1
|
Sridaran D, Mahajan NP. ACK1/TNK2 kinase: molecular mechanisms and emerging cancer therapeutics. Trends Pharmacol Sci 2025; 46:62-77. [PMID: 39721828 DOI: 10.1016/j.tips.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024]
Abstract
Activated CDC42-associated kinase 1 (ACK1), encoded by the TNK2 gene, is a cytoplasmic non-receptor tyrosine kinase whose aberrant activation correlates positively with cancer severity. Recent research has revealed the functional relevance of this oncokinase - it is an epigenetic regulator that drives cancer progression in multiple malignancies. Although ACK1 is an attractive target for therapeutic intervention, incomplete knowledge of its diverse signaling mechanisms and the lack of specific inhibitors have challenged its clinical success. We summarize recent breakthroughs in understanding ACK1 regulation and cellular signaling, and shed light on its immunomodulatory role in balancing T cell activation. We provide a comprehensive overview of preclinical, proof-of-concept studies of potent ACK1-targeting small-molecule inhibitors that are expected to enter clinical trials for cancer patients.
Collapse
Affiliation(s)
- Dhivya Sridaran
- Division of Urologic Surgery, Department of Surgery, Washington University at St. Louis, St. Louis, MO 63110, USA
| | - Nupam P Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University at St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Cancer Research Building, Washington University at St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Murata M, Kuwajima H, Tanaka J, Hasegawa N, Yuki R, Saito Y, Nakayama Y. TNK2 Inhibitor (R)-9bMS Causes Polyploidization Through Mitotic Failure by Targeting Aurora B. Cell Biochem Funct 2024; 42:e70022. [PMID: 39639371 DOI: 10.1002/cbf.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
TNK2 is a ubiquitously expressed nonreceptor-type tyrosine kinase. TNK2 participates in tumorigenesis, and TNK2 activation has been found in various cancers; therefore, TNK2 is a promising target for cancer chemotherapy. While the TNK2 inhibitor XMD16-5 is highly selective, it inhibits cytokinesis at higher concentrations by targeting Aurora B kinase, a key enzyme for cell division. Cytokinesis failure frequently generates polyploid cells, and the surviving polyploid cells risk leading to cancer development and malignant progression via chromosome instability. In this study, to investigate the possibility that (R)-9bMS, a TNK2 inhibitor structurally related to XMD16-5, drives malignant progression by inducing abnormal cell division, we examined its effects on cell division, Aurora B autophosphorylation, and colony formation. Cell count results showed a reduction in the number of A431, HeLa S3, HCT116, and MCF7 cells upon TNK2 inhibitor treatment. Microscopic observation indicated the formation of multinucleated and nucleus-enlarged cells. An increase in DNA content was confirmed with flow cytometry, which was underpinned by an increased number of centrosomes. Time-lapse imaging revealed mitotic failure, such as mitotic slippage and cytokinesis failure, as a cause of polyploidization. Of note, TNK2 knockdown significantly increased multinucleated cells, but the effect was quite weak, suggesting that TNK2 inhibition may only partially contribute to mitotic failure and polyploidization. Expectedly, Aurora B phosphorylation was reduced by (R)-9bMS like XMD16-5, but not by TNK2 knockdown. Collectively, TNK2 inhibitors (R)-9bMS and XMD16-5 induce polyploidization via mitotic failure caused by the inhibition of Aurora B kinase rather than TNK2. Notably, (R)-9bMS treatment promoted anchorage-independent colony formation, a hallmark of cancer. Our findings suggest that (R)-9bMS at a high concentration risks promoting cancer development or malignant progression. Therefore, caution should be used when using TNK2 inhibitors for cancers where TNK2 activation is not the transforming mutation and higher concentrations of TNK2 inhibitors are required to slow proliferation.
Collapse
Affiliation(s)
- Mayu Murata
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroki Kuwajima
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Junna Tanaka
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Nanami Hasegawa
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Ryuzaburo Yuki
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Youhei Saito
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yuji Nakayama
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
3
|
Miller CD, Likasitwatanakul P, Toye E, Hwang JH, Antonarakis ES. Current uses and resistance mechanisms of enzalutamide in prostate cancer treatment. Expert Rev Anticancer Ther 2024; 24:1085-1100. [PMID: 39275993 PMCID: PMC11499039 DOI: 10.1080/14737140.2024.2405103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024]
Abstract
INTRODUCTION Prostate cancer continues to be a major cause of morbidity and mortality for men worldwide. Enzalutamide, a second-generation non-steroidal antiandrogen that blocks androgen receptor (AR) transcriptional activity, is a treatment for biochemically recurrent, metastatic, castration-sensitive, and castration-resistant tumors. Unfortunately, most patients ultimately develop resistance to enzalutamide, making long-term treatment with this agent challenging. AREAS COVERED We performed a literature search of PubMed without date restrictions to investigate the literature surrounding enzalutamide and discuss the current uses of enzalutamide, proposed mechanisms driving resistance, and summarize current efforts to mitigate this resistance. EXPERT OPINION Enzalutamide is an effective prostate cancer therapy that is currently used in biochemically recurrent and metastatic disease and for both castration-sensitive and castration-resistant tumors. Unfortunately, resistance to enzalutamide occurs in each of these scenarios. In the clinical setting, enzalutamide-resistant tumors are either AR-driven or AR-indifferent. AR-dependent resistance mechanisms include genomic or epigenomic events that result in enhanced AR signaling. Tumors that do not require AR signaling instead may depend on alternative oncogenic pathways. There are numerous strategies to mitigate enzalutamide resistance, including concurrent use of PARP inhibitors or immune therapies. Additional work is required to uncover novel approaches to treat patients in the enzalutamide-resistant setting.
Collapse
Affiliation(s)
- Carly D. Miller
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN
| | - Pornlada Likasitwatanakul
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN
- Department of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Eamon Toye
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Justin H. Hwang
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN
| | | |
Collapse
|
4
|
Tabibian M, Moghaddam FS, Motevaseli E, Ghafouri-Fard S. Targeting mRNA-coding genes in prostate cancer using CRISPR/Cas9 technology with a special focus on androgen receptor signaling. Cell Commun Signal 2024; 22:504. [PMID: 39420406 PMCID: PMC11484332 DOI: 10.1186/s12964-024-01833-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Prostate cancer is among prevalent cancers in men. Numerous strategies have been proposed to intervene with the important prostate cancer-related signaling pathways. Among the most promising strategies is CRISPR/Cas9 strategy. This strategy has been used to modify expression of a number of genes in prostate cancer cells. AIMS This review summarizes the most recent progresses in the application of CRISPR/Cas9 strategy in modification of prostate cancer-related phenotypes with an especial focus on pathways related to androgen receptor signaling. CONCLUSION CRISPR/Cas9 technology has successfully targeted several genes in the prostate cancer cells. Moreover, the efficiency of this technique in reducing tumor burden has been tested in animal models of prostate cancer. Most of targeted genes have been related with the androgen receptor signaling. Targeted modulation of these genes have affected growth of castration-resistant prostate cancer. PI3K/AKT/mTOR signaling and immune response-related genes have been other targets that have been successfully modulated by CRISPR/Cas9 technology in prostate cancer. Based on the rapid translation of this technology into the clinical application, it is anticipated that novel treatments based on this technique change the outcome of this malignancy in future.
Collapse
Affiliation(s)
- Mobina Tabibian
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnologies, Shahid Beheshti University, Tehran, Iran
| | | | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Montoya-Novoa I, Gardeazábal-Torbado JL, Alegre-Martí A, Fuentes-Prior P, Estébanez-Perpiñá E. Androgen receptor post-translational modifications and their implications for pathology. Biochem Soc Trans 2024; 52:1673-1694. [PMID: 38958586 DOI: 10.1042/bst20231082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
A major mechanism to modulate the biological activities of the androgen receptor (AR) involves a growing number of post-translational modifications (PTMs). In this review we summarise the current knowledge on the structural and functional impact of PTMs that affect this major transcription factor. Next, we discuss the cross-talk between these different PTMs and the presence of clusters of modified residues in the AR protein. Finally, we discuss the implications of these covalent modifications for the aetiology of diseases such as spinal and bulbar muscular atrophy (Kennedy's disease) and prostate cancer, and the perspectives for pharmacological intervention.
Collapse
Affiliation(s)
- Inés Montoya-Novoa
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - José Luis Gardeazábal-Torbado
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Andrea Alegre-Martí
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Pablo Fuentes-Prior
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Eva Estébanez-Perpiñá
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| |
Collapse
|
6
|
Angappulige DH, Barashi NS, Pickersgill N, Weimholt C, Luo J, Shadmani G, Tarcha Z, Rayamajhi S, Mahajan NP, Andriole GL, Siegel BA, Kim EH, Mahajan K. Prostate-Specific Membrane Antigen-Targeted Imaging and Its Correlation with HOXB13 Expression. J Nucl Med 2024; 65:1210-1216. [PMID: 38936974 PMCID: PMC11294063 DOI: 10.2967/jnumed.123.267301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
Homeobox 13 (HOXB13) is an oncogenic transcription factor that directly regulates expression of folate hydrolase 1, which encodes prostate-specific membrane antigen (PSMA). HOXB13 is expressed in primary and metastatic prostate cancers (PCs) and promotes androgen-independent PC growth. Since HOXB13 promotes resistance to androgen receptor (AR)-targeted therapies and regulates the expression of folate hydrolase 1, we investigated whether SUVs on PSMA PET would correlate with HOXB13 expression. Methods: We analyzed 2 independent PC patient cohorts who underwent PSMA PET/CT for initial staging or for biochemical recurrence. In the discovery cohort, we examined the relationship between HOXB13, PSMA, and AR messenger RNA (mRNA) expression in prostate biopsy specimens from 179 patients who underwent PSMA PET/CT with 18F-piflufolastat. In the validation cohort, we confirmed the relationship between HOXB13, PSMA, and AR by comparing protein expression in prostatectomy and lymph node (LN) sections from 19 patients enrolled in 18F-rhPSMA-7.3 PET clinical trials. Correlation and association analyses were also used to confirm the relationship between the markers, LN positivity, and PSMA PET SUVs. Results: We observed a significant correlation between PSMA and HOXB13 mRNA (P < 0.01). The association between HOXB13 and 18F-piflufolastat SUVs was also significant (SUVmax, P = 0.0005; SUVpeak, P = 0.0006). Likewise, the PSMA SUVmax was significantly associated with the expression of HOXB13 protein in the 18F-rhPSMA-7.3 PET cohort (P = 0.008). Treatment-naïve patients with LN metastases demonstrated elevated HOXB13 and PSMA levels in their tumors as well as higher PSMA tracer uptake and low AR expression. Conclusion: Our findings demonstrate that HOXB13 correlates with PSMA expression and PSMA PET SUVs at the mRNA and protein levels. Our study suggests that the PSMA PET findings may reflect oncogenic HOXB13 transcriptional activity in PC, thus potentially serving as an imaging biomarker for more aggressive disease.
Collapse
Affiliation(s)
- Duminduni Hewa Angappulige
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Nimrod S Barashi
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Nicholas Pickersgill
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Cody Weimholt
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri
| | - Jingqin Luo
- Division of Public Health, Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
- Alvin J. Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri; and
| | - Ghazal Shadmani
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Ziad Tarcha
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Sampanna Rayamajhi
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Nupam P Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
- Alvin J. Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri; and
| | - Gerald L Andriole
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Barry A Siegel
- Alvin J. Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri; and
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Eric H Kim
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
- Alvin J. Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri; and
| | - Kiran Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, Missouri;
- Alvin J. Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri; and
| |
Collapse
|
7
|
Chouhan S, Sridaran D, Weimholt C, Luo J, Li T, Hodgson MC, Santos LN, Le Sommer S, Fang B, Koomen JM, Seeliger M, Qu CK, Yart A, Kontaridis MI, Mahajan K, Mahajan NP. SHP2 as a primordial epigenetic enzyme expunges histone H3 pTyr-54 to amend androgen receptor homeostasis. Nat Commun 2024; 15:5629. [PMID: 38965223 PMCID: PMC11224269 DOI: 10.1038/s41467-024-49978-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
Mutations that decrease or increase the activity of the tyrosine phosphatase, SHP2 (encoded by PTPN11), promotes developmental disorders and several malignancies by varying phosphatase activity. We uncovered that SHP2 is a distinct class of an epigenetic enzyme; upon phosphorylation by the kinase ACK1/TNK2, pSHP2 was escorted by androgen receptor (AR) to chromatin, erasing hitherto unidentified pY54-H3 (phosphorylation of histones H3 at Tyr54) epigenetic marks to trigger a transcriptional program of AR. Noonan Syndrome with Multiple Lentigines (NSML) patients, SHP2 knock-in mice, and ACK1 knockout mice presented dramatic increase in pY54-H3, leading to loss of AR transcriptome. In contrast, prostate tumors with high pSHP2 and pACK1 activity exhibited progressive downregulation of pY54-H3 levels and higher AR expression that correlated with disease severity. Overall, pSHP2/pY54-H3 signaling acts as a sentinel of AR homeostasis, explaining not only growth retardation, genital abnormalities and infertility among NSML patients, but also significant AR upregulation in prostate cancer patients.
Collapse
Affiliation(s)
- Surbhi Chouhan
- Department of Surgery, Washington University in St Louis, St Louis, MO, 63110, USA
- 6601, Cancer Research Building, Washington University in St Louis, St Louis, MO, 63110, USA
| | - Dhivya Sridaran
- Department of Surgery, Washington University in St Louis, St Louis, MO, 63110, USA
- 6601, Cancer Research Building, Washington University in St Louis, St Louis, MO, 63110, USA
| | - Cody Weimholt
- Department of Pathology and Immunology, Washington University in St Louis, St Louis, MO, 63110, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Washington University in St Louis, St Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, 63110, USA
| | - Tiandao Li
- Bioinformatics Research Core, Center of Regenerative Medicine, Washington University in St Louis, St Louis, MO, 63110, USA
| | - Myles C Hodgson
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY, 13501, USA
| | - Luana N Santos
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY, 13501, USA
| | - Samantha Le Sommer
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY, 13501, USA
| | - Bin Fang
- Moffitt Cancer Center, SRB3, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - John M Koomen
- Moffitt Cancer Center, SRB3, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Markus Seeliger
- Department of Pharmacological Sciences, Stony Brook University Medical School, BST 7-120, Stony Brook, NY, 11794-8651, USA
| | - Cheng-Kui Qu
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Armelle Yart
- UMR 1301-Inserm 5070-CNRS EFS Univ. P. Sabatier, 4bis Ave Hubert Curien, 31100, Toulouse, France
| | - Maria I Kontaridis
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY, 13501, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kiran Mahajan
- Department of Surgery, Washington University in St Louis, St Louis, MO, 63110, USA
- 6601, Cancer Research Building, Washington University in St Louis, St Louis, MO, 63110, USA
| | - Nupam P Mahajan
- Department of Surgery, Washington University in St Louis, St Louis, MO, 63110, USA.
- 6601, Cancer Research Building, Washington University in St Louis, St Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, 63110, USA.
| |
Collapse
|
8
|
Jian J, Wang X, Zhang J, Zhou C, Hou X, Huang Y, Hou J, Lin Y, Wei X. Molecular landscape for risk prediction and personalized therapeutics of castration-resistant prostate cancer: at a glance. Front Endocrinol (Lausanne) 2024; 15:1360430. [PMID: 38887275 PMCID: PMC11180744 DOI: 10.3389/fendo.2024.1360430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Prostate cancer (PCa) is commonly occurred with high incidence in men worldwide, and many patients will be eventually suffered from the dilemma of castration-resistance with the time of disease progression. Castration-resistant PCa (CRPC) is an advanced subtype of PCa with heterogeneous carcinogenesis, resulting in poor prognosis and difficulties in therapy. Currently, disorders in androgen receptor (AR)-related signaling are widely acknowledged as the leading cause of CRPC development, and some non-AR-based strategies are also proposed for CRPC clinical analyses. The initiation of CRPC is a consequence of abnormal interaction and regulation among molecules and pathways at multi-biological levels. In this study, CRPC-associated genes, RNAs, proteins, and metabolites were manually collected and integrated by a comprehensive literature review, and they were functionally classified and compared based on the role during CRPC evolution, i.e., drivers, suppressors, and biomarkers, etc. Finally, translational perspectives for data-driven and artificial intelligence-powered CRPC systems biology analysis were discussed to highlight the significance of novel molecule-based approaches for CRPC precision medicine and holistic healthcare.
Collapse
Affiliation(s)
- Jingang Jian
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin’an Wang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chenchao Zhou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaorui Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuhua Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxin Lin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xuedong Wei
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
9
|
Nguyen DT, Mahajan U, Angappulige DH, Doshi A, Mahajan NP, Mahajan K. Amino Terminal Acetylation of HOXB13 Regulates the DNA Damage Response in Prostate Cancer. Cancers (Basel) 2024; 16:1622. [PMID: 38730575 PMCID: PMC11083449 DOI: 10.3390/cancers16091622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Advanced localized prostate cancers (PC) recur despite chemotherapy, radiotherapy and/or androgen deprivation therapy. We recently reported HOXB13 lysine (K)13 acetylation as a gain-of-function modification that regulates interaction with the SWI/SNF chromatin remodeling complex and is critical for anti-androgen resistance. However, whether acetylated HOXB13 promotes PC cell survival following treatment with genotoxic agents is not known. Herein, we show that K13-acetylated HOXB13 is induced rapidly in PC cells in response to DNA damage induced by irradiation (IR). It colocalizes with the histone variant γH2AX at sites of double strand breaks (DSBs). Treatment of PCs with the Androgen Receptor (AR) antagonist Enzalutamide (ENZ) did not suppress DNA-damage-induced HOXB13 acetylation. In contrast, HOXB13 depletion or loss of acetylation overcame resistance of PC cells to ENZ and synergized with IR. HOXB13K13A mutants show diminished replication fork progression, impaired G2/M arrest with significant cell death following DNA damage. Mechanistically, we found that amino terminus regulates HOXB13 nuclear puncta formation that is essential for proper DNA damage response. Therefore, targeting HOXB13 acetylation with CBP/p300 inhibitors in combination with DNA damaging therapy may be an effective strategy to overcome anti-androgen resistance of PCs.
Collapse
Affiliation(s)
- Duy T. Nguyen
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Urvashi Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- A.T. Still University of Health Sciences, Kirksville, MO 63501, USA
| | - Duminduni Hewa Angappulige
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Aashna Doshi
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Nupam P. Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kiran Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
10
|
Zheng D, Wei Z, Zhang C, Liu W, Gong C, Wu F, Guo W. ZNF692 promotes osteosarcoma cell proliferation, migration, and invasion through TNK2-mediated activation of the MEK/ERK pathway. Biol Direct 2024; 19:28. [PMID: 38650011 PMCID: PMC11034355 DOI: 10.1186/s13062-024-00472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Osteosarcoma is a diverse and aggressive bone tumor. Driver genes regulating osteosarcoma initiation and progression remains incompletely defined. Zinc finger protein 692 (ZNF692), a kind of Krüppel C2H2 zinc finger transcription factor, exhibited abnormal expression in different types of malignancies and showed a correlation with the clinical prognosis of patients as well as the aggressive characteristics of cancer cells. Nevertheless, its specific role in osteosarcoma is still not well understood. METHODS We investigated the dysregulation and clinical significance of ZNF692 in osteosarcoma through bioinformatic method and experimental validation. A range of in vitro assays, including CCK-8, colony formation, EdU incorporation, wound healing, and transwell invasion tests, were conducted to assess the impact of ZNF692 on cell proliferation, migration, and invasion in osteosarcoma. A xenograft mouse model was established to evaluate the effect of ZNF692 on tumor growth in vivo. Western blot assay was used to measure the protein levels of MEK1/2, P-MEK1/2, ERK1/2, and P-ERK1/2 in cells that had been genetically modified to either reduce or increase the expression of ZNF692. The relationship between ZNF692 and tyrosine kinase non-receptor 2 (TNK2) were validated by qRT-PCR, chromatin immunoprecipitation and luciferase reporter assays. RESULTS Expression of ZNF692 was increased in both human osteosarcoma tissues and cell lines. Furthermore, the expression of ZNF692 served as an independent predictive biomarker in osteosarcoma. The results of the survival analysis indicated that increased expression of ZNF692 was associated with worse outcome. Downregulation of ZNF692 inhibits the proliferation, migration, and invasion of osteosarcoma cells, whereas upregulation of ZNF692 has the opposite impact. Western blot assay indicates that reducing ZNF692 decreases phosphorylation of MEK1/2 and ERK1/2, whereas increasing ZNF692 expression enhances their phosphorylation. U0126, a potent inhibitor specifically targeting the MEK/ERK signaling pathway, partially counteracts the impact of ZNF692 overexpression on the proliferation, migration, and invasion of osteosarcoma cells. In addition, ZNF692 specifically interacts with the promoter region of TNK2 and stimulates the transcription of TNK2 in osteosarcoma cells. Forcing the expression of TNK2 weakens the inhibitory impact of ZNF692 knockdown on P-MEK1/2 and P-ERK1/2. Similarly, partly inhibiting TNK2 counteracts the enhancing impact of ZNF692 overexpression on the phosphorylation of MEK1/2 and ERK1/2. Functional tests demonstrate that the suppressive effects of ZNF692 knockdown on cell proliferation, migration, and invasion are greatly reduced when TNK2 is overexpressed. In contrast, the reduction of TNK2 hinders the ability of ZNF692 overexpression to enhance cell proliferation, migration, and invasion. CONCLUSION ZNF692 promotes the proliferation, migration, and invasion of osteosarcoma cells via the TNK2-dependent stimulation of the MEK/ERK signaling pathway. The ZNF692-TNK2 axis might potentially function as a possible predictive biomarker and a promising target for novel therapeutics in osteosarcoma.
Collapse
Affiliation(s)
- Di Zheng
- Department of Orthopedics, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Zhun Wei
- Department of Orthopedics, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Chong Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Wenda Liu
- Department of Orthopedics, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Changtian Gong
- Department of Orthopedics, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Fei Wu
- Department of Orthopedics, Renmin Hospital of Wuhan University, 430060, Wuhan, China.
| | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, 430060, Wuhan, China.
| |
Collapse
|
11
|
Angappulige DH, Mahajan NP, Mahajan K. Epigenetic underpinnings of tumor-immune dynamics in prostate cancer immune suppression. Trends Cancer 2024; 10:369-381. [PMID: 38341319 DOI: 10.1016/j.trecan.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/12/2024]
Abstract
Prostate cancer (PC) is immunosuppressive and refractory to immunotherapy. Infiltration of myeloid-derived suppressor cells (MDSCs) and senescent-like neutrophils and T cell exhaustion are observed in the tumor microenvironment (TME) following androgen receptor (AR) antagonism with antiandrogens or androgen ablation. De novo post-translational acetylation of the AR, HOXB13, and H2A at K609, K13, and K130, respectively, and phosphorylation of H4 at Y88 have emerged as key epigenetic modifications associated with castration-resistant PC (CRPC). The resulting chromatin changes are integrated into cellular processes via phosphorylation of the AR, ACK1, ATPF1A, and SREBP1 at Y267, Y284, Y243/Y246, and Y673/Y951, respectively. In this review, we discuss how these de novo epigenetic alterations drive resistance and how efforts aimed at targeting these regulators may overcome immune suppression observed in PC.
Collapse
Affiliation(s)
- Duminduni Hewa Angappulige
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nupam P Mahajan
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kiran Mahajan
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
12
|
Barashi NS, Li T, Angappulige DH, Zhang B, O’Gorman H, Nottingham CU, Shetty AS, Ippolito JE, Andriole GL, Mahajan NP, Kim EH, Mahajan K. Symptomatic Benign Prostatic Hyperplasia with Suppressed Epigenetic Regulator HOXB13 Shows a Lower Incidence of Prostate Cancer Development. Cancers (Basel) 2024; 16:213. [PMID: 38201640 PMCID: PMC10778073 DOI: 10.3390/cancers16010213] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Our objective was to identify variations in gene expression that could help elucidate the pathways for the development of prostate cancer (PCa) in men with Benign Prostatic Hyperplasia (BPH). We included 98 men with BPH, a positive prostate MRI (Prostate Imaging Reporting and Data System; PIRADS ≥ 4), and a negative biopsy from November 2014 to January 2018. RNA sequencing (RNA-Seq) was performed on tissue cores from the MRI lesion and a geographically distant region (two regions per patient). All patients were followed for at least three years to identify who went on to develop PCa. We compared the gene expressions of those who did not develop PCa ("BPH-only") vs. those who did ("BPH/PCa"). Then, we identified the subset of men with BPH who had the highest American Urological Association (AUA) symptom scores ("symptomatic BPH") and compared their gene expression to the BPH/PCa group. At a median follow-up of 47.5 months, 15 men had developed PCa while 83 did not. We compared gene expressions of 14 men with symptomatic BPH (AUAss ≥ 18) vs. 15 with BPH/PCa. We found two clusters of genes, suggesting the two groups had distinctive molecular features. Differential analysis revealed genes that were upregulated in BPH-only and downregulated in BPH/PCa, and vice versa. Symptomatic BPH men had upregulation of T-cell activation markers (TCR, CD3, ZAP70, IL-2 and IFN-γ and chemokine receptors, CXCL9/10) expression. In contrast, men with BPH/PCa had upregulation of NKX3-1 and HOXB13 transcription factors associated with luminal epithelial progenitors but depleted of immune cells, suggesting a cell-autonomous role in immune evasion. Symptomatic BPH with immune-enriched landscapes may support anti-tumor immunity. RNA sequencing of benign prostate biopsy tissue showing upregulation of NKX3-1 and HOXB13 with the absence of T-cells might help in identifying men at higher risk of future PCa development, which may be useful in determining ongoing PCa screening.
Collapse
Affiliation(s)
- Nimrod S. Barashi
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA (E.H.K.)
| | - Tiandao Li
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Duminduni H. Angappulige
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA (E.H.K.)
| | - Bo Zhang
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Harry O’Gorman
- School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Charles U. Nottingham
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA (E.H.K.)
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Anup S. Shetty
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Joseph E. Ippolito
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Gerald L. Andriole
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA (E.H.K.)
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nupam P. Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA (E.H.K.)
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Eric H. Kim
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA (E.H.K.)
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kiran Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA (E.H.K.)
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
13
|
Sridaran D, Bradshaw E, DeSelm C, Pachynski R, Mahajan K, Mahajan NP. Prostate cancer immunotherapy: Improving clinical outcomes with a multi-pronged approach. Cell Rep Med 2023; 4:101199. [PMID: 37738978 PMCID: PMC10591038 DOI: 10.1016/j.xcrm.2023.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 09/24/2023]
Abstract
Cancer immunotherapy has gained traction in recent years owing to remarkable tumor clearance in some patients. Despite the notable success of immune checkpoint blockade (ICB) in multiple malignancies, engagement of the immune system for targeted prostate cancer (PCa) therapy is still in its infancy. Multiple factors contribute to limited response, including the heterogeneity of PCa, the cold tumor microenvironment, and a low number of neoantigens. Significant effort is being invested in improving immune-based PCa therapies. This review is a summary of the status of immunotherapy in treating PCa, with a discussion of multiple immune modalities, including vaccines, adoptively transferred T cells, and bispecific T cell engagers, some of which are undergoing clinical trials. In addition, this review also focuses on emerging mechanism-based small-molecule tyrosine kinase inhibitors with immune modulatory properties that, either as single agents or in combination with other immunotherapies, have the potential to improve clinical outcomes.
Collapse
Affiliation(s)
- Dhivya Sridaran
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Elliot Bradshaw
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Carl DeSelm
- Bursky Center for Human Immunology and Immunotherapy Programs (CHiiPs), Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Department of Radiation Oncology, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Russell Pachynski
- Bursky Center for Human Immunology and Immunotherapy Programs (CHiiPs), Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Division of Oncology, Department of Medicine, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Kiran Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Nupam P Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St Louis, Cancer Research Building, 660 S. Euclid Avenue, St Louis, MO 63110, USA.
| |
Collapse
|
14
|
Sawant M, Wilson A, Sridaran D, Mahajan K, O'Conor CJ, Hagemann IS, Luo J, Weimholt C, Li T, Roa JC, Pandey A, Wu X, Mahajan NP. Epigenetic reprogramming of cell cycle genes by ACK1 promotes breast cancer resistance to CDK4/6 inhibitor. Oncogene 2023; 42:2263-2277. [PMID: 37330596 PMCID: PMC10348910 DOI: 10.1038/s41388-023-02747-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/16/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
Hormone receptor-positive, HER2-negative advanced breast cancers exhibit high sensitivity to CDK4/6 inhibitors such as palbociclib. However, most patients inevitably develop resistance, thus identification of new actionable therapeutic targets to overcome the recurrent disease is an urgent need. Immunohistochemical studies of tissue microarray revealed increased activation of non-receptor tyrosine kinase, ACK1 (also known as TNK2) in most of the breast cancer subtypes, independent of their hormone receptor status. Chromatin immunoprecipitation studies demonstrated that the nuclear target of activated ACK1, pY88-H4 epigenetic marks, were deposited at cell cycle genes, CCNB1, CCNB2 and CDC20, which in turn initiated their efficient transcription. Pharmacological inhibition of ACK1 using its inhibitor, (R)-9b dampened CCNB1, CCNB2 and CDC20 expression, caused G2/M arrest, culminating in regression of palbociclib-resistant breast tumor growth. Further, (R)-9b suppressed expression of CXCR4 receptor, which resulted in significant impairment of metastasis of breast cancer cells to lung. Overall, our pre-clinical data identifies activated ACK1 as an oncogene that epigenetically controls the cell cycle genes governing the G2/M transition in breast cancer cells. ACK1 inhibitor, (R)-9b could be a novel therapeutic option for the breast cancer patients that have developed resistance to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Mithila Sawant
- Department of Surgery, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
| | - Audrey Wilson
- Department of Surgery, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
| | - Dhivya Sridaran
- Department of Surgery, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
| | - Kiran Mahajan
- Department of Surgery, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
| | - Christopher J O'Conor
- Department of Pathology and Immunology, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
| | - Ian S Hagemann
- Department of Pathology and Immunology, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
| | - Jingqin Luo
- Siteman Cancer Center, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
| | - Cody Weimholt
- Department of Pathology and Immunology, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA
| | - Tiandao Li
- Bioinformatics Research Core, Center of Regenerative Medicine, Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Juan Carlos Roa
- Department of Pathology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xinyan Wu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Nupam P Mahajan
- Department of Surgery, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA.
- Division of Urologic Surgery, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO, 63110, USA.
| |
Collapse
|
15
|
Nguyen T, Sridaran D, Chouhan S, Weimholt C, Wilson A, Luo J, Li T, Koomen J, Fang B, Putluri N, Sreekumar A, Feng FY, Mahajan K, Mahajan NP. Histone H2A Lys130 acetylation epigenetically regulates androgen production in prostate cancer. Nat Commun 2023; 14:3357. [PMID: 37296155 PMCID: PMC10256812 DOI: 10.1038/s41467-023-38887-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The testicular androgen biosynthesis is well understood, however, how cancer cells gauge dwindling androgen to dexterously initiate its de novo synthesis remained elusive. We uncover dual-phosphorylated form of sterol regulatory element-binding protein 1 (SREBF1), pY673/951-SREBF1 that acts as an androgen sensor, and dissociates from androgen receptor (AR) in androgen deficient environment, followed by nuclear translocation. SREBF1 recruits KAT2A/GCN5 to deposit epigenetic marks, histone H2A Lys130-acetylation (H2A-K130ac) in SREBF1, reigniting de novo lipogenesis & steroidogenesis. Androgen prevents SREBF1 nuclear translocation, promoting T cell exhaustion. Nuclear SREBF1 and H2A-K130ac levels are significantly increased and directly correlated with late-stage prostate cancer, reversal of which sensitizes castration-resistant prostate cancer (CRPC) to androgen synthesis inhibitor, Abiraterone. Further, we identify a distinct CRPC lipid signature resembling lipid profile of prostate cancer in African American (AA) men. Overall, pY-SREBF1/H2A-K130ac signaling explains cancer sex bias and reveal synchronous inhibition of KAT2A and Tyr-kinases as an effective therapeutic strategy.
Collapse
Affiliation(s)
- Thanh Nguyen
- Department of Surgery, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
- Department of Urology, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
- Section of Gastroenterology & Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Dhivya Sridaran
- Department of Surgery, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
- Department of Urology, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
| | - Surbhi Chouhan
- Department of Surgery, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
- Department of Urology, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
| | - Cody Weimholt
- Siteman Cancer Center, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
- Department of Pathology & Immunology, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
| | - Audrey Wilson
- Department of Surgery, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
- Department of Urology, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
| | - Tiandao Li
- Bioinformatics Research Core, Center of Regenerative Medicine, Department of Developmental Biology, Washington University at St. Louis, St Louis, MO, 63110, USA
| | - John Koomen
- Molecular Oncology and Molecular Medicine, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Bin Fang
- Molecular Oncology and Molecular Medicine, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Nagireddy Putluri
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Arun Sreekumar
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Felix Y Feng
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94158, USA
| | - Kiran Mahajan
- Department of Surgery, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
- Department of Urology, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
| | - Nupam P Mahajan
- Department of Surgery, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA.
- Department of Urology, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA.
- Siteman Cancer Center, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA.
| |
Collapse
|
16
|
Li Q, Zhang T, Song P, Tong L, Feng F, Guo J, Zhou Y, Xie H, Lu X. Design, Synthesis, and Evaluation of ( R)-8-((Tetrahydrofuran-2-yl)methyl)pyrido[2,3- d]pyrimidin-7-ones as Novel Selective ACK1 Inhibitors to Combat Acquired Resistance to the Third-Generation EGFR Inhibitor. J Med Chem 2023; 66:6905-6921. [PMID: 37134203 DOI: 10.1021/acs.jmedchem.3c00319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Activated Cdc42-associated kinase 1 (ACK1) alterations have been considered to mediate bypass acquired resistance to the third-generation EGFR inhibitors (ASK120067 and osimertinib) in NSCLC. Despite many efforts to develop ACK1 small molecule inhibitors, no selective inhibitors have entered clinical trials. We used structure-based drug design to obtain a series of (R)-8-((tetrahydrofuran-2-yl)methyl)pyrido [2,3-d]pyrimidin-7-ones as novel selective ACK1 inhibitors. One of the representative compounds, 10zi, potently inhibited ACK1 kinase with an IC50 of 2.1 nM, while sparing SRC kinase (IC50 = 218.7 nM). Further, 10zi displayed good kinome selectivity in a profiling of 468 kinases. In the ASK120067-resistant lung cancer cell line (67R), 10zi dose-dependently inhibited the phosphorylation of ACK1 and downstream AKT pathway and showed a strong synergistic anti-tumor effect in combination with ASK120067 in vitro. Additionally, 10zi also exhibited reasonable PK profiles with an oral bioavailability of 19.8% at the dose of 10 mg/kg, which provided a promising lead for further development of new anticancer drugs.
Collapse
Affiliation(s)
- Qian Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 855 Xingye Avenue, Guangzhou 510632, China
| | - Tao Zhang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zuchongzhi Road, Shanghai 201203, China
| | - Peiran Song
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Cuiheng New District, Zhongshan 528400, China
| | - Linjiang Tong
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zuchongzhi Road, Shanghai 201203, China
| | - Fang Feng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zuchongzhi Road, Shanghai 201203, China
| | - Jing Guo
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 855 Xingye Avenue, Guangzhou 510632, China
| | - Yang Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 855 Xingye Avenue, Guangzhou 510632, China
| | - Hua Xie
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zuchongzhi Road, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Cuiheng New District, Zhongshan 528400, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 855 Xingye Avenue, Guangzhou 510632, China
| |
Collapse
|
17
|
Mir RH, Mir PA, Uppal J, Chawla A, Patel M, Bardakci F, Adnan M, Mohi-ud-din R. Evolution of Natural Product Scaffolds as Potential Proteasome Inhibitors in Developing Cancer Therapeutics. Metabolites 2023; 13:metabo13040509. [PMID: 37110167 PMCID: PMC10142660 DOI: 10.3390/metabo13040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Homeostasis between protein synthesis and degradation is a critical biological function involving a lot of precise and intricate regulatory systems. The ubiquitin-proteasome pathway (UPP) is a large, multi-protease complex that degrades most intracellular proteins and accounts for about 80% of cellular protein degradation. The proteasome, a massive multi-catalytic proteinase complex that plays a substantial role in protein processing, has been shown to have a wide range of catalytic activity and is at the center of this eukaryotic protein breakdown mechanism. As cancer cells overexpress proteins that induce cell proliferation, while blocking cell death pathways, UPP inhibition has been used as an anticancer therapy to change the balance between protein production and degradation towards cell death. Natural products have a long history of being used to prevent and treat various illnesses. Modern research has shown that the pharmacological actions of several natural products are involved in the engagement of UPP. Over the past few years, numerous natural compounds have been found that target the UPP pathway. These molecules could lead to the clinical development of novel and potent anticancer medications to combat the onslaught of adverse effects and resistance mechanisms caused by already approved proteasome inhibitors. In this review, we report the importance of UPP in anticancer therapy and the regulatory effects of diverse natural metabolites, their semi-synthetic analogs, and SAR studies on proteasome components, which may aid in discovering a new proteasome regulator for drug development and clinical applications.
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Prince Ahad Mir
- Khalsa College of Pharmacy, G.T. Road, Amritsar 143001, Punjab, India
| | - Jasreen Uppal
- Khalsa College of Pharmacy, G.T. Road, Amritsar 143001, Punjab, India
| | - Apporva Chawla
- Khalsa College of Pharmacy, G.T. Road, Amritsar 143001, Punjab, India
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, Gujarat, India
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia
| | - Roohi Mohi-ud-din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar 190001, Jammu and Kashmir, India
| |
Collapse
|
18
|
Kan Y, Paung Y, Seeliger MA, Miller WT. Domain Architecture of the Nonreceptor Tyrosine Kinase Ack1. Cells 2023; 12:900. [PMID: 36980241 PMCID: PMC10047419 DOI: 10.3390/cells12060900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The nonreceptor tyrosine kinase (NRTK) Ack1 comprises a distinct arrangement of non-catalytic modules. Its SH3 domain has a C-terminal to the kinase domain (SH1), in contrast to the typical SH3-SH2-SH1 layout in NRTKs. The Ack1 is the only protein that shares a region of high homology to the tumor suppressor protein Mig6, a modulator of EGFR. The vertebrate Acks make up the only tyrosine kinase (TK) family known to carry a UBA domain. The GTPase binding and SAM domains are also uncommon in the NRTKs. In addition to being a downstream effector of receptor tyrosine kinases (RTKs) and integrins, Ack1 can act as an epigenetic regulator, modulate the degradation of the epidermal growth factor receptor (EGFR), confer drug resistance, and mediate the progression of hormone-sensitive tumors. In this review, we discuss the domain architecture of Ack1 in relation to other protein kinases that possess such defined regulatory domains.
Collapse
Affiliation(s)
- Yagmur Kan
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - YiTing Paung
- Department of Pharmacology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Markus A. Seeliger
- Department of Pharmacology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
- Department of Veterans Affairs Medical Center, Northport, NY 11768-2200, USA
| |
Collapse
|
19
|
He W, Xu L, Ding J, Song L, Yang W, Klooster I, Pilco-Janeta DF, Serrano C, Fang H, Jiang G, Wang X, Yu J, Ou WB. Co-targeting of ACK1 and KIT triggers additive anti-proliferative and -migration effects in imatinib-resistant gastrointestinal stromal tumors. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166690. [PMID: 36921738 DOI: 10.1016/j.bbadis.2023.166690] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
Most gastrointestinal stromal tumors (GIST) harbor mutated receptor tyrosine kinase (RTK) KIT/PDGFRA, which provides an attractive therapeutic target. However, a majority of GISTs ultimately develop resistance to KIT/PDGFRA inhibitor imatinib, multiple therapeutic targets will be identified as a reasonable strategy in imatinib-resistant GISTs. Biological mechanisms of non-RTK activated CDC42 associated kinase 1 (ACK1) are still unclear, which has been found to be activated in GISTs. In the current report, ACK1 overexpression is demonstrated in GIST cell lines and biopsies. RNA-seq analysis and immunoblotting show that ACK1 expression is dependent on imatinib treatment time in GIST-T1 cell line. The colocalization/complex of KIT and ACK1 in GIST cells are observed, and ACK1 activation is in a partially KIT and CDC42 dependent manner. Treatment with a specific ACK1 inhibitor AIM-100 or ACK1 siRNA, mildly suppresses cell viability, but markedly inhibits cell migration in imatinib sensitive and in imatinib resistant GIST cell lines, which is associated with inactivation of PI3K/AKT/mTOR and RAF/MAPK signaling pathways, and inhibition of epithelial-mesenchymal transition, evidencing upregulation of E-cadherin and downregulation of ZEB1, N-cadherin, vimentin, snail, and/or β-catenin after treatment with AIM-100 or ACK1/CDC42 shRNAs. Combination inhibition of ACK1 and KIT results in additive effects of anti-proliferation and pro-apoptosis as well as cell cycle arrest, and inhibition of invasiveness and migration in vitro and in vivo, compared to either intervention alone through dephosphorylation of KIT downstream intermediates (AKT, S6, and MAPK). Our data suggest that co-targeting of ACK1 and KIT might be a novel therapeutic strategy in imatinib-resistant GIST.
Collapse
Affiliation(s)
- Wangzhen He
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Liangliang Xu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Jiongyan Ding
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Li Song
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Weili Yang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Isabella Klooster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Daniel F Pilco-Janeta
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Sarcoma Translational Research Laboratory, Department of Medical Oncology, Vall d'Hebron Institute of Oncology, Barcelona, Spain.
| | - César Serrano
- Sarcoma Translational Research Laboratory, Department of Medical Oncology, Vall d'Hebron Institute of Oncology, Barcelona, Spain.
| | - Hongming Fang
- Department of Oncology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Guojun Jiang
- Department of Oncology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Xiaoyan Wang
- Department of Oncology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Jiren Yu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wen-Bin Ou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Chouhan S, Sawant M, Weimholt C, Luo J, Sprung RW, Terrado M, Mueller DM, Earp HS, Mahajan NP. TNK2/ACK1-mediated phosphorylation of ATP5F1A (ATP synthase F1 subunit alpha) selectively augments survival of prostate cancer while engendering mitochondrial vulnerability. Autophagy 2023; 19:1000-1025. [PMID: 35895804 PMCID: PMC9980697 DOI: 10.1080/15548627.2022.2103961] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/02/2022] Open
Abstract
The challenge of rapid macromolecular synthesis enforces the energy-hungry cancer cell mitochondria to switch their metabolic phenotypes, accomplished by activation of oncogenic tyrosine kinases. Precisely how kinase activity is directly exploited by cancer cell mitochondria to meet high-energy demand, remains to be deciphered. Here we show that a non-receptor tyrosine kinase, TNK2/ACK1 (tyrosine kinase non receptor 2), phosphorylated ATP5F1A (ATP synthase F1 subunit alpha) at Tyr243 and Tyr246 (Tyr200 and 203 in the mature protein, respectively) that not only increased the stability of complex V, but also increased mitochondrial energy output in cancer cells. Further, phospho-ATP5F1A (p-Y-ATP5F1A) prevented its binding to its physiological inhibitor, ATP5IF1 (ATP synthase inhibitory factor subunit 1), causing sustained mitochondrial activity to promote cancer cell growth. TNK2 inhibitor, (R)-9b reversed this process and induced mitophagy-based autophagy to mitigate prostate tumor growth while sparing normal prostate cells. Further, depletion of p-Y-ATP5F1A was needed for (R)-9b-mediated mitophagic response and tumor growth. Moreover, Tnk2 transgenic mice displayed increased p-Y-ATP5F1A and loss of mitophagy and exhibited formation of prostatic intraepithelial neoplasia (PINs). Consistent with these data, a marked increase in p-Y-ATP5F1A was seen as prostate cancer progressed to the malignant stage. Overall, this study uncovered the molecular intricacy of tyrosine kinase-mediated mitochondrial energy regulation as a distinct cancer cell mitochondrial vulnerability and provided evidence that TNK2 inhibitors can act as "mitocans" to induce cancer-specific mitophagy.Abbreviations: ATP5F1A: ATP synthase F1 subunit alpha; ATP5IF1: ATP synthase inhibitory factor subunit 1; CRPC: castration-resistant prostate cancer; DNM1L: dynamin 1 like; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; Mdivi-1: mitochondrial division inhibitor 1; Mut-ATP5F1A: Y243,246A mutant of ATP5F1A; OXPHOS: oxidative phosphorylation; PC: prostate cancer; PINK1: PTEN induced kinase 1; p-Y-ATP5F1A: phosphorylated tyrosine 243 and 246 on ATP5F1A; TNK2/ACK1: tyrosine kinase non receptor 2; Ub: ubiquitin; WT: wild type.
Collapse
Affiliation(s)
- Surbhi Chouhan
- Department of Surgery, Cancer Research Building, St. Louis, MO, USA
- Division of Urologic Surgery Washington University, St. Louis, MO, USA
| | - Mithila Sawant
- Department of Surgery, Cancer Research Building, St. Louis, MO, USA
- Division of Urologic Surgery Washington University, St. Louis, MO, USA
| | - Cody Weimholt
- Department of Pathology & Immunology Washington University, St. Louis, MO, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Washington University, St. Louis, MO, USA
| | - Robert W. Sprung
- Department of Surgery, Cancer Research Building, St. Louis, MO, USA
| | - Mailyn Terrado
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University, North Chicago, IL, USA
| | - David M. Mueller
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University, North Chicago, IL, USA
| | - H. Shelton Earp
- Lineberger Comprehensive Cancer Center, Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Nupam P. Mahajan
- Department of Surgery, Cancer Research Building, St. Louis, MO, USA
- Division of Urologic Surgery Washington University, St. Louis, MO, USA
- Siteman Cancer Center Washington University, St. Louis, MO, USA
| |
Collapse
|
21
|
Mustafa AHM, Krämer OH. Pharmacological Modulation of the Crosstalk between Aberrant Janus Kinase Signaling and Epigenetic Modifiers of the Histone Deacetylase Family to Treat Cancer. Pharmacol Rev 2023; 75:35-61. [PMID: 36752816 DOI: 10.1124/pharmrev.122.000612] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 12/13/2022] Open
Abstract
Hyperactivated Janus kinase (JAK) signaling is an appreciated drug target in human cancers. Numerous mutant JAK molecules as well as inherent and acquired drug resistance mechanisms limit the efficacy of JAK inhibitors (JAKi). There is accumulating evidence that epigenetic mechanisms control JAK-dependent signaling cascades. Like JAKs, epigenetic modifiers of the histone deacetylase (HDAC) family regulate the growth and development of cells and are often dysregulated in cancer cells. The notion that inhibitors of histone deacetylases (HDACi) abrogate oncogenic JAK-dependent signaling cascades illustrates an intricate crosstalk between JAKs and HDACs. Here, we summarize how structurally divergent, broad-acting as well as isoenzyme-specific HDACi, hybrid fusion pharmacophores containing JAKi and HDACi, and proteolysis targeting chimeras for JAKs inactivate the four JAK proteins JAK1, JAK2, JAK3, and tyrosine kinase-2. These agents suppress aberrant JAK activity through specific transcription-dependent processes and mechanisms that alter the phosphorylation and stability of JAKs. Pharmacological inhibition of HDACs abrogates allosteric activation of JAKs, overcomes limitations of ATP-competitive type 1 and type 2 JAKi, and interacts favorably with JAKi. Since such findings were collected in cultured cells, experimental animals, and cancer patients, we condense preclinical and translational relevance. We also discuss how future research on acetylation-dependent mechanisms that regulate JAKs might allow the rational design of improved treatments for cancer patients. SIGNIFICANCE STATEMENT: Reversible lysine-ɛ-N acetylation and deacetylation cycles control phosphorylation-dependent Janus kinase-signal transducer and activator of transcription signaling. The intricate crosstalk between these fundamental molecular mechanisms provides opportunities for pharmacological intervention strategies with modern small molecule inhibitors. This could help patients suffering from cancer.
Collapse
Affiliation(s)
- Al-Hassan M Mustafa
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| |
Collapse
|
22
|
Keyvani V, Mollazadeh S, Kheradmand N, Mahmoudian RA, Avan A, Anvari K. Current use of Molecular Mechanisms and Signaling Pathways in Targeted Therapy of Prostate Cancer. Curr Pharm Des 2023; 29:2684-2691. [PMID: 37929740 DOI: 10.2174/0113816128265464231021172202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 11/07/2023]
Abstract
Prostate cancer (PC) is identified as a heterogeneous disease. About 20 to 30% of PC patients experience cancer recurrence, characterized by an increase in the antigen termed serum prostate-specific antigen (PSA). Clinical recurrence of PC commonly occurs after five years. Metastatic castration-resistant prostate cancer (mCRPC) has an intricate genomic background. Therapies that target genomic changes in DNA repair signaling pathways have been progressively approved in the clinic. Innovative therapies like targeting signaling pathways, bone niche, immune checkpoint, and epigenetic marks have been gaining promising results for better management of PC cases with bone metastasis. This review article summarizes the recent consideration of the molecular mechanisms and signaling pathways involved in local and metastatic prostate cancer, highlighting the clinical insinuations of the novel understanding.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Nahid Kheradmand
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihaneh Alsadat Mahmoudian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane 4059, Australia
| | - Kazem Anvari
- Department of Radiotherapy Oncology, Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Peng HH, Yang HC, Rupa D, Yen CH, Chiu YW, Yang WJ, Luo FJ, Yuan TC. ACK1 upregulated the proliferation of head and neck squamous cell carcinoma cells by promoting p27 phosphorylation and degradation. J Cell Commun Signal 2022; 16:567-578. [PMID: 35247157 PMCID: PMC9733751 DOI: 10.1007/s12079-022-00670-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 02/02/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a malignancy with a worldwide distribution. Although intensive studies have been made, the underlying oncogenic mechanism of HNSCC requires further investigation. In this study, we examined the oncogenic role of activated Cdc42-associated kinase 1 (ACK1), an oncogenic tyrosine kinase, in regulating the proliferation of HNSCC cells and its underlying molecular mechanism. Results from immunohistochemical studies revealed that ACK1 was highly expressed in HNSCC tumors, with 77% (77/100) of tumors showing a high ACK1 immunoreactivity compared to 40% (8/20) of normal mucosa. Knockdown of ACK1 expression in HNSCC cells resulted in elevated p27 expression, reduced cell proliferation, and G1-phase cell cycle arrest. Rescue of ACK1 expression in the ACK1-knockdown cells suppressed p27 expression and restored cell proliferation. Compared to ACK1-knockdown cells, ACK1-rescued cells exhibited a restored p27 expression after MG132 treatment and showed an elevated level of ubiquitinated p27. Our data further showed that knockdown of ubiquitin ligase Skp2 resulted in elevated p27 expression. Importantly, the expression of p27(WT), p27(Y74F), or p27(Y89F) in ACK1-overexpressed 293T cells or ACK1-rescued SAS cells showed higher levels of tyrosyl-phosphorylated p27 and interaction with ACK1 or Skp2. However, the expression of p27(Y88F) mutant exhibited a relatively low phosphorylation level and barely bound with ACK1 or Skp2, showing a basal interaction as the control cells. These results suggested that ACK1 is highly expressed in HNSCC tumors and functions to promote cell proliferation by the phosphorylation and degradation of p27 in the Skp2-mediated mechanism.
Collapse
Affiliation(s)
- Hsuan-Hsiang Peng
- grid.260567.00000 0000 8964 3950Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien, 974301 Taiwan, Republic of China
| | - Hao-Chin Yang
- grid.260567.00000 0000 8964 3950Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien, 974301 Taiwan, Republic of China
| | - Darius Rupa
- grid.260567.00000 0000 8964 3950Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien, 974301 Taiwan, Republic of China
| | - Chun-Han Yen
- grid.260567.00000 0000 8964 3950Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien, 974301 Taiwan, Republic of China
| | - Ya-Wen Chiu
- grid.260567.00000 0000 8964 3950Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien, 974301 Taiwan, Republic of China
| | - Wei-Jia Yang
- grid.415323.20000 0004 0639 3300Department of Pathology, Mennonite Christian Hospital, Hualien, 970 Taiwan, Republic of China
| | - Fuh-Jinn Luo
- grid.415323.20000 0004 0639 3300Department of Pathology, Mennonite Christian Hospital, Hualien, 970 Taiwan, Republic of China
| | - Ta-Chun Yuan
- grid.260567.00000 0000 8964 3950Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien, 974301 Taiwan, Republic of China
| |
Collapse
|
24
|
Sridaran D, Chouhan S, Mahajan K, Renganathan A, Weimholt C, Bhagwat S, Reimers M, Kim EH, Thakur MK, Saeed MA, Pachynski RK, Seeliger MA, Miller WT, Feng FY, Mahajan NP. Inhibiting ACK1-mediated phosphorylation of C-terminal Src kinase counteracts prostate cancer immune checkpoint blockade resistance. Nat Commun 2022; 13:6929. [PMID: 36376335 PMCID: PMC9663509 DOI: 10.1038/s41467-022-34724-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Solid tumours are highly refractory to immune checkpoint blockade (ICB) therapies due to the functional impairment of effector T cells and their inefficient trafficking to tumours. T-cell activation is negatively regulated by C-terminal Src kinase (CSK); however, the exact mechanism remains unknown. Here we show that the conserved oncogenic tyrosine kinase Activated CDC42 kinase 1 (ACK1) is able to phosphorylate CSK at Tyrosine 18 (pY18), which enhances CSK function, constraining T-cell activation. Mice deficient in the Tnk2 gene encoding Ack1, are characterized by diminished CSK Y18-phosphorylation and spontaneous activation of CD8+ and CD4+ T cells, resulting in inhibited growth of transplanted ICB-resistant tumours. Furthermore, ICB treatment of castration-resistant prostate cancer (CRPC) patients results in re-activation of ACK1/pY18-CSK signalling, confirming the involvement of this pathway in ICB insensitivity. An ACK1 small-molecule inhibitor, (R)-9b, recapitulates inhibition of ICB-resistant tumours, which provides evidence for ACK1 enzymatic activity playing a pivotal role in generating ICB resistance. Overall, our study identifies an important mechanism of ICB resistance and holds potential for expanding the scope of ICB therapy to tumours that are currently unresponsive.
Collapse
Affiliation(s)
- Dhivya Sridaran
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Surbhi Chouhan
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Kiran Mahajan
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Arun Renganathan
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Cody Weimholt
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Oncology, Department of Medicine, Washington University at St Louis, St Louis, MO, 63110, USA
- Anatomic and Clinical Pathology, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Shambhavi Bhagwat
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Melissa Reimers
- Siteman Cancer Center, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Oncology, Department of Medicine, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Eric H Kim
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Manish K Thakur
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Muhammad A Saeed
- Siteman Cancer Center, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Russell K Pachynski
- Siteman Cancer Center, Washington University at St Louis, St Louis, MO, 63110, USA
- Division of Oncology, Department of Medicine, Washington University at St Louis, St Louis, MO, 63110, USA
| | - Markus A Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - W Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
- Department of Veterans Affairs Medical Center, Northport, NY, 11768, USA
| | - Felix Y Feng
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, CA, USA
| | - Nupam P Mahajan
- Department of Surgery, Washington University at St Louis, St Louis, MO, 63110, USA.
- Division of Urologic Surgery, Washington University at St Louis, St Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University at St Louis, St Louis, MO, 63110, USA.
| |
Collapse
|
25
|
Tathe P, Chowdary KVSR, Murmu KC, Prasad P, Maddika S. SHP-1 dephosphorylates histone H2B to facilitate its ubiquitination during transcription. EMBO J 2022; 41:e109720. [PMID: 35938192 PMCID: PMC9531295 DOI: 10.15252/embj.2021109720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 06/23/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022] Open
Abstract
Dynamic regulation of phosphorylation and dephosphorylation of histones is essential for eukaryotic transcription, but the enzymes engaged in histone dephosphorylation are not fully explored. Here, we show that the tyrosine phosphatase SHP-1 dephosphorylates histone H2B and plays a critical role during transition from the initiation to the elongation stage of transcription. Nuclear-localized SHP-1 is associated with the Paf1 complex at chromatin and dephosphorylates H2B at tyrosine 121. Moreover, knockout of SHP-1, or expression of a mutant mimicking constitutive phosphorylation of H2B Y121, leads to a reduction in genome-wide H2B ubiquitination, which subsequently causes defects in RNA polymerase II-dependent transcription. Mechanistically, we demonstrate that Y121 phosphorylation precludes H2B's interaction with the E2 enzyme, indicating that SHP-1-mediated dephosphorylation of this residue may be a prerequisite for efficient H2B ubiquitination. Functionally, we find that SHP-1-mediated H2B dephosphorylation contributes to maintaining basal autophagic flux in cells through the efficient transcription of autophagy and lysosomal genes. Collectively, our study reveals an important modification of histone H2B regulated by SHP-1 that has a role during eukaryotic transcription.
Collapse
Affiliation(s)
- Prajakta Tathe
- Laboratory of Cell Death and Cell SurvivalCentre for DNA Fingerprinting and Diagnostics (CDFD)HyderabadIndia
- Graduate StudiesManipal Academy of Higher EducationManipalIndia
| | - K V S Rammohan Chowdary
- Laboratory of Cell Death and Cell SurvivalCentre for DNA Fingerprinting and Diagnostics (CDFD)HyderabadIndia
| | | | - Punit Prasad
- Epigenetic and Chromatin Biology UnitInstitute of Life SciencesBhubaneswarIndia
| | - Subbareddy Maddika
- Laboratory of Cell Death and Cell SurvivalCentre for DNA Fingerprinting and Diagnostics (CDFD)HyderabadIndia
| |
Collapse
|
26
|
Nguyen DT, Yang W, Renganathan A, Weimholt C, Angappulige DH, Nguyen T, Sprung RW, Andriole GL, Kim EH, Mahajan NP, Mahajan K. Acetylated HOXB13 Regulated Super Enhancer Genes Define Therapeutic Vulnerabilities of Castration-Resistant Prostate Cancer. Clin Cancer Res 2022; 28:4131-4145. [PMID: 35849143 PMCID: PMC9481728 DOI: 10.1158/1078-0432.ccr-21-3603] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/01/2022] [Accepted: 07/13/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Androgen receptor (AR) antagonism is exacerbated by HOXB13 in castration-resistant prostate cancers (CRPC). However, it is unclear when and how HOXB13 primes CRPCs for AR antagonism. By mass-spectrometry analysis of CRPC extract, we uncovered a novel lysine 13 (K13) acetylation in HOXB13 mediated by CBP/p300. To determine whether acetylated K13-HOXB13 is a clinical biomarker of CRPC development, we characterized its role in prostate cancer biology. EXPERIMENTAL DESIGN We identified tumor-specific acK13-HOXB13 signal enriched super enhancer (SE)-regulated targets. We analyzed the effect of loss of HOXB13K13-acetylation on chromatin binding, SE proximal target gene expression, self-renewal, enzalutamide sensitivity, and CRPC tumor growth by employing isogenic parental and HOXB13K13A mutants. Finally, using primary human prostate organoids, we evaluated whether inhibiting an acK13-HOXB13 target, ACK1, with a selective inhibitor (R)-9b is superior to AR antagonists in inhibiting CRPC growth. RESULTS acK13-HOXB13 promotes increased expression of lineage (AR, HOXB13), prostate cancer diagnostic (FOLH1), CRPC-promoting (ACK1), and angiogenesis (VEGFA, Angiopoietins) genes early in prostate cancer development by establishing tumor-specific SEs. acK13-HOXB13 recruitment to key SE-regulated targets is insensitive to enzalutamide. ACK1 expression is significantly reduced in the loss of function HOXB13K13A mutant CRPCs. Consequently, HOXB13K13A mutants display reduced self-renewal, increased sensitivity to enzalutamide, and impaired xenograft tumor growth. Primary human prostate tumor organoids expressing HOXB13 are significantly resistant to AR antagonists but sensitive to (R)-9b. CONCLUSIONS In summary, acetylated HOXB13 is a biomarker of clinically significant prostate cancer. Importantly, PSMA-targeting agents and (R)-9b could be new therapeutic modalities to target HOXB13-ACK1 axis regulated prostate cancers.
Collapse
Affiliation(s)
- Duy T Nguyen
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, Missouri.,Department of Surgery, Washington University in St. Louis, St. Louis, Missouri.,Mayo Clinic Graduate School of Biomedical Science, College of Medicine & Science, Rochester, Minnesota
| | - Wei Yang
- Genome Technology Access Center, Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - Arun Renganathan
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, Missouri.,Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Cody Weimholt
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri
| | - Duminduni H Angappulige
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, Missouri.,Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Thanh Nguyen
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, Missouri.,Department of Surgery, Washington University in St. Louis, St. Louis, Missouri.,Cancer and Cell Biology Graduate Program, Baylor College of Medicine, Houston, Texas
| | - Robert W Sprung
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri
| | - Gerald L Andriole
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, Missouri.,Department of Surgery, Washington University in St. Louis, St. Louis, Missouri.,National Capital Region, Johns Hopkins Medicine, Sibley Memorial Hospital, Washington, District of Columbia.,Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| | - Eric H Kim
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, Missouri.,Department of Surgery, Washington University in St. Louis, St. Louis, Missouri.,Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| | - Nupam P Mahajan
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, Missouri.,Department of Surgery, Washington University in St. Louis, St. Louis, Missouri.,Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| | - Kiran Mahajan
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, Missouri.,Department of Surgery, Washington University in St. Louis, St. Louis, Missouri.,Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
27
|
Dong S, Yousefi H, Savage IV, Okpechi SC, Wright MK, Matossian MD, Collins-Burow BM, Burow ME, Alahari SK. Ceritinib is a novel triple negative breast cancer therapeutic agent. Mol Cancer 2022; 21:138. [PMID: 35768871 PMCID: PMC9241294 DOI: 10.1186/s12943-022-01601-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Triple-negative breast cancers (TNBCs) are clinically aggressive subtypes of breast cancer. TNBC is difficult to treat with targeted agents due to the lack of commonly targeted therapies within this subtype. Androgen receptor (AR) has been detected in 12-55% of TNBCs. AR stimulates breast tumor growth in the absence of estrogen receptor (ER), and it has become an emerging molecular target in TNBC treatment. METHODS Ceritinib is a small molecule inhibitor of tyrosine kinase and it is used in the therapy of non-small lung cancer patients. Enzalutamide is a small molecule compound targeting the androgen receptor and it is used to treat prostate cancer. Combination therapy of these drugs were investigated using AR positive breast cancer mouse xenograft models. Also, combination treatment of ceritinib and paclitaxel investigated using AR- and AR low mouse xenograft and patient derived xenograft models. RESULTS We screened 133 FDA approved drugs that have a therapeutic effect of AR+ TNBC cells. From the screen, we identified two drugs, ceritinib and crizotinib. Since ceritinib has a well- defined role in androgen independent AR signaling pathways, we further investigated the effect of ceritinib. Ceritinib treatment inhibited RTK/ACK/AR pathway and other downstream pathways in AR+ TNBC cells. The combination of ceritinib and enzalutamide showed a robust inhibitory effect on cell growth of AR+ TNBC cells in vitro and in vivo. Interestingly Ceritinib inhibits FAK-YB-1 signaling pathway that leads to paclitaxel resistance in all types of TNBC cells. The combination of paclitaxel and ceritinib showed drastic inhibition of tumor growth compared to a single drug alone. CONCLUSIONS To improve the response of AR antagonist in AR positive TNBC, we designed a novel combinational strategy comprised of enzalutamide and ceritinib to treat AR+ TNBC tumors through the dual blockade of androgen-dependent and androgen-independent AR signaling pathways. Furthermore, we introduced a novel therapeutic combination of ceritinib and paclitaxel for AR negative or AR-low TNBCs and this combination inhibited tumor growth to a great extent. All agents used in our study are FDA-approved, and thus the proposed combination therapy will likely be useful in the clinic.
Collapse
Affiliation(s)
- Shengli Dong
- TYK Medicines, Inc, Zhejiang, People's Republic of China, 313100
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA, 70112, USA
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA, 70112, USA
| | | | - Samuel C Okpechi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA, 70112, USA
| | - Maryl K Wright
- Tulane University School of Medicine, New Orleans, Louisiana, 70118, USA
| | | | | | - Matthew E Burow
- Tulane University School of Medicine, New Orleans, Louisiana, 70118, USA
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA, 70112, USA.
- Stanley S. Scott Cancer Center, LSUHSC School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
28
|
Sawant M, Mahajan K, Renganathan A, Weimholt C, Luo J, Kukshal V, Jez JM, Jeon MS, Zhang B, Li T, Fang B, Luo Y, Lawrence NJ, Lawrence HR, Feng FY, Mahajan NP. Chronologically modified androgen receptor in recurrent castration-resistant prostate cancer and its therapeutic targeting. Sci Transl Med 2022; 14:eabg4132. [PMID: 35704598 PMCID: PMC10259236 DOI: 10.1126/scitranslmed.abg4132] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Resistance to second-generation androgen receptor (AR) antagonists such as enzalutamide is an inevitable consequence in patients with castration-resistant prostate cancer (CRPC). There are no effective therapeutic options for this recurrent disease. The expression of truncated AR variant 7 (AR-V7) has been suggested to be one mechanism of resistance; however, its low frequency in patients with CRPC does not explain the almost universal acquisition of resistance. We noted that the ability of AR to translocate to nucleus in an enzalutamide-rich environment opens up the possibility of a posttranslational modification in AR that is refractory to enzalutamide binding. Chemical proteomics in enzalutamide-resistant CRPC cells revealed acetylation at Lys609 in the zinc finger DNA binding domain of AR (acK609-AR) that not only allowed AR translocation but also galvanized a distinct global transcription program, conferring enzalutamide insensitivity. Mechanistically, acK609-AR was recruited to the AR and ACK1/TNK2 enhancers, up-regulating their transcription. ACK1 kinase-mediated AR Y267 phosphorylation was a prerequisite for AR K609 acetylation, which spawned positive feedback loops at both the transcriptional and posttranslational level that regenerated and sustained high AR and ACK1 expression. Consistent with these findings, oral and subcutaneous treatment with ACK1 small-molecule inhibitor, (R)-9b, not only curbed AR Y267 phosphorylation and subsequent K609 acetylation but also compromised enzalutamide-resistant CRPC xenograft tumor growth in mice. Overall, these data uncover chronological modification events in AR that allows prostate cancer to evolve through progressive stages to reach the resilient recurrent CRPC stage, opening up a therapeutic vulnerability.
Collapse
Affiliation(s)
- Mithila Sawant
- Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kiran Mahajan
- Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO 63110, USA
| | - Arun Renganathan
- Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Cody Weimholt
- Department of Anatomic and Clinical Pathology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jingqin Luo
- Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO 63110, USA
| | - Vandna Kukshal
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63110, USA
| | - Joseph M. Jez
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63110, USA
| | - Myung Sik Jeon
- Siteman Cancer Center, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO 63110, USA
| | - Bo Zhang
- Bioinformatics Research Core, Center of Regenerative Medicine, Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Tiandao Li
- Bioinformatics Research Core, Center of Regenerative Medicine, Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Bin Fang
- Drug Discovery Department, Moffitt Cancer Center, Department of Oncologic Sciences, University of South Florida, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Yunting Luo
- Drug Discovery Department, Moffitt Cancer Center, Department of Oncologic Sciences, University of South Florida, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Nicholas J. Lawrence
- Drug Discovery Department, Moffitt Cancer Center, Department of Oncologic Sciences, University of South Florida, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Harshani R. Lawrence
- Drug Discovery Department, Moffitt Cancer Center, Department of Oncologic Sciences, University of South Florida, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Felix Y. Feng
- Helen Diller Family Cancer Research Building, 1450 Third Street, Room 383, University of California, San Francisco, CA 94158, USA
| | - Nupam P. Mahajan
- Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis, Cancer Research Building, 660 Euclid Ave., St. Louis, MO 63110, USA
| |
Collapse
|
29
|
Clayton NS, Fox M, Vicenté-Garcia JJ, Schroeder CM, Littlewood TD, Wilde JI, Krishnan K, Brown MJB, Crafter C, Mott HR, Owen D. Assembly of nuclear dimers of PI3K regulatory subunits is regulated by the Cdc42-activated tyrosine kinase ACK. J Biol Chem 2022; 298:101916. [PMID: 35429500 PMCID: PMC9127371 DOI: 10.1016/j.jbc.2022.101916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022] Open
Abstract
Activated Cdc42-associated kinase (ACK) is an oncogenic nonreceptor tyrosine kinase associated with poor prognosis in several human cancers. ACK promotes proliferation, in part by contributing to the activation of Akt, the major effector of class 1A phosphoinositide 3-kinases (PI3Ks), which transduce signals via membrane phosphoinositol lipids. We now show that ACK also interacts with other key components of class 1A PI3K signaling, the PI3K regulatory subunits. We demonstrate ACK binds to all five PI3K regulatory subunit isoforms and directly phosphorylates p85α, p85β, p50α, and p55α on Tyr607 (or analogous residues). We found that phosphorylation of p85β promotes cell proliferation in HEK293T cells. We demonstrate that ACK interacts with p85α exclusively in nuclear-enriched cell fractions, where p85α phosphorylated at Tyr607 (pTyr607) also resides, and identify an interaction between pTyr607 and the N-terminal SH2 domain that supports dimerization of the regulatory subunits. We infer from this that ACK targets p110-independent p85 and further postulate that these regulatory subunit dimers undertake novel nuclear functions underpinning ACK activity. We conclude that these dimers represent a previously undescribed mode of regulation for the class1A PI3K regulatory subunits and potentially reveal additional avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Natasha S Clayton
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Millie Fox
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Trevor D Littlewood
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jonathon I Wilde
- GlaxoSmithKline Medicines Research Centre, Screening and Compound Profiling, Stevenage, Herts, United Kingdom
| | - Kadalmani Krishnan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Murray J B Brown
- GlaxoSmithKline Medicines Research Centre, Screening and Compound Profiling, Stevenage, Herts, United Kingdom
| | - Claire Crafter
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Helen R Mott
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Darerca Owen
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
30
|
Jing L, Zhang X, Liu D, Yang Y, Xiong H, Dong G. ACK1 Contributes to the Pathogenesis of Inflammation and Autoimmunity by Promoting the Activation of TLR Signaling Pathways. Front Immunol 2022; 13:864995. [PMID: 35669783 PMCID: PMC9164107 DOI: 10.3389/fimmu.2022.864995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptors (TLRs) are the first line of defense in the immune system, whose activation plays a key role in the pathogenesis of inflammation and autoimmunity. TLRs can activate a variety of immune cells such as macrophages and dendritic cells, which produce proinflammatory cytokines, chemokines, and co-stimulatory molecules that lead to the development of inflammation and autoimmune diseases. As a nonreceptor tyrosine kinase, ACK1 is involved in multiple signaling pathways and physiological processes. However, the roles of ACK1 in the activation of TLR pathways and in the pathogenesis of inflammation and autoimmune diseases have not yet been reported. We found that the expression of ACK1 could be upregulated by TLR pathways in vivo and in vitro. Intriguingly, overexpression of ACK1 significantly promoted the activation of TLR4, TLR7, and TLR9 pathways, while knockdown of ACK1 or the use of the ACK1 inhibitor AIM-100 significantly inhibited the activation of TLR4, TLR7, and TLR9 pathways. In vivo studies showed that the inhibition of ACK1 activity by AIM-100 could significantly protect mice from the TLR4 agonist lipopolysaccharide (LPS)-mediated endotoxin shock and alleviate the condition of imiquimod-mediated lupus-prone mice and MRL/lpr mice. In summary, ACK1 participates in TLR-mediated inflammation and autoimmunity and has great potential in controlling inflammation and alleviating autoimmune diseases.
Collapse
Affiliation(s)
- Lina Jing
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Xin Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- School of Medical Laboratory, Weifang Medical University, Weifang, China
| | - Dong Liu
- Department of Clinical Laboratory, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
- *Correspondence: Guanjun Dong, ; Huabao Xiong,
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
- *Correspondence: Guanjun Dong, ; Huabao Xiong,
| |
Collapse
|
31
|
Rangwala AM, Mingione VR, Georghiou G, Seeliger MA. Kinases on Double Duty: A Review of UniProtKB Annotated Bifunctionality within the Kinome. Biomolecules 2022; 12:biom12050685. [PMID: 35625613 PMCID: PMC9138534 DOI: 10.3390/biom12050685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
Phosphorylation facilitates the regulation of all fundamental biological processes, which has triggered extensive research of protein kinases and their roles in human health and disease. In addition to their phosphotransferase activity, certain kinases have evolved to adopt additional catalytic functions, while others have completely lost all catalytic activity. We searched the Universal Protein Resource Knowledgebase (UniProtKB) database for bifunctional protein kinases and focused on kinases that are critical for bacterial and human cellular homeostasis. These kinases engage in diverse functional roles, ranging from environmental sensing and metabolic regulation to immune-host defense and cell cycle control. Herein, we describe their dual catalytic activities and how they contribute to disease pathogenesis.
Collapse
|
32
|
Mechanisms of Resistance to Second-Generation Antiandrogen Therapy for Prostate Cancer: Actual Knowledge and Perspectives. Med Sci (Basel) 2022; 10:medsci10020025. [PMID: 35645241 PMCID: PMC9149952 DOI: 10.3390/medsci10020025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/06/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer therapy for locally advanced and metastatic diseases includes androgen deprivation therapy (ADT). Second-generation antiandrogens have a role in castration-resistant prostate cancer. Nevertheless, some patients do not respond to this therapy, and eventually all the patients became resistant. This is due to modifications to intracellular signaling pathways, genomic alteration, cytokines production, metabolic switches, constitutional receptor activation, overexpression of some proteins, and regulation of gene expression. The aim of this review is to define the most important mechanisms that drive this resistance and the newest discoveries in this field, specifically for enzalutamide and abiraterone, with potential implications for future therapeutic targets. Furthermore, apalutamide and darolutamide share some resistance mechanisms with abiraterone and enzalutamide and could be useful in some resistance settings.
Collapse
|
33
|
Lu X, Hackman GL, Saha A, Rathore AS, Collins M, Friedman C, Yi SS, Matsuda F, DiGiovanni J, Lodi A, Tiziani S. Metabolomics-based phenotypic screens for evaluation of drug synergy via direct-infusion mass spectrometry. iScience 2022; 25:104221. [PMID: 35494234 PMCID: PMC9046262 DOI: 10.1016/j.isci.2022.104221] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
Drugs used in combination can synergize to increase efficacy, decrease toxicity, and prevent drug resistance. While conventional high-throughput screens that rely on univariate data are incredibly valuable to identify promising drug candidates, phenotypic screening methodologies could be beneficial to provide deep insight into the molecular response of drug combination with a likelihood of improved clinical outcomes. We developed a high-content metabolomics drug screening platform using stable isotope-tracer direct-infusion mass spectrometry that informs an algorithm to determine synergy from multivariate phenomics data. Using a cancer drug library, we validated the drug screening, integrating isotope-enriched metabolomics data and computational data mining, on a panel of prostate cell lines and verified the synergy between CB-839 and docetaxel both in vitro (three-dimensional model) and in vivo. The proposed unbiased metabolomics screening platform can be used to rapidly generate phenotype-informed datasets and quantify synergy for combinatorial drug discovery.
Collapse
Affiliation(s)
- Xiyuan Lu
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA,Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA
| | - G. Lavender Hackman
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA,Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA
| | - Achinto Saha
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin,TX 78712, USA
| | - Atul Singh Rathore
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA,Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA
| | - Meghan Collins
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA,Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA
| | - Chelsea Friedman
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin,TX 78712, USA
| | - S. Stephen Yi
- Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX 78723, USA,Institute for Cellular and Molecular Biology (ICMB), College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA,Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712, USA,Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX 78712, USA
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - John DiGiovanni
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA,Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin,TX 78712, USA,Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX 78723, USA
| | - Alessia Lodi
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA,Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA,Corresponding author
| | - Stefano Tiziani
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA,Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, USA,Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX 78723, USA,Institute for Cellular and Molecular Biology (ICMB), College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA,Corresponding author
| |
Collapse
|
34
|
Miller KJ, Asim M. Unravelling the Role of Kinases That Underpin Androgen Signalling in Prostate Cancer. Cells 2022; 11:cells11060952. [PMID: 35326402 PMCID: PMC8946764 DOI: 10.3390/cells11060952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
The androgen receptor (AR) signalling pathway is the key driver in most prostate cancers (PCa), and is underpinned by several kinases both upstream and downstream of the AR. Many popular therapies for PCa that target the AR directly, however, have been circumvented by AR mutation, such as androgen receptor variants. Some upstream kinases promote AR signalling, including those which phosphorylate the AR and others that are AR-regulated, and androgen regulated kinase that can also form feed-forward activation circuits to promotes AR function. All of these kinases represent potentially druggable targets for PCa. There has generally been a divide in reviews reporting on pathways upstream of the AR and those reporting on AR-regulated genes despite the overlap that constitutes the promotion of AR signalling and PCa progression. In this review, we aim to elucidate which kinases—both upstream and AR-regulated—may be therapeutic targets and require future investigation and ongoing trials in developing kinase inhibitors for PCa.
Collapse
|
35
|
Bagheri S, Rahban M, Bostanian F, Esmaeilzadeh F, Bagherabadi A, Zolghadri S, Stanek A. Targeting Protein Kinases and Epigenetic Control as Combinatorial Therapy Options for Advanced Prostate Cancer Treatment. Pharmaceutics 2022; 14:515. [PMID: 35335890 PMCID: PMC8949110 DOI: 10.3390/pharmaceutics14030515] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 02/02/2023] Open
Abstract
Prostate cancer (PC), the fifth leading cause of cancer-related mortality worldwide, is known as metastatic bone cancer when it spreads to the bone. Although there is still no effective treatment for advanced/metastatic PC, awareness of the molecular events that contribute to PC progression has opened up opportunities and raised hopes for the development of new treatment strategies. Androgen deprivation and androgen-receptor-targeting therapies are two gold standard treatments for metastatic PC. However, acquired resistance to these treatments is a crucial challenge. Due to the role of protein kinases (PKs) in the growth, proliferation, and metastases of prostatic tumors, combinatorial therapy by PK inhibitors may help pave the way for metastatic PC treatment. Additionally, PC is known to have epigenetic involvement. Thus, understanding epigenetic pathways can help adopt another combinatorial treatment strategy. In this study, we reviewed the PKs that promote PC to advanced stages. We also summarized some PK inhibitors that may be used to treat advanced PC and we discussed the importance of epigenetic control in this cancer. We hope the information presented in this article will contribute to finding an effective treatment for the management of advanced PC.
Collapse
Affiliation(s)
- Soghra Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran;
| | - Mahdie Rahban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran; (M.R.); (F.B.)
| | - Fatemeh Bostanian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran; (M.R.); (F.B.)
| | - Fatemeh Esmaeilzadeh
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran;
| | - Arash Bagherabadi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran;
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran;
| | - Agata Stanek
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St, 41-902 Bytom, Poland
| |
Collapse
|
36
|
Kong D, Li G, Yang Z, Cheng S, Zhang W, Feng L, Zhang K. Identification of an ACK1/TNK2-based prognostic signature for colon cancer to predict survival and inflammatory landscapes. BMC Cancer 2022; 22:84. [PMID: 35057760 PMCID: PMC8772074 DOI: 10.1186/s12885-021-09165-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
Activated Cdc42-associated kinase 1 (ACK1), a kind of tyrosine kinase, is considered to be an oncogene in many cancers, and it is likely to become a potential target for cancer treatment. We found that the expression of the ACK1 gene in colon cancer was higher than that in normal tissues adjacent to cancer, and high expression of the ACK1 gene was associated with poor prognosis of patients. We assessed the prognosis of colon cancer based on ACK1-related genes and constructed a model that can predict the prognosis of colon cancer patients in colon cancer data from The Cancer Genome Atlas (TCGA) database. We then explored the relationship between ACK1 and the immune microenvironment of colon cancer. The overexpression of ACK1 might hinder the function of antigen-presenting cells. The colon cancer prognosis prediction model we constructed has certain significance for clinicians to judge the prognosis of patients with colon cancer. The expression of the ACK1 gene might affect the infiltration level of a variety of immune cells and immunomodulators in the immune microenvironment.
Collapse
Affiliation(s)
- Defeng Kong
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China
| | - Guoliang Li
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China
| | - Zhenrong Yang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China
| | - Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China.
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China.
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China.
| |
Collapse
|
37
|
Dai E, Zhu Z, Wahed S, Qu Z, Storkus WJ, Guo ZS. Epigenetic modulation of antitumor immunity for improved cancer immunotherapy. Mol Cancer 2021; 20:171. [PMID: 34930302 PMCID: PMC8691037 DOI: 10.1186/s12943-021-01464-x] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/16/2021] [Indexed: 12/16/2022] Open
Abstract
Epigenetic mechanisms play vital roles not only in cancer initiation and progression, but also in the activation, differentiation and effector function(s) of immune cells. In this review, we summarize current literature related to epigenomic dynamics in immune cells impacting immune cell fate and functionality, and the immunogenicity of cancer cells. Some important immune-associated genes, such as granzyme B, IFN-γ, IL-2, IL-12, FoxP3 and STING, are regulated via epigenetic mechanisms in immune or/and cancer cells, as are immune checkpoint molecules (PD-1, CTLA-4, TIM-3, LAG-3, TIGIT) expressed by immune cells and tumor-associated stromal cells. Thus, therapeutic strategies implementing epigenetic modulating drugs are expected to significantly impact the tumor microenvironment (TME) by promoting transcriptional and metabolic reprogramming in local immune cell populations, resulting in inhibition of immunosuppressive cells (MDSCs and Treg) and the activation of anti-tumor T effector cells, professional antigen presenting cells (APC), as well as cancer cells which can serve as non-professional APC. In the latter instance, epigenetic modulating agents may coordinately promote tumor immunogenicity by inducing de novo expression of transcriptionally repressed tumor-associated antigens, increasing expression of neoantigens and MHC processing/presentation machinery, and activating tumor immunogenic cell death (ICD). ICD provides a rich source of immunogens for anti-tumor T cell cross-priming and sensitizing cancer cells to interventional immunotherapy. In this way, epigenetic modulators may be envisioned as effective components in combination immunotherapy approaches capable of mediating superior therapeutic efficacy.
Collapse
Affiliation(s)
- Enyong Dai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhi Zhu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Surgical Oncology, China Medical University, Shenyang, China
| | - Shudipto Wahed
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Zhaoxia Qu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Walter J Storkus
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Departments of Dermatology, Immunology, Pathology and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zong Sheng Guo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| |
Collapse
|
38
|
Deng T, Xiao Y, Dai Y, Xie L, Li X. Roles of Key Epigenetic Regulators in the Gene Transcription and Progression of Prostate Cancer. Front Mol Biosci 2021; 8:743376. [PMID: 34977151 PMCID: PMC8714908 DOI: 10.3389/fmolb.2021.743376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is a top-incidence malignancy, and the second most common cause of death amongst American men and the fifth leading cause of cancer death in men around the world. Androgen receptor (AR), the key transcription factor, is critical for the progression of PCa by regulating a series of target genes by androgen stimulation. A number of co-regulators of AR, including co-activators or co-repressors, have been implicated in AR-mediated gene transcription and PCa progression. Epigenetic regulators, by modifying chromatin integrity and accessibility for transcription regulation without altering DNA sequences, influence the transcriptional activity of AR and further regulate the gene expression of AR target genes in determining cell fate, PCa progression and therapeutic response. In this review, we summarized the structural interaction of AR and epigenetic regulators including histone or DNA methylation, histone acetylation or non-coding RNA, and functional synergy in PCa progression. Importantly, epigenetic regulators have been validated as diagnostic markers and therapeutic targets. A series of epigenetic target drugs have been developed, and have demonstrated the potential to treat PCa alone or in combination with antiandrogens.
Collapse
Affiliation(s)
- Tanggang Deng
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yugang Xiao
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Dai
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lin Xie
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiong Li
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
39
|
Wang A, Pei J, Shuai W, Lin C, Feng L, Wang Y, Lin F, Ouyang L, Wang G. Small Molecules Targeting Activated Cdc42-Associated Kinase 1 (ACK1/TNK2) for the Treatment of Cancers. J Med Chem 2021; 64:16328-16348. [PMID: 34735773 DOI: 10.1021/acs.jmedchem.1c01030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Activated Cdc42-associated kinase 1 (ACK1/TNK2) is a nonreceptor tyrosine kinase with a unique structure. It not only can act as an activated transmembrane effector of receptor tyrosine kinases (RTKs) to transmit various RTK signals but also can play a corresponding role in epigenetic regulation. A number of studies have shown that ACK1 is a carcinogenic factor. Blockage of ACK1 has been proven to be able to inhibit cancer cell survival, proliferation, migration, and radiation resistance. Thus, ACK1 is a promising potential antitumor target. To date, despite many efforts to develop ACK1 inhibitors, no specific small molecule inhibitors have entered clinical trials. This Perspective provides an overview of the structural features, biological functions, and association with diseases of ACK1 and in vitro and in vivo activities, selectivity, and therapeutic potential of small molecule ACK1 inhibitors with different chemotypes.
Collapse
Affiliation(s)
- Aoxue Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Junping Pei
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Congcong Lin
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lu Feng
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yuxi Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Feng Lin
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China.,Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
40
|
Ghildiyal R, Sawant M, Renganathan A, Mahajan K, Kim EH, Luo J, Dang HX, Maher CA, Feng FY, Mahajan NP. Loss of long non-coding RNA NXTAR in prostate cancer augments androgen receptor expression and enzalutamide resistance. Cancer Res 2021; 82:155-168. [PMID: 34740892 DOI: 10.1158/0008-5472.can-20-3845] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/19/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Androgen receptor (AR) signaling continues to play a dominant role in all stages of prostate cancer (PC), including castration-resistant prostate cancers (CRPC) that have developed resistance to second-generation AR antagonists such as enzalutamide. In this study, we identified a long non-coding RNA (lncRNA), NXTAR (LOC105373241), that is located convergent with the AR gene and is repressed in human prostate tumors and cell lines. NXTAR bound upstream of the AR promoter and promoted EZH2 recruitment, causing significant loss of AR (and AR-V7) expression. Paradoxically, AR bound the NXTAR promoter, and inhibition of AR by the ACK1/TNK2 small molecule inhibitor (R)-9b excluded AR from the NXTAR promoter. The histone acetyltransferase GCN5 bound and deposited H3K14 acetylation marks, enhancing NXTAR expression. Application of an oligonucleotide derived from NXTAR exon 5 (NXTAR-N5) suppressed AR/AR-V7 expression and prostate cancer cell proliferation, indicating the translational relevance of the negative regulation of AR. In addition, pharmacological restoration of NXTAR using (R)-9b abrogated enzalutamide-resistant prostate xenograft tumor growth. Overall, this study uncovers a positive feedback loop, wherein NXTAR acts as a novel prostate tumor-suppressing lncRNA by inhibiting AR/AR-V7 expression, which in turn upregulates NXTAR levels, compromising enzalutamide-resistant prostate cancer. The restoration of NXTAR could serve as a new therapeutic modality for patients who have acquired resistance to second-generation AR antagonists.
Collapse
Affiliation(s)
| | | | | | | | - Eric H Kim
- Siteman Cancer Center, Moffitt Cancer Center
| | - Jingqin Luo
- Division of Public Health Sciences, Department of Surgery, Washington University in St. Louis School of Medicine
| | - Ha X Dang
- Internal Medicine, Washington University in St. Louis
| | | | - Felix Y Feng
- Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco
| | | |
Collapse
|
41
|
TNK1 is a ubiquitin-binding and 14-3-3-regulated kinase that can be targeted to block tumor growth. Nat Commun 2021; 12:5337. [PMID: 34504101 PMCID: PMC8429728 DOI: 10.1038/s41467-021-25622-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
TNK1 is a non-receptor tyrosine kinase with poorly understood biological function and regulation. Here, we identify TNK1 dependencies in primary human cancers. We also discover a MARK-mediated phosphorylation on TNK1 at S502 that promotes an interaction between TNK1 and 14-3-3, which sequesters TNK1 and inhibits its kinase activity. Conversely, the release of TNK1 from 14-3-3 allows TNK1 to cluster in ubiquitin-rich puncta and become active. Active TNK1 induces growth factor-independent proliferation of lymphoid cells in cell culture and mouse models. One unusual feature of TNK1 is a ubiquitin-association domain (UBA) on its C-terminus. Here, we characterize the TNK1 UBA, which has high affinity for poly-ubiquitin. Point mutations that disrupt ubiquitin binding inhibit TNK1 activity. These data suggest a mechanism in which TNK1 toggles between 14-3-3-bound (inactive) and ubiquitin-bound (active) states. Finally, we identify a TNK1 inhibitor, TP-5801, which shows nanomolar potency against TNK1-transformed cells and suppresses tumor growth in vivo.
Collapse
|
42
|
Tahir R, Madugundu AK, Udainiya S, Cutler JA, Renuse S, Wang L, Pearson NA, Mitchell CJ, Mahajan N, Pandey A, Wu X. Proximity-Dependent Biotinylation to Elucidate the Interactome of TNK2 Nonreceptor Tyrosine Kinase. J Proteome Res 2021; 20:4566-4577. [PMID: 34428048 DOI: 10.1021/acs.jproteome.1c00551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonreceptor tyrosine kinases (NRTKs) represent an important class of signaling molecules driving diverse cellular pathways. Aberrant expression and hyperphosphorylation of TNK2, an NRTK, have been implicated in multiple cancers. However, the exact proteins and cellular events that mediate phenotypic changes downstream of TNK2 are unclear. Biological systems that employ proximity-dependent biotinylation methods, such as BioID, are being increasingly used to map protein-protein interactions, as they provide increased sensitivity in discovering interaction partners. In this study, we employed stable isotope labeling with amino acids in cell culture and BioID coupled to the biotinylation site identification technology (BioSITe) method that we recently developed to quantitatively explore the interactome of TNK2. By performing a controlled comparative analysis between full-length TNK2 and its truncated counterpart, we were able to not only identify site-level biotinylation of previously well-established TNK2 binders and substrates including NCK1, NCK2, CTTN, and STAT3, but also discover several novel TNK2 interacting partners. We also performed co-immunoprecipitation and immunofluorescence analysis to validate the interaction between TNK2 and CLINT1, a novel TNK2 interacting protein. Overall, this work reveals the power of the BioSITe method coupled to BioID and highlights several molecules that warrant further exploration to assess their functional significance in TNK2-mediated signaling.
Collapse
Affiliation(s)
- Raiha Tahir
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Ginkgo Bioworks, Boston, Massachusetts 02210, United States
| | - Anil K Madugundu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India.,Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, Karnataka, India.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Savita Udainiya
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, Karnataka, India.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Jevon A Cutler
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Pre-Doctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Santosh Renuse
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Li Wang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Nicole A Pearson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | | | - Nupam Mahajan
- Siteman Cancer Center, Washington University, St. Louis, Missouri 63110, United States
| | - Akhilesh Pandey
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore 560029, Karnataka, India.,Departments of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Xinyan Wu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States.,Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, United States
| |
Collapse
|
43
|
Ling S, He Y, Li X, Ma Y, Li Y, Kong B, Huang P. Significant Gene Biomarker Tyrosine Kinase Non-receptor 2 Mediated Cell Proliferation and Invasion in Colon Cancer. Front Genet 2021; 12:653657. [PMID: 34421982 PMCID: PMC8371684 DOI: 10.3389/fgene.2021.653657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/21/2021] [Indexed: 01/22/2023] Open
Abstract
Objective: This study aimed to investigate the expression and biological functions of TNK2 and miR-125a-3p in colon cancer. Materials and methods: The expression of TNK2 and miR-125a-3p in colon cancer tissues was analyzed using data deposited on public databases including UALCAN and ONCOMINE. We verified their expression in colon cancer cell lines by RT-qPCR and western blotting. By regulating the expression of TNK2 and miR-125a-3p in colon cancer cells, their functions and potential mechanisms were explored. Results:TNK2 was overexpressed in colon cancer cell lines, and it was found to directly bind to miR-125a-3p, which was downregulated in these cell lines. Their expression affected the proliferation and invasion of colon cancer cells. Additionally, colon cancer patients with lower TNK2 expression had better prognoses than those with higher TNK2 expression. Conclusion: Our results indicated that TNK2 and miR-125a-3p play critical roles in colon cancer, and could also serve as biomarkers for the diagnosis and prognosis of this malignant disease.
Collapse
Affiliation(s)
- Sunkai Ling
- Medical School of Southeast University, Nanjing, China
| | - Yanru He
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Xiaoxue Li
- Medical School of Southeast University, Nanjing, China
| | - Yu Ma
- Medical School of Southeast University, Nanjing, China
| | - Yuan Li
- Medical School of Southeast University, Nanjing, China
| | - Bo Kong
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany.,Department of General Surgery, University of Ulm, Ulm, Germany
| | - Peilin Huang
- Medical School of Southeast University, Nanjing, China
| |
Collapse
|
44
|
Chen X, Xu J, Wang X, Long G, You Q, Guo X. Targeting WD Repeat-Containing Protein 5 (WDR5): A Medicinal Chemistry Perspective. J Med Chem 2021; 64:10537-10556. [PMID: 34283608 DOI: 10.1021/acs.jmedchem.1c00037] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
WD repeat-containing protein 5 (WDR5) is a member of the WD40 protein family, and it is widely involved in various biological activities and not limited to epigenetic regulation in vivo. WDR5 is also involved in the initiation and development of many diseases and plays a key role in these diseases. Since WDR5 was discovered, it has been suggested as a potential disease treatment target, and a large number of inhibitors targeting WDR5 have been discovered. In this review, we discussed the development of inhibitors targeting WDR5 over the years, and the biological mechanisms of these inhibitors based on previous mechanistic studies were explored. Finally, we describe the development potential of inhibitors targeting WDR5 and prospects for further applications.
Collapse
Affiliation(s)
- Xin Chen
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Junjie Xu
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xianghan Wang
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Guanlu Long
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoke Guo
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
45
|
Pseudogene ACTBP2 increases blood-brain barrier permeability by promoting KHDRBS2 transcription through recruitment of KMT2D/WDR5 in Aβ 1-42 microenvironment. Cell Death Discov 2021; 7:142. [PMID: 34127651 PMCID: PMC8203645 DOI: 10.1038/s41420-021-00531-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/26/2021] [Accepted: 05/23/2021] [Indexed: 11/29/2022] Open
Abstract
The blood–brain barrier (BBB) has a vital role in maintaining the homeostasis of the central nervous system (CNS). Changes in the structure and function of BBB can accelerate Alzheimer’s disease (AD) development. β-Amyloid (Aβ) deposition is the major pathological event of AD. We elucidated the function and possible molecular mechanisms of the effect of pseudogene ACTBP2 on the permeability of BBB in Aβ1–42 microenvironment. BBB model treated with Aβ1–42 for 48 h were used to simulate Aβ-mediated BBB dysfunction in AD. We proved that pseudogene ACTBP2, RNA-binding protein KHDRBS2, and transcription factor HEY2 are highly expressed in ECs that were obtained in a BBB model in vitro in Aβ1–42 microenvironment. In Aβ1–42-incubated ECs, ACTBP2 recruits methyltransferases KMT2D and WDR5, binds to KHDRBS2 promoter, and promotes KHDRBS2 transcription. The interaction of KHDRBS2 with the 3′UTR of HEY2 mRNA increases the stability of HEY2 and promotes its expression. HEY2 increases BBB permeability in Aβ1–42 microenvironment by transcriptionally inhibiting the expression of ZO-1, occludin, and claudin-5. We confirmed that knocking down of Khdrbs2 or Hey2 increased the expression levels of ZO-1, occludin, and claudin-5 in APP/PS1 mice brain microvessels. ACTBP2/KHDRBS2/HEY2 axis has a crucial role in the regulation of BBB permeability in Aβ1–42 microenvironment, which may provide a novel target for the therapy of AD.
Collapse
|
46
|
He H, Li J, Luo M, Wei Q. Inhibitory role of circRNA_100395 in the proliferation and metastasis of prostate cancer cells. J Int Med Res 2021; 49:300060521992215. [PMID: 33641485 PMCID: PMC7917968 DOI: 10.1177/0300060521992215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Circular RNAs (circRNAs) are non-coding RNAs with high cancer-specific expression and the potential for regulating tumorigenesis. CircRNA_100395 is expressed at low levels in many cancers and is involved in the regulation of tumor cell proliferation and metastasis. However, its expression and function in prostate cancer remain unclear. METHODS Endogenous expression levels of circRNA_100395 and microRNA-1228 (miR-1228) in prostate cancer tissue samples and cell lines were detected by quantitative reverse transcription-polymerase chain reaction. Cell proliferation, invasion, and migration, cell cycle distribution, and epithelial-mesenchymal transition (EMT) were analyzed in circRNA_100395-overexpressing prostate cancer cells by Cell Counting Kit-8, flow cytometry, Transwell assay, and western blotting, respectively. RESULTS CircRNA_100395 expression was downregulated in cancerous prostate tissues relative to adjacent normal tissues. CircRNA_100395 expression was negatively correlated with tumor size, Gleason score, tumor stage, and lymph node metastasis. Moreover, circRNA_100395 overexpression inhibited cell proliferation, altered cell cycle distribution, reduced cell migration and invasion abilities, and suppressed EMT in prostate cancer cells. Moreover, miR-1228 was a direct downstream target of circRNA_100395, and the anti-tumor ability of circRNA_100395 was significantly reversed by miR-1228. CONCLUSION This study identified circRNA_100395 as an anti-tumor circRNA and a potential therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Haitian He
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Urology, Shenzhen Nanshan District Shekou People's Hospital, Shenzhen, Guangdong, China
| | - Jianhua Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mayao Luo
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiang Wei
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
47
|
Brandao R, Kwa MQ, Yarden Y, Brakebusch C. ACK1 is dispensable for development, skin tumor formation, and breast cancer cell proliferation. FEBS Open Bio 2021; 11:1579-1592. [PMID: 33730447 PMCID: PMC8167857 DOI: 10.1002/2211-5463.13149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/16/2021] [Indexed: 11/29/2022] Open
Abstract
Activated Cdc42‐associated kinase 1 (ACK1), a widely expressed nonreceptor tyrosine kinase, is often amplified in cancer and has been shown to interact with Cell division cycle 42 (Cdc42), Epidermal growth factor receptor (EGFR), and several other cancer‐relevant molecules, suggesting a possible role for ACK1 in development and tumor formation. To directly address this scenario, we generated mice lacking a functional ACK1 gene (ACK1 ko) using CRISPR genome editing. ACK1 ko mice developed normally, displayed no obvious defect in tissue maintenance, and were fertile. Primary ACK1‐null keratinocytes showed normal phosphorylation of EGFR, but a tendency toward reduced activation of AKT serine/threonine kinase 1 (Akt) and Mitogen‐activated protein kinase 1 (Erk). DMBA/TPA‐induced skin tumor formation did not reveal significant differences between ACK1 ko and control mice. Deletion of the ACK1 gene in the breast cancer cell lines MDA‐MB‐231, 67NR, MCF7, 4T1, and T47D caused no differences in growth. Furthermore, EGF‐induced phosphorylation kinetics of Erk, Akt, and p130Cas were not detectably altered in T47D cells by the loss of ACK1. Finally, loss of ACK1 in MDA‐MB‐231 and T47D breast cancer cells had a very limited or no effect on directed cell migration. These data do not support a major role for ACK1 in Cdc42 and EGFR signaling, development, or tumor formation.
Collapse
Affiliation(s)
- Rafael Brandao
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Denmark
| | - Mei Qi Kwa
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Denmark
| | | | - Cord Brakebusch
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Denmark
| |
Collapse
|
48
|
Yang Y, Wang Y. Role of Epigenetic Regulation in Plasticity of Tumor Immune Microenvironment. Front Immunol 2021; 12:640369. [PMID: 33868269 PMCID: PMC8051582 DOI: 10.3389/fimmu.2021.640369] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
The tumor immune microenvironment (TIME), an immunosuppressive niche, plays a pivotal role in contributing to the development, progression, and immune escape of various types of cancer. Compelling evidence highlights the feasibility of cancer therapy targeting the plasticity of TIME as a strategy to retrain the immunosuppressive immune cells, including innate immune cells and T cells. Epigenetic alterations, such as DNA methylation, histone post-translational modifications, and noncoding RNA-mediated regulation, regulate the expression of many human genes and have been reported to be accurate in the reprogramming of TIME according to vast majority of published results. Recently, mounting evidence has shown that the gut microbiome can also influence the colorectal cancer and even extraintestinal tumors via metabolites or microbiota-derived molecules. A tumor is a kind of heterogeneous disease with specificity in time and space, which is not only dependent on genetic regulation, but also regulated by epigenetics. This review summarizes the reprogramming of immune cells by epigenetic modifications in TIME and surveys the recent progress in epigenetic-based cancer clinical therapeutic approaches. We also discuss the ongoing studies and future areas of research that benefits to cancer eradication.
Collapse
Affiliation(s)
- Yunkai Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
49
|
Yu X, Liu J, Qiu H, Hao H, Zhu J, Peng S. Combined inhibition of ACK1 and AKT shows potential toward targeted therapy against KRAS-mutant non-small-cell lung cancer. Bosn J Basic Med Sci 2021; 21:198-207. [PMID: 32530390 PMCID: PMC7982072 DOI: 10.17305/bjbms.2020.4746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) with Kirsten RAt Sarcoma 2 viral oncogene homolog (KRAS) mutation has become a clinical challenge in cancer treatment as KRAS-mutant tumors are often resistant to conventional anti-tumor therapies. Activated CDC42-associated kinase 1 (ACK1), an activator of protein kinase B (AKT), is a promising target for KRAS-mutant tumor therapy, but the downstream ACK1 signaling remains poorly understood. The aim of this study was to evaluate the effectiveness of combined ACK1/AKT inhibition on the proliferation, migration, invasion, and apoptosis of KRAS-mutant NSCLC cell lines (NCI-H23, NCI-H358, and A549). The cells were treated with an inhibitor of either ACK1 (dasatinib or sunitinib) or AKT (MK-2206 or GDC-0068), and the optimal concentrations of the two yielding synergistic tumor-killing effects were determined by applying the Chou-Talalay equation for drug combinations. We showed that combined administration of ACK1 and AKT inhibitors at the optimal concentrations effectively suppressed NSCLC cell viability and promoted apoptosis while inducing cell cycle arrest at the G2 phase. Moreover, NSCLC cell migration and invasion were inhibited by combined ACK1/AKT inhibition. These phenomena were associated with the reduced phosphorylation levels of ACK1 and AKT (at Ser473 and Thr308), as well as alterations in caspase-dependent apoptotic signaling. Collectively, our results demonstrate the promising therapeutic potential of combined ACK1/AKT inhibition as a strategy against KRAS-mutant NSCLC. Our findings provide the basis for the clinical translation of biological targeted drugs (ACK1 and AKT inhibitors) and their rational combination in cancer treatment.
Collapse
Affiliation(s)
- Xiangjing Yu
- Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jie Liu
- Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Huawei Qiu
- Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Huiting Hao
- Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jinhong Zhu
- Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shiyun Peng
- Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
50
|
Martínez de Paz A, Josefowicz SZ. Signaling-to-chromatin pathways in the immune system. Immunol Rev 2021; 300:37-53. [PMID: 33644906 PMCID: PMC8548991 DOI: 10.1111/imr.12955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/01/2023]
Abstract
Complex organisms are able to respond to diverse environmental cues by rapidly inducing specific transcriptional programs comprising a few dozen genes among thousands. The highly complex environment within the nucleus-a crowded milieu containing large genomes tightly condensed with histone proteins in the form of chromatin-makes inducible transcription a challenge for the cell, akin to the proverbial needle in a haystack. The different signaling pathways and transcription factors involved in the transmission of information from the cell surface to the nucleus have been readily explored, but not so much the specific mechanisms employed by the cell to ultimately instruct the chromatin changes necessary for a fast and robust transcription activation. Signaling pathways rely on cascades of protein kinases that, in addition to activating transcription factors can also activate the chromatin template by phosphorylating histone proteins, what we refer to as "signaling-to-chromatin." These pathways appear to be selectively employed and especially critical for driving inducible transcription in macrophages and likely in diverse other immune cell populations. Here, we discuss signaling-to-chromatin pathways with potential relevance in diverse immune cell populations together with chromatin related mechanisms that help to "solve" the needle in a haystack challenge of robust chromatin activation and inducible transcription.
Collapse
Affiliation(s)
- Alexia Martínez de Paz
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Steven Zvi Josefowicz
- Laboratory of Epigenetics and Immunity, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|