1
|
Hsu CC, Wang G, Li CF, Zhang X, Cai Z, Chen T, Pan BS, Manne RK, Deep G, Gu H, Wang Y, Peng D, Penugurti V, Zhou X, Xu Z, Chen Z, Chen M, Armstrong AJ, Huang J, Li HY, Lin HK. IMPA1-derived inositol maintains stemness in castration-resistant prostate cancer via IMPDH2 activation. J Exp Med 2024; 221:e20231832. [PMID: 39470689 PMCID: PMC11528126 DOI: 10.1084/jem.20231832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 07/09/2024] [Accepted: 08/19/2024] [Indexed: 10/30/2024] Open
Abstract
Acquisition of prostate cancer stem cells (PCSCs) manifested during androgen ablation therapy (ABT) contributes to castration-resistant prostate cancer (CRPC). However, little is known about the specific metabolites critically orchestrating this process. Here, we show that IMPA1-derived inositol enriched in PCSCs is a key metabolite crucially maintaining PCSCs for CRPC progression and ABT resistance. Notably, conditional Impa1 knockout in the prostate abrogates the pool and properties of PCSCs to orchestrate CRPC progression and prolong the survival of TRAMP mice. IMPA1-derived inositol serves as a cofactor that directly binds to and activates IMPDH2, which synthesizes guanylate nucleotides for maintaining PCSCs with ARlow/- features leading to CRPC progression and ABT resistance. IMPA1/inositol/IMPDH2 axis is upregulated in human prostate cancer, and its overexpression predicts poor survival outcomes. Genetically and pharmacologically targeting the IMPA1/inositol/IMPDH2 axis abrogates CRPC and overcomes ABT resistance in various CRPC xenografts, patient-derived xenograft (PDX) tumor models, and TRAMP mouse models. Our study identifies IMPDH2 as an inositol sensor whose activation by inositol represents a key mechanism for maintaining PCSCs for CRPC and ABT resistance.
Collapse
Affiliation(s)
- Che-Chia Hsu
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Guihua Wang
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Xian Zhang
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Zhen Cai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Tingjin Chen
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Bo-Syong Pan
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Rajesh Kumar Manne
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Haiwei Gu
- Cellular Biology and Pharmacology Department, Center for Translational Science, The Herbert Wertheim College of Medicine, Florida International University, Port St. Lucie, FL, USA
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, BC Cancer Research Institute, Vancouver, Canada
| | - Danni Peng
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Vasudevarao Penugurti
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhigang Xu
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences, Chongqing, China
| | - Zhongzhu Chen
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences, Chongqing, China
| | - Ming Chen
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
| | - Andrew J. Armstrong
- Duke Cancer Institute Center, Duke University School of Medicine, Durham, NC, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
| | - Hong-Yu Li
- Division of Pharmaceutical Science, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Hui-Kuan Lin
- Department of Pathology, Duke University Medical Center, Duke University School of Medicine, Durham, NC, USA
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| |
Collapse
|
2
|
Bojko J, Kollareddy M, Szemes M, Bellamy J, Poon E, Moukachar A, Legge D, Vincent EE, Jones N, Malik S, Greenhough A, Paterson A, Park JH, Gallacher K, Chesler L, Malik K. Spliceosomal vulnerability of MYCN-amplified neuroblastoma is contingent on PRMT5-mediated regulation of epitranscriptomic and metabolomic pathways. Cancer Lett 2024; 604:217263. [PMID: 39313128 DOI: 10.1016/j.canlet.2024.217263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
Approximately 50 % of poor prognosis neuroblastomas arise due to MYCN over-expression. We previously demonstrated that MYCN and PRMT5 proteins interact and PRMT5 knockdown led to apoptosis of MYCN-amplified (MNA) neuroblastoma. Here we evaluate the highly selective first-in-class PRMT5 inhibitor GSK3203591 and its in vivo analogue GSK3326593 as targeted therapeutics for MNA neuroblastoma. Cell-line analyses show MYCN-dependent growth inhibition and apoptosis, with approximately 200-fold greater sensitivity of MNA neuroblastoma lines. RNA sequencing of three MNA neuroblastoma lines treated with GSK3203591 reveal deregulated MYCN transcriptional programmes and altered mRNA splicing, converging on key regulatory pathways such as DNA damage response, epitranscriptomics and cellular metabolism. Stable isotope labelling experiments in the same cell lines demonstrate that glutamine metabolism is impeded following GSK3203591 treatment, linking with disruption of the MLX/Mondo nutrient sensors via intron retention of MLX mRNA. Interestingly, glutaminase (GLS) protein decreases after GSK3203591 treatment despite unchanged transcript levels. We demonstrate that the RNA methyltransferase METTL3 and cognate reader YTHDF3 proteins are lowered following their mRNAs undergoing GSK3203591-induced splicing alterations, indicating epitranscriptomic regulation of GLS; accordingly, we observe decreases of GLS mRNA m6A methylation following GSK3203591 treatment, and decreased GLS protein following YTHDF3 knockdown. In vivo efficacy of GSK3326593 is confirmed by increased survival of Th-MYCN mice, with drug treatment triggering splicing events and protein decreases consistent with in vitro data. Together our study demonstrates the PRMT5-dependent spliceosomal vulnerability of MNA neuroblastoma and identifies the epitranscriptome and glutamine metabolism as critical determinants of this sensitivity.
Collapse
Affiliation(s)
- Jodie Bojko
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Madhu Kollareddy
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Marianna Szemes
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Jacob Bellamy
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Evon Poon
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Ahmad Moukachar
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Danny Legge
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Emma E Vincent
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Sally Malik
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Alexander Greenhough
- College of Health, Science and Society, University of the West of England, Bristol, BS16 1QY, UK
| | - Alex Paterson
- Insilico Consulting ltd, Wapping Wharf, Bristol, England, UK
| | - Ji Hyun Park
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Kelli Gallacher
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Karim Malik
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| |
Collapse
|
3
|
Krenz B, Lee J, Kannan T, Eilers M. Immune evasion: An imperative and consequence of MYC deregulation. Mol Oncol 2024; 18:2338-2355. [PMID: 38957016 PMCID: PMC11459038 DOI: 10.1002/1878-0261.13695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/08/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
MYC has been implicated in the pathogenesis of a wide range of human tumors and has been described for many years as a transcription factor that regulates genes with pleiotropic functions to promote tumorigenic growth. However, despite extensive efforts to identify specific target genes of MYC that alone could be responsible for promoting tumorigenesis, the field is yet to reach a consensus whether this is the crucial function of MYC. Recent work shifts the view on MYC's function from being a gene-specific transcription factor to an essential stress resilience factor. In highly proliferating cells, MYC preserves cell integrity by promoting DNA repair at core promoters, protecting stalled replication forks, and/or preventing transcription-replication conflicts. Furthermore, an increasing body of evidence demonstrates that MYC not only promotes tumorigenesis by driving cell-autonomous growth, but also enables tumors to evade the host's immune system. In this review, we summarize our current understanding of how MYC impairs antitumor immunity and why this function is evolutionarily hard-wired to the biology of the MYC protein family. We show why the cell-autonomous and immune evasive functions of MYC are mutually dependent and discuss ways to target MYC proteins in cancer therapy.
Collapse
Affiliation(s)
- Bastian Krenz
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
- Mildred Scheel Early Career CenterWürzburgGermany
| | - Jongkuen Lee
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
| | - Toshitha Kannan
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
| | - Martin Eilers
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
- Comprehensive Cancer Center MainfrankenWürzburgGermany
| |
Collapse
|
4
|
Freie B, Ibrahim AH, Carroll PA, Bronson RT, Augert A, MacPherson D, Eisenman RN. MAX inactivation deregulates the MYC network and induces neuroendocrine neoplasia in multiple tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.614255. [PMID: 39386474 PMCID: PMC11463667 DOI: 10.1101/2024.09.21.614255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The MYC transcription factor requires MAX for DNA binding and widespread activation of gene expression in both normal and neoplastic cells. Surprisingly, inactivating mutations in MAX are associated with a subset of neuroendocrine cancers including pheochromocytoma, pituitary adenoma and small cell lung cancer. Neither the extent nor the mechanisms of MAX tumor suppression are well understood. Delet-ing Max across multiple mouse neuroendocrine tissues, we find Max inactivation alone produces pituitary adenomas while Max loss cooperates with Rb1/Trp53 loss to accelerate medullary thyroid C-cell and pituitary adenoma development. In the thyroid tumor cell lines, MAX loss triggers a striking shift in genomic occupancy by other members of the MYC network (MNT, MLX, MondoA) supporting metabolism, survival and proliferation of neoplastic neuroendocrine cells. Our work reveals MAX as a broad suppressor of neuroendocrine tumorigenesis through its ability to maintain a balance of genomic occupancies among the diverse transcription factors in the MYC network.
Collapse
Affiliation(s)
- Brian Freie
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle WA USA
| | - Ali H. Ibrahim
- Human Biology and Public Health Science Divisions, Fred Hutchinson Cancer Center, Seattle WA USA
- Present address: Department of Internal Medicine, The University of Texas Health Science Center, Houston TX USA
| | | | - Roderick T Bronson
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Arnaud Augert
- Human Biology and Public Health Science Divisions, Fred Hutchinson Cancer Center, Seattle WA USA
- Present address: Yale Cancer Center, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - David MacPherson
- Human Biology and Public Health Science Divisions, Fred Hutchinson Cancer Center, Seattle WA USA
- Department of Genome Sciences, University of Washington, Seattle WA USA
| | | |
Collapse
|
5
|
Cadena del Castillo CE, Deniz O, van Geest F, Rosseels L, Stockmans I, Robciuc M, Carpentier S, Wölnerhanssen BK, Meyer-Gerspach AC, Peterli R, Hietakangas V, Shimobayashi M. MLX phosphorylation stabilizes the ChREBP-MLX heterotetramer on tandem E-boxes to control carbohydrate and lipid metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611172. [PMID: 39282306 PMCID: PMC11398402 DOI: 10.1101/2024.09.04.611172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The heterodimeric ChREBP-MLX transcription factor complex is a key mediator that couples intracellular sugar levels to carbohydrate and lipid metabolism. To promote the expression of target genes, two ChREBP-MLX heterodimers form a heterotetramer to bind a tandem element with two adjacent E-boxes, called Carbohydrate Responsive Element (ChoRE). How the ChREBP-MLX hetero-tetramerization is achieved and regulated, remains poorly understood. Here we show that MLX phosphorylation on an evolutionarily conserved motif is necessary for the heterotetramer formation on the ChoRE and the transcriptional activity of the ChREBP-MLX complex. We identified CK2 and GSK3 as MLX kinases that coordinately phosphorylate MLX. High intracellular glucose-6-phosphate accumulation inhibits MLX phosphorylation and heterotetramer formation on the ChoRE, impairing ChREBP-MLX activity. Physiologically, MLX phosphorylation is necessary in Drosophila to maintain sugar tolerance and lipid homeostasis. Our findings suggest that MLX phosphorylation is a key mechanism for the ChREBP-MLX heterotetramer formation to regulate carbohydrate and lipid metabolism.
Collapse
Affiliation(s)
- Carla E Cadena del Castillo
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Onur Deniz
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Femke van Geest
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Lore Rosseels
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Ingrid Stockmans
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Marius Robciuc
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Sebastien Carpentier
- Facility for Systems Biology Based Mass Spectrometry, KU Leuven, Leuven, Belgium
| | - Bettina K. Wölnerhanssen
- St. Clara Research Ltd, St. Claraspital, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Ralph Peterli
- Clarunis, University Digestive Health Care Center, St. Clara Hospital and University Hospital Basel, Switzerland
| | - Ville Hietakangas
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Mitsugu Shimobayashi
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Wang H, Stevens T, Lu J, Roberts A, Van't Land C, Muzumdar R, Gong Z, Vockley J, Prochownik EV. Body-Wide Inactivation of the Myc-Like Mlx Transcription Factor Network Accelerates Aging and Increases the Lifetime Cancer Incidence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401593. [PMID: 38976573 PMCID: PMC11425880 DOI: 10.1002/advs.202401593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/08/2024] [Indexed: 07/10/2024]
Abstract
The "Mlx" and "Myc" transcription factor networks cross-communicate and share many common gene targets. Myc's activity depends upon its heterodimerization with Max, whereas the Mlx Network requires that the Max-like factor Mlx associate with the Myc-like factors MondoA or ChREBP. The current work demonstrates that body-wide Mlx inactivation, like that of Myc, accelerates numerous aging-related phenotypes pertaining to body habitus and metabolism. The deregulation of numerous aging-related Myc target gene sets is also accelerated. Among other functions, these gene sets often regulate ribosomal and mitochondrial structure and function, genomic stability, and aging. Whereas "MycKO" mice have an extended lifespan because of a lower cancer incidence, "MlxKO" mice have normal lifespans and a higher cancer incidence. Like Myc, the expression of Mlx, MondoA, and ChREBP and their control over their target genes deteriorate with age in both mice and humans. Collectively, these findings underscore the importance of lifelong and balanced cross-talk between the two networks to maintain proper function and regulation of the many factors that can affect normal aging.
Collapse
Affiliation(s)
- Huabo Wang
- Division of Hematology/OncologyUPMC Children's Hospital of PittsburghPittsburghPA15201USA
| | - Taylor Stevens
- Division of Hematology/OncologyUPMC Children's Hospital of PittsburghPittsburghPA15201USA
| | - Jie Lu
- Division of Hematology/OncologyUPMC Children's Hospital of PittsburghPittsburghPA15201USA
| | - Alexander Roberts
- Division of Hematology/OncologyUPMC Children's Hospital of PittsburghPittsburghPA15201USA
| | - Clinton Van't Land
- Division of Medical GeneticsUPMC Children's Hospital of PittsburghPittsburghPA15201USA
| | - Radhika Muzumdar
- Division of EndocrinologyUPMC Children's Hospital of PittsburghPittsburghPA15201USA
| | - Zhenwei Gong
- Division of EndocrinologyUPMC Children's Hospital of PittsburghPittsburghPA15201USA
| | - Jerry Vockley
- Division of Medical GeneticsUPMC Children's Hospital of PittsburghPittsburghPA15201USA
| | - Edward V. Prochownik
- Division of Hematology/OncologyUPMC Children's Hospital of PittsburghPittsburghPA15201USA
- The Department of Microbiology and Molecular GeneticsUPMCPittsburghPA15201USA
- The Hillman Cancer Center of UPMC5115 Centre AvePittsburghPA15232USA
- The Pittsburgh Liver Research CenterUPMCPittsburghPA15224USA
| |
Collapse
|
7
|
Wang Z, Ma L, Meng Y, Fang J, Xu D, Lu Z. The interplay of the circadian clock and metabolic tumorigenesis. Trends Cell Biol 2024; 34:742-755. [PMID: 38061936 DOI: 10.1016/j.tcb.2023.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 09/08/2024]
Abstract
The circadian clock and cell metabolism are both dysregulated in cancer cells through intrinsic cell-autonomous mechanisms and external influences from the tumor microenvironment. The intricate interplay between the circadian clock and cancer cell metabolism exerts control over various metabolic processes, including aerobic glycolysis, de novo nucleotide synthesis, glutamine and protein metabolism, lipid metabolism, mitochondrial metabolism, and redox homeostasis in cancer cells. Importantly, oncogenic signaling can confer a moonlighting function on core clock genes, effectively reshaping cellular metabolism to fuel cancer cell proliferation and drive tumor growth. These interwoven regulatory mechanisms constitute a distinctive feature of cancer cell metabolism.
Collapse
Affiliation(s)
- Zheng Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Leina Ma
- Department of Oncology, The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, Shandong 266003, China
| | - Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Jing Fang
- Department of Oncology, The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, Shandong 266003, China.
| | - Daqian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China.
| |
Collapse
|
8
|
Nandakumar R, Shi X, Gu H, Kim Y, Raskind WH, Peter B, Dinu V. Joint exome and metabolome analysis in individuals with dyslexia: Evidence for associated dysregulations of olfactory perception and autoimmune functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600448. [PMID: 39005457 PMCID: PMC11244894 DOI: 10.1101/2024.06.27.600448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Dyslexia is a learning disability that negatively affects reading, writing, and spelling development at the word level in 5%-9% of children. The phenotype is variable and complex, involving several potential cognitive and physical concomitants such as sensory dysregulation and immunodeficiencies. The biological pathogenesis is not well-understood. Toward a better understanding of the biological drivers of dyslexia, we conducted the first joint exome and metabolome investigation in a pilot sample of 30 participants with dyslexia and 13 controls. In this analysis, eight metabolites of interest emerged (pyridoxine, kynurenic acid, citraconic acid, phosphocreatine, hippuric acid, xylitol, 2-deoxyuridine, and acetylcysteine). A metabolite-metabolite interaction analysis identified Krebs cycle intermediates that may be implicated in the development of dyslexia. Gene ontology analysis based on exome variants resulted in several pathways of interest, including the sensory perception of smell (olfactory) and immune system-related responses. In the joint exome and metabolite analysis, the olfactory transduction pathway emerged as the primary pathway of interest. Although the olfactory transduction and Krebs cycle pathways have not previously been described in dyslexia literature, these pathways have been implicated in other neurodevelopmental disorders including autism spectrum disorder and obsessive-compulsive disorder, suggesting the possibility of these pathways playing a role in dyslexia as well. Immune system response pathways, on the other hand, have been implicated in both dyslexia and other neurodevelopmental disorders.
Collapse
|
9
|
Su F, Koeberle A. Regulation and targeting of SREBP-1 in hepatocellular carcinoma. Cancer Metastasis Rev 2024; 43:673-708. [PMID: 38036934 PMCID: PMC11156753 DOI: 10.1007/s10555-023-10156-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is an increasing burden on global public health and is associated with enhanced lipogenesis, fatty acid uptake, and lipid metabolic reprogramming. De novo lipogenesis is under the control of the transcription factor sterol regulatory element-binding protein 1 (SREBP-1) and essentially contributes to HCC progression. Here, we summarize the current knowledge on the regulation of SREBP-1 isoforms in HCC based on cellular, animal, and clinical data. Specifically, we (i) address the overarching mechanisms for regulating SREBP-1 transcription, proteolytic processing, nuclear stability, and transactivation and (ii) critically discuss their impact on HCC, taking into account (iii) insights from pharmacological approaches. Emphasis is placed on cross-talk with the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt)-mechanistic target of rapamycin (mTOR) axis, AMP-activated protein kinase (AMPK), protein kinase A (PKA), and other kinases that directly phosphorylate SREBP-1; transcription factors, such as liver X receptor (LXR), peroxisome proliferator-activated receptors (PPARs), proliferator-activated receptor γ co-activator 1 (PGC-1), signal transducers and activators of transcription (STATs), and Myc; epigenetic mechanisms; post-translational modifications of SREBP-1; and SREBP-1-regulatory metabolites such as oxysterols and polyunsaturated fatty acids. By carefully scrutinizing the role of SREBP-1 in HCC development, progression, metastasis, and therapy resistance, we shed light on the potential of SREBP-1-targeting strategies in HCC prevention and treatment.
Collapse
Affiliation(s)
- Fengting Su
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
10
|
Li G, Yao Q, Liu P, Zhang H, Liu Y, Li S, Shi Y, Li Z, Zhu W. Critical roles and clinical perspectives of RNA methylation in cancer. MedComm (Beijing) 2024; 5:e559. [PMID: 38721006 PMCID: PMC11077291 DOI: 10.1002/mco2.559] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 01/06/2025] Open
Abstract
RNA modification, especially RNA methylation, is a critical posttranscriptional process influencing cellular functions and disease progression, accounting for over 60% of all RNA modifications. It plays a significant role in RNA metabolism, affecting RNA processing, stability, and translation, thereby modulating gene expression and cell functions essential for proliferation, survival, and metastasis. Increasing studies have revealed the disruption in RNA metabolism mediated by RNA methylation has been implicated in various aspects of cancer progression, particularly in metabolic reprogramming and immunity. This disruption of RNA methylation has profound implications for tumor growth, metastasis, and therapy response. Herein, we elucidate the fundamental characteristics of RNA methylation and their impact on RNA metabolism and gene expression. We highlight the intricate relationship between RNA methylation, cancer metabolic reprogramming, and immunity, using the well-characterized phenomenon of cancer metabolic reprogramming as a framework to discuss RNA methylation's specific roles and mechanisms in cancer progression. Furthermore, we explore the potential of targeting RNA methylation regulators as a novel approach for cancer therapy. By underscoring the complex mechanisms by which RNA methylation contributes to cancer progression, this review provides a foundation for developing new prognostic markers and therapeutic strategies aimed at modulating RNA methylation in cancer treatment.
Collapse
Affiliation(s)
- Ganglei Li
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Qinfan Yao
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Peixi Liu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Hongfei Zhang
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Yingjun Liu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Sichen Li
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Yuan Shi
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Zongze Li
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Wei Zhu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| |
Collapse
|
11
|
Chan KI, Zhang S, Li G, Xu Y, Cui L, Wang Y, Su H, Tan W, Zhong Z. MYC Oncogene: A Druggable Target for Treating Cancers with Natural Products. Aging Dis 2024; 15:640-697. [PMID: 37450923 PMCID: PMC10917530 DOI: 10.14336/ad.2023.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/20/2023] [Indexed: 07/18/2023] Open
Abstract
Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.
Collapse
Affiliation(s)
- Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Siyuan Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yida Xu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524000, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Huanxing Su
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| |
Collapse
|
12
|
Thumsi A, Martínez D, Swaminathan SJ, Esrafili A, Suresh AP, Jaggarapu MMC, Lintecum K, Halim M, Mantri SV, Sleiman Y, Appel N, Gu H, Curtis M, Zuniga C, Acharya AP. Inverse-Vaccines for Rheumatoid Arthritis Re-establish Metabolic and Immunological Homeostasis in Joint Tissues. Adv Healthc Mater 2024:e2303995. [PMID: 38469995 PMCID: PMC11390975 DOI: 10.1002/adhm.202303995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/06/2024] [Indexed: 03/13/2024]
Abstract
Rheumatoid arthritis (RA) causes immunological and metabolic imbalances in tissue, exacerbating inflammation in affected joints. Changes in immunological and metabolic tissue homeostasis at different stages of RA are not well understood. Herein, the changes in the immunological and metabolic profiles in different stages in collagen induced arthritis (CIA), namely, early, intermediate, and late stage is examined. Moreover, the efficacy of the inverse-vaccine, paKG(PFK15+bc2) microparticle, to restore tissue homeostasis at different stages is also investigated. Immunological analyses of inverse-vaccine-treated group revealed a significant decrease in the activation of pro-inflammatory immune cells and remarkable increase in regulatory T-cell populations in the intermediate and late stages compared to no treatment. Also, glycolysis in the spleen is normalized in the late stages of CIA in inverse-vaccine-treated mice, which is similar to no-disease tissues. Metabolomics analyses revealed that metabolites UDP-glucuronic acid and L-Glutathione oxidized are significantly altered between treatment groups, and thus might provide new druggable targets for RA treatment. Flux metabolic modeling identified amino acid and carnitine pathways as the central pathways affected in arthritic tissue with CIA progression. Overall, this study shows that the inverse-vaccines initiate early re-establishment of homeostasis, which persists through the disease span.
Collapse
Affiliation(s)
- Abhirami Thumsi
- Department of Pathology, Case Western REserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Diego Martínez
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | | | - Arezoo Esrafili
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Abhirami P Suresh
- Department of Pathology, Case Western REserve University School of Medicine, Cleveland, OH, 44106, USA
| | | | - Kelly Lintecum
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Michelle Halim
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Shivani V Mantri
- Department of Biomedical Engineering, School of Biological and Health System Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Yasmine Sleiman
- Department of Biomedical Engineering, School of Biological and Health System Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Nicole Appel
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ, 85281, USA
| | - Marion Curtis
- Department of Cancer Biology, Mayo Clinic, Scottsdale, AZ, 85259, USA
- College of Medicine and Science, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Cristal Zuniga
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Abhinav P Acharya
- Department of Pathology, Case Western REserve University School of Medicine, Cleveland, OH, 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| |
Collapse
|
13
|
Lin P, Lourenco C, Cruickshank J, Palomero L, van Leeuwen JE, Tong AHY, Chan K, El Ghamrasni S, Pujana MA, Cescon DW, Moffat J, Penn LZ. Topoisomerase 1 Inhibition in MYC-Driven Cancer Promotes Aberrant R-Loop Accumulation to Induce Synthetic Lethality. Cancer Res 2023; 83:4015-4029. [PMID: 37987734 PMCID: PMC10722143 DOI: 10.1158/0008-5472.can-22-2948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 07/31/2023] [Accepted: 10/05/2023] [Indexed: 11/21/2023]
Abstract
MYC is a central regulator of gene transcription and is frequently dysregulated in human cancers. As targeting MYC directly is challenging, an alternative strategy is to identify specific proteins or processes required for MYC to function as a potent cancer driver that can be targeted to result in synthetic lethality. To identify potential targets in MYC-driven cancers, we performed a genome-wide CRISPR knockout screen using an isogenic pair of breast cancer cell lines in which MYC dysregulation is the switch from benign to transformed tumor growth. Proteins that regulate R-loops were identified as a potential class of synthetic lethal targets. Dysregulated MYC elevated global transcription and coincident R-loop accumulation. Topoisomerase 1 (TOP1), a regulator of R-loops by DNA topology, was validated to be a vulnerability in cells with high MYC activity. Genetic knockdown of TOP1 in MYC-transformed cells resulted in reduced colony formation compared with control cells, demonstrating synthetic lethality. Overexpression of RNaseH1, a riboendonuclease that specifically degrades R-loops, rescued the reduction in clonogenicity induced by TOP1 deficiency, demonstrating that this vulnerability is driven by aberrant R-loop accumulation. Genetic and pharmacologic TOP1 inhibition selectively reduced the fitness of MYC-transformed tumors in vivo. Finally, drug response to TOP1 inhibitors (i.e., topotecan) significantly correlated with MYC levels and activity across panels of breast cancer cell lines and patient-derived organoids. Together, these results highlight TOP1 as a promising target for MYC-driven cancers. SIGNIFICANCE CRISPR screening reveals topoisomerase 1 as an immediately actionable vulnerability in cancers harboring MYC as a driver oncoprotein that can be targeted with clinically approved inhibitors.
Collapse
Affiliation(s)
- Peter Lin
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Corey Lourenco
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | | | - Luis Palomero
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Jenna E. van Leeuwen
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | | | | | - Samah El Ghamrasni
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Miquel Angel Pujana
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
- CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - David W. Cescon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, Canada
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Institute for Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Linda Z. Penn
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| |
Collapse
|
14
|
Wang H, Stevens T, Lu J, Roberts A, Land CV, Muzumdar R, Gong Z, Vockley J, Prochownik EV. The Myc-Like Mlx Network Impacts Aging and Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.26.568749. [PMID: 38076995 PMCID: PMC10705233 DOI: 10.1101/2023.11.26.568749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The "Mlx" and "Myc" Networks share many common gene targets. Just as Myc's activity depends upon its heterodimerization with Max, the Mlx Network requires that the Max-like factor Mlx associate with the Myc-like factors MondoA or ChREBP. We show here that body-wide Mlx inactivation, like that of Myc, accelerates numerous aging-related phenotypes pertaining to body habitus and metabolism. The deregulation of numerous aging-related Myc target gene sets is also accelerated. Among other functions, these gene sets often regulate ribosomal and mitochondrial structure and function, genomic stability and aging. Whereas "MycKO" mice have an extended lifespan because of a lower cancer incidence, "MlxKO" mice have normal lifespans and a somewhat higher cancer incidence. Like Myc, Mlx, MondoA and ChREBP expression and that of their target genes, deteriorate with age in both mice and humans, underscoring the importance of life-long and balanced cross-talk between the two Networks to maintain normal aging.
Collapse
Affiliation(s)
- Huabo Wang
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh
| | - Taylor Stevens
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh
| | - Jie Lu
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh
| | - Alexander Roberts
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh
| | | | - Radhika Muzumdar
- Division of Endocrinology, UPMC Children’s Hospital of Pittsburgh
| | - Zhenwei Gong
- Division of Endocrinology, UPMC Children’s Hospital of Pittsburgh
| | - Jerry Vockley
- Division of Medical Genetics, UPMC Children’s Hospital of Pittsburgh
| | - Edward V. Prochownik
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh
- The Department of Microbiology and Molecular Genetics, UPMC
- The Hillman Cancer Center of UPMC
- The Pittsburgh Liver Research Center, UPMC, Pittsburgh, PA. 15224
| |
Collapse
|
15
|
Wang F, Chen S, Peng S, Zhou X, Tang H, Liang H, Zhong X, Yang H, Ke X, Lü M, Cui H. PRMT1 promotes the proliferation and metastasis of gastric cancer cells by recruiting MLXIP for the transcriptional activation of the β-catenin pathway. Genes Dis 2023; 10:2622-2638. [PMID: 37554218 PMCID: PMC10404965 DOI: 10.1016/j.gendis.2023.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 02/03/2023] [Indexed: 03/30/2023] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1), a type I PRMT, is overexpressed in gastric cancer (GC) cells. To elucidate the function of PRMT1 in GC, PRMT1 expression in HGC-27 and MKN-45 cells was knocked down by short hairpin RNA (shRNA) or inhibited by PRMT1 inhibitors (AMI-1 or DCLX069), which resulted in inhibition of GC cell proliferation, migration, invasion, and tumorigenesis in vitro and in vivo. MLX-interacting protein (MLXIP) and Kinectin 1 (KTN1) were identified as PRMT1-binding proteins. PRMT1 recruited MLXIP to the promoter of β-catenin, which induced β-catenin transcription and activated the β-catenin signaling pathway, promoting GC cell migration and metastasis. Furthermore, KTN1 inhibited the K48-linked ubiquitination of PRMT1 by decreasing the interaction between TRIM48 and PRMT1. Collectively, our findings reveal a mechanism by which PRMT1 promotes cell proliferation and metastasis mediated by the β-catenin signaling pathway.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Shitong Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Shihan Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Xujun Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Houyi Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Hanghua Liang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Xi Zhong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - He Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Xiaoxue Ke
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - MuHan Lü
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan 646000, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
16
|
Zheng CW, Luo YH, Lai YJS, Ilhan ZE, Ontiveros-Valencia A, Krajmalnik-Brown R, Jin Y, Gu H, Long X, Zhou D, Rittmann BE. Identifying biodegradation pathways of cetrimonium bromide (CTAB) using metagenome, metatranscriptome, and metabolome tri-omics integration. WATER RESEARCH 2023; 246:120738. [PMID: 37866246 DOI: 10.1016/j.watres.2023.120738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/23/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
Traditional research on biodegradation of emerging organic pollutants involves slow and labor-intensive experimentation. Currently, fast-developing metagenome, metatranscriptome, and metabolome technologies promise to expedite mechanistic research on biodegradation of emerging organic pollutants. Integrating the metagenome, metatranscriptome, and metabolome (i.e., tri-omics) makes it possible to link gene abundance and expression with the biotransformation of the contaminant and the formation of metabolites from this biotransformation. In this study, we used this tri-omics approach to study the biotransformation pathways for cetyltrimethylammonium bromide (CTAB) under aerobic conditions. The tri-omics analysis showed that CTAB undergoes three parallel first-step mono-/di-oxygenations (to the α, β, and ω-carbons); intermediate metabolites and expressed enzymes were identified for all three pathways, and the β-carbon mono-/di-oxygenation is a novel pathway; and the genes related to CTAB biodegradation were associated with Pseudomonas spp. Four metabolites - palmitic acid, trimethylamine N-oxide (TMAO), myristic acid, and betaine - were the key identified biodegradation intermediates of CTAB, and they were associated with first-step mono-/di-oxygenations at the α/β-C. This tri-omics approach with CTAB demonstrates its power for identifying promising paths for future research on the biodegradation of complex organics by microbial communities.
Collapse
Affiliation(s)
- Chen-Wei Zheng
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA; Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Yen-Jung Sean Lai
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA.
| | - Zehra Esra Ilhan
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA; INRAE, Micalis Institute, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas 78350, France
| | - Aura Ontiveros-Valencia
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA; Division de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa de San José 2055, ZC, San Luis Potosí 78216, Mexico
| | - Rosa Krajmalnik-Brown
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA; Biodesign Center for Health Through Microbiomes, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA
| | - Dandan Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA; Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA
| |
Collapse
|
17
|
Yu A, Yu P, Zhu Y, Zhu R, Sun R, Ye D, Yu FX. Glucose-induced and ChREBP: MLX-mediated lipogenic program promotes hepatocellular carcinoma development. Oncogene 2023; 42:3182-3193. [PMID: 37684408 DOI: 10.1038/s41388-023-02831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/26/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
The Carbohydrate Response Element (ChoRE) Binding Protein (ChREBP) and its binding partner Max-like protein X (MLX) mediate transcription of lipogenic genes under glucose-rich conditions. Dysregulation of glucose and lipid metabolism frequently occurs in cancers, including Hepatocellular Carcinomas (HCCs). However, it is currently unclear whether the glucose-induced lipogenic program plays a role in the development of HCCs. Here, we show that MLX expression is elevated in HCC specimens and downregulation of MLX expression inhibits proliferation of HCC cells. In mice, liver-specific knockout of Mlx results in dramatic decrease in the expression of lipogenic genes and lipid levels in circulation. Interestingly, in the absence of Mlx, the development of tumors in multiple HCC models, such as diethylnitrosamine (DEN) treatment and hydrodynamic injection of oncogenes (AKT/RAS or CTNNB1/RAS), is robustly blocked. However, a high-fat diet can partially restore tumorigenesis in Mlx-deficient livers, indicating a critical role of lipid synthesis in HCC development. In addition, liver-specific expression of a dominant negative MLX (dnMLX) via adeno-associated virus effectively blocks tumorigenesis in mice. Thus, the glucose-induced lipogenic program is required in the development of HCC, and the ChREBP: MLX transcription factors serve as a potential target for cancer therapies.
Collapse
Affiliation(s)
- Aijuan Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Pengcheng Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yuwen Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Rui Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Renqiang Sun
- Huashan Hospital and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Dan Ye
- Huashan Hospital and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
18
|
Tan SH, Tan TK, Yokomori R, Liao M, Huang XZ, Yeoh AEJ, Sanda T. TAL1 hijacks MYCN enhancer that induces MYCN expression and dependence on mevalonate pathway in T-cell acute lymphoblastic leukemia. Leukemia 2023; 37:1969-1981. [PMID: 37591943 DOI: 10.1038/s41375-023-01993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
A hallmark of T-cell acute lymphoblastic leukemia (T-ALL) is the dysregulated expression of oncogenic transcription factors (TFs), including TAL1, NOTCH1 and MYC. Rewiring of the transcriptional program disrupts the tightly controlled spatiotemporal expression of downstream target genes, thereby contributing to leukemogenesis. In this study, we first identify an evolutionarily conserved enhancer element controlling the MYCN oncogene (named enhMYCN) that is aberrantly activated by the TAL1 complex in T-ALL cells. TAL1-positive T-ALL cells are highly dependent on MYCN expression for their maintenance in vitro and in xenograft models. Interestingly, MYCN drives the expression of multiple genes involved in the mevalonate pathway, and T-ALL cells are sensitive to inhibition of HMG-CoA reductase (HMGCR), a rate-limiting enzyme of this pathway. Importantly, MYC and MYCN regulate the same targets and compensate for each other. Thus, MYCN-positive T-ALL cells display a dual dependence on the TAL1-MYCN and NOTCH1-MYC pathways. Together, our results demonstrate that enhMYCN-mediated MYCN expression is required for human T-ALL cells and implicate the TAL1-MYCN-HMGCR axis as a potential therapeutic target in T-ALL.
Collapse
Affiliation(s)
- Shi Hao Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Rui Yokomori
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Minghui Liao
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Allen Eng Juh Yeoh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
- Department of Paediatrics, National University of Singapore, Singapore, 119228, Singapore.
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
| |
Collapse
|
19
|
Kim S, Li H, Jin Y, Armad J, Gu H, Mani S, Cui JY. Maternal PBDE exposure disrupts gut microbiome and promotes hepatic proinflammatory signaling in humanized PXR-transgenic mouse offspring over time. Toxicol Sci 2023; 194:209-225. [PMID: 37267213 PMCID: PMC10375318 DOI: 10.1093/toxsci/kfad056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023] Open
Abstract
Developmental exposure to the persistent environmental pollutant, polybrominated diphenyl ethers (PBDEs), is associated with increased diabetes prevalence. The microbial tryptophan metabolite, indole-3-propionic acid (IPA), is associated with reduced risk of type 2 diabetes and lower-grade inflammation and is a pregnane X receptor (PXR) activator. To explore the role of IPA in modifying the PBDE developmental toxicity, we orally exposed humanized PXR-transgenic (hPXR-TG) mouse dams to vehicle, 0.1 mg/kg/day DE-71 (an industrial PBDE mixture), DE-71+IPA (20 mg/kg/day), or IPA, from 4 weeks preconception to the end of lactation. Pups were weaned at 21 days of age and IPA supplementation continued in the corresponding treatment groups. Tissues were collected at various ages until 6 months of age (n = 5 per group). In general, the effect of maternal DE-71 exposure on the gut microbiome of pups was amplified over time. The regulation of hepatic cytokines and prototypical xenobiotic-sensing transcription factor target genes by DE-71 and IPA was age- and sex-dependent, where DE-71-mediated mRNA increased selected cytokines (Il10, Il12p40, Il1β [both sexes], and [males]). The hepatic mRNA of the aryl hydrocarbon receptor (AhR) target gene Cyp1a2 was increased by maternal DE-71 and DE-71+IPA exposure at postnatal day 21 but intestinal Cyp1a1 was not altered by any of the exposures and ages. Maternal DE-71 exposure persistently increased serum indole, a known AhR ligand, in age- and sex-dependent manner. In conclusion, maternal DE-71 exposure produced a proinflammatory signature along the gut-liver axis, including gut dysbiosis, dysregulated tryptophan microbial metabolism, attenuated PXR signaling, and elevated AhR signaling in postweaned hPXR-TG pups over time, which was partially corrected by IPA supplementation.
Collapse
Affiliation(s)
- Sarah Kim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, USA
| | - Hao Li
- Departments of Medicine, Molecular Pharmacology, and Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, Florida 34987-2352, USA
| | - Jasmine Armad
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, Florida 34987-2352, USA
| | - Sridhar Mani
- Departments of Medicine, Molecular Pharmacology, and Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Julia Y Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, USA
| |
Collapse
|
20
|
Mendez Garcia MF, Matsuzaki S, Batushansky A, Newhardt R, Kinter C, Jin Y, Mann SN, Stout MB, Gu H, Chiao YA, Kinter M, Humphries KM. Increased cardiac PFK-2 protects against high-fat diet-induced cardiomyopathy and mediates beneficial systemic metabolic effects. iScience 2023; 26:107131. [PMID: 37534142 PMCID: PMC10391959 DOI: 10.1016/j.isci.2023.107131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/27/2023] [Accepted: 06/10/2023] [Indexed: 08/04/2023] Open
Abstract
A healthy heart adapts to changes in nutrient availability and energy demands. In metabolic diseases like type 2 diabetes (T2D), increased reliance on fatty acids for energy production contributes to mitochondrial dysfunction and cardiomyopathy. A principal regulator of cardiac metabolism is 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2), which is a central driver of glycolysis. We hypothesized that increasing PFK-2 activity could mitigate cardiac dysfunction induced by high-fat diet (HFD). Wild type (WT) and cardiac-specific transgenic mice expressing PFK-2 (GlycoHi) were fed a low fat or HFD for 16 weeks to induce metabolic dysfunction. Metabolic phenotypes were determined by measuring mitochondrial bioenergetics and performing targeted quantitative proteomic and metabolomic analysis. Increasing cardiac PFK-2 had beneficial effects on cardiac and mitochondrial function. Unexpectedly, GlycoHi mice also exhibited sex-dependent systemic protection from HFD, including increased glucose homeostasis. These findings support improving glycolysis via PFK-2 activity can mitigate mitochondrial and functional changes that occur with metabolic syndrome.
Collapse
Affiliation(s)
- Maria F. Mendez Garcia
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Satoshi Matsuzaki
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ryan Newhardt
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Caroline Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Shivani N. Mann
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael B. Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kenneth M. Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
21
|
Guo W, Wang X, Lu B, Yu J, Xu M, Huang R, Cheng M, Yang M, Zhao W, Zou C. Super-enhancer-driven MLX mediates redox balance maintenance via SLC7A11 in osteosarcoma. Cell Death Dis 2023; 14:439. [PMID: 37460542 DOI: 10.1038/s41419-023-05966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Osteosarcoma (OS) is a common type of bone tumor for which there has been limited therapeutic progress over the past three decades. The prevalence of transcriptional addiction in cancer cells emphasizes the biological significance and clinical relevance of super-enhancers. In this study, we found that Max-like protein X (MLX), a member of the Myc-MLX network, is driven by super-enhancers. Upregulation of MLX predicts a poor prognosis in osteosarcoma. Knockdown of MLX impairs growth and metastasis of osteosarcoma in vivo and in vitro. Transcriptomic sequencing has revealed that MLX is involved in various metabolic pathways (e.g., lipid metabolism) and can induce metabolic reprogramming. Furthermore, knockdown of MLX results in disturbed transport and storage of ferrous iron, leading to an increase in the level of cellular ferrous iron and subsequent induction of ferroptosis. Mechanistically, MLX regulates the glutamate/cystine antiporter SLC7A11 to promote extracellular cysteine uptake required for the biosynthesis of the essential antioxidant GSH, thereby detoxifying reactive oxygen species (ROS) and maintaining the redox balance of osteosarcoma cells. Importantly, sulfasalazine, an FDA-approved anti-inflammatory drug, can inhibit SLC7A11, disrupt redox balance, and induce massive ferroptosis, leading to impaired tumor growth in vivo. Taken together, this study reveals a novel mechanism in which super-enhancer-driven MLX positively regulates SLC7A11 to meet the alleviated demand for cystine and maintain the redox balance, highlighting the feasibility and clinical promise of targeting SLC7A11 in osteosarcoma.
Collapse
Affiliation(s)
- Weitang Guo
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xin Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Bing Lu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jiaming Yu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Mingxian Xu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Renxuan Huang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Mingzhe Cheng
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Meiling Yang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Wei Zhao
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Changye Zou
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
22
|
van den Berg L, Kokki K, Wowro SJ, Petricek KM, Deniz O, Stegmann CA, Robciuc M, Teesalu M, Melvin RG, Nieminen AI, Schupp M, Hietakangas V. Sugar-responsive inhibition of Myc-dependent ribosome biogenesis by Clockwork orange. Cell Rep 2023; 42:112739. [PMID: 37405919 DOI: 10.1016/j.celrep.2023.112739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
The ability to feed on a sugar-containing diet depends on a gene regulatory network controlled by the intracellular sugar sensor Mondo/ChREBP-Mlx, which remains insufficiently characterized. Here, we present a genome-wide temporal clustering of sugar-responsive gene expression in Drosophila larvae. We identify gene expression programs responding to sugar feeding, including downregulation of ribosome biogenesis genes, known targets of Myc. Clockwork orange (CWO), a component of the circadian clock, is found to be a mediator of this repressive response and to be necessary for survival on a high-sugar diet. CWO expression is directly activated by Mondo-Mlx, and it counteracts Myc through repression of its gene expression and through binding to overlapping genomic regions. CWO mouse ortholog BHLHE41 has a conserved role in repressing ribosome biogenesis genes in primary hepatocytes. Collectively, our data uncover a cross-talk between conserved gene regulatory circuits balancing the activities of anabolic pathways to maintain homeostasis during sugar feeding.
Collapse
Affiliation(s)
- Linda van den Berg
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Krista Kokki
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Sylvia J Wowro
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10117 Berlin, Germany
| | - Konstantin M Petricek
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10117 Berlin, Germany
| | - Onur Deniz
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Catrin A Stegmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10117 Berlin, Germany
| | - Marius Robciuc
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Mari Teesalu
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Richard G Melvin
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3083, Australia
| | - Anni I Nieminen
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Michael Schupp
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, 10117 Berlin, Germany
| | - Ville Hietakangas
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland.
| |
Collapse
|
23
|
Vízkeleti L, Spisák S. Rewired Metabolism Caused by the Oncogenic Deregulation of MYC as an Attractive Therapeutic Target in Cancers. Cells 2023; 12:1745. [PMID: 37443779 PMCID: PMC10341379 DOI: 10.3390/cells12131745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
MYC is one of the most deregulated oncogenes on multiple levels in cancer. As a node transcription factor, MYC plays a diverse regulatory role in many cellular processes, including cell cycle and metabolism, both in physiological and pathological conditions. The relentless growth and proliferation of tumor cells lead to an insatiable demand for energy and nutrients, which requires the rewiring of cellular metabolism. As MYC can orchestrate all aspects of cellular metabolism, its altered regulation plays a central role in these processes, such as the Warburg effect, and is a well-established hallmark of cancer development. However, our current knowledge of MYC suggests that its spatial- and concentration-dependent contribution to tumorigenesis depends more on changes in the global or relative expression of target genes. As the direct targeting of MYC is proven to be challenging due to its relatively high toxicity, understanding its underlying regulatory mechanisms is essential for the development of tumor-selective targeted therapies. The aim of this review is to comprehensively summarize the diverse forms of MYC oncogenic deregulation, including DNA-, transcriptional- and post-translational level alterations, and their consequences for cellular metabolism. Furthermore, we also review the currently available and potentially attractive therapeutic options that exploit the vulnerability arising from the metabolic rearrangement of MYC-driven tumors.
Collapse
Affiliation(s)
- Laura Vízkeleti
- Department of Bioinformatics, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary;
| | - Sándor Spisák
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, 1117 Budapest, Hungary
| |
Collapse
|
24
|
Ebrahimi N, Far NP, Fakhr SS, Faghihkhorasani F, Miraghel SA, Chaleshtori SR, Rezaei-Tazangi F, Beiranvand S, Baziyar P, Manavi MS, Zarrabi A, Nabavi N, Ren J, Aref AR. The endocannabinoid system, a new gatekeeper in the pharmacology of human hepatocellular carcinoma. ENVIRONMENTAL RESEARCH 2023; 228:115914. [PMID: 37062475 DOI: 10.1016/j.envres.2023.115914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/01/2023] [Accepted: 04/13/2023] [Indexed: 05/06/2023]
Abstract
Despite numerous prevention methodologies and treatment options, hepatocellular carcinoma (HCC) still remains as the third leading life-threatening cancer. It is thus pertinent to develop new treatment modality to fight this devastating carcinoma. Ample recent studies have shown the anti-inflammatory and antitumor roles of the endocannabinoid system in various forms of cancers. Preclinical studies have also confirmed that cannabinoid therapy can be an optimal regimen for cancer treatments. The endocannabinoid system is involved in many cancer-related processes, including induction of endoplasmic reticulum (ER) stress-dependent apoptosis, autophagy, PITRK and ERK signaling pathways, cell invasion, epithelial-mesenchymal transition (EMT), and cancer stem cell (CSC) phenotypes. Moreover, changes in signaling transduction of the endocannabinoid system can be a potential diagnostic and prognostic biomarker for HCC. Due to its pivotal role in lipid metabolism, the endocannabinoid system affects metabolic reprogramming as well as lipid content of exosomes. In addition, due to the importance of non-coding RNAs (ncRNAs), several studies have examined the relationship between microRNAs and the endocannabinoid system in HCC. However, HCC is a pathological condition with high heterogeneity, and therefore using the endocannabinoid system for treatment has faced many controversies. While some studies favored a role of the endocannabinoid system in carcinogenesis and tumor induction, others exhibited the anticancer potential of endocannabinoids in HCC. In this review, specific studies delineating the relationship between endocannabinoids and HCC are examined. Based on collected findings, detailed studies of the molecular mechanism of endocannabinoids as well as preclinical studies for investigating therapeutic or carcinogenic impacts in HCC cancer are strongly suggested.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Iran
| | - Nazanin Pazhouhesh Far
- Department of Microbiology,Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Siavash Seifollahy Fakhr
- Division of Biotechnology, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus, Hamar, Norway
| | | | - Seyed Ali Miraghel
- Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Italy
| | | | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Sheida Beiranvand
- Department of Biotechnology, School of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Science, Uinversity of Mazandaran, Babolsar, Iran
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, WA, 98195, USA
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA; Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA.
| |
Collapse
|
25
|
Pederson WP, Ellerman LM, Jin Y, Gu H, Ledford JG. Metabolomic Profiling in Mouse Model of Menopause-Associated Asthma. Metabolites 2023; 13:546. [PMID: 37110204 PMCID: PMC10145474 DOI: 10.3390/metabo13040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Menopause-associated asthma impacts a subset of women, tends to be more severe, and is less responsive to current treatments. We recently developed a model of menopause-associated asthma using 4-Vinylcyclohexene Diepoxide (VCD) and house dust mites (HDM). The goal of this study was to uncover potential biomarkers and drivers of menopause-onset asthma by assessing serum and bronchoalveolar lavage fluid (BALF) samples from mice with and without menopause and HDM challenge by large-scale targeted metabolomics. Female mice were treated with VCD/HDM to model menopause-associated asthma, and serum and BALF samples were processed for large-scale targeted metabolomic assessment. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to examine metabolites of potential biological significance. We identified over 50 individual metabolites, impacting 46 metabolic pathways, in the serum and BALF that were significantly different across the four study groups. In particular, glutamate, GABA, phosphocreatine, and pyroglutamic acid, which are involved in glutamate/glutamine, glutathione, and arginine and proline metabolisms, were significantly impacted in the menopausal HDM-challenged mice. Additionally, several metabolites had significant correlations with total airway resistance including glutamic acid, histamine, uridine, cytosine, cytidine, and acetamide. Using metabolic profiling, we identified metabolites and metabolic pathways that may aid in discriminating potential biomarkers for and drivers of menopause-associated asthma.
Collapse
Affiliation(s)
- William P. Pederson
- Physiological Sciences GIDP, University of Arizona, Tucson, AZ 85724, USA;
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | | | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Julie G. Ledford
- Asthma and Airway Disease Research Center, Tucson, AZ 85724, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
26
|
Talapatra J, Reddy MM. Lipid Metabolic Reprogramming in Embryonal Neoplasms with MYCN Amplification. Cancers (Basel) 2023; 15:cancers15072144. [PMID: 37046804 PMCID: PMC10093342 DOI: 10.3390/cancers15072144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Tumor cells reprogram their metabolism, including glucose, glutamine, nucleotide, lipid, and amino acids to meet their enhanced energy demands, redox balance, and requirement of biosynthetic substrates for uncontrolled cell proliferation. Altered lipid metabolism in cancer provides lipids for rapid membrane biogenesis, generates the energy required for unrestricted cell proliferation, and some of the lipids act as signaling pathway mediators. In this review, we focus on the role of lipid metabolism in embryonal neoplasms with MYCN dysregulation. We specifically review lipid metabolic reactions in neuroblastoma, retinoblastoma, medulloblastoma, Wilms tumor, and rhabdomyosarcoma and the possibility of targeting lipid metabolism. Additionally, the regulation of lipid metabolism by the MYCN oncogene is discussed.
Collapse
Affiliation(s)
- Jyotirmayee Talapatra
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Bhubaneswar 751024, India
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India
| | - Mamatha M Reddy
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Bhubaneswar 751024, India
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India
| |
Collapse
|
27
|
Lim TY, Wilde BR, Thomas ML, Murphy KE, Vahrenkamp JM, Conway ME, Varley KE, Gertz J, Ayer DE. TXNIP loss expands Myc-dependent transcriptional programs by increasing Myc genomic binding. PLoS Biol 2023; 21:e3001778. [PMID: 36930677 PMCID: PMC10058090 DOI: 10.1371/journal.pbio.3001778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 03/29/2023] [Accepted: 02/13/2023] [Indexed: 03/18/2023] Open
Abstract
The c-Myc protooncogene places a demand on glucose uptake to drive glucose-dependent biosynthetic pathways. To meet this demand, c-Myc protein (Myc henceforth) drives the expression of glucose transporters, glycolytic enzymes, and represses the expression of thioredoxin interacting protein (TXNIP), which is a potent negative regulator of glucose uptake. A Mychigh/TXNIPlow gene signature is clinically significant as it correlates with poor clinical prognosis in triple-negative breast cancer (TNBC) but not in other subtypes of breast cancer, suggesting a functional relationship between Myc and TXNIP. To better understand how TXNIP contributes to the aggressive behavior of TNBC, we generated TXNIP null MDA-MB-231 (231:TKO) cells for our study. We show that TXNIP loss drives a transcriptional program that resembles those driven by Myc and increases global Myc genome occupancy. TXNIP loss allows Myc to invade the promoters and enhancers of target genes that are potentially relevant to cell transformation. Together, these findings suggest that TXNIP is a broad repressor of Myc genomic binding. The increase in Myc genomic binding in the 231:TKO cells expands the Myc-dependent transcriptome we identified in parental MDA-MB-231 cells. This expansion of Myc-dependent transcription following TXNIP loss occurs without an apparent increase in Myc's intrinsic capacity to activate transcription and without increasing Myc levels. Together, our findings suggest that TXNIP loss mimics Myc overexpression, connecting Myc genomic binding and transcriptional programs to the nutrient and progrowth signals that control TXNIP expression.
Collapse
Affiliation(s)
- Tian-Yeh Lim
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Blake R Wilde
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Mallory L Thomas
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Kristin E Murphy
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Jeffery M Vahrenkamp
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Megan E Conway
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Katherine E Varley
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - Donald E Ayer
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| |
Collapse
|
28
|
Young TL, Scieszka D, Begay JG, Lucas SN, Herbert G, Zychowski K, Hunter R, Salazar R, Ottens AK, Erdely A, Gu H, Campen MJ. Aging influence on pulmonary and systemic inflammation and neural metabolomics arising from pulmonary multi-walled carbon nanotube exposure in apolipoprotein E-deficient and C57BL/6 female mice. Inhal Toxicol 2023; 35:86-100. [PMID: 35037817 PMCID: PMC10037439 DOI: 10.1080/08958378.2022.2026538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/03/2022] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Environmental exposures exacerbate age-related pathologies, such as cardiovascular and neurodegenerative diseases. Nanoparticulates, and specifically carbon nanomaterials, are a fast-growing contributor to the category of inhalable pollutants, whose risks to health are only now being unraveled. The current study assessed the exacerbating effect of age on multiwalled-carbon nanotube (MWCNT) exposure in young and old C57BL/6 and ApoE-/- mice. MATERIALS AND METHODS Female C57BL/6 and apolipoprotein E-deficient (ApoE-/-) mice, aged 8 weeks and 15 months, were exposed to 0 or 40 µg MWCNT via oropharyngeal aspiration. Pulmonary inflammation, inflammatory bioactivity of serum, and neurometabolic changes were assessed at 24 h post-exposure. RESULTS Pulmonary neutrophil infiltration was induced by MWCNT in bronchoalveolar lavage fluid in both C57BL/6 and ApoE-/-. Macrophage counts decreased with MWCNT exposure in ApoE-/- mice but were unaffected by exposure in C57BL/6 mice. Older mice appeared to have greater MWCNT-induced total protein in lavage fluid. BALF cytokines and chemokines were elevated with MWCNT exposure, but CCL2, CXCL1, and CXCL10 showed reduced responses to MWCNT in older mice. However, no significant serum inflammatory bioactivity was detected. Cerebellar metabolic changes in response to MWCNT were modest, but age and strain significantly influenced metabolite profiles assessed. ApoE-/- mice and older mice exhibited less robust metabolite changes in response to exposure, suggesting a reduced health reserve. CONCLUSIONS Age influences the pulmonary and neurological responses to short-term MWCNT exposure. However, with only the model of moderate aging (15 months) in this study, the responses appeared modest compared to inhaled toxicant impacts in more advanced aging models.
Collapse
Affiliation(s)
- Tamara L. Young
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131
| | - David Scieszka
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131
| | - Jessica G. Begay
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131
| | - Selita N. Lucas
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131
| | - Guy Herbert
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131
| | | | - Russell Hunter
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131
| | - Raul Salazar
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131
| | - Andrew K. Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, PO Box 980709, Richmond, VA 23298
| | - Aaron Erdely
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ, US 85004
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
29
|
The "Superoncogene" Myc at the Crossroad between Metabolism and Gene Expression in Glioblastoma Multiforme. Int J Mol Sci 2023; 24:ijms24044217. [PMID: 36835628 PMCID: PMC9966483 DOI: 10.3390/ijms24044217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The concept of the Myc (c-myc, n-myc, l-myc) oncogene as a canonical, DNA-bound transcription factor has consistently changed over the past few years. Indeed, Myc controls gene expression programs at multiple levels: directly binding chromatin and recruiting transcriptional coregulators; modulating the activity of RNA polymerases (RNAPs); and drawing chromatin topology. Therefore, it is evident that Myc deregulation in cancer is a dramatic event. Glioblastoma multiforme (GBM) is the most lethal, still incurable, brain cancer in adults, and it is characterized in most cases by Myc deregulation. Metabolic rewiring typically occurs in cancer cells, and GBM undergoes profound metabolic changes to supply increased energy demand. In nontransformed cells, Myc tightly controls metabolic pathways to maintain cellular homeostasis. Consistently, in Myc-overexpressing cancer cells, including GBM cells, these highly controlled metabolic routes are affected by enhanced Myc activity and show substantial alterations. On the other hand, deregulated cancer metabolism impacts Myc expression and function, placing Myc at the intersection between metabolic pathway activation and gene expression. In this review paper, we summarize the available information on GBM metabolism with a specific focus on the control of the Myc oncogene that, in turn, rules the activation of metabolic signals, ensuring GBM growth.
Collapse
|
30
|
Sagini K, Urbanelli L, Buratta S, Emiliani C, Llorente A. Lipid Biomarkers in Liquid Biopsies: Novel Opportunities for Cancer Diagnosis. Pharmaceutics 2023; 15:pharmaceutics15020437. [PMID: 36839759 PMCID: PMC9966160 DOI: 10.3390/pharmaceutics15020437] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Altered cellular metabolism is a well-established hallmark of cancer. Although most studies have focused on the metabolism of glucose and glutamine, the upregulation of lipid metabolism is also frequent in cells undergoing oncogenic transformation. In fact, cancer cells need to meet the enhanced demand of plasma membrane synthesis and energy production to support their proliferation. Moreover, lipids are precursors of signaling molecules, termed lipid mediators, which play a role in shaping the tumor microenvironment. Recent methodological advances in lipid analysis have prompted studies aimed at investigating the whole lipid content of a sample (lipidome) to unravel the complexity of lipid changes in cancer patient biofluids. This review focuses on the application of mass spectrometry-based lipidomics for the discovery of cancer biomarkers. Here, we have summarized the main lipid alteration in cancer patients' biofluids and uncovered their potential use for the early detection of the disease and treatment selection. We also discuss the advantages of using biofluid-derived extracellular vesicles as a platform for lipid biomarker discovery. These vesicles have a molecular signature that is a fingerprint of their originating cells. Hence, the analysis of their molecular cargo has emerged as a promising strategy for the identification of sensitive and specific biomarkers compared to the analysis of the unprocessed biofluid.
Collapse
Affiliation(s)
- Krizia Sagini
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
- Correspondence: ; Tel.: +47-22-78-18-13
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
- CEMIN (Center of Excellence for Innovative Nanostructured Material), University of Perugia, 06123 Perugia, Italy
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, 0167 Oslo, Norway
| |
Collapse
|
31
|
Zhang Q, Cui K, Yang X, He Q, Yu J, Yang L, Yao G, Guo W, Luo Z, Liu Y, Chen Y, He Z, Lan P. c-Myc-IMPDH1/2 axis promotes tumourigenesis by regulating GTP metabolic reprogramming. Clin Transl Med 2023; 13:e1164. [PMID: 36629054 PMCID: PMC9832425 DOI: 10.1002/ctm2.1164] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Metabolic reprogramming is a hallmark of cancer. Metabolic rate-limiting enzymes and oncogenic c-Myc (Myc) play critical roles in metabolic reprogramming to affect tumourigenesis. However, a systematic assessment of metabolic rate-limiting enzymes and their relationship with Myc in human cancers is lacking. METHODS Multiple Pan-cancer datasets were used to develop the transcriptome, genomic alterations, clinical outcomes and Myc correlation landscapes of 168 metabolic rate-limiting enzymes across 20 cancers. Real-time quantitative PCR and immunoblotting were, respectively, used to examine the mRNA and protein of inosine monophosphate dehydrogenase 1 (IMPDH1) in human colorectal cancer (CRC), azoxymethane/dextran sulphate sodium-induced mouse CRC and spontaneous intestinal tumours from APCMin/+ mice. Clone formation, CCK-8 and subcutaneous xenograft model were applied to investigate the possible mechanisms connecting IMPDH1 to CRC growth. Co-immunoprecipitation and protein half-life assay were used to explore the mechanisms underlying the regulation of IMPDH1. RESULTS We explored the global expression patterns, dysregulation profiles, genomic alterations and clinical relevance of 168 metabolic rate-limiting enzymes across human cancers. Importantly, a series of enzymes were associated with Myc, especially top three upregulated enzymes (TK1, RRM2 and IMPDH1) were positively correlated with Myc in multiple cancers. As a proof-of-concept exemplification, we demonstrated that IMPDH1, a rate-limiting enzyme in GTP biosynthesis, is highly upregulated in CRC and promotes CRC growth in vitro and in vivo. Mechanistically, IMPDH2 stabilizes IMPDH1 by decreasing the polyubiquitination levels of IMPDH1, and Myc promotes the de novo GTP biosynthesis by the transcriptional activation of IMPDH1/2. Finally, we confirmed that the Myc-IMPDH1/2 axis is dysregulated across human cancers. CONCLUSIONS Our study highlights the essential roles of metabolic rate-limiting enzymes in tumourigenesis and their crosstalk with Myc, and the Myc-IMPDH1/2 axis promotes tumourigenesis by altering GTP metabolic reprogramming. Our results propose the inhibition of IMPDH1 as a viable option for cancer treatment.
Collapse
Affiliation(s)
- Qiang Zhang
- The Sixth Affiliated HospitalSchool of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Kaisa Cui
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Xiaoya Yang
- The Sixth Affiliated HospitalSchool of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Qilang He
- The Sixth Affiliated HospitalSchool of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Jing Yu
- The Sixth Affiliated HospitalSchool of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of GastroenterologyGuangzhouGuangdongChina
| | - Li Yang
- Zhumadian Central HospitalHuanghuai UniversityZhumadianHenanChina
| | - Gang Yao
- The People's Hospital of Zhengyang CountyZhumadianHenanChina
| | - Weiwei Guo
- The People's Hospital of Zhengyang CountyZhumadianHenanChina
| | - Zhanhao Luo
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of GastroenterologyGuangzhouGuangdongChina
| | - Yugeng Liu
- Center for Synthetic MicrobiomeInstitute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
| | - Yuan Chen
- The Sixth Affiliated HospitalSchool of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zhen He
- The Sixth Affiliated HospitalSchool of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of GastroenterologyGuangzhouGuangdongChina
| | - Ping Lan
- The Sixth Affiliated HospitalSchool of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of GastroenterologyGuangzhouGuangdongChina
| |
Collapse
|
32
|
He H, Pan T, Shi X, Yang S, Jasbi P, Jin Y, Cui JY, Gu H. An integrative cellular metabolomic study reveals downregulated tricarboxylic acid cycle and potential biomarkers induced by tetrabromobisphenol A in human lung A549 cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:7-16. [PMID: 36106841 DOI: 10.1002/tox.23657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is extensively utilized as a brominated flame retardant in numerous chemical products. As an environmental contaminant, the potential human toxicity of TBBPA has been attracting increasing attention. Nonetheless, the exact underlying mechanisms of toxicological effects caused by TBBPA remain uncertain. In this study, we investigated the potential mechanisms of TBBPA toxicity in vitro in the A549 cell line, one of the widely used type II pulmonary epithelial cell models in toxicology research. Cell viability was determined after treatment with varying concentrations of TBBPA. Liquid chromatography-mass spectrometry (LC-MS) metabolomics and metabolic flux approaches were utilized to evaluate metabolite and tricarboxylic acid (TCA) cycle oxidative flux changes. Our findings demonstrated that TBBPA significantly reduced the viability of cells and attenuated mitochondrial respiration in A549 cells. Additionally, LC-MS data showed significant reductions in TCA cycle metabolites including citrate, malate, fumarate, and alpha-ketoglutarate in 50 μM TBBPA-treated A549 cells. Metabolic flux analysis indicated reduced oxidative capacity in mitochondrial metabolism following TBBPA exposure. Moreover, diverse metabolic pathways, particularly alanine, aspartate, and glutamate metabolism and the TCA cycle, were found to be dysregulated. In total, 12 metabolites were significantly changed (p < .05) in response to 50 μM TBBPA exposure. Our results provide potential biomarkers of TBBPA toxicity in A549 cells and help elucidate the molecular mechanisms of pulmonary toxicity induced by TBBPA exposure.
Collapse
Affiliation(s)
- Hailang He
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona, USA
| | - Tingyu Pan
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Xiaojian Shi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona, USA
| | - Shuang Yang
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Paniz Jasbi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona, USA
- School of Molecular Sciences, College of Liberal Arts and Sciences, Arizona State University, Tempe, Arizona, USA
| | - Yan Jin
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona, USA
- Center for Translational Science, Florida International University, Port St. Lucie, Florida, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, Arizona, USA
- Center for Translational Science, Florida International University, Port St. Lucie, Florida, USA
| |
Collapse
|
33
|
Singh N, Romick-Rosendale L, Watanabe-Chailland M, Privette Vinnedge LM, Komurov K. Drug resistance mechanisms create targetable proteostatic vulnerabilities in Her2+ breast cancers. PLoS One 2022; 17:e0256788. [PMID: 36480552 PMCID: PMC9731458 DOI: 10.1371/journal.pone.0256788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
Oncogenic kinase inhibitors show short-lived responses in the clinic due to high rate of acquired resistance. We previously showed that pharmacologically exploiting oncogene-induced proteotoxic stress can be a viable alternative to oncogene-targeted therapy. Here, we performed extensive analyses of the transcriptomic, metabolomic and proteostatic perturbations during the course of treatment of Her2+ breast cancer cells with a Her2 inhibitor covering the drug response, resistance, relapse and drug withdrawal phases. We found that acute Her2 inhibition, in addition to blocking mitogenic signaling, leads to significant decline in the glucose uptake, and shutdown of glycolysis and of global protein synthesis. During prolonged therapy, compensatory overexpression of Her3 allows for the reactivation of mitogenic signaling pathways, but fails to re-engage the glucose uptake and glycolysis, resulting in proteotoxic ER stress, which maintains the protein synthesis block and growth inhibition. Her3-mediated cell proliferation under ER stress during prolonged Her2 inhibition is enabled due to the overexpression of the eIF2 phosphatase GADD34, which uncouples protein synthesis block from the ER stress response to allow for active cell growth. We show that this imbalance in the mitogenic and proteostatic signaling created during the acquired resistance to anti-Her2 therapy imposes a specific vulnerability to the inhibition of the endoplasmic reticulum quality control machinery. The latter is more pronounced in the drug withdrawal phase, where the de-inhibition of Her2 creates an acute surge in the downstream signaling pathways and exacerbates the proteostatic imbalance. Therefore, the acquired resistance mechanisms to oncogenic kinase inhibitors may create secondary vulnerabilities that could be exploited in the clinic.
Collapse
Affiliation(s)
- Navneet Singh
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Lindsey Romick-Rosendale
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Miki Watanabe-Chailland
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Lisa M. Privette Vinnedge
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Kakajan Komurov
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| |
Collapse
|
34
|
An Update on the Metabolic Landscape of Oncogenic Viruses. Cancers (Basel) 2022; 14:cancers14235742. [PMID: 36497226 PMCID: PMC9738352 DOI: 10.3390/cancers14235742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Viruses play an important role in cancer development as about 12% of cancer types are linked to viral infections. Viruses that induce cellular transformation are known as oncoviruses. Although the mechanisms of viral oncogenesis differ between viruses, all oncogenic viruses share the ability to establish persistent chronic infections with no obvious symptoms for years. During these prolonged infections, oncogenic viruses manipulate cell signaling pathways that control cell cycle progression, apoptosis, inflammation, and metabolism. Importantly, it seems that most oncoviruses depend on these changes for their persistence and amplification. Metabolic changes induced by oncoviruses share many common features with cancer metabolism. Indeed, viruses, like proliferating cancer cells, require increased biosynthetic precursors for virion production, need to balance cellular redox homeostasis, and need to ensure host cell survival in a given tissue microenvironment. Thus, like for cancer cells, viral replication and persistence of infected cells frequently depend on metabolic changes. Here, we draw parallels between metabolic changes observed in cancers or induced by oncoviruses, with a focus on pathways involved in the regulation of glucose, lipid, and amino acids. We describe whether and how oncoviruses depend on metabolic changes, with the perspective of targeting them for antiviral and onco-therapeutic approaches in the context of viral infections.
Collapse
|
35
|
MYCN and Metabolic Reprogramming in Neuroblastoma. Cancers (Basel) 2022; 14:cancers14174113. [PMID: 36077650 PMCID: PMC9455056 DOI: 10.3390/cancers14174113] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Neuroblastoma is a pediatric cancer responsible for approximately 15% of all childhood cancer deaths. Aberrant MYCN activation, as a result of genomic MYCN amplification, is a major driver of high-risk neuroblastoma, which has an overall survival rate of less than 50%, despite the best treatments currently available. Metabolic reprogramming is an integral part of the growth-promoting program driven by MYCN, which fuels cell growth and proliferation by increasing the uptake and catabolism of nutrients, biosynthesis of macromolecules, and production of energy. This reprogramming process also generates metabolic vulnerabilities that can be exploited for therapy. In this review, we present our current understanding of metabolic reprogramming in neuroblastoma, focusing on transcriptional regulation as a key mechanism in driving the reprogramming process. We also highlight some important areas that need to be explored for the successful development of metabolism-based therapy against high-risk neuroblastoma.
Collapse
|
36
|
Edwards-Hicks J, Su H, Mangolini M, Yoneten KK, Wills J, Rodriguez-Blanco G, Young C, Cho K, Barker H, Muir M, Guerrieri AN, Li XF, White R, Manasterski P, Mandrou E, Wills K, Chen J, Abraham E, Sateri K, Qian BZ, Bankhead P, Arends M, Gammoh N, von Kriegsheim A, Patti GJ, Sims AH, Acosta JC, Brunton V, Kranc KR, Christophorou M, Pearce EL, Ringshausen I, Finch AJ. MYC sensitises cells to apoptosis by driving energetic demand. Nat Commun 2022; 13:4674. [PMID: 35945217 PMCID: PMC9363429 DOI: 10.1038/s41467-022-32368-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/27/2022] [Indexed: 12/27/2022] Open
Abstract
The MYC oncogene is a potent driver of growth and proliferation but also sensitises cells to apoptosis, which limits its oncogenic potential. MYC induces several biosynthetic programmes and primary cells overexpressing MYC are highly sensitive to glutamine withdrawal suggesting that MYC-induced sensitisation to apoptosis may be due to imbalance of metabolic/energetic supply and demand. Here we show that MYC elevates global transcription and translation, even in the absence of glutamine, revealing metabolic demand without corresponding supply. Glutamine withdrawal from MRC-5 fibroblasts depletes key tricarboxylic acid (TCA) cycle metabolites and, in combination with MYC activation, leads to AMP accumulation and nucleotide catabolism indicative of energetic stress. Further analyses reveal that glutamine supports viability through TCA cycle energetics rather than asparagine biosynthesis and that TCA cycle inhibition confers tumour suppression on MYC-driven lymphoma in vivo. In summary, glutamine supports the viability of MYC-overexpressing cells through an energetic rather than a biosynthetic mechanism.
Collapse
Affiliation(s)
- Joy Edwards-Hicks
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, D-79108, Freiburg, Germany
| | - Huizhong Su
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Maurizio Mangolini
- Wellcome Trust/MRC Cambridge Stem Cell Institute & Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Kubra K Yoneten
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jimi Wills
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Giovanny Rodriguez-Blanco
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Christine Young
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Kevin Cho
- Department of Chemistry and Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Heather Barker
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Morwenna Muir
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Ania Naila Guerrieri
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Xue-Feng Li
- MRC University of Edinburgh Centre for Reproductive Health, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Rachel White
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Piotr Manasterski
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Elena Mandrou
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Karen Wills
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Jingyu Chen
- Wellcome Trust/MRC Cambridge Stem Cell Institute & Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Emily Abraham
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Kianoosh Sateri
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Bin-Zhi Qian
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
- MRC University of Edinburgh Centre for Reproductive Health, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Peter Bankhead
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Mark Arends
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Noor Gammoh
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Alex von Kriegsheim
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Gary J Patti
- Department of Chemistry and Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Andrew H Sims
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Juan Carlos Acosta
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria). C/ Albert Einstein 22, Santander, 39011, Spain
| | - Valerie Brunton
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Kamil R Kranc
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, EH8 9YL, UK
| | - Maria Christophorou
- Wellcome Trust/MRC Cambridge Stem Cell Institute & Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Erika L Pearce
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, D-79108, Freiburg, Germany
- Department of Oncology, The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA
| | - Ingo Ringshausen
- Wellcome Trust/MRC Cambridge Stem Cell Institute & Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Andrew J Finch
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK.
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
37
|
Tao L, Mohammad MA, Milazzo G, Moreno-Smith M, Patel TD, Zorman B, Badachhape A, Hernandez BE, Wolf AB, Zeng Z, Foster JH, Aloisi S, Sumazin P, Zu Y, Hicks J, Ghaghada KB, Putluri N, Perini G, Coarfa C, Barbieri E. MYCN-driven fatty acid uptake is a metabolic vulnerability in neuroblastoma. Nat Commun 2022; 13:3728. [PMID: 35764645 PMCID: PMC9240069 DOI: 10.1038/s41467-022-31331-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma (NB) is a childhood cancer arising from sympatho-adrenal neural crest cells. MYCN amplification is found in half of high-risk NB patients; however, no available therapies directly target MYCN. Using multi-dimensional metabolic profiling in MYCN expression systems and primary patient tumors, we comprehensively characterized the metabolic landscape driven by MYCN in NB. MYCN amplification leads to glycerolipid accumulation by promoting fatty acid (FA) uptake and biosynthesis. We found that cells expressing amplified MYCN depend highly on FA uptake for survival. Mechanistically, MYCN directly upregulates FA transport protein 2 (FATP2), encoded by SLC27A2. Genetic depletion of SLC27A2 impairs NB survival, and pharmacological SLC27A2 inhibition selectively suppresses tumor growth, prolongs animal survival, and exerts synergistic anti-tumor effects when combined with conventional chemotherapies in multiple preclinical NB models. This study identifies FA uptake as a critical metabolic dependency for MYCN-amplified tumors. Inhibiting FA uptake is an effective approach for improving current treatment regimens.
Collapse
Affiliation(s)
- Ling Tao
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mahmoud A Mohammad
- Department of Pediatrics-Nutrition, Baylor College of Medicine, Houston, TX, 77030, USA
- Food Science and Nutrition Department, National Research Centre, El-Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Giorgio Milazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Myrthala Moreno-Smith
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Tajhal D Patel
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Barry Zorman
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrew Badachhape
- Department of Radiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Blanca E Hernandez
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Amber B Wolf
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zihua Zeng
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Jennifer H Foster
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sara Aloisi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Pavel Sumazin
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - John Hicks
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ketan B Ghaghada
- Department of Radiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nagireddy Putluri
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Advanced Technology Core, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Eveline Barbieri
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX, 77030, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
38
|
Agostini M, Melino G, Habeb B, Calandria JM, Bazan NG. Targeting lipid metabolism in cancer: neuroblastoma. Cancer Metastasis Rev 2022; 41:255-260. [PMID: 35687185 PMCID: PMC9363363 DOI: 10.1007/s10555-022-10040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Bola Habeb
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Jorgelina M Calandria
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA.
| |
Collapse
|
39
|
Mullen PJ, Christofk HR. The Metabolic Relationship Between Viral Infection and Cancer. ANNUAL REVIEW OF CANCER BIOLOGY 2022. [DOI: 10.1146/annurev-cancerbio-070120-090423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Viruses are fundamental tools in cancer research. They were used to discover the first oncogenes in the 1970s, and they are now being modified for use as antitumor therapeutics. Key to both of these oncogenic and oncolytic properties is the ability of viruses to rewire host cell metabolism. In this review, we describe how viral oncogenes alter metabolism to increase the synthesis of macromolecules necessary for both viral replication and tumor growth. We then describe how understanding the specific metabolic requirements of virus-infected cells can help guide strategies to improve the efficacy of oncolytic viruses, and we highlight immunometabolism and tumor microenvironment research that could also increase the therapeutic benefits of oncolytic viruses. We also describe how studies describing the therapeutic effects of dietary nutrient restriction in cancer can suggest new avenues for research into antiviral therapeutics.
Collapse
Affiliation(s)
- Peter J. Mullen
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Heather R. Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center and Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, California, USA
| |
Collapse
|
40
|
Wang H, Lu J, Alencastro F, Roberts A, Fiedor J, Carroll P, Eisenman RN, Ranganathan S, Torbenson M, Duncan AW, Prochownik EV. Coordinated Cross-Talk Between the Myc and Mlx Networks in Liver Regeneration and Neoplasia. Cell Mol Gastroenterol Hepatol 2022; 13:1785-1804. [PMID: 35259493 PMCID: PMC9046243 DOI: 10.1016/j.jcmgh.2022.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND & AIMS The c-Myc (Myc) Basic helix-loop-helix leucine zipper (bHLH-ZIP) transcription factor is deregulated in most cancers. In association with Max, Myc controls target genes that supervise metabolism, ribosome biogenesis, translation, and proliferation. This Myc network crosstalks with the Mlx network, which consists of the Myc-like proteins MondoA and ChREBP, and Max-like Mlx. Together, this extended Myc network regulates both common and distinct gene targets. Here, we studied the consequence of Myc and/or Mlx ablation in the liver, particularly those pertaining to hepatocyte proliferation, metabolism, and spontaneous tumorigenesis. METHODS We examined the ability of hepatocytes lacking Mlx (MlxKO) or Myc+Mlx (double KO [DKO]) to repopulate the liver over an extended period of time in a murine model of type I tyrosinemia. We also compared this and other relevant behaviors, phenotypes, and transcriptomes of the livers with those from previously characterized MycKO, ChrebpKO, and MycKO × ChrebpKO mice. RESULTS Hepatocyte regenerative potential deteriorated as the Extended Myc Network was progressively dismantled. Genes and pathways dysregulated in MlxKO and DKO hepatocytes included those pertaining to translation, mitochondrial function, and hepatic steatosis resembling nonalcoholic fatty liver disease. The Myc and Mlx Networks were shown to crosstalk, with the latter playing a disproportionate role in target gene regulation. All cohorts also developed steatosis and molecular evidence of early steatohepatitis. Finally, MlxKO and DKO mice showed extensive hepatic adenomatosis. CONCLUSIONS In addition to showing cooperation between the Myc and Mlx Networks, this study showed the latter to be more important in maintaining proliferative, metabolic, and translational homeostasis, while concurrently serving as a suppressor of benign tumorigenesis. GEO accession numbers: GSE181371, GSE130178, and GSE114634.
Collapse
Affiliation(s)
- Huabo Wang
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jie Lu
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Frances Alencastro
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Alexander Roberts
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Julia Fiedor
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Patrick Carroll
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Robert N Eisenman
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Michael Torbenson
- Department of Laboratory Medicine and Pathology, The Mayo Clinic, Rochester, Minnesota
| | - Andrew W Duncan
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Edward V Prochownik
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania; Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Microbiology and Molecular Genetics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
41
|
Scieszka D, Hunter R, Begay J, Bitsui M, Lin Y, Galewsky J, Morishita M, Klaver Z, Wagner J, Harkema JR, Herbert G, Lucas S, McVeigh C, Bolt A, Bleske B, Canal CG, Mostovenko E, Ottens AK, Gu H, Campen MJ, Noor S. Neuroinflammatory and Neurometabolomic Consequences From Inhaled Wildfire Smoke-Derived Particulate Matter in the Western United States. Toxicol Sci 2022; 186:149-162. [PMID: 34865172 PMCID: PMC8883349 DOI: 10.1093/toxsci/kfab147] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Utilizing a mobile laboratory located >300 km away from wildfire smoke (WFS) sources, this study examined the systemic immune response profile, with a focus on neuroinflammatory and neurometabolomic consequences, resulting from inhalation exposure to naturally occurring wildfires in California, Arizona, and Washington in 2020. After a 20-day (4 h/day) exposure period in a mobile laboratory stationed in New Mexico, WFS-derived particulate matter (WFPM) inhalation resulted in significant neuroinflammation while immune activity in the peripheral (lung, bone marrow) appeared to be resolved in C57BL/6 mice. Importantly, WFPM exposure increased cerebrovascular endothelial cell activation and expression of adhesion molecules (VCAM-1 and ICAM-1) in addition to increased glial activation and peripheral immune cell infiltration into the brain. Flow cytometry analysis revealed proinflammatory phenotypes of microglia and peripheral immune subsets in the brain of WFPM-exposed mice. Interestingly, endothelial cell neuroimmune activity was differentially associated with levels of PECAM-1 expression, suggesting that subsets of cerebrovascular endothelial cells were transitioning to resolution of inflammation following the 20-day exposure. Neurometabolites related to protection against aging, such as NAD+ and taurine, were decreased by WFPM exposure. Additionally, increased pathological amyloid-beta protein accumulation, a hallmark of neurodegeneration, was observed. Neuroinflammation, together with decreased levels of key neurometabolites, reflect a cluster of outcomes with important implications in priming inflammaging and aging-related neurodegenerative phenotypes.
Collapse
Affiliation(s)
- David Scieszka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Russell Hunter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Jessica Begay
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Marsha Bitsui
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Yan Lin
- Department of Geography and Environmental Studies, College of Arts and Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Joseph Galewsky
- Department of Earth and Planetary Sciences, College of Arts and Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Masako Morishita
- Department of Family Medicine, Michigan State University, East Lansing, Michigan 48824, USA
| | - Zachary Klaver
- Department of Family Medicine, Michigan State University, East Lansing, Michigan 48824, USA
| | - James Wagner
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Jack R Harkema
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Charlotte McVeigh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Alicia Bolt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Barry Bleske
- Department of Pharmacy Practice and Administrative Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Christopher G Canal
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Ekaterina Mostovenko
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Andrew K Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Haiwei Gu
- Arizona State University, Phoenix, Arizona, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Shahani Noor
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
42
|
Malik S, Stokes Iii J, Manne U, Singh R, Mishra MK. Understanding the significance of biological clock and its impact on cancer incidence. Cancer Lett 2022; 527:80-94. [PMID: 34906624 PMCID: PMC8816870 DOI: 10.1016/j.canlet.2021.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
The circadian clock is an essential timekeeper that controls, for humans, the daily rhythm of biochemical, physiological, and behavioral functions. Irregular performance or disruption in circadian rhythms results in various diseases, including cancer. As a factor in cancer development, perturbations in circadian rhythms can affect circadian homeostasis in energy balance, lead to alterations in the cell cycle, and cause dysregulation of chromatin remodeling. However, knowledge gaps remain in our understanding of the relationship between the circadian clock and cancer. Therefore, a mechanistic understanding by which circadian disruption enhances cancer risk is needed. This review article outlines the importance of the circadian clock in tumorigenesis and summarizes underlying mechanisms in the clock and its carcinogenic mechanisms, highlighting advances in chronotherapy for cancer treatment.
Collapse
Affiliation(s)
- Shalie Malik
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA; Department of Zoology and Dr. Giri Lal Gupta Institute of Public Health and Public Affairs, University of Lucknow, Lucknow, UP, India
| | - James Stokes Iii
- Department of Biological and Environmental Sciences, Auburn University, Montgomery, AL, USA
| | - Upender Manne
- Departments of Pathology, Surgery and Epidemiology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Manoj K Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA.
| |
Collapse
|
43
|
Sipol A, Hameister E, Xue B, Hofstetter J, Barenboim M, Öllinger R, Jain G, Prexler C, Rubio RA, Baldauf MC, Franchina DG, Petry A, Schmäh J, Thiel U, Görlach A, Cario G, Brenner D, Richter GH, Grünewald TG, Rad R, Wolf E, Ruland J, Sorensen PH, Burdach SE. MondoA drives malignancy in B-ALL through enhanced adaptation to metabolic stress. Blood 2022; 139:1184-1197. [PMID: 33908607 PMCID: PMC11017790 DOI: 10.1182/blood.2020007932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 04/02/2021] [Indexed: 11/20/2022] Open
Abstract
Cancer cells are in most instances characterized by rapid proliferation and uncontrolled cell division. Hence, they must adapt to proliferation-induced metabolic stress through intrinsic or acquired antimetabolic stress responses to maintain homeostasis and survival. One mechanism to achieve this is reprogramming gene expression in a metabolism-dependent manner. MondoA (also known as Myc-associated factor X-like protein X-interacting protein [MLXIP]), a member of the MYC interactome, has been described as an example of such a metabolic sensor. However, the role of MondoA in malignancy is not fully understood and the underlying mechanism in metabolic responses remains elusive. By assessing patient data sets, we found that MondoA overexpression is associated with worse survival in pediatric common acute lymphoblastic leukemia (ALL; B-precursor ALL [B-ALL]). Using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) and RNA-interference approaches, we observed that MondoA depletion reduces the transformational capacity of B-ALL cells in vitro and dramatically inhibits malignant potential in an in vivo mouse model. Interestingly, reduced expression of MondoA in patient data sets correlated with enrichment in metabolic pathways. The loss of MondoA correlated with increased tricarboxylic acid cycle activity. Mechanistically, MondoA senses metabolic stress in B-ALL cells by restricting oxidative phosphorylation through reduced pyruvate dehydrogenase activity. Glutamine starvation conditions greatly enhance this effect and highlight the inability to mitigate metabolic stress upon loss of MondoA in B-ALL. Our findings give novel insight into the function of MondoA in pediatric B-ALL and support the notion that MondoA inhibition in this entity offers a therapeutic opportunity and should be further explored.
Collapse
Affiliation(s)
| | - Erik Hameister
- Institute of Clinical Chemistry and Pathobiochemistry, Technische Universität München, Munich, Germany
| | - Busheng Xue
- Children's Cancer Research Center, Department of Pediatrics
| | - Julia Hofstetter
- Cancer Systems Biology Group, Biochemistry and Molecular Biology, Universität Würzburg, Würzburg, Germany
| | | | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, Technische Universität München, Munich, Germany
| | - Gaurav Jain
- Institute of Molecular Oncology and Functional Genomics, Technische Universität München, Munich, Germany
| | | | - Rebeca Alba Rubio
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Michaela C. Baldauf
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Davide G. Franchina
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Andreas Petry
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich, Technische Universität München, Munich, Germany
| | - Juliane Schmäh
- Department of Pediatrics, Schleswig-Holstein University Medical Center, Kiel, Germany
| | - Uwe Thiel
- Children's Cancer Research Center, Department of Pediatrics
- Comprehensive Cancer Center (CCC) München and Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site, Munich, Germany
| | - Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich, Technische Universität München, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Munich Heart Alliance, Partner Site, Munich, Germany
| | - Gunnar Cario
- Department of Pediatrics, Schleswig-Holstein University Medical Center, Kiel, Germany
| | - Dirk Brenner
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Günther H.S. Richter
- Children's Cancer Research Center, Department of Pediatrics
- Comprehensive Cancer Center (CCC) München and Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site, Munich, Germany
| | - Thomas G.P. Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
- Comprehensive Cancer Center (CCC) München and Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site, Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, Technische Universität München, Munich, Germany
- Comprehensive Cancer Center (CCC) München and Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site, Munich, Germany
| | - Elmar Wolf
- Cancer Systems Biology Group, Biochemistry and Molecular Biology, Universität Würzburg, Würzburg, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, Technische Universität München, Munich, Germany
- Comprehensive Cancer Center (CCC) München and Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site, Munich, Germany
| | - Poul H. Sorensen
- Children's Cancer Research Center, Department of Pediatrics
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Stefan E.G. Burdach
- Children's Cancer Research Center, Department of Pediatrics
- Comprehensive Cancer Center (CCC) München and Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site, Munich, Germany
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| |
Collapse
|
44
|
Prochownik EV, Wang H. Normal and Neoplastic Growth Suppression by the Extended Myc Network. Cells 2022; 11:747. [PMID: 35203395 PMCID: PMC8870482 DOI: 10.3390/cells11040747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022] Open
Abstract
Among the first discovered and most prominent cellular oncogenes is MYC, which encodes a bHLH-ZIP transcription factor (Myc) that both activates and suppresses numerous genes involved in proliferation, energy production, metabolism and translation. Myc belongs to a small group of bHLH-ZIP transcriptional regulators (the Myc Network) that includes its obligate heterodimerization partner Max and six "Mxd proteins" (Mxd1-4, Mnt and Mga), each of which heterodimerizes with Max and largely opposes Myc's functions. More recently, a second group of bHLH-ZIP proteins (the Mlx Network) has emerged that bears many parallels with the Myc Network. It is comprised of the Myc-like factors ChREBP and MondoA, which, in association with the Max-like member Mlx, regulate smaller and more functionally restricted repertoires of target genes, some of which are shared with Myc. Opposing ChREBP and MondoA are heterodimers comprised of Mlx and Mxd1, Mxd4 and Mnt, which also structurally and operationally link the two Networks. We discuss here the functions of these "Extended Myc Network" members, with particular emphasis on their roles in suppressing normal and neoplastic growth. These roles are complex due to the temporal- and tissue-restricted expression of Extended Myc Network proteins in normal cells, their regulation of both common and unique target genes and, in some cases, their functional redundancy.
Collapse
Affiliation(s)
- Edward V. Prochownik
- Division of Hematology/Oncology, The Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
- The Department of Microbiology and Molecular Genetics, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- The Hillman Cancer Center of UPMC, Pittsburgh, PA 15224, USA
- The Pittsburgh Liver Research Center, Pittsburgh, PA 15224, USA
| | - Huabo Wang
- Division of Hematology/Oncology, The Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
| |
Collapse
|
45
|
Role of Energy Metabolism in the Progression of Neuroblastoma. Int J Mol Sci 2021; 22:ijms222111421. [PMID: 34768850 PMCID: PMC8583976 DOI: 10.3390/ijms222111421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022] Open
Abstract
Neuroblastoma is a common childhood cancer possessing a significant risk of death. This solid tumor manifests variable clinical behaviors ranging from spontaneous regression to widespread metastatic disease. The lack of promising treatments calls for new research approaches which can enhance the understanding of the molecular background of neuroblastoma. The high proliferation of malignant neuroblastoma cells requires efficient energy metabolism. Thus, we focus our attention on energy pathways and their role in neuroblastoma tumorigenesis. Recent studies suggest that neuroblastoma-driven extracellular vesicles stimulate tumorigenesis inside the recipient cells. Furthermore, proteomic studies have demonstrated extracellular vesicles (EVs) to cargo metabolic enzymes needed to build up a fully operative energy metabolism network. The majority of EV-derived enzymes comes from glycolysis, while other metabolic enzymes have a fatty acid β-oxidation and tricarboxylic acid cycle origin. The previously mentioned glycolysis has been shown to play a primary role in neuroblastoma energy metabolism. Therefore, another way to modify the energy metabolism in neuroblastoma is linked with genetic alterations resulting in the decreased activity of some tricarboxylic acid cycle enzymes and enhanced glycolysis. This metabolic shift enables malignant cells to cope with increasing metabolic stress, nutrition breakdown and an upregulated proliferation ratio.
Collapse
|
46
|
Pan T, Han D, Xu Y, Peng W, Bai L, Zhou X, He H. LC-MS Based Metabolomics Study of the Effects of EGCG on A549 Cells. Front Pharmacol 2021; 12:732716. [PMID: 34650434 PMCID: PMC8505700 DOI: 10.3389/fphar.2021.732716] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
(−)-Epigallocatechin-3-gallate (EGCG) is the main bioactive catechin in green tea. The antitumor activity of EGCG has been confirmed in various types of cancer, including lung cancer. However, the precise underlying mechanisms are still largely unclear. In the present study, we investigated the metabolite changes in A549 cells induced by EGCG in vitro utilizing liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. The result revealed 33 differentially expressed metabolites between untreated and 80 μM EGCG-treated A549 cells. The altered metabolites were involved in the metabolism of glucose, amino acid, nucleotide, glutathione, and vitamin. Two markedly altered pathways, including glycine, serine and threonine metabolism and alanine, aspartate and glutamate metabolism, were identified by MetaboAnalyst 5.0 metabolic pathway analysis. These results may provide potential clues for the intramolecular mechanisms of EGCG’s effect on A549 cells. Our study may contribute to future molecular mechanistic studies of EGCG and the therapeutic application of EGCG in cancer management.
Collapse
Affiliation(s)
- Tingyu Pan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Di Han
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenpan Peng
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Le Bai
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xianmei Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Hailang He
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, AZ, United States
| |
Collapse
|
47
|
Carroll PA, Freie BW, Cheng PF, Kasinathan S, Gu H, Hedrich T, Dowdle JA, Venkataramani V, Ramani V, Wu X, Raftery D, Shendure J, Ayer DE, Muller CH, Eisenman RN. The glucose-sensing transcription factor MLX balances metabolism and stress to suppress apoptosis and maintain spermatogenesis. PLoS Biol 2021; 19:e3001085. [PMID: 34669700 PMCID: PMC8528285 DOI: 10.1371/journal.pbio.3001085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 09/24/2021] [Indexed: 01/02/2023] Open
Abstract
Male germ cell (GC) production is a metabolically driven and apoptosis-prone process. Here, we show that the glucose-sensing transcription factor (TF) MAX-Like protein X (MLX) and its binding partner MondoA are both required for male fertility in the mouse, as well as survival of human tumor cells derived from the male germ line. Loss of Mlx results in altered metabolism as well as activation of multiple stress pathways and GC apoptosis in the testes. This is concomitant with dysregulation of the expression of male-specific GC transcripts and proteins. Our genomic and functional analyses identify loci directly bound by MLX involved in these processes, including metabolic targets, obligate components of male-specific GC development, and apoptotic effectors. These in vivo and in vitro studies implicate MLX and other members of the proximal MYC network, such as MNT, in regulation of metabolism and differentiation, as well as in suppression of intrinsic and extrinsic death signaling pathways in both spermatogenesis and male germ cell tumors (MGCTs).
Collapse
Affiliation(s)
- Patrick A. Carroll
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Brian W. Freie
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Pei Feng Cheng
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Sivakanthan Kasinathan
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Haiwei Gu
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - Theresa Hedrich
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - James A. Dowdle
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Vivek Venkataramani
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Vijay Ramani
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Xiaoying Wu
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, United States of America
| | - Donald E. Ayer
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Charles H. Muller
- Male Fertility Lab, Department of Urology, University of Washington, Seattle, Washington, United States of America
| | - Robert N. Eisenman
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
48
|
Liaño-Pons J, Arsenian-Henriksson M, León J. The Multiple Faces of MNT and Its Role as a MYC Modulator. Cancers (Basel) 2021; 13:4682. [PMID: 34572909 PMCID: PMC8465425 DOI: 10.3390/cancers13184682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
MNT is a crucial modulator of MYC, controls several cellular functions, and is activated in most human cancers. It is the largest, most divergent, and most ubiquitously expressed protein of the MXD family. MNT was first described as a MYC antagonist and tumor suppressor. Indeed, 10% of human tumors present deletions of one MNT allele. However, some reports show that MNT functions in cooperation with MYC by maintaining cell proliferation, promoting tumor cell survival, and supporting MYC-driven tumorigenesis in cellular and animal models. Although MAX was originally considered MNT's obligate partner, our recent findings demonstrate that MNT also works independently. MNT forms homodimers and interacts with proteins both outside and inside of the proximal MYC network. These complexes are involved in a wide array of cellular processes, from transcriptional repression via SIN3 to the modulation of metabolism through MLX as well as immunity and apoptosis via REL. In this review, we discuss the present knowledge of MNT with a special focus on its interactome, which sheds light on the complex and essential role of MNT in cell biology.
Collapse
Affiliation(s)
- Judit Liaño-Pons
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden;
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden;
| | - Javier León
- Departmento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, 39011 Santander, Spain;
| |
Collapse
|
49
|
Inositol serves as a natural inhibitor of mitochondrial fission by directly targeting AMPK. Mol Cell 2021; 81:3803-3819.e7. [PMID: 34547240 DOI: 10.1016/j.molcel.2021.08.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 06/01/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022]
Abstract
Mitochondrial dynamics regulated by mitochondrial fusion and fission maintain mitochondrial functions, whose alterations underline various human diseases. Here, we show that inositol is a critical metabolite directly restricting AMPK-dependent mitochondrial fission independently of its classical mode as a precursor for phosphoinositide generation. Inositol decline by IMPA1/2 deficiency elicits AMPK activation and mitochondrial fission without affecting ATP level, whereas inositol accumulation prevents AMPK-dependent mitochondrial fission. Metabolic stress or mitochondrial damage causes inositol decline in cells and mice to elicit AMPK-dependent mitochondrial fission. Inositol directly binds to AMPKγ and competes with AMP for AMPKγ binding, leading to restriction of AMPK activation and mitochondrial fission. Our study suggests that the AMP/inositol ratio is a critical determinant for AMPK activation and establishes a model in which AMPK activation requires inositol decline to release AMPKγ for AMP binding. Hence, AMPK is an inositol sensor, whose inactivation by inositol serves as a mechanism to restrict mitochondrial fission.
Collapse
|
50
|
Jasbi P, Shi X, Chu P, Elliott N, Hudson H, Jones D, Serrano G, Chow B, Beach TG, Liu L, Jentarra G, Gu H. Metabolic Profiling of Neocortical Tissue Discriminates Alzheimer's Disease from Mild Cognitive Impairment, High Pathology Controls, and Normal Controls. J Proteome Res 2021; 20:4303-4317. [PMID: 34355917 PMCID: PMC11060066 DOI: 10.1021/acs.jproteome.1c00290] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, accounting for an estimated 60-80% of cases, and is the sixth-leading cause of death in the United States. While considerable advancements have been made in the clinical care of AD, it remains a complicated disorder that can be difficult to identify definitively in its earliest stages. Recently, mass spectrometry (MS)-based metabolomics has shown significant potential for elucidation of disease mechanisms and identification of therapeutic targets as well diagnostic and prognostic markers that may be useful in resolving some of the difficulties affecting clinical AD studies, such as effective stratification. In this study, complementary gas chromatography- and liquid chromatography-MS platforms were used to detect and monitor 2080 metabolites and features in 48 postmortem tissue samples harvested from the superior frontal gyrus of male and female subjects. Samples were taken from four groups: 12 normal control (NC) patients, 12 cognitively normal subjects characterized as high pathology controls (HPC), 12 subjects with nonspecific mild cognitive impairment (MCI), and 12 subjects with AD. Multivariate statistics informed the construction and cross-validation (p < 0.01) of partial least squares-discriminant analysis (PLS-DA) models defined by a nine-metabolite panel of disease markers (lauric acid, stearic acid, myristic acid, palmitic acid, palmitoleic acid, and four unidentified mass spectral features). Receiver operating characteristic analysis showed high predictive accuracy of the resulting PLS-DA models for discrimination of NC (97%), HPC (92%), MCI (∼96%), and AD (∼96%) groups. Pathway analysis revealed significant disturbances in lysine degradation, fatty acid metabolism, and the degradation of branched-chain amino acids. Network analysis showed significant enrichment of 11 enzymes, predominantly within the mitochondria. The results expand basic knowledge of the metabolome related to AD and reveal pathways that can be targeted therapeutically. This study also provides a promising basis for the development of larger multisite projects to validate these candidate markers in readily available biospecimens such as blood to enable the effective screening, rapid diagnosis, accurate surveillance, and therapeutic monitoring of AD. All raw mass spectrometry data have been deposited to MassIVE (data set identifier MSV000087165).
Collapse
Affiliation(s)
- Paniz Jasbi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, 850 N 5th Street, Phoenix, Arizona 85004, United States
| | - Xiaojian Shi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, 850 N 5th Street, Phoenix, Arizona 85004, United States
- Systems Biology Institute, Cellular and Molecular Physiology, Yale School of Medicine, West Haven, Connecticut 06516, United States
| | | | | | | | | | - Geidy Serrano
- Banner Sun Health Research Institute, Sun City, Arizona 85351, United States
| | - Brandon Chow
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, 850 N 5th Street, Phoenix, Arizona 85004, United States
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, Arizona 85351, United States
| | - Li Liu
- College of Health Solutions, Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
- Department of Neurology, Mayo Clinic, Scottsdale, Arizona 85259, United States
| | - Garilyn Jentarra
- Precision Medicine Program, Midwestern University, 19555 N 59th Avenue, Glendale, Arizona 85308, United States
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, 850 N 5th Street, Phoenix, Arizona 85004, United States
| |
Collapse
|