: PMC9192483 DOI: 10.1158/2159-8290.cd-20-0936] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/06/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
Focal amplifications (FA) can mediate targeted therapy resistance in cancer. Understanding the structure and dynamics of FAs is critical for designing treatments that overcome plasticity-mediated resistance. We developed a melanoma model of dual MAPK inhibitor (MAPKi) resistance that bears BRAFV600 amplifications through either extrachromosomal DNA (ecDNA)/double minutes (DM) or intrachromosomal homogenously staining regions (HSR). Cells harboring BRAFV600E FAs displayed mode switching between DMs and HSRs, from both de novo genetic changes and selection of preexisting subpopulations. Plasticity is not exclusive to ecDNAs, as cells harboring HSRs exhibit drug addiction-driven structural loss of BRAF amplicons upon dose reduction. FA mechanisms can couple with kinase domain duplications and alternative splicing to enhance resistance. Drug-responsive amplicon plasticity is observed in the clinic and can involve other MAPK pathway genes, such as RAF1 and NRAS. BRAF FA-mediated dual MAPKi-resistant cells are more sensitive to proferroptotic drugs, extending the spectrum of ferroptosis sensitivity in MAPKi resistance beyond cases of dedifferentiation. SIGNIFICANCE Understanding the structure and dynamics of oncogene amplifications is critical for overcoming tumor relapse. BRAF amplifications are highly plastic under MAPKi dosage challenges in melanoma, through involvement of de novo genomic alterations, even in the HSR mode. Moreover, BRAF FA-driven, dual MAPKi-resistant cells extend the spectrum of resistance-linked ferroptosis sensitivity. This article is highlighted in the In This Issue feature, p. 873.
Collapse
Affiliation(s)
- Kai Song
- Department of Bioengineering, UCLA, Los Angeles, CA 90095, USA
| | - Jenna K. Minami
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
- Department of Integrative Biology and Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Arthur Huang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Siavash R. Dehkordi
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA 92093, USA
| | - Shirley H. Lomeli
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Jens Luebeck
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA 92093, USA
| | - Mark H. Goodman
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Gatien Moriceau
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Oscar Krijgsman
- Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Prashanthi Dharanipragada
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Trevor Ridgley
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, 90095, USA
| | - William P. Crosson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Jesus Salazar
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Eli Pazol
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Gabriel Karin
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Rachana Jayaraman
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Nikolas G. Balanis
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Salwan Alhani
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Kyle Sheu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Johanna ten Hoeve
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
- UCLA Metabolomics Center, Los Angeles, CA, 90095, USA
| | - Amelia Palermo
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
- UCLA Metabolomics Center, Los Angeles, CA, 90095, USA
| | - Stephen E. Motika
- Department of Chemistry, Institute for Genomic Biology, Cancer Center at Illinois, University of Illinois, Urbana-Champaign, USA
| | - T. Niroshi Senaratne
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Kim H. Paraiso
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Paul J. Hergenrother
- Department of Chemistry, Institute for Genomic Biology, Cancer Center at Illinois, University of Illinois, Urbana-Champaign, USA
| | - P. Nagesh Rao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Asha S. Multani
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Daniel S. Peeper
- Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA 92093, USA
| | - Roger S. Lo
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Thomas G. Graeber
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA
- UCLA Metabolomics Center, Los Angeles, CA, 90095, USA
| |
Collapse
|
50
|
Intermittent treatment of BRAF V600E melanoma cells delays resistance by adaptive resensitization to drug rechallenge. Proc Natl Acad Sci U S A 2022; 119:e2113535119. [PMID: 35290123 PMCID: PMC8944661 DOI: 10.1073/pnas.2113535119] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Preclinical studies of metastatic melanoma treated with targeted therapeutics have suggested that alternating periods of treatment and withdrawal might delay the onset of resistance. This has been attributed to drug addiction, where cells lose fitness upon drug removal due to the resulting hyperactivation of mitogen-activated protein (MAP) kinase signaling. This study presents evidence that the intermittent treatment response can also be explained by the resensitization of cells following drug removal and enhanced cell loss upon drug rechallenge. Resensitization is accompanied by adaptive transcriptomic switching and occurs despite the sustained expression of resistance genes throughout the intermittent treatment. Patients with melanoma receiving drugs targeting BRAFV600E and mitogen-activated protein (MAP) kinase kinases 1 and 2 (MEK1/2) invariably develop resistance and face continued progression. Based on preclinical studies, intermittent treatment involving alternating periods of drug withdrawal and rechallenge has been proposed as a method to delay the onset of resistance. The beneficial effect of intermittent treatment has been attributed to drug addiction, where drug withdrawal reduces the viability of resistant cells due to MAP kinase pathway hyperactivation. However, the mechanistic basis of the intermittent effect is incompletely understood. We show that intermittent treatment with the BRAFV600E inhibitor, LGX818/encorafenib, suppresses growth compared with continuous treatment in human melanoma cells engineered to express BRAFV600E, p61-BRAFV600E, or MEK2C125 oncogenes. Analysis of the BRAFV600E-overexpressing cells shows that, while drug addiction clearly occurs, it fails to account for the advantageous effect of intermittent treatment. Instead, growth suppression is best explained by resensitization during periods of drug removal, followed by cell death after drug readdition. Continuous treatment leads to transcriptional responses prominently associated with chemoresistance in melanoma. By contrast, cells treated intermittently reveal a subset of transcripts that reverse expression between successive cycles of drug removal and rechallenge and include mediators of cell invasiveness and the epithelial-to-mesenchymal transition. These transcripts change during periods of drug removal by adaptive switching, rather than selection pressure. Resensitization occurs against a background of sustained expression of melanoma resistance genes, producing a transcriptome distinct from that of the initial drug-naive cell state. We conclude that phenotypic plasticity leading to drug resensitization can underlie the beneficial effect of intermittent treatment.
Collapse
|