1
|
Wyart E, Carrà G, Angelino E, Penna F, Porporato PE. Systemic metabolic crosstalk as driver of cancer cachexia. Trends Endocrinol Metab 2025:S1043-2760(24)00327-8. [PMID: 39757061 DOI: 10.1016/j.tem.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/18/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025]
Abstract
Cachexia is a complex metabolic disorder characterized by negative energy balance due to increased consumption and lowered intake, leading to progressive tissue wasting and inefficient energy distribution. Once considered as passive bystander, metabolism is now acknowledged as a regulator of biological functions and disease progression. This shift in perspective mirrors the evolving understanding of cachexia itself, no longer viewed merely as a secondary consequence of cancer but as an active process. However, metabolic dysregulations in cachexia are currently studied in an organ-specific manner, failing to be fully integrated into a comprehensive framework that explains their functional roles in disease progression. Thus, in this review, we aim to provide a general overview of the various metabolic alterations with a potential systemic impact.
Collapse
Affiliation(s)
- Elisabeth Wyart
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center 'Guido Tarone', University of Torino, 10126 Torino, Italy.
| | - Giovanna Carrà
- San Luigi Gonzaga Hospital, Orbassano, Italy; Department of Clinical and Biological Science, University of Torino, Orbassano, Italy
| | - Elia Angelino
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Fabio Penna
- Department of Clinical and Biological Science, University of Torino, Orbassano, Italy
| | - Paolo E Porporato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center 'Guido Tarone', University of Torino, 10126 Torino, Italy.
| |
Collapse
|
2
|
Man CH, Li C, Xu X, Zhao M. Metabolic regulation in normal and leukemic stem cells. Trends Pharmacol Sci 2024; 45:919-930. [PMID: 39306527 DOI: 10.1016/j.tips.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 10/06/2024]
Abstract
Hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs) are crucial for ensuring hematopoietic homeostasis and driving leukemia progression, respectively. Recent research has revealed that metabolic adaptations significantly regulate the function and survival of these stem cells. In this review, we provide an overview of how metabolic pathways regulate oxidative and proteostatic stresses in HSCs during homeostasis and aging. Furthermore, we highlight targetable metabolic pathways and explore their interactions with epigenetics and the microenvironment in addressing the chemoresistance and immune evasion capacities of LSCs. The metabolic differences between HSCs and LSCs have profound implications for therapeutic strategies.
Collapse
Affiliation(s)
- Cheuk-Him Man
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Changzheng Li
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xi Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510030, China
| | - Meng Zhao
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
3
|
Chen R, Cheng T, Xie S, Sun X, Chen M, Zhao S, Ruan Q, Ni X, Rao M, Quan X, Chen K, Zhang S, Cheng T, Xu Y, Chen Y, Yang Y, Cao Y. Effective Prevention and Treatment of Acute Leukemias in Mice by Activation of Thermogenic Adipose Tissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402332. [PMID: 39049685 PMCID: PMC11481385 DOI: 10.1002/advs.202402332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/09/2024] [Indexed: 07/27/2024]
Abstract
Acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) are common hematological malignancies in adults. Despite considerable research advances, the development of standard therapies, supportive care, and prognosis for the majority of AML and ALL patients remains poor and the development of new effective therapy is urgently needed. Here, it is reported that activation of thermogenic adipose tissues (TATs) by cold exposure or β3-adrenergic receptor agonists markedly alleviated the development and progression of AML and ALL in mouse leukemia models. TAT activation (TATA) monotherapy substantially reduces leukemic cells in bone marrow and peripheral blood, and suppresses leukemic cell invasion, including hepatomegaly and splenomegaly. Notably, TATA therapy prolongs the survivals of AML- and ALL-bearing mice. Surgical removal of thermogenic brown adipose tissue (BAT) or genetic deletion of uncoupling protein 1 (UCP1) largely abolishes the TATA-mediated anti-leukemia effects. Metabolomic pathway analysis demonstrates that glycolytic metabolism, which is essential for anabolic leukemic cell growth, is severely impaired in TATA-treated leukemic cells. Moreover, a combination of TATA therapy with chemotherapy produces enhanced anti-leukemic effects and reduces chemotoxicity. These data provide a new TATA-based therapeutic paradigm for the effective treatment of AML, ALL, and likely other types of hematological malignancies.
Collapse
Affiliation(s)
- Ruibo Chen
- Department of Cellular and Genetic MedicineSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Tianran Cheng
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesHaihe Laboratory of Cell EcosystemInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300020China
| | - Sisi Xie
- Department of CardiologyBasic Scientific Research CenterLongyan First Hospital Affiliated to Fujian Medical UniversityLongyan364000China
| | - Xiaoting Sun
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhou325035China
| | - Mingjia Chen
- Department of Cellular and Genetic MedicineSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Shumin Zhao
- Department of CardiologyBasic Scientific Research CenterLongyan First Hospital Affiliated to Fujian Medical UniversityLongyan364000China
| | - Qingyan Ruan
- Department of CardiologyBasic Scientific Research CenterLongyan First Hospital Affiliated to Fujian Medical UniversityLongyan364000China
| | - Xiaolei Ni
- Department of CardiologyBasic Scientific Research CenterLongyan First Hospital Affiliated to Fujian Medical UniversityLongyan364000China
| | - Mei Rao
- Department of CardiologyBasic Scientific Research CenterLongyan First Hospital Affiliated to Fujian Medical UniversityLongyan364000China
| | - Xinyi Quan
- Department of Cellular and Genetic MedicineSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Kaiwen Chen
- Department of Cellular and Genetic MedicineSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Shiyue Zhang
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesHaihe Laboratory of Cell EcosystemInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300020China
| | - Tao Cheng
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesHaihe Laboratory of Cell EcosystemInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300020China
| | - Yuanfu Xu
- State Key Laboratory of Experimental HematologyNational Clinical Research Center for Blood DiseasesHaihe Laboratory of Cell EcosystemInstitute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300020China
| | - Yuguo Chen
- Department of Emergency MedicineShandong Provincial Clinical Research Center for Emergency and Critical Care MedicineMedical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care MedicineChina’s Ministry of EducationNMPA Key Laboratory for Clinical Research and Evaluation of Innovative DrugShandong International Cooperative Laboratory for Emergency and Critical Care MedicineQilu Hospital of Shandong UniversityJinan250012China
| | - Yunlong Yang
- Department of Cellular and Genetic MedicineSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Yihai Cao
- Department of MicrobiologyTumor and Cell BiologyKarolinska InstitutetSolna17165Sweden
| |
Collapse
|
4
|
Pötgens SA, Havelange V, Lecop S, Li F, Neyrinck AM, Bindels F, Neveux N, Demoulin JB, Moors I, Kerre T, Maertens J, Walter J, Schoemans H, Delzenne NM, Bindels LB. Gut microbiome alterations at acute myeloid leukemia diagnosis are associated with muscle weakness and anorexia. Haematologica 2024; 109:3194-3208. [PMID: 38546675 PMCID: PMC11443375 DOI: 10.3324/haematol.2023.284138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/19/2024] [Indexed: 10/02/2024] Open
Abstract
The gut microbiota makes critical contributions to host homeostasis, and its role in the treatment of acute myeloid leukemia (AML) has attracted attention. We investigated whether the gut microbiome is affected by AML, and whether such changes are associated with hallmarks of cachexia. Biological samples and clinical data were collected from 30 antibiotic- free AML patients at diagnosis and matched volunteers (1:1) in a multicenter, cross-sectional, prospective study. The composition and functional potential of the fecal microbiota were analyzed using shotgun metagenomics. Fecal, blood, and urinary metabolomics analyses were performed. AML patients displayed muscle weakness, anorexia, signs of altered gut function, and glycemic disorders. The composition of the fecal microbiota differed between patients with AML and control subjects, with an increase in oral bacteria. Alterations in bacterial functions and fecal metabolome support an altered redox status in the gut microbiota, which may contribute to the altered redox status observed in patients with AML. Eubacterium eligens, reduced 3-fold in AML patients, was strongly correlated with muscle strength and citrulline, a marker of enterocyte mass and function. Blautia and Parabacteroides, increased in patients with AML, were correlated with anorexia. Several bacterial taxa and metabolites (e.g., Blautia, Prevotella, phenylacetate, and hippurate) previously associated with glycemic disorders were altered. Our work revealed important perturbations in the gut microbiome of AML patients at diagnosis, which are associated with muscle strength, altered redox status, and anorexia. These findings pave the way for future mechanistic work to explore the function and therapeutic potential of the bacteria identified in this study.
Collapse
Affiliation(s)
- Sarah A Pötgens
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels
| | - Violaine Havelange
- Department of Hematology, Cliniques Universitaires Saint-Luc, UCLouvain, Université catholique de Louvain, Brussels, Belgium; Experimental Medicine Unit, De Duve Institute, UCLouvain, Université catholique de Louvain, Brussels
| | - Sophie Lecop
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels
| | - Fuyong Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels
| | | | - Nathalie Neveux
- Clinical Chemistry Department, Cochin Hospital, Paris Centre University Hospitals, Paris
| | - Jean-Baptiste Demoulin
- Experimental Medicine Unit, De Duve Institute, UCLouvain, Université catholique de Louvain, Brussels
| | - Ine Moors
- Department of Hematology, Ghent University Hospital, Ghent University, Ghent
| | - Tessa Kerre
- Department of Hematology, Ghent University Hospital, Ghent University, Ghent
| | - Johan Maertens
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven
| | - Jens Walter
- Department of Medicine, School of Microbiology, APC Microbiome Ireland, University College Cork, Cork
| | - Hélène Schoemans
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium; Department of Public Health and Primary Care, ACCENT VV, KU Leuven, Leuven
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium; Welbio Department, WEL Research Institute, Wavre.
| |
Collapse
|
5
|
Shi X, Feng M, Nakada D. Metabolic dependencies of acute myeloid leukemia stem cells. Int J Hematol 2024; 120:427-438. [PMID: 38750343 DOI: 10.1007/s12185-024-03789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy primarily driven by an immature population of AML cells termed leukemia stem cells (LSCs) that are implicated in AML development, chemoresistance, and relapse. An emerging area of research in AML focuses on identifying and targeting the aberrant metabolism in LSCs. Dysregulated metabolism is involved in sustaining functional properties of LSCs, impeding myeloid differentiation, and evading programmed cell death, both in the process of leukemogenesis and in response to chemotherapy. This review discusses recent discoveries regarding the aberrant metabolic processes of AML LSCs that have begun to change the therapeutic landscape of AML.
Collapse
Affiliation(s)
- Xiangguo Shi
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Mengdie Feng
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Daisuke Nakada
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Li P, Xiong P, Li X, Zhang X, Chen X, Zhang W, Jia B, Lai Y. Tumor microenvironment characteristics and prognostic role of m 6A modification in lung squamous cell carcinoma. Heliyon 2024; 10:e26851. [PMID: 38455573 PMCID: PMC10918158 DOI: 10.1016/j.heliyon.2024.e26851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Background It has recently been determined that N6-methyladenosine (m6A) RNA methylation regulators have prominent effects on several cancers. However, the potential role of m6A modification in lung squamous cell carcinoma (LUSC) remains unclear. Methods We evaluated the modification pattern of m6A and studied the biological function of m6A regulators in LUSC. Then, we constructed the m6Ascore to predict the prognosis of LUSC and analyzed the relationship between the m6Ascore and tumor mutation burden, immune cell infiltration, and immunotherapy. Result In the unsupervised consensus cluster analysis, three different m6Aclusters were identified, which correspond to an immune activation state, a moderate immune activation state, and an immune tolerance state. Forty-two genes related to the m6A phenotype were used to construct the m6Ascore; subsequently, multiple validations of the m6Ascore were carried out to determine the relationship between the score and immune cell infiltration and response to CTLA-4/PD-1 inhibitor treatment. Further analysis revealed that the m6Ascore could effectively predict the prognosis of LUSC and that the m6A phenotype-related genes, FAM162A and LOM4, might be potential biomarkers. Conclusion These findings highlight the potential role of m6A modification in the prognosis, TME, and immunotherapy of LUSC and have profound implications for developing more effective personalized treatment strategies for LUSC.
Collapse
Affiliation(s)
- Pei Li
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Peiyu Xiong
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xinyun Li
- Sichuan College of Traditional Chinese Medicine, Mianyang, 621000, China
| | - Xiaobo Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xu Chen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo Jia
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Lai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
7
|
Burk AC, Apostolova P. Metabolic instruction of the graft-versus-leukemia immunity. Front Immunol 2024; 15:1347492. [PMID: 38500877 PMCID: PMC10944922 DOI: 10.3389/fimmu.2024.1347492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/05/2024] [Indexed: 03/20/2024] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is frequently performed to cure hematological malignancies, such as acute myeloid leukemia (AML), through the graft-versus-leukemia (GVL) effect. In this immunological process, donor immune cells eliminate residual cancer cells in the patient and exert tumor control through immunosurveillance. However, GVL failure and subsequent leukemia relapse are frequent and associated with a dismal prognosis. A better understanding of the mechanisms underlying AML immune evasion is essential for developing novel therapeutic strategies to boost the GVL effect. Cellular metabolism has emerged as an essential regulator of survival and cell fate for both cancer and immune cells. Leukemia and T cells utilize specific metabolic programs, including the orchestrated use of glucose, amino acids, and fatty acids, to support their growth and function. Besides regulating cell-intrinsic processes, metabolism shapes the extracellular environment and plays an important role in cell-cell communication. This review focuses on recent advances in the understanding of how metabolism might affect the anti-leukemia immune response. First, we provide a general overview of the mechanisms of immune escape after allo-HCT and an introduction to leukemia and T cell metabolism. Further, we discuss how leukemia and myeloid cell metabolism contribute to an altered microenvironment that impairs T cell function. Next, we review the literature linking metabolic processes in AML cells with their inhibitory checkpoint ligand expression. Finally, we focus on recent findings concerning the role of systemic metabolism in sustained GVL efficacy. While the majority of evidence in the field still stems from basic and preclinical studies, we discuss translational findings and propose further avenues for bridging the gap between bench and bedside.
Collapse
Affiliation(s)
- Ann-Cathrin Burk
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg, Freiburg, Germany
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Petya Apostolova
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
8
|
Wu D, Zhang K, Khan FA, Pandupuspitasari NS, Guan K, Sun F, Huang C. A comprehensive review on signaling attributes of serine and serine metabolism in health and disease. Int J Biol Macromol 2024; 260:129607. [PMID: 38253153 DOI: 10.1016/j.ijbiomac.2024.129607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Serine is a metabolite with ever-expanding metabolic and non-metabolic signaling attributes. By providing one‑carbon units for macromolecule biosynthesis and functional modifications, serine and serine metabolism largely impinge on cellular survival and function. Cancer cells frequently have a preference for serine metabolic reprogramming to create a conducive metabolic state for survival and aggressiveness, making intervention of cancer-associated rewiring of serine metabolism a promising therapeutic strategy for cancer treatment. Beyond providing methyl donors for methylation in modulation of innate immunity, serine metabolism generates formyl donors for mitochondrial tRNA formylation which is required for mitochondrial function. Interestingly, fully developed neurons lack the machinery for serine biosynthesis and rely heavily on astrocytic l-serine for production of d-serine to shape synaptic plasticity. Here, we recapitulate recent discoveries that address the medical significance of serine and serine metabolism in malignancies, mitochondrial-associated disorders, and neurodegenerative pathologies. Metabolic control and epigenetic- and posttranslational regulation of serine metabolism are also discussed. Given the metabolic similarities between cancer cells, neurons and germ cells, we further propose the relevance of serine metabolism in testicular homeostasis. Our work provides valuable hints for future investigations that will lead to a deeper understanding of serine and serine metabolism in cellular physiology and pathology.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat 10340, Indonesia
| | | | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
9
|
Tsilingiris D, Vallianou NG, Spyrou N, Kounatidis D, Christodoulatos GS, Karampela I, Dalamaga M. Obesity and Leukemia: Biological Mechanisms, Perspectives, and Challenges. Curr Obes Rep 2024; 13:1-34. [PMID: 38159164 PMCID: PMC10933194 DOI: 10.1007/s13679-023-00542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW To examine the epidemiological data on obesity and leukemia; evaluate the effect of obesity on leukemia outcomes in childhood acute lymphoblastic leukemia (ALL) survivors; assess the potential mechanisms through which obesity may increase the risk of leukemia; and provide the effects of obesity management on leukemia. Preventive (diet, physical exercise, obesity pharmacotherapy, bariatric surgery) measures, repurposing drugs, candidate therapeutic agents targeting oncogenic pathways of obesity and insulin resistance in leukemia as well as challenges of the COVID-19 pandemic are also discussed. RECENT FINDINGS Obesity has been implicated in the development of 13 cancers, such as breast, endometrial, colon, renal, esophageal cancers, and multiple myeloma. Leukemia is estimated to account for approximately 2.5% and 3.1% of all new cancer incidence and mortality, respectively, while it represents the most frequent cancer in children younger than 5 years. Current evidence indicates that obesity may have an impact on the risk of leukemia. Increased birthweight may be associated with the development of childhood leukemia. Obesity is also associated with worse outcomes and increased mortality in leukemic patients. However, there are several limitations and challenges in meta-analyses and epidemiological studies. In addition, weight gain may occur in a substantial number of childhood ALL survivors while the majority of studies have documented an increased risk of relapse and mortality among patients with childhood ALL and obesity. The main pathophysiological pathways linking obesity to leukemia include bone marrow adipose tissue; hormones such as insulin and the insulin-like growth factor system as well as sex hormones; pro-inflammatory cytokines, such as IL-6 and TNF-α; adipocytokines, such as adiponectin, leptin, resistin, and visfatin; dyslipidemia and lipid signaling; chronic low-grade inflammation and oxidative stress; and other emerging mechanisms. Obesity represents a risk factor for leukemia, being among the only known risk factors that could be prevented or modified through weight loss, healthy diet, and physical exercise. Pharmacological interventions, repurposing drugs used for cardiometabolic comorbidities, and bariatric surgery may be recommended for leukemia and obesity-related cancer prevention.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Dragana, 68100, Alexandroupolis, Greece
| | - Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | - Nikolaos Spyrou
- Tisch Cancer Institute Icahn School of Medicine at Mount Sinai, 1190 One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Dimitris Kounatidis
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | | | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Str, 12462, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str, 11527, Athens, Greece.
| |
Collapse
|
10
|
Bakhtiyari M, Liaghat M, Aziziyan F, Shapourian H, Yahyazadeh S, Alipour M, Shahveh S, Maleki-Sheikhabadi F, Halimi H, Forghaniesfidvajani R, Zalpoor H, Nabi-Afjadi M, Pornour M. The role of bone marrow microenvironment (BMM) cells in acute myeloid leukemia (AML) progression: immune checkpoints, metabolic checkpoints, and signaling pathways. Cell Commun Signal 2023; 21:252. [PMID: 37735675 PMCID: PMC10512514 DOI: 10.1186/s12964-023-01282-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
Acute myeloid leukemia (AML) comprises a multifarious and heterogeneous array of illnesses characterized by the anomalous proliferation of myeloid cells in the bone marrow microenvironment (BMM). The BMM plays a pivotal role in promoting AML progression, angiogenesis, and metastasis. The immune checkpoints (ICs) and metabolic processes are the key players in this process. In this review, we delineate the metabolic and immune checkpoint characteristics of the AML BMM, with a focus on the roles of BMM cells e.g. tumor-associated macrophages, natural killer cells, dendritic cells, metabolic profiles and related signaling pathways. We also discuss the signaling pathways stimulated in AML cells by BMM factors that lead to AML progression. We then delve into the roles of immune checkpoints in AML angiogenesis, metastasis, and cell proliferation, including co-stimulatory and inhibitory ICs. Lastly, we discuss the potential therapeutic approaches and future directions for AML treatment, emphasizing the potential of targeting metabolic and immune checkpoints in AML BMM as prognostic and therapeutic targets. In conclusion, the modulation of these processes through the use of directed drugs opens up new promising avenues in combating AML. Thereby, a comprehensive elucidation of the significance of these AML BMM cells' metabolic and immune checkpoints and signaling pathways on leukemic cells can be undertaken in the future investigations. Additionally, these checkpoints and cells should be considered plausible multi-targeted therapies for AML in combination with other conventional treatments in AML. Video Abstract.
Collapse
Affiliation(s)
- Maryam Bakhtiyari
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mahsa Liaghat
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hooriyeh Shapourian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Alipour
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Shaghayegh Shahveh
- American Association of Naturopath Physician (AANP), Washington, DC, USA
| | - Fahimeh Maleki-Sheikhabadi
- Department of Hematology and Blood Banking, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Halimi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razieh Forghaniesfidvajani
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Majid Pornour
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA.
| |
Collapse
|
11
|
Park MN. The Therapeutic Potential of a Strategy to Prevent Acute Myeloid Leukemia Stem Cell Reprogramming in Older Patients. Int J Mol Sci 2023; 24:12037. [PMID: 37569414 PMCID: PMC10418941 DOI: 10.3390/ijms241512037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common and incurable leukemia subtype. Despite extensive research into the disease's intricate molecular mechanisms, effective treatments or expanded diagnostic or prognostic markers for AML have not yet been identified. The morphological, immunophenotypic, cytogenetic, biomolecular, and clinical characteristics of AML patients are extensive and complex. Leukemia stem cells (LSCs) consist of hematopoietic stem cells (HSCs) and cancer cells transformed by a complex, finely-tuned interaction that causes the complexity of AML. Microenvironmental regulation of LSCs dormancy and the diagnostic and therapeutic implications for identifying and targeting LSCs due to their significance in the pathogenesis of AML are discussed in this review. It is essential to perceive the relationship between the niche for LSCs and HSCs, which together cause the progression of AML. Notably, methylation is a well-known epigenetic change that is significant in AML, and our data also reveal that microRNAs are a unique factor for LSCs. Multiple-targeted approaches to reduce the risk of epigenetic factors, such as the administration of natural compounds for the elimination of local LSCs, may prevent potentially fatal relapses. Furthermore, the survival analysis of overlapping genes revealed that specific targets had significant effects on the survival and prognosis of patients. We predict that the multiple-targeted effects of herbal products on epigenetic modification are governed by different mechanisms in AML and could prevent potentially fatal relapses. Thus, these strategies can facilitate the incorporation of herbal medicine and natural compounds into the advanced drug discovery and development processes achievable with Network Pharmacology research.
Collapse
Affiliation(s)
- Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| |
Collapse
|
12
|
Arévalo CM, Cruz-Rodriguez N, Quijano S, Fiorentino S. Plant-derived extracts and metabolic modulation in leukemia: a promising approach to overcome treatment resistance. Front Mol Biosci 2023; 10:1229760. [PMID: 37520325 PMCID: PMC10382028 DOI: 10.3389/fmolb.2023.1229760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Leukemic cells acquire complex and often multifactorial mechanisms of resistance to treatment, including various metabolic alterations. Although the use of metabolic modulators has been proposed for several decades, their use in clinical practice has not been established. Natural products, the so-called botanical drugs, are capable of regulating tumor metabolism, particularly in hematopoietic tumors, which could partly explain the biological activity attributed to them for a long time. This review addresses the most recent findings relating to metabolic reprogramming-Mainly in the glycolytic pathway and mitochondrial activity-Of leukemic cells and its role in the generation of resistance to conventional treatments, the modulation of the tumor microenvironment, and the evasion of immune response. In turn, it describes how the modulation of metabolism by plant-derived extracts can counteract resistance to chemotherapy in this tumor model and contribute to the activation of the antitumor immune system.
Collapse
Affiliation(s)
- Cindy Mayerli Arévalo
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Sandra Quijano
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
13
|
Deng S, Du J, Gale RP, Wang L, Zhan H, Liu F, Huang K, Xu H, Zeng H. Glucose partitioning in the bone marrow micro-environment in acute myeloid leukaemia. Leukemia 2023; 37:1407-1412. [PMID: 37120691 DOI: 10.1038/s41375-023-01912-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Acute myeloid leukaemia (AML) cells metabolise glucose by glycolysis-based re-programming. However, how glucose uptake is partitioned between leukaemia cells and other cells of the bone marrow micro-environment is unstudied. We used a positron emission tomography (PET) tracer 18F fluorodeoxyglucose ([18F]-FDG) probe and transcriptomic analyses to detect glucose uptake by diverse cells in the bone marrow micro-environment in a MLL-AF9-induced mouse model. Leukaemia cells had the greatest glucose uptake with leukaemia stem and progenitor cells having the greatest glucose uptake. We also show the effects of anti-leukaemia drugs on leukaemia cell numbers and glucose uptake. Our data suggest targeting glucose uptake as a potential therapy strategy in AML if our observations are validated in humans with AML.
Collapse
Affiliation(s)
- Suqi Deng
- Department of Hematology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Juan Du
- Department of Hematology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Robert Peter Gale
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College of Science, Technology and Medicine, London, SW7 2BX, UK
| | - Lu Wang
- Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Huien Zhan
- Department of Hematology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Fangshu Liu
- Department of Hematology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Kexiu Huang
- Department of Hematology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Hao Xu
- Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Hui Zeng
- Department of Hematology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
14
|
Effenberger M, Waschina S, Bronowski C, Sturm G, Tassiello O, Sommer F, Zollner A, Watschinger C, Grabherr F, Gstir R, Grander C, Enrich B, Bale R, Putzer D, Djanani A, Moschen AR, Zoller H, Rupp J, Schreiber S, Burcelin R, Lass-Flörl C, Trajanoski Z, Oberhuber G, Rosenstiel P, Adolph TE, Aden K, Tilg H. A gut bacterial signature in blood and liver tissue characterizes cirrhosis and hepatocellular carcinoma. Hepatol Commun 2023; 7:e00182. [PMID: 37314752 DOI: 10.1097/hc9.0000000000000182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/18/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND HCC is the leading cause of cancer in chronic liver disease. A growing body of experimental mouse models supports the notion that gut-resident and liver-resident microbes control hepatic immune responses and, thereby, crucially contribute to liver tumorigenesis. However, a comprehensive characterization of the intestinal microbiome in fueling the transition from chronic liver disease to HCC in humans is currently missing. METHODS Here, we profiled the fecal, blood, and liver tissue microbiome of patients with HCC by 16S rRNA sequencing and compared profiles to nonmalignant cirrhotic and noncirrhotic NAFLD patients. RESULTS We report a distinct bacterial profile, defined from 16S rRNA gene sequences, with reduced α-and β-diversity in the feces of patients with HCC and cirrhosis compared to NAFLD. Patients with HCC and cirrhosis exhibited an increased proportion of fecal bacterial gene signatures in the blood and liver compared to NAFLD. Differential analysis of the relative abundance of bacterial genera identified an increased abundance of Ruminococcaceae and Bacteroidaceae in blood and liver tissue from both HCC and cirrhosis patients compared to NAFLD. Fecal samples from cirrhosis and HCC patients both showed a reduced abundance for several taxa, including short-chain fatty acid-producing genera, such as Blautia and Agathobacter. Using paired 16S rRNA and transcriptome sequencing, we identified a direct association between gut bacterial genus abundance and host transcriptome response within the liver tissue. CONCLUSIONS Our study indicates perturbations of the intestinal and liver-resident microbiome as a critical determinant of patients with cirrhosis and HCC.
Collapse
Affiliation(s)
- Maria Effenberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Silvio Waschina
- Institute for Human Nutrition and Food Science, Division of Nutriinformatics, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christina Bronowski
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Oronzo Tassiello
- Institute for Human Nutrition and Food Science, Division of Nutriinformatics, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Felix Sommer
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Andreas Zollner
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Christina Watschinger
- Department of Internal Medicine I, Gastroenterology, Nephrology, Metabolism & Endocrinology, Johannes Kepler University, Linz, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Ronald Gstir
- Institute of Hygiene and Medical Microbiology, ECMM, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Enrich
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Reto Bale
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniel Putzer
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Angela Djanani
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander R Moschen
- Department of Internal Medicine I, Gastroenterology, Nephrology, Metabolism & Endocrinology, Johannes Kepler University, Linz, Austria
- Christian Doppler Laboratory for Mucosal Immunology, Johannes Kepler University, Linz, Austria
| | - Heinz Zoller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Remy Burcelin
- INSERM 1297 and University Paul Sabatier: Institut des Maladies Métaboliques et Cardiovasculaires, France and Université Paul Sabatier, Toulouse, France
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, ECMM, Medical University of Innsbruck, Innsbruck, Austria
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Oberhuber
- INNPATH, Institute of Pathology, University Hospital of Innsbruck, Innsbruck, Austria
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
15
|
Saulle E, Spinello I, Quaranta MT, Labbaye C. Advances in Understanding the Links between Metabolism and Autophagy in Acute Myeloid Leukemia: From Biology to Therapeutic Targeting. Cells 2023; 12:1553. [PMID: 37296673 PMCID: PMC10252746 DOI: 10.3390/cells12111553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Autophagy is a highly conserved cellular degradation process that regulates cellular metabolism and homeostasis under normal and pathophysiological conditions. Autophagy and metabolism are linked in the hematopoietic system, playing a fundamental role in the self-renewal, survival, and differentiation of hematopoietic stem and progenitor cells, and in cell death, particularly affecting the cellular fate of the hematopoietic stem cell pool. In leukemia, autophagy sustains leukemic cell growth, contributes to survival of leukemic stem cells and chemotherapy resistance. The high frequency of disease relapse caused by relapse-initiating leukemic cells resistant to therapy occurs in acute myeloid leukemia (AML), and depends on the AML subtypes and treatments used. Targeting autophagy may represent a promising strategy to overcome therapeutic resistance in AML, for which prognosis remains poor. In this review, we illustrate the role of autophagy and the impact of its deregulation on the metabolism of normal and leukemic hematopoietic cells. We report updates on the contribution of autophagy to AML development and relapse, and the latest evidence indicating autophagy-related genes as potential prognostic predictors and drivers of AML. We review the recent advances in autophagy manipulation, combined with various anti-leukemia therapies, for an effective autophagy-targeted therapy for AML.
Collapse
Affiliation(s)
- Ernestina Saulle
- Correspondence: (E.S.); (C.L.); Tel.: +39-0649902422 (E.S.); +39-0649902418 (C.L.)
| | | | | | - Catherine Labbaye
- Correspondence: (E.S.); (C.L.); Tel.: +39-0649902422 (E.S.); +39-0649902418 (C.L.)
| |
Collapse
|
16
|
Rattigan KM, Zarou MM, Helgason GV. Metabolism in stem cell-driven leukemia: parallels between hematopoiesis and immunity. Blood 2023; 141:2553-2565. [PMID: 36634302 PMCID: PMC10646800 DOI: 10.1182/blood.2022018258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Our understanding of cancer metabolism spans from its role in cellular energetics and supplying the building blocks necessary for proliferation, to maintaining cellular redox and regulating the cellular epigenome and transcriptome. Cancer metabolism, once thought to be solely driven by upregulated glycolysis, is now known to comprise multiple pathways with great plasticity in response to extrinsic challenges. Furthermore, cancer cells can modify their surrounding niche during disease initiation, maintenance, and metastasis, thereby contributing to therapy resistance. Leukemia is a paradigm model of stem cell-driven cancer. In this study, we review how leukemia remodels the niche and rewires its metabolism, with particular attention paid to therapy-resistant stem cells. Specifically, we aim to give a global, nonexhaustive overview of key metabolic pathways. By contrasting the metabolic rewiring required by myeloid-leukemic stem cells with that required for hematopoiesis and immune cell function, we highlight the metabolic features they share. This is a critical consideration when contemplating anticancer metabolic inhibitor options, especially in the context of anticancer immune therapies. Finally, we examine pathways that have not been studied in leukemia but are critical in solid cancers in the context of metastasis and interaction with new niches. These studies also offer detailed mechanisms that are yet to be investigated in leukemia. Given that cancer (and normal) cells can meet their energy requirements by not only upregulating metabolic pathways but also utilizing systemically available substrates, we aim to inform how interlinked these metabolic pathways are, both within leukemic cells and between cancer cells and their niche.
Collapse
Affiliation(s)
- Kevin M. Rattigan
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Martha M. Zarou
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - G. Vignir Helgason
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
17
|
Zhu Y, Yang Q, Yang Q, He Y, Zhou W. Intestinal Microbes and Hematological Malignancies. Cancers (Basel) 2023; 15:cancers15082284. [PMID: 37190210 DOI: 10.3390/cancers15082284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Hematological malignancies are diverse, with high malignancy characteristics, poor prognoses, and high mortality rates. The development of hematological malignancies is driven by genetic factors, tumor microenvironment factors, or metabolic factors; however, even when considering all of these factors, one still cannot fully estimate the risk of hematological malignancies. Several recent studies have demonstrated an intimate connection between intestinal microbes and the progression of hematological malignancies, and gut microbes play a primary role in the initiation and progression of hematological tumors through direct and indirect mechanisms. Thus, we summarize the correlation between intestinal microbes and hematological malignancies' onset, progression, and therapeutic effect in order to better understand how intestinal microbes affect their initiation and progression, especially in leukemia, lymphoma, and multiple myeloma, which may provide potential therapeutic targets for improving the survival of patients with hematological malignancies.
Collapse
Affiliation(s)
- Yinghong Zhu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410008, China
| | - Qiaohui Yang
- NHC Key Laboratory of Human Stem and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410205, China
| | - Qin Yang
- Department of Hematology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yanjuan He
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wen Zhou
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410008, China
| |
Collapse
|
18
|
Zhao Z, Zhou S, Tang Y, Zhou L, Ji H, Tang Z, Dai R. Impact of age on short-term outcomes after pancreaticoduodenectomy: A retrospective case-control study of 260 patients. Front Surg 2023; 10:1031409. [PMID: 37066018 PMCID: PMC10097935 DOI: 10.3389/fsurg.2023.1031409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundAlthough the increase of perioperative complications in the elderly undergoing pancreaticoduodenectomy (PD) surgery has been recognized, the definition of the “old patient” of PD in the studies is different and there is no accepted cut-off value at present.Methods279 consecutive patients who have undergone PD in our center between January 2012 and May 2020 were analyzed. Demographic features, clinical-pathological data and short-term outcomes were collected. The patients were divided into two groups, and the cut-off value (62.5 years) is picked based on the highest Youden Index. Primary endpoints were perioperative morbidity and mortality, and complications were classified according to the Clavien-Dindo Score.ResultsA total of 260 patients with PD were included in this study. Postoperative pathology confirmed pancreatic tumors in 62 patients, bile duct tumor in 105, duodenal tumor in 90, and others in 3. Age (OR = 1.09, P < 0.01), and albumin (OR = 0.34, P < 0.05) were significantly correlated with postoperative Clavien-Dindo Score ≥3b. There were 173 (66.5%) patients in the younger group (<62.5 years) and 87 (33.5%) in the elderly group (≥62.5 years). Significant difference between two groups was demonstrated for Clavien-Dindo Score ≥3b (P < 0.01), postoperative pancreatic fistula (P < 0.05), and perioperative deceases (P < 0.05).ConclusionsAge and albumin were significantly correlated with postoperative Clavien-Dindo Score ≥3b, and there was no significant difference in predicting the grade of Clavien-Dindo Score. The cut-off value of elderly patients with PD was 62.5 years old and there were useful in predicting Clavien-Dindo Score ≥3b, pancreatic fistula, and perioperative death.
Collapse
Affiliation(s)
- Zhirong Zhao
- Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, China
- General Surgery Center, General Hospital of Western Theater Command, Chengdu, China
| | - Shibo Zhou
- General Surgery Center, General Hospital of Western Theater Command, Chengdu, China
- College of Clinical MedicineSouthwest Medical University, Luzhou, China
| | - Yaping Tang
- Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, China
- General Surgery Center, General Hospital of Western Theater Command, Chengdu, China
| | - Lichen Zhou
- General Surgery Center, General Hospital of Western Theater Command, Chengdu, China
- College of Clinical MedicineSouthwest Medical University, Luzhou, China
| | - Hua Ji
- General Surgery Center, General Hospital of Western Theater Command, Chengdu, China
- College of Clinical MedicineSouthwest Medical University, Luzhou, China
| | - Zheng Tang
- General Surgery Center, General Hospital of Western Theater Command, Chengdu, China
- College of Clinical MedicineSouthwest Medical University, Luzhou, China
| | - Ruiwu Dai
- Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, China
- General Surgery Center, General Hospital of Western Theater Command, Chengdu, China
- College of Clinical MedicineSouthwest Medical University, Luzhou, China
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, General Hospital of Western Theater Command, Chengdu, China
- Correspondence: Dai Ruiwu
| |
Collapse
|
19
|
Chianese U, Papulino C, Megchelenbrink W, Tambaro FP, Ciardiello F, Benedetti R, Altucci L. Epigenomic machinery regulating pediatric AML: clonal expansion mechanisms, therapies, and future perspectives. Semin Cancer Biol 2023; 92:84-101. [PMID: 37003397 DOI: 10.1016/j.semcancer.2023.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/07/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with a genetic, epigenetic, and transcriptional etiology mainly presenting somatic and germline abnormalities. AML incidence rises with age but can also occur during childhood. Pediatric AML (pAML) accounts for 15-20% of all pediatric leukemias and differs considerably from adult AML. Next-generation sequencing technologies have enabled the research community to "paint" the genomic and epigenomic landscape in order to identify pathology-associated mutations and other prognostic biomarkers in pAML. Although current treatments have improved the prognosis for pAML, chemoresistance, recurrence, and refractory disease remain major challenges. In particular, pAML relapse is commonly caused by leukemia stem cells that resist therapy. Marked patient-to-patient heterogeneity is likely the primary reason why the same treatment is successful for some patients but, at best, only partially effective for others. Accumulating evidence indicates that patient-specific clonal composition impinges significantly on cellular processes, such as gene regulation and metabolism. Although our understanding of metabolism in pAML is still in its infancy, greater insights into these processes and their (epigenetic) modulation may pave the way toward novel treatment options. In this review, we summarize current knowledge on the function of genetic and epigenetic (mis)regulation in pAML, including metabolic features observed in the disease. Specifically, we describe how (epi)genetic machinery can affect chromatin status during hematopoiesis, leading to an altered metabolic profile, and focus on the potential value of targeting epigenetic abnormalities in precision and combination therapy for pAML. We also discuss the possibility of using alternative epidrug-based therapeutic approaches that are already in clinical practice, either alone as adjuvant treatments and/or in combination with other drugs.
Collapse
Affiliation(s)
- Ugo Chianese
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Chiara Papulino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Wout Megchelenbrink
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; Princess Máxima Center, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands.
| | - Francesco Paolo Tambaro
- Bone Marrow Transplant Unit, Pediatric Oncology Department AORN Santobono Pausilipon, 80129, Naples Italy.
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; Biogem Institute of Molecular and Genetic Biology, 83031 Ariano Irpino, Italy; IEOS, Institute for Endocrinology and Oncology "Gaetano Salvatore" (IEOS), 80131 Naples, Italy.
| |
Collapse
|
20
|
Wang Y, Xing L, Deng L, Wang X, Xu D, Wang B, Zhang Z. Clinical Characterization of the Expression of Insulin-Like Growth Factor Binding Protein 1 and Tumor Immunosuppression Caused by Ferroptosis of Neutrophils in Non-Small Cell Lung Cancer. Int J Gen Med 2023; 16:997-1015. [PMID: 36974063 PMCID: PMC10039630 DOI: 10.2147/ijgm.s401225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
Purpose The efficacy of immunotherapy for non-small cell lung cancer (NSCLC) is limited owing to cold tumors and drug resistance. Therefore, it is important to identify the molecular mechanisms underlying immune evasion in NSCLC. Spontaneous ferroptosis of neutrophils has been suggested as a key mechanism of immunosuppression in cancer. Insulin-like growth factor binding protein 1 (IGFBP1) plays an important role in immune infiltration in several cancers. However, the role of IGFBP1 in NSCLC is unknown. Therefore, in this study, we aimed to investigate the association of IGFBP1 mRNA expression with infiltration of myeloid-derived suppressor cells and prognosis in NSCLC. Patients and Methods Retrospective RNA-seq data from 990 patients in the Cancer Genome Atlas (TCGA) database were analyzed in relation to patient clinical characteristics. The Timer2 database was used to assess immune infiltration, and the FerrDb V2 database was used to obtain ferroptosis-related genes. Finally, the results were validated by the proteomic analysis of serum samples collected from six patients with NSCLC and six healthy individuals. Results IGFBP1 expression was enriched in lung adenocarcinoma samples and positively correlated with the pathological grade of NSCLC. IGFBP1 expression was an independent prognostic factor for the overall survival of patients with NSCLC. In addition, IGFBP1 expression correlated with myeloid-derived suppressor cell infiltration. Notably, Gene Ontology analysis of IGFBP1-related genes revealed that the major molecular functions of their protein products were related to NADP+ 1-oxidoreductase activity. Furthermore, expression levels of multiple ferroptosis suppressor genes positively correlated with IGFBP1 expression. Conclusion High IGFBP1 expression indicates a poor prognosis in patients with NSCLC, which may be related to tumor immunosuppression caused by neutrophil ferroptosis.
Collapse
Affiliation(s)
- Yuandi Wang
- Graduate School, Hebei North University, Zhangjiakou City, Hebei Province, People’s Republic of China
- Department of Respiratory and Critical Care Clinical Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, People’s Republic of China
| | - Lijuan Xing
- Department of Respiratory and Critical Care Clinical Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, People’s Republic of China
| | - Lexiu Deng
- Graduate School, Hebei North University, Zhangjiakou City, Hebei Province, People’s Republic of China
- Department of Respiratory and Critical Care Clinical Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, People’s Republic of China
| | - Xinsheng Wang
- Department of Respiratory and Critical Care Clinical Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, People’s Republic of China
| | - Dandan Xu
- Department of Respiratory and Critical Care Clinical Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, People’s Republic of China
| | - Bu Wang
- Department of Respiratory and Critical Care Clinical Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, People’s Republic of China
| | - Zhihua Zhang
- Department of Respiratory and Critical Care Clinical Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, People’s Republic of China
- Correspondence: Zhihua Zhang, Department of Respiratory and Critical Care Clinical Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, People’s Republic of China, Tel +86 0313 8033598, Email
| |
Collapse
|
21
|
Saultz JN, Tyner JW. Chasing leukemia differentiation through induction therapy, relapse and transplantation. Blood Rev 2023; 57:101000. [PMID: 36041918 DOI: 10.1016/j.blre.2022.101000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/23/2022] [Accepted: 08/09/2022] [Indexed: 01/28/2023]
Abstract
Despite rapid advances in our understanding of acute myeloid leukemia (AML), the disease remains challenging to treat with 5-year survival for adult patients 20 years or older estimated to be 26% (Cancer 2021). The use of new targeted therapies including BCL2, IDH1/IDH2, and FLT3 inhibitors has revolutionized treatment approaches but also changed the disease trajectory with unique modes of resistance. Recent studies have shown that stem cell maturation state drives expression level and/or dependence on various pathways, critical to determining drug response. Instead of anticipating these changes, we remain behind the curve chasing the next expanded clone. This review will focus on current approaches to treatment in AML, including defining the significance of blast differentiation state on chemotherapeutic response, signaling pathway dependence, metabolism, immune response, and phenotypic changes. We conclude that multimodal treatment approaches are necessary to target both the immature and mature clones, thereby, sustaining drug response.
Collapse
Affiliation(s)
- Jennifer N Saultz
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States of America; Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, United States of America.
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States of America; Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, United States of America; Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States of America
| |
Collapse
|
22
|
Zeng X, Wang YP, Man CH. Metabolism in Hematopoiesis and Its Malignancy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:45-64. [PMID: 38228958 DOI: 10.1007/978-981-99-7471-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hematopoietic stem cells (HSCs) are multipotent stem cells that can self-renew and generate all blood cells of different lineages. The system is under tight control in order to maintain a precise equilibrium of the HSC pool and the effective production of mature blood cells to support various biological activities. Cell metabolism can regulate different molecular activities, such as epigenetic modification and cell cycle regulation, and subsequently affects the function and maintenance of HSC. Upon malignant transformation, oncogenic drivers in malignant hematopoietic cells can remodel the metabolic pathways for supporting the oncogenic growth. The dysregulation of metabolism results in oncogene addiction, implying the development of malignancy-specific metabolism-targeted therapy. In this chapter, we will discuss the significance of different metabolic pathways in hematopoiesis, specifically, the distinctive metabolic dependency in hematopoietic malignancies and potential metabolic therapy.
Collapse
Affiliation(s)
- Xiaoyuan Zeng
- Division of Haematology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yi-Ping Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Cheuk-Him Man
- Division of Haematology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
23
|
Zhou H, Zhuang W, Huang H, Ma N, Lei J, Jin G, Wu S, Zhou S, Zhao X, Lan L, Xia H, Shangguan F. Effects of natural 24-epibrassinolide on inducing apoptosis and restricting metabolism in hepatocarcinoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154428. [PMID: 36115171 DOI: 10.1016/j.phymed.2022.154428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND 24-epibrassinolide (EBR) is a ubiquitous steroidal phytohormone with anticancer activity. Yet the cytotoxic effects and mechanism of EBR on hepatocarcinoma (HCC) cells remain elusive. METHODS Cell counting kit-8 (CCK-8) assay was performed to evaluate cell viability. Real-time cell analysis (RTCA) technology and colony formation assays were used to evaluate cell proliferation. The apoptosis ratio was measured by flow cytometry. Seahorse XFe96 was applied to detect the effects of EBR on cellular bioenergetics. RNA-seq analysis was performed to investigate differences in gene expression profiles. Western blot and qRT-PCR were used to detect the changes in target molecules. RESULTS EBR induced apoptosis and caused energy restriction in HCC, both of which were related to insulin-like growth factor-binding protein 1 (IGFBP1). EBR rapidly and massively induced IGBFP1, part of which was transcribed by activating transcription factor-4 (ATF4). The accumulation of secreted and cellular IGFBP1 had different important roles, in which secreted IGFBP1 affected cell energy metabolism by inhibiting the phosphorylation of Akt, while intracellular IGFBP1 acted as a pro-survival factor to resist apoptosis. Interestingly, the extracellular signal-regulated kinase (ERK) inhibitor SCH772984 and MAP/ERK kinase (MEK) inhibitor PD98059 not only attenuated the EBR-induced IGFBP1 expression but also the basal expression of IGFBP1. Thus, the treatment of cells with these inhibitors further enhances the cytotoxicity of EBR. CONCLUSION Taken together, these findings suggested that EBR can be considered as a potential therapeutic compound for HCC due to its pro-apoptosis, restriction of energy metabolism, and other anti-cancer properties. Meanwhile, the high expression of IGFBP1 induced by EBR in HCC contributes to our understanding of the role of IGFBP1 in drug resistance.
Collapse
Affiliation(s)
- Hongfei Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China
| | - Weiwei Zhuang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China; Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China
| | - Huimin Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China
| | - Nengfang Ma
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325006, China
| | - Jun Lei
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Guihua Jin
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China
| | - Shijia Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China
| | - Shipeng Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China
| | - Xingling Zhao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China
| | - Linhua Lan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China.
| | - Hongping Xia
- Department of Pathology in the School of Basic Medical Sciences & The Affiliated Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China.
| | - Fugen Shangguan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325006, China.
| |
Collapse
|
24
|
Deficiency of WTAP in hepatocytes induces lipoatrophy and non-alcoholic steatohepatitis (NASH). Nat Commun 2022; 13:4549. [PMID: 35927268 PMCID: PMC9352699 DOI: 10.1038/s41467-022-32163-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/18/2022] [Indexed: 01/18/2023] Open
Abstract
Ectopic lipid accumulation and inflammation are the essential signs of NASH. However, the molecular mechanisms of ectopic lipid accumulation and inflammation during NASH progression are not fully understood. Here we reported that hepatic Wilms' tumor 1-associating protein (WTAP) is a key integrative regulator of ectopic lipid accumulation and inflammation during NASH progression. Hepatic deletion of Wtap leads to NASH due to the increased lipolysis in white adipose tissue, enhanced hepatic free fatty acids uptake and induced inflammation, all of which are mediated by IGFBP1, CD36 and cytochemokines such as CCL2, respectively. WTAP binds to specific DNA motifs which are enriched in the promoters and suppresses gene expression (e.g., Igfbp1, Cd36 and Ccl2) with the involvement of HDAC1. In NASH, WTAP is tranlocated from nucleus to cytosol, which is related to CDK9-mediated phosphorylation. These data uncover a mechanism by which hepatic WTAP regulates ectopic lipid accumulation and inflammation during NASH progression. Ectopic lipid accumulation and inflammation are the essential signs of NASH. Here, the authors show that hepatic WTAP is a key integrative repressor of ectopic lipid accumulation and inflammation during NASH progression, and hepatic deletion of Wtap promotes both of them, leading to NASH
Collapse
|
25
|
Zhang Z, Xiahou Z, Wu W, Song Y. Nitrogen Metabolism Disorder Accelerates Occurrence and Development of Lung Adenocarcinoma: A Bioinformatic Analysis and In Vitro Experiments. Front Oncol 2022; 12:916777. [PMID: 35903696 PMCID: PMC9315097 DOI: 10.3389/fonc.2022.916777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
Background Nitrogen metabolism (NM) plays a pivotal role in immune regulation and the occurrence and development of cancers. The aim of this study was to construct a prognostic model and nomogram using NM-related genes for the evaluation of patients with lung adenocarcinoma (LUAD). Methods The differentially expressed genes (DEGs) related to NM were acquired from The Cancer Genome Atlas (TCGA) database. Consistent clustering analysis was used to divide them into different modules, and differentially expressed genes and survival analysis were performed. The survival information of patients was combined with the expressing levels of NM-related genes that extracted from TCGA and Gene Expression Omnibus (GEO) databases. Subsequently, univariate Cox analysis and the least absolute shrinkage and selection operator (LASSO) regression were used to build a prognostic model. GO and KEGG analysis were elaborated in relation with the mechanisms of NM disorder (NMD). Meanwhile, immune cells and immune functions related to NMD were discussed. A nomogram was built according to the univariate and multivariate Cox analysis to identify independent risk factors. Finally, real-time fluorescent quantitative PCR (RT-PCR) and Western bolt (WB) were used to verify the expression level of hub genes. Results There were 138 differential NM-related genes that were divided into two gene modules. Sixteen NM-related genes were used to build a prognostic model and the receiver operating characteristic curve (ROC) showed that the efficiency was reliable. GO and KEGG analysis suggested that NMD accelerated development of LUAD through the Wnt signaling pathway. The level of activated dendritic cells (aDCs) and type II interferon response in the low-risk group was higher than that of the high-risk group. A nomogram was constructed based on ABCC2, HMGA2, and TN stages, which was identified as four independent risk factors. Finally, RT-PCR and WB showed that CDH17, IGF2BP1, IGFBP1, ABCC2, and HMGA2 were differently expressed between human lung fibroblast (HLF) cells and cancer cells. Conclusions High NM levels were revealed as a poor prognosis of LUAD. NMD regulates immune system through affecting aDCs and type II interferon response. The prognostic model with NM-related genes could be used to effectively evaluate the outcomes of patients.
Collapse
Affiliation(s)
- Zexin Zhang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhikai Xiahou
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Wenfeng Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yafeng Song
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
- *Correspondence: Yafeng Song,
| |
Collapse
|
26
|
Banella C, Catalano G, Travaglini S, Pelosi E, Ottone T, Zaza A, Guerrera G, Angelini DF, Niscola P, Divona M, Battistini L, Screnci M, Ammatuna E, Testa U, Nervi C, Voso MT, Noguera NI. Ascorbate Plus Buformin in AML: A Metabolic Targeted Treatment. Cancers (Basel) 2022; 14:cancers14102565. [PMID: 35626170 PMCID: PMC9139619 DOI: 10.3390/cancers14102565] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Acute Myeloid Leukemias (AMLs) are rapidly progressive clonal neoplastic diseases. The overall 5-year survival rate is very poor: less than 5% in older patients aged over 65 years old. Elderly AML patients are often “unfit” for intensive chemotherapy, further highlighting the need of highly effective, well-tolerated new treatment options for AMLs. Growing evidence indicates that AML blasts feature a highly diverse and flexible metabolism consistent with the aggressiveness of the disease. Based on these evidences, we targeted the metabolic peculiarity and plasticity of AML cells with an association of ascorbate, which causes oxidative stress and interferes with hexokinase activity, and buformin, which completely shuts down mitochondrial contributions in ATP production. The ascorbate–buformin combination could be an innovative therapeutic option for elderly AML patients that are resistant to therapy. Abstract In the present study, we characterized the metabolic background of different Acute Myeloid Leukemias’ (AMLs) cells and described a heterogeneous and highly flexible energetic metabolism. Using the Seahorse XF Agilent, we compared the metabolism of normal hematopoietic progenitors with that of primary AML blasts and five different AML cell lines. We assessed the efficacy and mechanism of action of the association of high doses of ascorbate, a powerful oxidant, with the metabolic inhibitor buformin, which inhibits mitochondrial complex I and completely shuts down mitochondrial contributions in ATP production. Primary blasts from seventeen AML patients, assayed for annexin V and live/dead exclusion by flow cytometry, showed an increase in the apoptotic effect using the drug combination, as compared with ascorbate alone. We show that ascorbate inhibits glycolysis through interfering with HK1/2 and GLUT1 functions in hematopoietic cells. Ascorbate combined with buformin decreases mitochondrial respiration and ATP production and downregulates glycolysis, enhancing the apoptotic effect of ascorbate in primary blasts from AMLs and sparing normal CD34+ bone marrow progenitors. In conclusion, our data have therapeutic implications especially in fragile patients since both agents have an excellent safety profile, and the data also support the clinical evaluation of ascorbate–buformin in association with different mechanism drugs for the treatment of refractory/relapsing AML patients with no other therapeutic options.
Collapse
Affiliation(s)
- Cristina Banella
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Health Sciences, Meyer Children’s University Hospital, 50139 Florence, Italy
| | - Gianfranco Catalano
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Serena Travaglini
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.P.); (U.T.)
| | - Tiziana Ottone
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Alessandra Zaza
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Gisella Guerrera
- Neuroimmunology and Flow Cytometry Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (G.G.); (D.F.A.); (L.B.)
| | - Daniela Francesca Angelini
- Neuroimmunology and Flow Cytometry Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (G.G.); (D.F.A.); (L.B.)
| | - Pasquale Niscola
- Hematology Unit, Saint’ Eugenio Hospital, University of Rome Tor Vergata, 00144 Rome, Italy;
| | | | - Luca Battistini
- Neuroimmunology and Flow Cytometry Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (G.G.); (D.F.A.); (L.B.)
| | - Maria Screnci
- Banca Regionale Sangue Cordone Ombelicale UOC Immunoematologia e Medicina Trasfusionale, Policlinico Umberto I, 00161 Roma, Italy;
| | - Emanuele Ammatuna
- Department of Hematology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.P.); (U.T.)
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma La Sapienza, 04100 Latina, Italy;
| | - Maria Teresa Voso
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (M.T.V.); (N.I.N.); Tel.: +39-06-501-703-225 (N.I.N.)
| | - Nelida Ines Noguera
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy; (C.B.); (G.C.); (S.T.); (T.O.); (A.Z.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
- Correspondence: (M.T.V.); (N.I.N.); Tel.: +39-06-501-703-225 (N.I.N.)
| |
Collapse
|
27
|
Gut microbiota regulates acute myeloid leukaemia via alteration of intestinal barrier function mediated by butyrate. Nat Commun 2022; 13:2522. [PMID: 35534496 PMCID: PMC9085760 DOI: 10.1038/s41467-022-30240-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/20/2022] [Indexed: 01/16/2023] Open
Abstract
The gut microbiota has been linked to many cancers, yet its role in acute myeloid leukaemia (AML) progression remains unclear. Here, we show decreased diversity in the gut microbiota of AML patients or murine models. Gut microbiota dysbiosis induced by antibiotic treatment accelerates murine AML progression while faecal microbiota transplantation reverses this process. Butyrate produced by the gut microbiota (especially Faecalibacterium) significantly decreases in faeces of AML patients, while gavage with butyrate or Faecalibacterium postpones murine AML progression. Furthermore, we find the intestinal barrier is damaged in mice with AML, which accelerates lipopolysaccharide (LPS) leakage into the blood. The increased LPS exacerbates leukaemia progression in vitro and in vivo. Butyrate can repair intestinal barrier damage and inhibit LPS absorption in AML mice. Collectively, we demonstrate that the gut microbiota promotes AML progression in a metabolite-dependent manner and that targeting the gut microbiota might provide a therapeutic option for AML. The role of gut microbiota in acute myeloid leukaemia (AML) remains unclear. Here, the authors show disordered gut microbiota and reduced butyrate cause intestinal barrier damage in AML mice, with increased plasma LPS that accelerates AML progression.
Collapse
|
28
|
The interplay between anticancer challenges and the microbial communities from the gut. Eur J Clin Microbiol Infect Dis 2022; 41:691-711. [PMID: 35353280 DOI: 10.1007/s10096-022-04435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/15/2022] [Indexed: 11/03/2022]
Abstract
Cancer being an increasing burden on human health, the use of anticancer drugs has risen over the last decades. The physiological effects of these drugs are not only perceived by the host's cells but also by the microbial cells it harbors as commensals, notably the gut microbiota. Since the early '50 s, the cytotoxicity of anticancer chemotherapy was evaluated on bacteria revealing some antimicrobial activities that result in an established perturbation of the gut microbiota. This perturbation can affect the host's health through dysbiosis, which can lead to multiple complications, but has also been shown to have a direct effect on the treatment efficiency.We, therefore, conducted a review of literature focusing on this triangular relationship involving the microbial communities from the gut, the host's disease, and the anticancer treatment. We focused specifically on the antimicrobial effects of anticancer chemotherapy, their impact on mutagenesis in bacteria, and the perspectives of using bacteria-based tools to help in the diagnostic and treatment of cancer.
Collapse
|
29
|
Chakaroun R, Massier L, Musat N, Kovacs P. New Paradigms for Familiar Diseases: Lessons Learned on Circulatory Bacterial Signatures in Cardiometabolic Diseases. Exp Clin Endocrinol Diabetes 2022; 130:313-326. [PMID: 35320847 DOI: 10.1055/a-1756-4509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Despite the strongly accumulating evidence for microbial signatures in metabolic tissues, including the blood, suggesting a novel paradigm for metabolic disease development, the notion of a core blood bacterial signature in health and disease remains a contentious concept. Recent studies clearly demonstrate that under a strict contamination-free environment, methods such as 16 S rRNA gene sequencing, fluorescence in-situ hybridization, transmission electron microscopy, and several more, allied with advanced bioinformatics tools, allow unambiguous detection and quantification of bacteria and bacterial DNA in human tissues. Bacterial load and compositional changes in the blood have been reported for numerous disease states, suggesting that bacteria and their components may partially induce systemic inflammation in cardiometabolic disease. This concept has been so far primarily based on measurements of surrogate parameters. It is now highly desirable to translate the current knowledge into diagnostic, prognostic, and therapeutic approaches.This review addresses the potential clinical relevance of a blood bacterial signature pertinent to cardiometabolic diseases and outcomes and new avenues for translational approaches. It discusses pitfalls related to research in low bacterial biomass while proposing mitigation strategies for future research and application approaches.
Collapse
Affiliation(s)
- Rima Chakaroun
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.,Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, Sweden
| | - Lucas Massier
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.,Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.,Deutsches Zentrum für Diabetesforschung eV, Neuherberg, Germany
| |
Collapse
|
30
|
Long NA, Golla U, Sharma A, Claxton DF. Acute Myeloid Leukemia Stem Cells: Origin, Characteristics, and Clinical Implications. Stem Cell Rev Rep 2022; 18:1211-1226. [PMID: 35050458 PMCID: PMC10942736 DOI: 10.1007/s12015-021-10308-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2021] [Indexed: 02/06/2023]
Abstract
The stem cells of acute myeloid leukemia (AML) are the malignancy initiating cells whose survival ultimately drives growth of these lethal diseases. Here we review leukemia stem cell (LSC) biology, particularly as it relates to the very heterogeneous nature of AML and to its high disease relapse rate. Leukemia ontogeny is presented, and the defining functional and phenotypic features of LSCs are explored. Surface and metabolic phenotypes of these cells are described, particularly those that allow distinction from features of normal hematopoietic stem cells (HSCs). Opportunities for use of this information for improving therapy for this challenging group of diseases is highlighted, and we explore the clinical needs which may be addressed by emerging LSC data. Finally, we discuss current gaps in the scientific understanding of LSCs.
Collapse
Affiliation(s)
| | - Upendarrao Golla
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Arati Sharma
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - David F Claxton
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA.
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, USA.
- Division of Hematology and Oncology, Penn State Cancer Institute, Cancer Institute, Next-Generation Therapies, 500 University, Hershey, PA, 17033, USA.
| |
Collapse
|
31
|
Galán-Díez M, Borot F, Ali AM, Zhao J, Gil-Iturbe E, Shan X, Luo N, Liu Y, Huang XP, Bisikirska B, Labella R, Kurland I, Roth BL, Quick M, Mukherjee S, Rabadán R, Carroll M, Raza A, Kousteni S. Subversion of Serotonin Receptor Signaling in Osteoblasts by Kynurenine Drives Acute Myeloid Leukemia. Cancer Discov 2022; 12:1106-1127. [PMID: 35046097 PMCID: PMC8983599 DOI: 10.1158/2159-8290.cd-21-0692] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/08/2021] [Accepted: 01/04/2022] [Indexed: 01/09/2023]
Abstract
Remodeling of the microenvironment by tumor cells can activate pathways that favor cancer growth. Molecular delineation and targeting of such malignant-cell nonautonomous pathways may help overcome resistance to targeted therapies. Herein we leverage genetic mouse models, patient-derived xenografts, and patient samples to show that acute myeloid leukemia (AML) exploits peripheral serotonin signaling to remodel the endosteal niche to its advantage. AML progression requires the presence of serotonin receptor 1B (HTR1B) in osteoblasts and is driven by AML-secreted kynurenine, which acts as an oncometabolite and HTR1B ligand. AML cells utilize kynurenine to induce a proinflammatory state in osteoblasts that, through the acute-phase protein serum amyloid A (SAA), acts in a positive feedback loop on leukemia cells by increasing expression of IDO1-the rate-limiting enzyme for kynurenine synthesis-thereby enabling AML progression. This leukemia-osteoblast cross-talk, conferred by the kynurenine-HTR1B-SAA-IDO1 axis, could be exploited as a niche-focused therapeutic approach against AML, opening new avenues for cancer treatment. SIGNIFICANCE AML remains recalcitrant to treatments due to the emergence of resistant clones. We show a leukemia-cell nonautonomous progression mechanism that involves activation of a kynurenine-HTR1B-SAA-IDO1 axis between AML cells and osteoblasts. Targeting the niche by interrupting this axis can be pharmacologically harnessed to hamper AML progression and overcome therapy resistance. This article is highlighted in the In This Issue feature, p. 873.
Collapse
Affiliation(s)
- Marta Galán-Díez
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York.,Corresponding Authors: Stavroula Kousteni, Phone: 212-305-2068; E-mail: ; and Marta Galán-Díez, Department of Physiology and Cellular Biophysics, Columbia University, 650 W. 168th Street, New York, NY 10032. Phone: 212-305-2481; E-mail:
| | - Florence Borot
- Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, New York
| | - Abdullah Mahmood Ali
- Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, New York.,Myelodysplastic Syndromes Center, Columbia University, New York, New York
| | - Junfei Zhao
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, New York.,Edward P. Evans Center for Myelodysplastic Syndromes at Columbia University, New York, New York
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University, New York, New York
| | - Xiaochuan Shan
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Na Luo
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York
| | - Yongfeng Liu
- NIMH Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina
| | - Xi-Ping Huang
- NIMH Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina
| | - Brygida Bisikirska
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York
| | - Rossella Labella
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York
| | - Irwin Kurland
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Bryan L. Roth
- NIMH Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina.,Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Matthias Quick
- Department of Psychiatry, Columbia University, New York, New York.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York
| | - Siddhartha Mukherjee
- Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, New York.,Myelodysplastic Syndromes Center, Columbia University, New York, New York.,Edward P. Evans Center for Myelodysplastic Syndromes at Columbia University, New York, New York
| | - Raul Rabadán
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, New York.,Department of Biomedical Informatics, Columbia University, New York, New York
| | - Martin Carroll
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Azra Raza
- Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, New York.,Myelodysplastic Syndromes Center, Columbia University, New York, New York.,Edward P. Evans Center for Myelodysplastic Syndromes at Columbia University, New York, New York
| | - Stavroula Kousteni
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York.,Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, New York.,Edward P. Evans Center for Myelodysplastic Syndromes at Columbia University, New York, New York.,Columbia Stem Cell Initiative, Columbia University, New York, New York.,Corresponding Authors: Stavroula Kousteni, Phone: 212-305-2068; E-mail: ; and Marta Galán-Díez, Department of Physiology and Cellular Biophysics, Columbia University, 650 W. 168th Street, New York, NY 10032. Phone: 212-305-2481; E-mail:
| |
Collapse
|
32
|
Garciaz S, Guirguis AA, Müller S, Brown FC, Chan YC, Motazedian A, Rowe CL, Kuzich JA, Chan KL, Tran K, Smith L, MacPherson L, Liddicoat B, Lam EY, Cañeque T, Burr ML, Litalien V, Pomilio G, Poplineau M, Duprez E, Dawson SJ, Ramm G, Cox AG, Brown KK, Huang DC, Wei AH, McArthur K, Rodriguez R, Dawson MA. Pharmacologic Reduction of Mitochondrial Iron Triggers a Noncanonical BAX/BAK-Dependent Cell Death. Cancer Discov 2022; 12:774-791. [PMID: 34862195 PMCID: PMC9390741 DOI: 10.1158/2159-8290.cd-21-0522] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/18/2021] [Accepted: 11/29/2021] [Indexed: 01/07/2023]
Abstract
Cancer cell metabolism is increasingly recognized as providing an exciting therapeutic opportunity. However, a drug that directly couples targeting of a metabolic dependency with the induction of cell death in cancer cells has largely remained elusive. Here we report that the drug-like small-molecule ironomycin reduces the mitochondrial iron load, resulting in the potent disruption of mitochondrial metabolism. Ironomycin promotes the recruitment and activation of BAX/BAK, but the resulting mitochondrial outer membrane permeabilization (MOMP) does not lead to potent activation of the apoptotic caspases, nor is the ensuing cell death prevented by inhibiting the previously established pathways of programmed cell death. Consistent with the fact that ironomycin and BH3 mimetics induce MOMP through independent nonredundant pathways, we find that ironomycin exhibits marked in vitro and in vivo synergy with venetoclax and overcomes venetoclax resistance in primary patient samples. SIGNIFICANCE Ironomycin couples targeting of cellular metabolism with cell death by reducing mitochondrial iron, resulting in the alteration of mitochondrial metabolism and the activation of BAX/BAK. Ironomycin induces MOMP through a different mechanism to BH3 mimetics, and consequently combination therapy has marked synergy in cancers such as acute myeloid leukemia. This article is highlighted in the In This Issue feature, p. 587.
Collapse
Affiliation(s)
- Sylvain Garciaz
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Aix-Marseille University, INSERM U1068, CNRS, Institut Paoli-Calmettes, Marseille, France
| | - Andrew A. Guirguis
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Sebastian Müller
- Institut Curie, PSL Research University, CNRS UMR3666, INSERM U1143, Chemical Biology of Cancer, Paris, France
| | - Fiona C. Brown
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Yih-Chih Chan
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Ali Motazedian
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Caitlin L. Rowe
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - James A. Kuzich
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Kah Lok Chan
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Kevin Tran
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Lorey Smith
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Laura MacPherson
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Brian Liddicoat
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Enid Y.N. Lam
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Tatiana Cañeque
- Institut Curie, PSL Research University, CNRS UMR3666, INSERM U1143, Chemical Biology of Cancer, Paris, France
| | - Marian L. Burr
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Véronique Litalien
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Giovanna Pomilio
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Mathilde Poplineau
- Aix-Marseille University, INSERM U1068, CNRS, Institut Paoli-Calmettes, Marseille, France
| | - Estelle Duprez
- Aix-Marseille University, INSERM U1068, CNRS, Institut Paoli-Calmettes, Marseille, France
| | - Sarah-Jane Dawson
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Georg Ramm
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Melbourne, Victoria, Australia
| | - Andrew G. Cox
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kristin K. Brown
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria, Australia
| | - David C.S. Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria, Australia
| | - Andrew H. Wei
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Kate McArthur
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Raphaël Rodriguez
- Institut Curie, PSL Research University, CNRS UMR3666, INSERM U1143, Chemical Biology of Cancer, Paris, France
| | - Mark A. Dawson
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
33
|
Mesbahi Y, Trahair TN, Lock RB, Connerty P. Exploring the Metabolic Landscape of AML: From Haematopoietic Stem Cells to Myeloblasts and Leukaemic Stem Cells. Front Oncol 2022; 12:807266. [PMID: 35223487 PMCID: PMC8867093 DOI: 10.3389/fonc.2022.807266] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
Despite intensive chemotherapy regimens, up to 60% of adults with acute myeloid leukaemia (AML) will relapse and eventually succumb to their disease. Recent studies suggest that leukaemic stem cells (LSCs) drive AML relapse by residing in the bone marrow niche and adapting their metabolic profile. Metabolic adaptation and LSC plasticity are novel hallmarks of leukemogenesis that provide important biological processes required for tumour initiation, progression and therapeutic responses. These findings highlight the importance of targeting metabolic pathways in leukaemia biology which might serve as the Achilles' heel for the treatment of AML relapse. In this review, we highlight the metabolic differences between normal haematopoietic cells, bulk AML cells and LSCs. Specifically, we focus on four major metabolic pathways dysregulated in AML; (i) glycolysis; (ii) mitochondrial metabolism; (iii) amino acid metabolism; and (iv) lipid metabolism. We then outline established and emerging drug interventions that exploit metabolic dependencies of leukaemic cells in the treatment of AML. The metabolic signature of AML cells alters during different biological conditions such as chemotherapy and quiescence. Therefore, targeting the metabolic vulnerabilities of these cells might selectively eradicate them and improve the overall survival of patients with AML.
Collapse
Affiliation(s)
- Yashar Mesbahi
- Children's Cancer Institute, Lowy Cancer Centre, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,University of New South Wales Centre for Childhood Cancer Research, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Toby N Trahair
- Children's Cancer Institute, Lowy Cancer Centre, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Centre, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,University of New South Wales Centre for Childhood Cancer Research, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Patrick Connerty
- Children's Cancer Institute, Lowy Cancer Centre, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,University of New South Wales Centre for Childhood Cancer Research, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| |
Collapse
|
34
|
Woerner J, Huang Y, Hutter S, Gurnari C, Sánchez JMH, Wang J, Huang Y, Schnabel D, Aaby M, Xu W, Thorat V, Jiang D, Jha BK, Koyuturk M, Maciejewski JP, Haferlach T, LaFramboise T. Circulating microbial content in myeloid malignancy patients is associated with disease subtypes and patient outcomes. Nat Commun 2022; 13:1038. [PMID: 35210415 PMCID: PMC8873459 DOI: 10.1038/s41467-022-28678-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
Although recent work has described the microbiome in solid tumors, microbial content in hematological malignancies is not well-characterized. Here we analyze existing deep DNA sequence data from the blood and bone marrow of 1870 patients with myeloid malignancies, along with healthy controls, for bacterial, fungal, and viral content. After strict quality filtering, we find evidence for dysbiosis in disease cases, and distinct microbial signatures among disease subtypes. We also find that microbial content is associated with host gene mutations and with myeloblast cell percentages. In patients with low-risk myelodysplastic syndrome, we provide evidence that Epstein-Barr virus status refines risk stratification into more precise categories than the current standard. Motivated by these observations, we construct machine-learning classifiers that can discriminate among disease subtypes based solely on bacterial content. Our study highlights the association between the circulating microbiome and patient outcome, and its relationship with disease subtype.
Collapse
Affiliation(s)
- Jakob Woerner
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, USA
| | - Yidi Huang
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, USA
| | | | - Carmelo Gurnari
- Department of Translational Hematology & Oncology Research, Cleveland Clinic Foundation, Cleveland, USA
| | | | - Janet Wang
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, USA
| | - Yimin Huang
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, USA
| | - Daniel Schnabel
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, USA
| | - Michael Aaby
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, USA
| | - Wanying Xu
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, USA
| | - Vedant Thorat
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, USA
| | - Dongxu Jiang
- Department of Translational Hematology & Oncology Research, Cleveland Clinic Foundation, Cleveland, USA
| | - Babal K Jha
- Department of Translational Hematology & Oncology Research, Cleveland Clinic Foundation, Cleveland, USA
| | - Mehmet Koyuturk
- Department of Computer Science, Case Western Reserve University, Cleveland, USA
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology & Oncology Research, Cleveland Clinic Foundation, Cleveland, USA
| | | | - Thomas LaFramboise
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, USA.
| |
Collapse
|
35
|
Man CH, Mercier FE, Liu N, Dong W, Stephanopoulos G, Jiang L, Jung Y, Lin CP, Leung AYH, Scadden DT. Proton export alkalinizes intracellular pH and reprograms carbon metabolism to drive normal and malignant cell growth. Blood 2022; 139:502-522. [PMID: 34610101 PMCID: PMC8796654 DOI: 10.1182/blood.2021011563] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/20/2021] [Indexed: 01/29/2023] Open
Abstract
Proton export is often considered a detoxifying process in animal cells, with monocarboxylate symporters coexporting excessive lactate and protons during glycolysis or the Warburg effect. We report a novel mechanism by which lactate/H+ export is sufficient to induce cell growth. Increased intracellular pH selectively activates catalysis by key metabolic gatekeeper enzymes HK1/PKM2/G6PDH, thereby enhancing glycolytic and pentose phosphate pathway carbon flux. The result is increased nucleotide levels, NADPH/NADP+ ratio, and cell proliferation. Simply increasing the lactate/proton symporter monocarboxylate transporter 4 (MCT4) or the sodium-proton antiporter NHE1 was sufficient to increase intracellular pH and give normal hematopoietic cells a significant competitive growth advantage in vivo. This process does not require additional cytokine triggers and is exploited in malignancy, where leukemogenic mutations epigenetically increase MCT4. Inhibiting MCT4 decreased intracellular pH and carbon flux and eliminated acute myeloid leukemia-initiating cells in mice without cytotoxic chemotherapy. Intracellular alkalization is a primitive mechanism by which proton partitioning can directly reprogram carbon metabolism for cell growth.
Collapse
Affiliation(s)
- Cheuk Him Man
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Ludwig Center, Harvard Medical School, Boston, MA
| | - Francois E Mercier
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Ludwig Center, Harvard Medical School, Boston, MA
| | - Nian Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Wentao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Li Jiang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA
| | - Yookyung Jung
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA; and
| | - Charles P Lin
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA; and
| | - Anskar Y H Leung
- Division of Haematology, Department of Medicine, University of Hong Kong, Pok Fu Lam, Hong Kong SAR
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Ludwig Center, Harvard Medical School, Boston, MA
| |
Collapse
|
36
|
Rojas Gil AP, Kodonis I, Ioannidis A, Nomikos T, Dimopoulos I, Kosmidis G, Katsa ME, Melliou E, Magiatis P. The Effect of Dietary Intervention With High-Oleocanthal and Oleacein Olive Oil in Patients With Early-Stage Chronic Lymphocytic Leukemia: A Pilot Randomized Trial. Front Oncol 2022; 11:810249. [PMID: 35127522 PMCID: PMC8814521 DOI: 10.3389/fonc.2021.810249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022] Open
Abstract
AIM Oleocanthal and oleacein (OC/OL) have important in vitro and in vivo antitumor properties; however, there is no data about their anticancer activity in humans. The aim of this pilot study was to test if patients at early stage of chronic lymphocytic leukemia (CLL) could adhere to and tolerate an intervention with high OC/OL extra virgin olive oil (EVOO) and if this intervention could lead to any changes in markers related to the disease. METHODS A pilot dietary intervention (DI) was made in patients with CLL in Rai stages 0-II who did not follow any treatment (NCT04215367). In the first intervention (DI1), 20 CLL patients were included in a blind randomized study and were separated into two groups. One group (A) of 10 patients consumed 40 ml/day of high OC/OL-EVOO (416 mg/Kg OC and 284 mg/kg OL) for 3 months. A second group (B) of 10 patients consumed 40 ml/day of low OC/OL (82 mg/kg OC and 33 mg/kg OL) for 3 months. After a washout period of 9-12 months, a second intervention (DI2) only with High OC/OL-EVOO for 6 months was performed with 22 randomly selected patients (16 from the DI1 (8 from each group) and 6 new). Hematological, biochemical, and apoptotic markers were analyzed in the serum of the patients. In addition, cellular proliferation and apoptosis markers were studied in isolated proteins from peripheral blood mononuclear cells. RESULTS The results of the DI1 showed beneficial effects on hematological and apoptotic markers only with High OC/OL-EVOO. During the DI2, a decrease in the white blood cell and lymphocyte count was observed (p ≤0.05), comparing 3 months before the intervention and 6 months after it. After 3 and 6 months of DI2, an increase (p ≤0.05) was observed in the apoptotic markers ccK18 and Apo1-Fas, and also in the cell cycle negative regulator p21, and also a decrease in the antiapoptotic protein Survivin, and in the cellular proliferation marker Cyclin D. CONCLUSIONS This is the first clinical trial with High OC/OL-EVOO that indicates that it could be a promising dietary feature for the improvement of CLL inducing the apoptosis of their cancer cells and improving the metabolism of the patients. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT04215367, identifier: NCT04215367.
Collapse
Affiliation(s)
- Andrea Paola Rojas Gil
- Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Tripoli, Greece
| | - Ioannis Kodonis
- Hematology Department, General Hospital of Lakonia, Sparta, Greece
| | - Anastasios Ioannidis
- Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Tripoli, Greece
| | - Tzortzis Nomikos
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, Athens, Greece
| | | | - Georgios Kosmidis
- Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Tripoli, Greece
| | - Maria Efthymia Katsa
- Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Tripoli, Greece
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, Athens, Greece
| | - Eleni Melliou
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Prokopios Magiatis
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
37
|
Near-Infrared MAO A Inhibitor (NMI) Outperformed FDA-Approved Chemotherapeutic Agents in Brain and Other Cancers: A Bioinformatic Analysis of NCI60 Screening Data. Brain Sci 2021; 11:brainsci11101318. [PMID: 34679383 PMCID: PMC8534240 DOI: 10.3390/brainsci11101318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/14/2021] [Accepted: 09/30/2021] [Indexed: 01/03/2023] Open
Abstract
Our previous work has shown that monoamine oxidase A (MAO A) is overexpressed in glioma and prostate cancer. Near-infrared dye conjugate MAO A Inhibitor (NMI) inhibited the growth of these cancers. This study investigated the effects of NMI on other cancers by NCI60 screening. Our results showed that 48 out of 59 screened cell lines from nine types of cancer had 100% growth inhibition at 10 μM NMI treatment. The in vitro efficacy of NMI determined by growth inhibition (GI50 and TGI) and lethal doses (LC50) has been further studied in various cell lines of CNS cancer, prostate cancer, and non-small cell lung cancer (NSCLC), these three cancers showed increased MAO A expression in tumors compared to normal tissues. Based on the waterfall plots and the 3D scatter plot of GI50, TGI, and LC50 data, NMI showed higher potency to several CNS cancer and NSCLC cell lines than prostate cancer cell lines. In vitro efficacy of NMI outperformed FDA-approved drugs for CNS cancer, prostate cancer, and NSCLC, respectively. The Pairwise Pearson Correlation Coefficient (PCC) showed that NMI has a unique mechanism compared to the existing anticancer drugs. This study shows that NMI is a novel theragnostic drug with high potency and unique mechanisms for brain, prostate, NSCLC, and other cancers.
Collapse
|
38
|
Simonetti G, Mengucci C, Padella A, Fonzi E, Picone G, Delpino C, Nanni J, De Tommaso R, Franchini E, Papayannidis C, Marconi G, Pazzaglia M, Perricone M, Scarpi E, Fontana MC, Bruno S, Tebaldi M, Ferrari A, Bochicchio MT, Ghelli Luserna Di Rorà A, Ghetti M, Napolitano R, Astolfi A, Baldazzi C, Guadagnuolo V, Ottaviani E, Iacobucci I, Cavo M, Castellani G, Haferlach T, Remondini D, Capozzi F, Martinelli G. Integrated genomic-metabolic classification of acute myeloid leukemia defines a subgroup with NPM1 and cohesin/DNA damage mutations. Leukemia 2021; 35:2813-2826. [PMID: 34193978 PMCID: PMC8478658 DOI: 10.1038/s41375-021-01318-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Although targeting of cell metabolism is a promising therapeutic strategy in acute myeloid leukemia (AML), metabolic dependencies are largely unexplored. We aimed to classify AML patients based on their metabolic landscape and map connections between metabolic and genomic profiles. Combined serum and urine metabolomics improved AML characterization compared with individual biofluid analysis. At intracellular level, AML displayed dysregulated amino acid, nucleotide, lipid, and bioenergetic metabolism. The integration of intracellular and biofluid metabolomics provided a map of alterations in the metabolism of polyamine, purine, keton bodies and polyunsaturated fatty acids and tricarboxylic acid cycle. The intracellular metabolome distinguished three AML clusters, correlating with distinct genomic profiles: NPM1-mutated(mut), chromatin/spliceosome-mut and TP53-mut/aneuploid AML that were confirmed by biofluid analysis. Interestingly, integrated genomic-metabolic profiles defined two subgroups of NPM1-mut AML. One was enriched for mutations in cohesin/DNA damage-related genes (NPM1/cohesin-mut AML) and showed increased serum choline + trimethylamine-N-oxide and leucine, higher mutation load, transcriptomic signatures of reduced inflammatory status and better ex-vivo response to EGFR and MET inhibition. The transcriptional differences of enzyme-encoding genes between NPM1/cohesin-mut and NPM1-mut allowed in silico modeling of intracellular metabolic perturbations. This approach predicted alterations in NAD and purine metabolism in NPM1/cohesin-mut AML that suggest potential vulnerabilities, worthy of being therapeutically explored.
Collapse
Affiliation(s)
- Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.
| | - Carlo Mengucci
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, FC, Italy
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Antonella Padella
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy.
| | - Eugenio Fonzi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Gianfranco Picone
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, FC, Italy
| | - Claudio Delpino
- Departamento de Ingeniería Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Jacopo Nanni
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Rossella De Tommaso
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Eugenia Franchini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Cristina Papayannidis
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Giovanni Marconi
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Martina Pazzaglia
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Margherita Perricone
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Emanuela Scarpi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Maria Chiara Fontana
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Samantha Bruno
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Michela Tebaldi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Anna Ferrari
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Maria Teresa Bochicchio
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | | | - Martina Ghetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Roberta Napolitano
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Annalisa Astolfi
- Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna and Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Carmen Baldazzi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Viviana Guadagnuolo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Emanuela Ottaviani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michele Cavo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Gastone Castellani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | - Daniel Remondini
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Francesco Capozzi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, FC, Italy
| | - Giovanni Martinelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| |
Collapse
|
39
|
Cheng C, Yuan F, Chen XP, Zhang W, Zhao XL, Jiang ZP, Zhou HH, Zhou G, Cao S. Inhibition of Nrf2-mediated glucose metabolism by brusatol synergistically sensitizes acute myeloid leukemia to Ara-C. Biomed Pharmacother 2021; 142:111652. [PMID: 34112534 DOI: 10.1016/j.biopha.2021.111652] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022] Open
Abstract
Chemotherapy resistance remains to be the primary barrier to acute myeloid leukemia (AML) treatment failure. Nuclear factor-erythroid 2-related factor 2 (Nrf2) has been well established as a truly pleiotropic transcription factor. Inhibition of Nrf2 function increases the sensitivity of various chemotherapeutics and overcomes chemoresistance effectively. Brusatol (Bru) has been reported to decrease Nrf2 protein expression specifically by ubiquitin degradation of Nrf2. However, it remains elusive whether combination of Brusatol and Cytarabine (Ara-C) elicits a synergistic antitumor effect in AML. Our results demonstrated that combination of Ara-C and Brusatol synergistically exerted remarkable pro-apoptosis effect in HL-60 and THP-1 cells. Mechanistically, synergistic anti-tumor effect of Ara-C/Brusatol in AML cells is mediated by attenuating Nrf2 expression. To our surprise, Nrf2 inhibition by Brusatol causes downregulation of the expression of glycolysis-related proteins and decreased glucose consumption and lactate production, whereas the level of ROS production was unaffected. The activation of Nrf2 by Sulforaphane (SFP) could reverse the chemotherapeutic effect and changes of glycolysis of concomitant of Ara-C with Brusatol in AML cell lines. Additionally, Ara-C/Brusatol co-treatment decreased Glucose-6-phosphate dehydrogenase (G6PD) protein expression and increased the sensitivity of Ara-C. Moreover, the mouse xenograft in vivo experiment confirmed that combining Ara-C with Brusatol exerted stronger antileukemia than Ara-C alone. The efficacy, together with the mechanistic observations, reveals the potential of simultaneously giving these two drugs and provides a rational basis for targeting glucose catabolism in future clinical therapeutic approach.
Collapse
Affiliation(s)
- Cong Cheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Center South University, Changsha 410008, Hunan, PR China
| | - Fang Yuan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Center South University, Changsha 410008, Hunan, PR China
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Center South University, Changsha 410008, Hunan, PR China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Center South University, Changsha 410008, Hunan, PR China
| | - Xie-Lan Zhao
- Department of Hematology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China
| | - Zhi-Ping Jiang
- Department of Hematology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Center South University, Changsha 410008, Hunan, PR China
| | - Gan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Center South University, Changsha 410008, Hunan, PR China; National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, 110 Xiangya Road, Changsha, Hunan 410008, PR China.
| | - Shan Cao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Center South University, Changsha 410008, Hunan, PR China.
| |
Collapse
|
40
|
Metabolic Profiling during Acute Myeloid Leukemia Progression Using Paired Clinical Bone Marrow Serum Samples. Metabolites 2021; 11:metabo11090586. [PMID: 34564403 PMCID: PMC8471543 DOI: 10.3390/metabo11090586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022] Open
Abstract
Cellular metabolic changes reflect the characteristics of patients with acute myeloid leukemia (AML) caused by genetic variations, which are important in establishing AML treatment. However, little is known about the metabolic profile of patients with genetic variation-induced AML. Furthermore, the metabolites differ with disease progression. Here, metabolites in the bone marrow serum of ten patients with AML and healthy individuals were analyzed using gas chromatography–mass spectrometry. Compared with that in healthy individuals, expression of most metabolites decreased in patients with AML; hydroxylamine, 2-hydroxybutyric acid, monomethylphosphate, and ethylphosphate expression was unusually increased in the patients. We further examined serial metabolite changes across the initial diagnosis, postremission, and relapse phases. Patients with relapse showed increased metabolite expression compared with those in the diagnostic phase, confirming that patients with AML had aggressively modified leukemic cells. However, a clear difference in metabolite distribution was not observed between the diagnosis and complete remission phases, suggesting that the metabolic microenvironment did not change significantly despite complete remission. Interestingly, metabolite profiles differed with genetic variations in leukemic cells. Our results, which were obtained using paired samples collected during AML progression, provide valuable insights for identifying vulnerable targets in the AML metabolome and developing new treatment strategies.
Collapse
|
41
|
Icard P, Loi M, Wu Z, Ginguay A, Lincet H, Robin E, Coquerel A, Berzan D, Fournel L, Alifano M. Metabolic Strategies for Inhibiting Cancer Development. Adv Nutr 2021; 12:1461-1480. [PMID: 33530098 PMCID: PMC8321873 DOI: 10.1093/advances/nmaa174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/14/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment is a complex mix of cancerous and noncancerous cells (especially immune cells and fibroblasts) with distinct metabolisms. These cells interact with each other and are influenced by the metabolic disorders of the host. In this review, we discuss how metabolic pathways that sustain biosynthesis in cancer cells could be targeted to increase the effectiveness of cancer therapies by limiting the nutrient uptake of the cell, inactivating metabolic enzymes (key regulatory ones or those linked to cell cycle progression), and inhibiting ATP production to induce cell death. Furthermore, we describe how the microenvironment could be targeted to activate the immune response by redirecting nutrients toward cytotoxic immune cells or inhibiting the release of waste products by cancer cells that stimulate immunosuppressive cells. We also examine metabolic disorders in the host that could be targeted to inhibit cancer development. To create future personalized therapies for targeting each cancer tumor, novel techniques must be developed, such as new tracers for positron emission tomography/computed tomography scan and immunohistochemical markers to characterize the metabolic phenotype of cancer cells and their microenvironment. Pending personalized strategies that specifically target all metabolic components of cancer development in a patient, simple metabolic interventions could be tested in clinical trials in combination with standard cancer therapies, such as short cycles of fasting or the administration of sodium citrate or weakly toxic compounds (such as curcumin, metformin, lipoic acid) that target autophagy and biosynthetic or signaling pathways.
Collapse
Affiliation(s)
- Philippe Icard
- Université Caen Normandie, Medical School, CHU de Caen, Caen, France
- Normandie Université, UNICAEN, INSERM U1086, Interdisciplinary Research Unit for Cancer Prevention and Treatment, Centre de Lutte Contre le Cancer Centre François Baclesse, Caen, France
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
| | - Mauro Loi
- Radiotherapy Department, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - Zherui Wu
- School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
- INSERM UMR-S 1124, Cellular Homeostasis and Cancer, Paris-Descartes University, Paris, France
| | - Antonin Ginguay
- Service de Biochimie, Hôpital Cochin, Hôpitaux Universitaires Paris-Centre, AP-HP, Paris, France
- EA4466 Laboratoire de Biologie de la Nutrition, Faculté de Pharmacie de Paris, Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
| | - Hubert Lincet
- INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon (CRCL), France
- ISPB, Faculté de Pharmacie, Université Lyon 1, Lyon, France
| | - Edouard Robin
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
| | - Antoine Coquerel
- INSERM U1075, Comete “Mobilités: Attention, Orientation, Chronobiologie”, Université Caen, Caen, France
| | - Diana Berzan
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
| | - Ludovic Fournel
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
- INSERM UMR-S 1124, Cellular Homeostasis and Cancer, Paris-Descartes University, Paris, France
| | - Marco Alifano
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
- INSERM U1138, Integrative Cancer Immunology, Paris, France
| |
Collapse
|
42
|
Han F, Zhao H, Lu J, Yun W, Yang L, Lou Y, Su D, Chen X, Zhang S, Jin H, Li X, Sun J, Huang H, Wang Q, Jiang X. Anti-Tumor Effects of BDH1 in Acute Myeloid Leukemia. Front Oncol 2021; 11:694594. [PMID: 34150668 PMCID: PMC8213090 DOI: 10.3389/fonc.2021.694594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022] Open
Abstract
Dysregulation of ketone metabolism has been reported in various types of cancer. In order to find out its role in acute myeloid leukemia (AML) pathogenesis, we first analyzed the expression levels of 10 key genes involved in ketone metabolism in AML blasts and CD34+ hematopoietic stem cells (HSCs) from healthy donors. We found that the expression level of BDH1 was significantly lower in AML than in normal HSCs. The downregulation of BDH1 gene expression in AML cell lines as compared with normal HSCs was further confirmed with real-time RT-PCR. Analysis of TCGA and other database revealed that the downregulation of BDH1 was associated with worse prognosis in AML patients. In addition, we showed that overexpression of BDH1 inhibited the viability and proliferation of AML cells. In contrast, BDH1 knock-down promoted AML cell growth. Collectively, our results suggest the previously unappreciated anti-tumor role of BDH1 in AML, and low BDH1 expression predicts poor survival.
Collapse
Affiliation(s)
- Fei Han
- Department of Pharmacology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Huanhuan Zhao
- Department of Pharmacology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Jun Lu
- Department of Pharmacology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Weina Yun
- Department of Pharmacology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Lingling Yang
- Department of Pharmacology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Yude Lou
- Department of Pharmacology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Dan Su
- Department of Pharmacology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Xin Chen
- Department of Pharmacology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Shixuan Zhang
- Department of Pharmacology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Hanwei Jin
- Department of Pharmacology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Xiang Li
- Department of Pharmacology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Jie Sun
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - He Huang
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.,Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qishan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xi Jiang
- Department of Pharmacology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
43
|
Stubbins RJ, Maksakova IA, Sanford DS, Rouhi A, Kuchenbauer F. Mitochondrial metabolism: powering new directions in acute myeloid leukemia. Leuk Lymphoma 2021; 62:2331-2341. [PMID: 34060970 DOI: 10.1080/10428194.2021.1910685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
There has been an explosion of knowledge about the role of metabolism and the mitochondria in acute myeloid leukemia (AML). We have also recently seen several waves of novel therapies change the treatment landscape for AML, such as the selective B-cell lymphoma 2 (BCL-2) inhibitor venetoclax. In this new context, we review the rapidly advancing literature on the role of metabolism and the mitochondria in AML pathogenesis, and how these are interwoven with the mechanisms of action for novel therapeutics in AML. We also review the role of oxidative phosphorylation (OxPhos) in maintaining leukemia stem cells (LSCs), how recurrent genomic alterations in AML alter downstream metabolism, and focus on how the BCL-2 pathway and the mitochondria are inextricably linked in AML. Thus, we provide an overview of the mitochondria and metabolism in the context of our new therapeutic world for AML and outline how targeting these vulnerabilities may produce novel therapeutic strategies.
Collapse
Affiliation(s)
- Ryan J Stubbins
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Irina A Maksakova
- Terry Fox Laboratory, BC Cancer Research Centre, University of British Columbia, Vancouver, Canada
| | - David S Sanford
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Arefeh Rouhi
- Terry Fox Laboratory, BC Cancer Research Centre, University of British Columbia, Vancouver, Canada
| | - Florian Kuchenbauer
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, Canada.,Terry Fox Laboratory, BC Cancer Research Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|
44
|
Dembitz V, Gallipoli P. The Role of Metabolism in the Development of Personalized Therapies in Acute Myeloid Leukemia. Front Oncol 2021; 11:665291. [PMID: 34094959 PMCID: PMC8170311 DOI: 10.3389/fonc.2021.665291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/26/2021] [Indexed: 01/17/2023] Open
Abstract
Despite significant recent advances in our understanding of the biology and genetics of acute myeloid leukemia (AML), current AML therapies are mostly based on a backbone of standard chemotherapy which has remained mostly unchanged for over 20 years. Several novel therapies, mostly targeting neomorphic/activating recurrent mutations found in AML patients, have only recently been approved following encouraging results, thus providing the first evidence of a more precise and personalized approach to AML therapy. Rewired metabolism has been described as a hallmark of cancer and substantial evidence of its role in AML establishment and maintenance has been recently accrued in preclinical models. Interestingly, unique metabolic changes are generated by specific AML recurrent mutations or in response to diverse AML therapies, thus creating actionable metabolic vulnerabilities in specific patient groups. In this review we will discuss the current evidence supporting a role for rewired metabolism in AML pathogenesis and how these metabolic changes can be leveraged to develop novel personalized therapies.
Collapse
Affiliation(s)
| | - Paolo Gallipoli
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
45
|
Wesely J, Kotini AG, Izzo F, Luo H, Yuan H, Sun J, Georgomanoli M, Zviran A, Deslauriers AG, Dusaj N, Nimer SD, Leslie C, Landau DA, Kharas MG, Papapetrou EP. Acute Myeloid Leukemia iPSCs Reveal a Role for RUNX1 in the Maintenance of Human Leukemia Stem Cells. Cell Rep 2021; 31:107688. [PMID: 32492433 DOI: 10.1016/j.celrep.2020.107688] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/12/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
Leukemia stem cells (LSCs) are believed to have more distinct vulnerabilities than the bulk acute myeloid leukemia (AML) cells, but their rarity and the lack of universal markers for their prospective isolation hamper their study. We report that genetically clonal induced pluripotent stem cells (iPSCs) derived from an AML patient and characterized by exceptionally high engraftment potential give rise, upon hematopoietic differentiation, to a phenotypic hierarchy. Through fate-tracking experiments, xenotransplantation, and single-cell transcriptomics, we identify a cell fraction (iLSC) that can be isolated prospectively by means of adherent in vitro growth that resides on the apex of this hierarchy and fulfills the hallmark features of LSCs. Through integrative genomic studies of the iLSC transcriptome and chromatin landscape, we derive an LSC gene signature that predicts patient survival and uncovers a dependency of LSCs, across AML genotypes, on the RUNX1 transcription factor. These findings can empower efforts to therapeutically target AML LSCs.
Collapse
Affiliation(s)
- Josephine Wesely
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andriana G Kotini
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Franco Izzo
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; New York Genome Center, New York, NY, USA
| | - Hanzhi Luo
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Han Yuan
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun Sun
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maria Georgomanoli
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Asaf Zviran
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; New York Genome Center, New York, NY, USA
| | - André G Deslauriers
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Biotech Research and Innovation Center, University of Copenhagen, Denmark; Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Neville Dusaj
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; New York Genome Center, New York, NY, USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christina Leslie
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dan A Landau
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; New York Genome Center, New York, NY, USA
| | - Michael G Kharas
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Eirini P Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
46
|
Ackun-Farmmer MA, Soto CA, Lesch ML, Byun D, Yang L, Calvi LM, Benoit DSW, Frisch BJ. Reduction of leukemic burden via bone-targeted nanoparticle delivery of an inhibitor of C-chemokine (C-C motif) ligand 3 (CCL3) signaling. FASEB J 2021; 35:e21402. [PMID: 33724567 PMCID: PMC8594422 DOI: 10.1096/fj.202000938rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/13/2022]
Abstract
Leukemias are challenging diseases to treat due, in part, to interactions between leukemia cells and the bone marrow microenvironment (BMME) that contribute significantly to disease progression. Studies have shown that leukemic cells secrete C-chemokine (C-C motif) ligand 3 (CCL3), to disrupt the BMME resulting in loss of hematopoiesis and support of leukemic cell survival and proliferation. In this study, a murine model of blast crisis chronic myelogenous leukemia (bcCML) that expresses the translocation products BCR/ABL and Nup98/HoxA9 was used to determine the role of CCL3 in BMME regulation. Leukemic cells derived from CCL3-/- mice were shown to minimally engraft in a normal BMME, thereby demonstrating that CCL3 signaling was necessary to recapitulate bcCML disease. Further analysis showed disruption in hematopoiesis within the BMME in the bcCML model. To rescue the altered BMME, therapeutic inhibition of CCL3 signaling was investigated using bone-targeted nanoparticles (NP) to deliver Maraviroc, an inhibitor of C-C chemokine receptor type 5 (CCR5), a CCL3 receptor. NP-mediated Maraviroc delivery partially restored the BMME, significantly reduced leukemic burden, and improved survival. Overall, our results demonstrate that inhibiting CCL3 via CCR5 antagonism is a potential therapeutic approach to restore normal hematopoiesis as well as reduce leukemic burden within the BMME.
Collapse
Affiliation(s)
- Marian A. Ackun-Farmmer
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Celia A. Soto
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY, USA
| | - Maggie L. Lesch
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY, USA
| | - Daniel Byun
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Lila Yang
- New York Institute of Technology College of Osteopathic Medicine, New York, NY, USA
| | - Laura M. Calvi
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine Endocrine Division, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Materials Science Program, University of Rochester, Rochester, NY, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA
| | - Benjamin J. Frisch
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY, USA
- Wilmot Cancer Institute, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| |
Collapse
|
47
|
Yan P, Wang Y, Fu T, Liu Y, Zhang ZJ. The association between type 1 and 2 diabetes mellitus and the risk of leukemia: a systematic review and meta-analysis of 18 cohort studies. Endocr J 2021; 68:281-289. [PMID: 33087643 DOI: 10.1507/endocrj.ej20-0138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diabetes mellitus (DM) is widely considered to be associated with the risk of diverse cancers; however, the association between DM and the risk of leukemia is still controversial. Thus, a detailed meta-analysis of cohort studies was conducted to elucidate this association. Eligible studies were screened through the electronic searches in PubMed, Web of Science, and Embase from their inception to August 11, 2020. Summary relative risks (RRs) and 95% confidence intervals (CIs) were computed through the random-effects model. Eighteen articles involving 10,516 leukemia cases among a total of 4,094,235 diabetic patients were included in this meta-analysis. Overall, twenty-five RRs were synthesized for type 2 diabetes mellitus (T2DM) and yielded a summary RR of 1.33 (95%CI, 1.21-1.47; p < 0.001). For type 1 diabetes mellitus (T1DM), 7 RRs were combined, however, the pooled RR was insignificant (RR, 1.08; 95%CI, 0.87-1.34; p = 0.48). Interestingly, the summary RR for East Asia (RR, 1.83, 95%CI, 1.63-2.06) was significantly higher than that for Europe (RR, 1.11, 95%CI, 1.06-1.15), Western Asia (RR, 1.40, 95%CI, 1.25-1.54), North America (RR, 1.14, 95%CI, 1.08-1.20), and Australia (RR, 1.47, 95%CI, 1.25-1.71). Moreover, we found that patients with a shorter T2DM duration (1-5 years) had a higher risk of leukemia compared to those with a longer duration (5.1-10 years). Overall, this meta-analysis suggests there is a moderately increased risk of leukemia among T2DM patients, but not in T1DM patients. Further investigation is warranted.
Collapse
Affiliation(s)
- Pengfei Yan
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Yongbo Wang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tao Fu
- Department of Gastrointestinal Surgery II, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Yu Liu
- Department of Statistics and Management, School of Management, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhi-Jiang Zhang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
48
|
Exercise-A Panacea of Metabolic Dysregulation in Cancer: Physiological and Molecular Insights. Int J Mol Sci 2021; 22:ijms22073469. [PMID: 33801684 PMCID: PMC8037630 DOI: 10.3390/ijms22073469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic dysfunction is a comorbidity of many types of cancers. Disruption of glucose metabolism is of concern, as it is associated with higher cancer recurrence rates and reduced survival. Current evidence suggests many health benefits from exercise during and after cancer treatment, yet only a limited number of studies have addressed the effect of exercise on cancer-associated disruption of metabolism. In this review, we draw on studies in cells, rodents, and humans to describe the metabolic dysfunctions observed in cancer and the tissues involved. We discuss how the known effects of acute exercise and exercise training observed in healthy subjects could have a positive outcome on mechanisms in people with cancer, namely: insulin resistance, hyperlipidemia, mitochondrial dysfunction, inflammation, and cachexia. Finally, we compile the current limited knowledge of how exercise corrects metabolic control in cancer and identify unanswered questions for future research.
Collapse
|
49
|
Jones CL, Inguva A, Jordan CT. Targeting Energy Metabolism in Cancer Stem Cells: Progress and Challenges in Leukemia and Solid Tumors. Cell Stem Cell 2021; 28:378-393. [PMID: 33667359 PMCID: PMC7951949 DOI: 10.1016/j.stem.2021.02.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Malignant stem cells have long been considered a key therapeutic target in leukemia. Therapeutic strategies designed to target the fundamental biology of leukemia stem cells while sparing normal hematopoietic cells may provide better outcomes for leukemia patients. One process in leukemia stem cell biology that has intriguing therapeutic potential is energy metabolism. In this article we discuss the metabolic properties of leukemia stem cells and how targeting energy metabolism may provide more effective therapeutic regimens for leukemia patients. In addition, we highlight the similarities and differences in energy metabolism between leukemia stem cells and malignant stem cells from solid tumors.
Collapse
Affiliation(s)
- Courtney L Jones
- Princess Margaret Cancer Centre, 101 College St. Toronto, ON M5G 1L7, Canada
| | - Anagha Inguva
- Division of Hematology, University of Colorado, 12700 East 19th Ave., Aurora, CO 80045, USA
| | - Craig T Jordan
- Division of Hematology, University of Colorado, 12700 East 19th Ave., Aurora, CO 80045, USA.
| |
Collapse
|
50
|
Serkova NJ, Glunde K, Haney CR, Farhoud M, De Lille A, Redente EF, Simberg D, Westerly DC, Griffin L, Mason RP. Preclinical Applications of Multi-Platform Imaging in Animal Models of Cancer. Cancer Res 2021; 81:1189-1200. [PMID: 33262127 PMCID: PMC8026542 DOI: 10.1158/0008-5472.can-20-0373] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/10/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
In animal models of cancer, oncologic imaging has evolved from a simple assessment of tumor location and size to sophisticated multimodality exploration of molecular, physiologic, genetic, immunologic, and biochemical events at microscopic to macroscopic levels, performed noninvasively and sometimes in real time. Here, we briefly review animal imaging technology and molecular imaging probes together with selected applications from recent literature. Fast and sensitive optical imaging is primarily used to track luciferase-expressing tumor cells, image molecular targets with fluorescence probes, and to report on metabolic and physiologic phenotypes using smart switchable luminescent probes. MicroPET/single-photon emission CT have proven to be two of the most translational modalities for molecular and metabolic imaging of cancers: immuno-PET is a promising and rapidly evolving area of imaging research. Sophisticated MRI techniques provide high-resolution images of small metastases, tumor inflammation, perfusion, oxygenation, and acidity. Disseminated tumors to the bone and lung are easily detected by microCT, while ultrasound provides real-time visualization of tumor vasculature and perfusion. Recently available photoacoustic imaging provides real-time evaluation of vascular patency, oxygenation, and nanoparticle distributions. New hybrid instruments, such as PET-MRI, promise more convenient combination of the capabilities of each modality, enabling enhanced research efficacy and throughput.
Collapse
Affiliation(s)
- Natalie J Serkova
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Animal Imaging Shared Resource, University of Colorado Cancer Center, Aurora, Colorado
| | - Kristine Glunde
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology, and the Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Chad R Haney
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois
| | | | | | | | - Dmitri Simberg
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David C Westerly
- Animal Imaging Shared Resource, University of Colorado Cancer Center, Aurora, Colorado
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lynn Griffin
- Department of Radiology, Veterinary Teaching Hospital, Colorado State University, Fort Collins, Colorado
| | - Ralph P Mason
- Department of Radiology, University of Texas Southwestern, Dallas, Texas
| |
Collapse
|