1
|
Zhao S, Wu L, Xu Y, Nie Y. Fe(II) and 2-oxoglutarate-dependent dioxygenases for natural product synthesis: molecular insights into reaction diversity. Nat Prod Rep 2025; 42:67-92. [PMID: 39403014 DOI: 10.1039/d4np00030g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Covering: up to 2024Fe(II) and 2-oxoglutarate-dependent dioxygenases (Fe/2OG DOs) are a superfamily of enzymes that play important roles in a variety of catalytic reactions, including hydroxylation, ring formation, ring reconstruction, desaturation, and demethylation. Each member of this family has similarities in their overall structure, but they have varying specific differences, making Fe/2OG DOs attractive for catalytic diversity. With the advancement of current research, more Fe/2OG DOs have been discovered, and their catalytic scope has been further broadened; however, apart from hydroxylation, many reaction mechanisms have not been accurately demonstrated, and there is a lack of a systematic understanding of their molecular basis. Recently, an increasing number of X-ray structures of Fe/2OG DOs have provided new insights into the structural basis of their function and substrate-binding properties. This structural information is essential for understanding catalytic mechanisms and mining potential catalytic reactions. In this review, we summarize most of the Fe/2OG DOs whose structures have been resolved in recent years, focus on their structural features, and explore the relationships between various structural elements and unique catalytic mechanisms and their associated reaction type classification.
Collapse
Affiliation(s)
- Songyin Zhao
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| | - Lunjie Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| | - Yao Nie
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| |
Collapse
|
2
|
Comazzetto S, Cassidy DL, DeVilbiss AW, Jeffery EC, Ottesen BR, Reyes AR, Paul A, Bansal S, Xie SZ, Muh S, Mathews TP, Chen B, Zhao Z, Morrison SJ. Ascorbate deficiency increases quiescence and self-renewal in hematopoietic stem cells and multipotent progenitors. Blood 2025; 145:114-126. [PMID: 39437548 PMCID: PMC11738029 DOI: 10.1182/blood.2024024769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/07/2024] [Accepted: 09/07/2024] [Indexed: 10/25/2024] Open
Abstract
ABSTRACT Ascorbate (vitamin C) limits hematopoietic stem cell (HSC) function and suppresses leukemia development, partly by promoting the function of the Tet2 tumor suppressor. In humans, ascorbate is obtained from the diet, whereas in mice, it is synthesized in the liver. In this study, we show that deletion of the Slc23a2 ascorbate transporter from hematopoietic cells depleted ascorbate to undetectable levels in HSCs and multipotent hematopoietic progenitors (MPPs) without altering the plasma ascorbate levels. Slc23a2 deficiency increased HSC reconstituting potential and self-renewal potential upon transplantation into irradiated mice. Slc23a2 deficiency also increased the reconstituting and self-renewal potentials of MPPs, conferring the ability to reconstitute irradiated mice long term. Slc23a2-deficient HSCs and MPPs divided much less frequently than control HSCs and MPPs. Increased self-renewal and reconstituting potential were observed particularly in quiescent Slc23a2-deficient HSCs and MPPs. The effect of Slc23a2 deficiency on MPP self-renewal was not mediated by reduced Tet2 function. Ascorbate thus regulates quiescence and restricts self-renewal potential in HSCs and MPPs such that ascorbate deficiency confers MPPs with long-term self-renewal potential.
Collapse
Affiliation(s)
- Stefano Comazzetto
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Daniel L Cassidy
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Andrew W DeVilbiss
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Elise C Jeffery
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Bethany R Ottesen
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Amanda R Reyes
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Animesh Paul
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Suraj Bansal
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Stephanie Z Xie
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sarah Muh
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Thomas P Mathews
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Brandon Chen
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zhiyu Zhao
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Sean J Morrison
- Department of Pediatrics, Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
3
|
Kempkes RWM, Prinjha RK, de Winther MPJ, Neele AE. Novel insights into the dynamic function of PRC2 in innate immunity. Trends Immunol 2024; 45:1015-1030. [PMID: 39603889 DOI: 10.1016/j.it.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024]
Abstract
The polycomb repressive complex 2 (PRC2) is an established therapeutic target in cancer. PRC2 catalyzes methylation of histone H3 at lysine 27 (H3K27me3) and is known for maintaining eukaryote cell identity. Recent discoveries show that modulation of PRC2 not only impacts cell differentiation and tumor growth but also has immunomodulatory properties. Here, we integrate multiple immunological fields to understand PRC2 and its subunits in epigenetic canonical regulation and non-canonical mechanisms within innate immunity. We discuss how PRC2 regulates hematopoietic stem cell proliferation, myeloid cell differentiation, and shapes innate immune responses. The PRC2 catalytic domain EZH2 is upregulated in various human inflammatory diseases and its deletion or inhibition in experimental mouse models can reduce disease severity, emphasizing its importance in regulating inflammation.
Collapse
Affiliation(s)
- Rosalie W M Kempkes
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Disease, Amsterdam, the Netherlands
| | | | - Menno P J de Winther
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Disease, Amsterdam, the Netherlands.
| | - Annette E Neele
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Disease, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Wu J, Fan C, Kabir AU, Krchma K, Kim M, Kwon Y, Xing X, Wang T, Choi K. Baf155 controls hematopoietic differentiation and regeneration through chromatin priming. Cell Rep 2024; 43:114558. [PMID: 39088321 PMCID: PMC11465209 DOI: 10.1016/j.celrep.2024.114558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/06/2024] [Accepted: 07/14/2024] [Indexed: 08/03/2024] Open
Abstract
Chromatin priming promotes cell-type-specific gene expression, lineage differentiation, and development. The mechanism of chromatin priming has not been fully understood. Here, we report that mouse hematopoietic stem and progenitor cells (HSPCs) lacking the Baf155 subunit of the BAF (BRG1/BRM-associated factor) chromatin remodeling complex produce a significantly reduced number of mature blood cells, leading to a failure of hematopoietic regeneration upon transplantation and 5-fluorouracil (5-FU) injury. Baf155-deficient HSPCs generate particularly fewer neutrophils, B cells, and CD8+ T cells at homeostasis, supporting a more immune-suppressive tumor microenvironment and enhanced tumor growth. Single-nucleus multiomics analysis reveals that Baf155-deficient HSPCs fail to establish accessible chromatin in selected regions that are enriched for putative enhancers and binding motifs of hematopoietic lineage transcription factors. Our study provides a fundamental mechanistic understanding of the role of Baf155 in hematopoietic lineage chromatin priming and the functional consequences of Baf155 deficiency in regeneration and tumor immunity.
Collapse
Affiliation(s)
- Jun Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Changxu Fan
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ashraf Ul Kabir
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Karen Krchma
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Minseo Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yoojung Kwon
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaoyun Xing
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
5
|
Murray JE, Valli E, Milazzo G, Mayoh C, Gifford AJ, Fletcher JI, Xue C, Jayatilleke N, Salehzadeh F, Gamble LD, Rouaen JRC, Carter DR, Forgham H, Sekyere EO, Keating J, Eden G, Allan S, Alfred S, Kusuma FK, Clark A, Webber H, Russell AJ, de Weck A, Kile BT, Santulli M, De Rosa P, Fleuren EDG, Gao W, Wilkinson-White L, Low JKK, Mackay JP, Marshall GM, Hilton DJ, Giorgi FM, Koster J, Perini G, Haber M, Norris MD. The transcriptional co-repressor Runx1t1 is essential for MYCN-driven neuroblastoma tumorigenesis. Nat Commun 2024; 15:5585. [PMID: 38992040 PMCID: PMC11239676 DOI: 10.1038/s41467-024-49871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/23/2024] [Indexed: 07/13/2024] Open
Abstract
MYCN oncogene amplification is frequently observed in aggressive childhood neuroblastoma. Using an unbiased large-scale mutagenesis screen in neuroblastoma-prone transgenic mice, we identify a single germline point mutation in the transcriptional corepressor Runx1t1, which abolishes MYCN-driven tumorigenesis. This loss-of-function mutation disrupts a highly conserved zinc finger domain within Runx1t1. Deletion of one Runx1t1 allele in an independent Runx1t1 knockout mouse model is also sufficient to prevent MYCN-driven neuroblastoma development, and reverse ganglia hyperplasia, a known pre-requisite for tumorigenesis. Silencing RUNX1T1 in human neuroblastoma cells decreases colony formation in vitro, and inhibits tumor growth in vivo. Moreover, RUNX1T1 knockdown inhibits the viability of PAX3-FOXO1 fusion-driven rhabdomyosarcoma and MYC-driven small cell lung cancer cells. Despite the role of Runx1t1 in MYCN-driven tumorigenesis neither gene directly regulates the other. We show RUNX1T1 forms part of a transcriptional LSD1-CoREST3-HDAC repressive complex recruited by HAND2 to enhancer regions to regulate chromatin accessibility and cell-fate pathway genes.
Collapse
Affiliation(s)
- Jayne E Murray
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Emanuele Valli
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Giorgio Milazzo
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Andrew J Gifford
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
- Anatomical Pathology, NSW Health Pathology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Chengyuan Xue
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Nisitha Jayatilleke
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Firoozeh Salehzadeh
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Laura D Gamble
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Jourdin R C Rouaen
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Daniel R Carter
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Engineering, University of Technology Sydney, Broadway, NSW, Australia
| | - Helen Forgham
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Eric O Sekyere
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Joanna Keating
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Georgina Eden
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Sophie Allan
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Stephanie Alfred
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Frances K Kusuma
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Ashleigh Clark
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Hannah Webber
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Amanda J Russell
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Antoine de Weck
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Benjamin T Kile
- Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Martina Santulli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Piergiuseppe De Rosa
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Emmy D G Fleuren
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Weiman Gao
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Lorna Wilkinson-White
- Sydney Analytical Core Research Facility, The University of Sydney, Sydney, NSW, Australia
| | - Jason K K Low
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Glenn M Marshall
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Douglas J Hilton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Jan Koster
- Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia.
- UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Liu A, Genovese G, Zhao Y, Pirinen M, Zekavat SM, Kentistou KA, Yang Z, Yu K, Vlasschaert C, Liu X, Brown DW, Hudjashov G, Gorman BR, Dennis J, Zhou W, Momozawa Y, Pyarajan S, Tuzov V, Pajuste FD, Aavikko M, Sipilä TP, Ghazal A, Huang WY, Freedman ND, Song L, Gardner EJ, Sankaran VG, Palotie A, Ollila HM, Tukiainen T, Chanock SJ, Mägi R, Natarajan P, Daly MJ, Bick A, McCarroll SA, Terao C, Loh PR, Ganna A, Perry JRB, Machiela MJ. Genetic drivers and cellular selection of female mosaic X chromosome loss. Nature 2024; 631:134-141. [PMID: 38867047 DOI: 10.1038/s41586-024-07533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Mosaic loss of the X chromosome (mLOX) is the most common clonal somatic alteration in leukocytes of female individuals1,2, but little is known about its genetic determinants or phenotypic consequences. Here, to address this, we used data from 883,574 female participants across 8 biobanks; 12% of participants exhibited detectable mLOX in approximately 2% of leukocytes. Female participants with mLOX had an increased risk of myeloid and lymphoid leukaemias. Genetic analyses identified 56 common variants associated with mLOX, implicating genes with roles in chromosomal missegregation, cancer predisposition and autoimmune diseases. Exome-sequence analyses identified rare missense variants in FBXO10 that confer a twofold increased risk of mLOX. Only a small fraction of associations was shared with mosaic Y chromosome loss, suggesting that distinct biological processes drive formation and clonal expansion of sex chromosome missegregation. Allelic shift analyses identified X chromosome alleles that are preferentially retained in mLOX, demonstrating variation at many loci under cellular selection. A polygenic score including 44 allelic shift loci correctly inferred the retained X chromosomes in 80.7% of mLOX cases in the top decile. Our results support a model in which germline variants predispose female individuals to acquiring mLOX, with the allelic content of the X chromosome possibly shaping the magnitude of clonal expansion.
Collapse
Affiliation(s)
- Aoxing Liu
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Giulio Genovese
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Yajie Zhao
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Seyedeh M Zekavat
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Katherine A Kentistou
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Zhiyu Yang
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | - Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Derek W Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA
| | - Georgi Hudjashov
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Bryan R Gorman
- Center for Data and Computational Sciences (C-DACS), VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Saiju Pyarajan
- Center for Data and Computational Sciences (C-DACS), VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Valdislav Tuzov
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Fanny-Dhelia Pajuste
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mervi Aavikko
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Timo P Sipilä
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Awaisa Ghazal
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Eugene J Gardner
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Vijay G Sankaran
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hanna M Ollila
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Taru Tukiainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Pradeep Natarajan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Mark J Daly
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexander Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Steven A McCarroll
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Po-Ru Loh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Andrea Ganna
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - John R B Perry
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| |
Collapse
|
7
|
Serrano G, Berastegui N, Díaz-Mazkiaran A, García-Olloqui P, Rodriguez-Res C, Huerga-Dominguez S, Ainciburu M, Vilas-Zornoza A, Martin-Uriz PS, Aguirre-Ruiz P, Ullate-Agote A, Ariceta B, Lamo-Espinosa JM, Acha P, Calvete O, Jimenez T, Molero A, Montoro MJ, Díez-Campelo M, Valcarcel D, Solé F, Alfonso-Pierola A, Ochoa I, Prósper F, Ezponda T, Hernaez M. Single-cell transcriptional profile of CD34+ hematopoietic progenitor cells from del(5q) myelodysplastic syndromes and impact of lenalidomide. Nat Commun 2024; 15:5272. [PMID: 38902243 PMCID: PMC11189937 DOI: 10.1038/s41467-024-49529-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
While myelodysplastic syndromes with del(5q) (del(5q) MDS) comprises a well-defined hematological subgroup, the molecular basis underlying its origin remains unknown. Using single cell RNA-seq (scRNA-seq) on CD34+ progenitors from del(5q) MDS patients, we have identified cells harboring the deletion, characterizing the transcriptional impact of this genetic insult on disease pathogenesis and treatment response. Interestingly, both del(5q) and non-del(5q) cells present similar transcriptional lesions, indicating that all cells, and not only those harboring the deletion, may contribute to aberrant hematopoietic differentiation. However, gene regulatory network (GRN) analyses reveal a group of regulons showing aberrant activity that could trigger altered hematopoiesis exclusively in del(5q) cells, pointing to a more prominent role of these cells in disease phenotype. In del(5q) MDS patients achieving hematological response upon lenalidomide treatment, the drug reverts several transcriptional alterations in both del(5q) and non-del(5q) cells, but other lesions remain, which may be responsible for potential future relapses. Moreover, lack of hematological response is associated with the inability of lenalidomide to reverse transcriptional alterations. Collectively, this study reveals transcriptional alterations that could contribute to the pathogenesis and treatment response of del(5q) MDS.
Collapse
Affiliation(s)
- Guillermo Serrano
- Computational Biology Program CIMA-Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), IdISNA, Pamplona, Spain
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nerea Berastegui
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Aintzane Díaz-Mazkiaran
- Computational Biology Program CIMA-Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), IdISNA, Pamplona, Spain
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Paula García-Olloqui
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Carmen Rodriguez-Res
- Computational Biology Program CIMA-Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), IdISNA, Pamplona, Spain
| | - Sofia Huerga-Dominguez
- Hematology and Cell Therapy Service, Cancer Center Clínica Universidad de Navarra (CCUN), IdISNA, Pamplona, Spain
| | - Marina Ainciburu
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Amaia Vilas-Zornoza
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Patxi San Martin-Uriz
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
| | - Paula Aguirre-Ruiz
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
| | - Asier Ullate-Agote
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
| | - Beñat Ariceta
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | | | - Pamela Acha
- MDS Research Group, Josep Carreras Leukaemia Research Institut, Universitat Autònoma de Barcelona, Barcelona, Spain
- Service of Hematology, Hospital Universitari Vall d'Hebron, Barcelona; Vall d'Hebron Instituto de Oncología (VHIO), Barcelona, Spain
| | - Oriol Calvete
- MDS Research Group, Josep Carreras Leukaemia Research Institut, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Tamara Jimenez
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
- Department of Hematology, Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain
| | - Antonieta Molero
- Service of Hematology, Hospital Universitari Vall d'Hebron, Barcelona; Vall d'Hebron Instituto de Oncología (VHIO), Barcelona, Spain
| | - Maria Julia Montoro
- Service of Hematology, Hospital Universitari Vall d'Hebron, Barcelona; Vall d'Hebron Instituto de Oncología (VHIO), Barcelona, Spain
| | - Maria Díez-Campelo
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
- Department of Hematology, Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain
| | - David Valcarcel
- Service of Hematology, Hospital Universitari Vall d'Hebron, Barcelona; Vall d'Hebron Instituto de Oncología (VHIO), Barcelona, Spain
| | - Francisco Solé
- MDS Research Group, Josep Carreras Leukaemia Research Institut, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Alfonso-Pierola
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
- Hematology and Cell Therapy Service, Cancer Center Clínica Universidad de Navarra (CCUN), IdISNA, Pamplona, Spain
| | - Idoia Ochoa
- Instituto de Ciencia de los Datos e Inteligencia Artificial (DATAI), University of Navarra, Pamplona, Spain
- Department of Electrical and Electronics engineering, School of Engineering (Tecnun), University of Navarra, Donostia, Spain
| | - Felipe Prósper
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain.
- Hematology and Cell Therapy Service, Cancer Center Clínica Universidad de Navarra (CCUN), IdISNA, Pamplona, Spain.
| | - Teresa Ezponda
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain.
| | - Mikel Hernaez
- Computational Biology Program CIMA-Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), IdISNA, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain.
- Instituto de Ciencia de los Datos e Inteligencia Artificial (DATAI), University of Navarra, Pamplona, Spain.
| |
Collapse
|
8
|
Yeung CCS, Eacker SM, Sala-Torra O, Beppu L, Woolston DW, Liachko I, Malig M, Stirewalt D, Fang M, Radich J. Evaluation of Acute Myeloid Leukemia Genomes using Genomic Proximity Mapping. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.31.24308228. [PMID: 38853970 PMCID: PMC11160846 DOI: 10.1101/2024.05.31.24308228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Cytogenetic analysis encompasses a suite of standard-of-care diagnostic testing methods that is routinely applied in cases of acute myeloid leukemia (AML) to assess chromosomal changes that are clinically relevant for risk classification and treatment decisions. Objective In this study, we assess the use of Genomic Proximity Mapping (GPM) for cytogenomic analysis of AML diagnostic specimens for detection of cytogenetic risk variants included in the European Leukemia Network (ELN) risk stratification guidelines. Methods Archival patient samples (N=48) from the Fred Hutchinson Cancer Center leukemia bank with historical clinical cytogenetic data were processed for GPM and analyzed with the CytoTerra® cloud-based analysis platform. Results GPM showed 100% concordance for all specific variants that have associated impacts on risk stratification as defined by ELN 2022 criteria, and a 72% concordance rate when considering all variants reported by the FH cytogenetic lab. GPM identified 39 additional variants, including variants of known clinical impact, not observed by cytogenetics. Conclusions GPM is an effective solution for the evaluation of known AML-associated risk variants and a source for biomarker discovery.
Collapse
Affiliation(s)
- Cecilia CS Yeung
- Translational Science and Transplantation Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Phase Genomics, Seattle, WA, USA
| | | | - Olga Sala-Torra
- Translational Science and Transplantation Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Lan Beppu
- Translational Science and Transplantation Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David W. Woolston
- Translational Science and Transplantation Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | | | - Derek Stirewalt
- Translational Science and Transplantation Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington Medical Center, Seattle, WA, USA
| | - Min Fang
- Translational Science and Transplantation Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Jerald Radich
- Translational Science and Transplantation Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington Medical Center, Seattle, WA, USA
| |
Collapse
|
9
|
Liu W, Kurkewich JL, Stoddart A, Khan S, Anandan D, Gaubil AN, Wolfgeher DJ, Jueng L, Kron SJ, McNerney ME. CUX1 regulates human hematopoietic stem cell chromatin accessibility via the BAF complex. Cell Rep 2024; 43:114227. [PMID: 38735044 PMCID: PMC11163479 DOI: 10.1016/j.celrep.2024.114227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/16/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
CUX1 is a homeodomain-containing transcription factor that is essential for the development and differentiation of multiple tissues. CUX1 is recurrently mutated or deleted in cancer, particularly in myeloid malignancies. However, the mechanism by which CUX1 regulates gene expression and differentiation remains poorly understood, creating a barrier to understanding the tumor-suppressive functions of CUX1. Here, we demonstrate that CUX1 directs the BAF chromatin remodeling complex to DNA to increase chromatin accessibility in hematopoietic cells. CUX1 preferentially regulates lineage-specific enhancers, and CUX1 target genes are predictive of cell fate in vivo. These data indicate that CUX1 regulates hematopoietic lineage commitment and homeostasis via pioneer factor activity, and CUX1 deficiency disrupts these processes in stem and progenitor cells, facilitating transformation.
Collapse
Affiliation(s)
- Weihan Liu
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | - Angela Stoddart
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Saira Khan
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Dhivyaa Anandan
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Alexandre N Gaubil
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Donald J Wolfgeher
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Lia Jueng
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Stephen J Kron
- The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Megan E McNerney
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA; The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics, Section of Hematology/Oncology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
10
|
Comazzetto S, Cassidy DL, DeVilbiss AW, Jeffery EC, Ottesen BR, Reyes AR, Muh S, Mathews TP, Chen B, Zhao Z, Morrison SJ. Ascorbate depletion increases quiescence and self-renewal potential in hematopoietic stem cells and multipotent progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587574. [PMID: 38617357 PMCID: PMC11014518 DOI: 10.1101/2024.04.01.587574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Ascorbate (vitamin C) limits hematopoietic stem cell (HSC) function and suppresses leukemia development by promoting the function of the Tet2 tumor suppressor. In humans, ascorbate is obtained from the diet while in mice it is synthesized in the liver. In this study, we show that deletion of the Slc23a2 ascorbate transporter severely depleted ascorbate from hematopoietic cells. Slc23a2 deficiency increased HSC reconstituting potential and self-renewal potential upon transplantation into irradiated mice. Slc23a2 deficiency also increased the reconstituting and self-renewal potential of multipotent hematopoietic progenitors (MPPs), conferring the ability to long-term reconstitute irradiated mice. Slc23a2-deficient HSCs and MPPs divided much less frequently than control HSCs and MPPs. Increased self-renewal and reconstituting potential were observed particularly in quiescent Slc23a2-deficient HSCs and MPPs. The effect of Slc23a2 deficiency on MPP self-renewal was not mediated by reduced Tet2 function. Ascorbate thus regulates quiescence and restricts self-renewal potential in HSCs and MPPs such that ascorbate depletion confers MPPs with long-term self-renewal potential.
Collapse
Affiliation(s)
- Stefano Comazzetto
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel L. Cassidy
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrew W. DeVilbiss
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elise C. Jeffery
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bethany R. Ottesen
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Amanda R. Reyes
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sarah Muh
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas P. Mathews
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brandon Chen
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhiyu Zhao
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sean J. Morrison
- Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
11
|
Kuang Y, Li R, Wang J, Xu S, Qiu Q, Lin S, Liu D, Shen C, Liu Y, Xu M, Lin W, Zhang S, Liang L, Xu H, Xiao Y. ALKBH5-Mediated RNA m 6 A Methylation Regulates the Migration, Invasion, and Proliferation of Rheumatoid Fibroblast-Like Synoviocytes. Arthritis Rheumatol 2024; 76:192-205. [PMID: 37584615 DOI: 10.1002/art.42676] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 06/27/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023]
Abstract
OBJECTIVE Fibroblast-like synoviocytes (FLSs) are critical for promoting joint damage in rheumatoid arthritis (RA). N6 -methyladenosine (m6 A) modification plays key roles in various diseases, but its role in the pathogenesis of RA is largely unknown. Here, we investigate increased demethylase ALKBH5 promotion of proliferation, migration, and invasion of RA FLSs via regulating JARID2 expression. METHODS ALKBH5 expression in FLSs was evaluated using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot. 5-ethynyl-2'-deoxyuridine, scratch wound healing, and transwell assays were implemented to determine the role of ALKBH5 on RA FLS proliferation, mobility, and migration. Then, m6 A sequencing combined with RNA sequencing was performed to identify the potential targets of ALKBH5. RNA immunoprecipitation and RNA pulldown were then used to validate the interaction between the protein and messenger RNA (mRNA). Collagen-induced arthritis (CIA) and delayed-type hypersensitivity arthritis (DTHA) models were further established to assess the therapeutic potency of ALKBH5 in vivo. RESULTS We demonstrated that ALKBH5 expression was increased in FLSs and synovium from RA. Functionally, ALKBH5 knockdown inhibited the proliferation, migration, and invasion of RA FLSs, whereas overexpression of ALKBH5 displayed the opposite effect. Mechanistically, ALKBH5 mediated m6 A modification in the JARID2 mRNA and enhanced its mRNA stability in cooperation with IGF2BP3. Intriguingly, the severity of arthritis was attenuated in mice with DTHA and ALKBH5 knockout or rats with CIA and intra-articular injection of ALKBH5 short hairpin RNA. CONCLUSION Our findings suggest that ALKBH5-mediated m6 A modification is crucial for synovial hyperplasia and invasion in RA. ALKBH5 might be a potential therapeutic target for RA and even for dysregulated fibroblasts in a wide range of diseases.
Collapse
Affiliation(s)
- Yu Kuang
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ruiru Li
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jingnan Wang
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Siqi Xu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qian Qiu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shuibin Lin
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Di Liu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Chuyu Shen
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yingli Liu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Meilin Xu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wei Lin
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shuoyang Zhang
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Liuqin Liang
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hanshi Xu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Youjun Xiao
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
12
|
Bharti H, Han S, Chang HW, Reinberg D. Polycomb repressive complex 2 accessory factors: rheostats for cell fate decision? Curr Opin Genet Dev 2024; 84:102137. [PMID: 38091876 DOI: 10.1016/j.gde.2023.102137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/15/2023] [Indexed: 02/12/2024]
Abstract
Epigenetic reprogramming during development is key to cell identity and the activities of the Polycomb repressive complexes are vital for this process. We focus on polycomb repressive complex 2 (PRC2), which catalyzes H3K27me1/2/3 and safeguards cellular integrity by ensuring proper gene repression. Notably, various accessory factors associate with PRC2, strongly influencing cell fate decisions, and their deregulation contributes to various illnesses. Yet, the exact role of these factors during development and carcinogenesis is not fully understood. Here, we present recent progress toward addressing these points and an analysis of the expression levels of PRC2 accessory factors in various tissues and developmental stages to highlight their abundance and roles. Last, we evaluate their contribution to cancer-specific phenotypes, providing insight into novel anticancer therapies.
Collapse
Affiliation(s)
- Hina Bharti
- Howard Hughes Medical Institute, University of Miami, Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Sungwook Han
- Howard Hughes Medical Institute, University of Miami, Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Han-Wen Chang
- Howard Hughes Medical Institute, University of Miami, Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, University of Miami, Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA.
| |
Collapse
|
13
|
Akkawi C, Feuillard J, Diaz FL, Belkhir K, Godefroy N, Peloponese JM, Mougel M, Laine S. Murine leukemia virus (MLV) P50 protein induces cell transformation via transcriptional regulatory function. Retrovirology 2023; 20:16. [PMID: 37700325 PMCID: PMC10496198 DOI: 10.1186/s12977-023-00631-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND The murine leukemia virus (MLV) has been a powerful model of pathogenesis for the discovery of genes involved in cancer. Its splice donor (SD')-associated retroelement (SDARE) is important for infectivity and tumorigenesis, but the mechanism remains poorly characterized. Here, we show for the first time that P50 protein, which is produced from SDARE, acts as an accessory protein that transregulates transcription and induces cell transformation. RESULTS By infecting cells with MLV particles containing SDARE transcript alone (lacking genomic RNA), we show that SDARE can spread to neighbouring cells as shown by the presence of P50 in infected cells. Furthermore, a role for P50 in cell transformation was demonstrated by CCK8, TUNEL and anchorage-independent growth assays. We identified the integrase domain of P50 as being responsible for transregulation of the MLV promoter using luciferase assay and RTqPCR with P50 deleted mutants. Transcriptomic analysis furthermore revealed that the expression of hundreds of cellular RNAs involved in cancerogenesis were deregulated in the presence of P50, suggesting that P50 induces carcinogenic processes via its transcriptional regulatory function. CONCLUSION We propose a novel SDARE-mediated mode of propagation of the P50 accessory protein in surrounding cells. Moreover, due to its transforming properties, P50 expression could lead to a cellular and tissue microenvironment that is conducive to cancer development.
Collapse
Affiliation(s)
- Charbel Akkawi
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France
| | - Jerome Feuillard
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France
| | - Felipe Leon Diaz
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France
| | - Khalid Belkhir
- ISEM, CNRS, EPHE, Université Montpellier, IRD, Montpellier, France
| | - Nelly Godefroy
- ISEM, CNRS, EPHE, Université Montpellier, IRD, Montpellier, France
| | | | - Marylene Mougel
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France.
| | - Sebastien Laine
- Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
14
|
Gracia-Diaz C, Perdomo JE, Khan ME, Disanza B, Cajka GG, Lei S, Gagne A, Maguire JA, Roule T, Shalem O, Bhoj EJ, Ahrens-Nicklas RC, French D, Goldberg EM, Wang K, Glessner J, Akizu N. High density SNP array and reanalysis of genome sequencing uncovers CNVs associated with neurodevelopmental disorders in KOLF2.1J iPSCs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546614. [PMID: 37425875 PMCID: PMC10327134 DOI: 10.1101/2023.06.26.546614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The KOLF2.1J iPSC line was recently proposed as a reference iPSC to promote the standardization of research studies in the stem cell field. Due to overall good performance differentiating to neural cell lineages, high gene editing efficiency, and absence of genetic variants associated to neurological disorders KOLF2.1J iPSC line was particularly recommended for neurodegenerative disease modeling. However, our work uncovers that KOLF2.1J hPSCs carry heterozygous small copy number variants (CNVs) that cause DTNBP1, JARID2 and ASTN2 haploinsufficiencies, all of which are associated with neurological disorders. We further determine that these CNVs arose in vitro over the course of KOLF2.1J iPSC generation from a healthy donor-derived KOLF2 iPSC line and affect the expression of DNTBP1, JARID2 and ASTN2 proteins in KOLF2.1J iPSCs and neural progenitors. Therefore, our study suggests that KOLF2.1J iPSCs carry genetic variants that may be deleterious for neural cell lineages. This data is essential for a careful interpretation of neural cell studies derived from KOLF2.1J iPSCs and highlights the need for a catalogue of iPSC lines that includes a comprehensive genome characterization analysis.
Collapse
Affiliation(s)
- Carolina Gracia-Diaz
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan E. Perdomo
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- School of Biomedical Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Munir E. Khan
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brianna Disanza
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory G. Cajka
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Sunyimeng Lei
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alyssa Gagne
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean Ann Maguire
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Roule
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ophir Shalem
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth J. Bhoj
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca C. Ahrens-Nicklas
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
| | - Deborah French
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ethan M. Goldberg
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Departmen of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph Glessner
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Naiara Akizu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lead contact
| |
Collapse
|
15
|
Chifotides HT, Verstovsek S, Bose P. Association of Myelofibrosis Phenotypes with Clinical Manifestations, Molecular Profiles, and Treatments. Cancers (Basel) 2023; 15:3331. [PMID: 37444441 PMCID: PMC10340291 DOI: 10.3390/cancers15133331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
Myelofibrosis (MF) presents an array of clinical manifestations and molecular profiles. The two distinct phenotypes- myeloproliferative and myelodepletive or cytopenic- are situated at the two poles of the disease spectrum and are largely defined by different degrees of cytopenias, splenomegaly, and distinct molecular profiles. The myeloproliferative phenotype is characterized by normal/higher peripheral blood counts or mildly decreased hemoglobin, progressive splenomegaly, and constitutional symptoms. The myeloproliferative phenotype is typically associated with secondary MF, higher JAK2 V617F burden, fewer mutations, and superior overall survival (OS). The myelodepletive phenotype is usually associated with primary MF, ≥2 cytopenias, modest splenomegaly, lower JAK2 V617F burden, higher fibrosis, greater genomic complexity, and inferior OS. Cytopenias are associated with mutations in epigenetic regulators/splicing factors, clonal evolution, disease progression, and shorter OS. Clinical variables, in conjunction with the molecular profiles, inform integrated prognostication and disease management. Ruxolitinib/fedratinib and pacritinib/momelotinib may be more suitable to treat patients with the myeloproliferative and myelodepletive phenotypes, respectively. Appreciation of MF heterogeneity and two distinct phenotypes, the different clinical manifestations and molecular profiles associated with each phenotype alongside the growing treatment expertise, the development of non-myelosuppressive JAK inhibitors, and integrated prognostication are leading to a new era in patient management. Physicians can increasingly tailor personalized treatments that will address the unique unmet needs of MF patients, including those presenting with the myelodepletive phenotype, to elicit optimal outcomes and extended OS across the disease spectrum.
Collapse
Affiliation(s)
| | | | - Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (H.T.C.); (S.V.)
| |
Collapse
|
16
|
Bhuvanadas S, Devi A. JARID2 and EZH2, The Eminent Epigenetic Drivers In Human Cancer. Gene 2023:147584. [PMID: 37353042 DOI: 10.1016/j.gene.2023.147584] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Cancer has become a prominent cause of death, accounting for approximately 10 million death worldwide as per the World Health Organization reports 2020. Epigenetics deal with the alterations of heritable phenotypes, except for DNA alterations. Currently, we are trying to comprehend the role of utmost significant epigenetic genes involved in the burgeoning of human cancer. A sundry of studies reported the Enhancer of Zeste Homologue2 (EZH2) as a prime catalytic subunit of Polycomb Repressive Complex2, which is involved in several pivotal activities, including embryogenesis. In addition, EZH2 has detrimental effects leading to the onset and metastasis of several cancers. Jumonji AT Rich Interacting Domain2 (JARID2), an undebated crucial nuclear factor, has strong coordination with the PRC2 family. In this review, we discuss various epigenetic entities, primarily focusing on the possible role and mechanism of EZH2 and the significant contribution of JARID2 in human cancers.
Collapse
Affiliation(s)
- Sreeshma Bhuvanadas
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India - 603203
| | - Arikketh Devi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India - 603203.
| |
Collapse
|
17
|
Gu Y, Ding Z, Zhou Q, Li J, Qian W. JARID2 regulates epithelial mesenchymal transition through the PTEN/AKT signalling pathways in ovarian endometriosis. Reprod Biol 2023; 23:100729. [PMID: 36640627 DOI: 10.1016/j.repbio.2023.100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/07/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023]
Abstract
Recently, it has been proposed that epithelial-mesenchymal transition (EMT) plays a key role in the development of endometriosis (EMs). Although EMs is a benign disease, it has the characteristics of malignant tumors, such as invasion and migration. JARID2 (Jumonji, AT rich interaction domain) can induce EMT in cancer cells to increase their invasion and migration abilities. However, whether JARID2 has the same function in EMs is not yet known. In this study, A retrospective immunohistochemistry(IHC) was used to measure the expression of JARID2, E-cadherin, PTEN, and p-AKT in ovarian endometriosis (OE) tissues. JARID2, EMT and PTEN/AKT signaling pathway related indicators were assessed by RT-PCR and western blotting in vitro. Furthermore, functional assays were applied to evaluate the involvement of JARID2 in the invasion and migration of Ishikawa cells. Here,we conclude that JARID2 could be involved in the PTEN/AKT signalling pathway and contribute to the development of ovarian endometriosis. The expression of JARID2 was negatively correlated with PTEN, but positively correlated with p-AKT in the ectopic endometrial tissues of OE cases. JARID2 overexpression increased the expression of N-cadherin, vimentin and AKT, but inhibited the expression of E-cadherin and PTEN. Accordingly, the opposite results were obtainedwhen JARID2 was downregulated. Furthermore, JARID2 promoted the invasion and migration ability of Ishikawa cells.
Collapse
Affiliation(s)
- Yiran Gu
- Department of Gyanecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shang hai 201620, PR China
| | - Zhiyun Ding
- Department of Gynaecology, Kunshan Hospital of Traditional Chinese Medicine Affiliated to Yangzhou University, Kunshan, Jiangsu 215300, PR China
| | - Qin Zhou
- Department of Gynaecology, Kunshan Hospital of Traditional Chinese Medicine Affiliated to Yangzhou University, Kunshan, Jiangsu 215300, PR China
| | - Juan Li
- Department of Gynaecology, Kunshan Hospital of Traditional Chinese Medicine Affiliated to Yangzhou University, Kunshan, Jiangsu 215300, PR China
| | - Wenyan Qian
- Department of Gynaecology, Kunshan Hospital of Traditional Chinese Medicine Affiliated to Yangzhou University, Kunshan, Jiangsu 215300, PR China.
| |
Collapse
|
18
|
Liu A, Genovese G, Zhao Y, Pirinen M, Zekavat MM, Kentistou K, Yang Z, Yu K, Vlasschaert C, Liu X, Brown DW, Hudjashov G, Gorman B, Dennis J, Zhou W, Momozawa Y, Pyarajan S, Tuzov V, Pajuste FD, Aavikko M, Sipilä TP, Ghazal A, Huang WY, Freedman N, Song L, Gardner EJ, Sankaran VG, Palotie A, Ollila HM, Tukiainen T, Chanock SJ, Mägi R, Natarajan P, Daly MJ, Bick A, McCarroll SA, Terao C, Loh PR, Ganna A, Perry JRB, Machiela MJ. Population analyses of mosaic X chromosome loss identify genetic drivers and widespread signatures of cellular selection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.28.23285140. [PMID: 36778285 PMCID: PMC9915812 DOI: 10.1101/2023.01.28.23285140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mosaic loss of the X chromosome (mLOX) is the most commonly occurring clonal somatic alteration detected in the leukocytes of women, yet little is known about its genetic determinants or phenotypic consequences. To address this, we estimated mLOX in >900,000 women across eight biobanks, identifying 10% of women with detectable X loss in approximately 2% of their leukocytes. Out of 1,253 diseases examined, women with mLOX had an elevated risk of myeloid and lymphoid leukemias and pneumonia. Genetic analyses identified 49 common variants influencing mLOX, implicating genes with established roles in chromosomal missegregation, cancer predisposition, and autoimmune diseases. Complementary exome-sequence analyses identified rare missense variants in FBXO10 which confer a two-fold increased risk of mLOX. A small fraction of these associations were shared with mosaic Y chromosome loss in men, suggesting different biological processes drive the formation and clonal expansion of sex chromosome missegregation events. Allelic shift analyses identified alleles on the X chromosome which are preferentially retained, demonstrating that variation at many loci across the X chromosome is under cellular selection. A novel polygenic score including 44 independent X chromosome allelic shift loci correctly inferred the retained X chromosomes in 80.7% of mLOX cases in the top decile. Collectively our results support a model where germline variants predispose women to acquiring mLOX, with the allelic content of the X chromosome possibly shaping the magnitude of subsequent clonal expansion.
Collapse
Affiliation(s)
- Aoxing Liu
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- These authors contributed equally: Aoxing Liu, Giulio Genovese, Yajie Zhao
| | - Giulio Genovese
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- These authors contributed equally: Aoxing Liu, Giulio Genovese, Yajie Zhao
| | - Yajie Zhao
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- These authors contributed equally: Aoxing Liu, Giulio Genovese, Yajie Zhao
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Publich Health, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Maryam M Zekavat
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Katherine Kentistou
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Zhiyu Yang
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | - Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Derek W Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA
| | - Georgi Hudjashov
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Bryan Gorman
- Center for Data and Computational Sciences (C-DACS), VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Saiju Pyarajan
- Center for Data and Computational Sciences (C-DACS), VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vlad Tuzov
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Fanny-Dhelia Pajuste
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Mervi Aavikko
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Timo P Sipilä
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Awaisa Ghazal
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Neal Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Eugene J Gardner
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Vijay G Sankaran
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Hanna M Ollila
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center of Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Taru Tukiainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Pradeep Natarajan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Center of Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Mark J Daly
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Alexander Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Steven A McCarroll
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Po-Ru Loh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- These authors jointly supervised this work: Po-Ru Loh, Andrea Ganna, John R.B. Perry, Mitchell J. Machiela
| | - Andrea Ganna
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- These authors jointly supervised this work: Po-Ru Loh, Andrea Ganna, John R.B. Perry, Mitchell J. Machiela
| | - John R B Perry
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- These authors jointly supervised this work: Po-Ru Loh, Andrea Ganna, John R.B. Perry, Mitchell J. Machiela
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- These authors jointly supervised this work: Po-Ru Loh, Andrea Ganna, John R.B. Perry, Mitchell J. Machiela
| |
Collapse
|
19
|
Liao C, Liu X, Zhang C, Zhang Q. Tumor hypoxia: From basic knowledge to therapeutic implications. Semin Cancer Biol 2023; 88:172-186. [PMID: 36603793 PMCID: PMC9929926 DOI: 10.1016/j.semcancer.2022.12.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
Diminished oxygen availability, termed hypoxia, within solid tumors is one of the most common characteristics of cancer. Hypoxia shapes the landscape of the tumor microenvironment (TME) into a pro-tumorigenic and pro-metastatic niche through arrays of pathological alterations such as abnormal vasculature, altered metabolism, immune-suppressive phenotype, etc. In addition, emerging evidence suggests that limited efficacy or the development of resistance towards antitumor therapy may be largely due to the hypoxic TME. This review will focus on summarizing the knowledge about the molecular machinery that mediates the hypoxic cellular responses and adaptations, as well as highlighting the effects and consequences of hypoxia, especially for angiogenesis regulation, cellular metabolism alteration, and immunosuppressive response within the TME. We also outline the current advances in novel therapeutic implications through targeting hypoxia in TME. A deep understanding of the basics and the role of hypoxia in the tumor will help develop better therapeutic avenues in cancer treatment.
Collapse
Affiliation(s)
- Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xijuan Liu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA
| | - Cheng Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
20
|
Kong T, Laranjeira ABA, Yang K, Fisher DAC, Yu L, Poittevin De La Frégonnière L, Wang AZ, Ruzinova MB, Fowles JS, Fulbright MC, Cox MJ, Celik H, Challen GA, Huang S, Oh ST. DUSP6 mediates resistance to JAK2 inhibition and drives leukemic progression. NATURE CANCER 2023; 4:108-127. [PMID: 36581736 PMCID: PMC11288645 DOI: 10.1038/s43018-022-00486-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/08/2022] [Indexed: 12/31/2022]
Abstract
Myeloproliferative neoplasms (MPNs) exhibit a propensity for transformation to secondary acute myeloid leukemia (sAML), for which the underlying mechanisms remain poorly understood, resulting in limited treatment options and dismal clinical outcomes. Here, we performed single-cell RNA sequencing on serial MPN and sAML patient stem and progenitor cells, identifying aberrantly increased expression of DUSP6 underlying disease transformation. Pharmacologic dual-specificity phosphatase (DUSP)6 targeting led to inhibition of S6 and Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling while also reducing inflammatory cytokine production. DUSP6 perturbation further inhibited ribosomal S6 kinase (RSK)1, which we identified as a second indispensable candidate associated with poor clinical outcome. Ectopic expression of DUSP6 mediated JAK2-inhibitor resistance and exacerbated disease severity in patient-derived xenograft (PDX) models. Contrastingly, DUSP6 inhibition potently suppressed disease development across Jak2V617F and MPLW515L MPN mouse models and sAML PDXs without inducing toxicity in healthy controls. These findings underscore DUSP6 in driving disease transformation and highlight the DUSP6-RSK1 axis as a vulnerable, druggable pathway in myeloid malignancies.
Collapse
Affiliation(s)
- Tim Kong
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Angelo B A Laranjeira
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kangning Yang
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Daniel A C Fisher
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - LaYow Yu
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Laure Poittevin De La Frégonnière
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Anthony Z Wang
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Marianna B Ruzinova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jared S Fowles
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mary C Fulbright
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Maggie J Cox
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Hamza Celik
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Grant A Challen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Stephen T Oh
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Immunomonitoring Laboratory, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
21
|
Critical Roles of Polycomb Repressive Complexes in Transcription and Cancer. Int J Mol Sci 2022; 23:ijms23179574. [PMID: 36076977 PMCID: PMC9455514 DOI: 10.3390/ijms23179574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Polycomp group (PcG) proteins are members of highly conserved multiprotein complexes, recognized as gene transcriptional repressors during development and shown to play a role in various physiological and pathological processes. PcG proteins consist of two Polycomb repressive complexes (PRCs) with different enzymatic activities: Polycomb repressive complexes 1 (PRC1), a ubiquitin ligase, and Polycomb repressive complexes 2 (PRC2), a histone methyltransferase. Traditionally, PRCs have been described to be associated with transcriptional repression of homeotic genes, as well as gene transcription activating effects. Particularly in cancer, PRCs have been found to misregulate gene expression, not only depending on the function of the whole PRCs, but also through their separate subunits. In this review, we focused especially on the recent findings in the transcriptional regulation of PRCs, the oncogenic and tumor-suppressive roles of PcG proteins, and the research progress of inhibitors targeting PRCs.
Collapse
|
22
|
Pasca S, Chifotides HT, Verstovsek S, Bose P. Mutational landscape of blast phase myeloproliferative neoplasms (MPN-BP) and antecedent MPN. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 366:83-124. [PMID: 35153007 DOI: 10.1016/bs.ircmb.2021.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Myeloproliferative neoplasms (MPN) have an inherent tendency to evolve to the blast phase (BP), characterized by ≥20% myeloblasts in the blood or bone marrow. MPN-BP portends a dismal prognosis and currently, effective treatment modalities are scarce, except for allogeneic hematopoietic stem cell transplantation (allo-HSCT) in selected patients, particularly those who achieve complete/partial remission. The mutational landscape of MPN-BP differs from de novo acute myeloid leukemia (AML) in several key aspects, such as significantly lower frequencies of FLT3 and DNMT3A mutations, and higher incidence of IDH1/2 and TP53 in MPN-BP. Herein, we comprehensively review the impact of the three signaling driver mutations (JAK2 V617F, CALR exon 9 indels, MPL W515K/L) that constitutively activate the JAK/STAT pathway, and of the other somatic non-driver mutations (epigenetic, mRNA splicing, transcriptional regulators, and mutations in signal transduction genes) that cooperatively or independently promote MPN progression and leukemic transformation. The MPN subtype, harboring two or more high-molecular risk (HMR) mutations (epigenetic regulators and mRNA splicing factors) and "triple-negative" PMF are among the critical factors that increase risk of leukemic transformation and shorten survival. Primary myelofibrosis (PMF) is the most aggressive MPN; and polycythemia vera (PV) and essential thrombocythemia (ET) are relatively indolent subtypes. In PV and ET, mutations in splicing factor genes are associated with progression to myelofibrosis (MF), and in ET, TP53 mutations predict risk for leukemic transformation. The advent of targeted next-generation sequencing and improved prognostic scoring systems for PMF inform decisions regarding allo-HSCT. The emergence of treatments targeting mutant enzymes (e.g., IDH1/2 inhibitors) or epigenetic pathways (BET and LSD1 inhibitors) along with new insights into the mechanisms of leukemogenesis will hopefully lead the way to superior management strategies and outcomes of MPN-BP patients.
Collapse
Affiliation(s)
- Sergiu Pasca
- Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Helen T Chifotides
- Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Srdan Verstovsek
- Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Prithviraj Bose
- Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
23
|
Parreno V, Martinez AM, Cavalli G. Mechanisms of Polycomb group protein function in cancer. Cell Res 2022; 32:231-253. [PMID: 35046519 PMCID: PMC8888700 DOI: 10.1038/s41422-021-00606-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/10/2021] [Indexed: 02/01/2023] Open
Abstract
Cancer arises from a multitude of disorders resulting in loss of differentiation and a stem cell-like phenotype characterized by uncontrolled growth. Polycomb Group (PcG) proteins are members of multiprotein complexes that are highly conserved throughout evolution. Historically, they have been described as essential for maintaining epigenetic cellular memory by locking homeotic genes in a transcriptionally repressed state. What was initially thought to be a function restricted to a few target genes, subsequently turned out to be of much broader relevance, since the main role of PcG complexes is to ensure a dynamically choregraphed spatio-temporal regulation of their numerous target genes during development. Their ability to modify chromatin landscapes and refine the expression of master genes controlling major switches in cellular decisions under physiological conditions is often misregulated in tumors. Surprisingly, their functional implication in the initiation and progression of cancer may be either dependent on Polycomb complexes, or specific for a subunit that acts independently of other PcG members. In this review, we describe how misregulated Polycomb proteins play a pleiotropic role in cancer by altering a broad spectrum of biological processes such as the proliferation-differentiation balance, metabolism and the immune response, all of which are crucial in tumor progression. We also illustrate how interfering with PcG functions can provide a powerful strategy to counter tumor progression.
Collapse
Affiliation(s)
- Victoria Parreno
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France
| | - Anne-Marie Martinez
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| |
Collapse
|
24
|
Kong T, Laranjeira AB, Collins TB, De Togni ES, Wong AJ, Fulbright MC, Ruzinova M, Celik H, Challen GA, Fisher DA, Oh ST. Pevonedistat targets malignant cells in myeloproliferative neoplasms in vitro and in vivo via NFκB pathway inhibition. Blood Adv 2022; 6:611-623. [PMID: 34644371 PMCID: PMC8791597 DOI: 10.1182/bloodadvances.2020002804] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/19/2021] [Indexed: 11/20/2022] Open
Abstract
Targeted inhibitors of JAK2 (eg ruxolitinib) often provide symptomatic relief for myeloproliferative neoplasm (MPN) patients, but the malignant clone persists and remains susceptible to disease transformation. These observations suggest that targeting alternative dysregulated signaling pathways may provide therapeutic benefit. Previous studies identified NFκB pathway hyperactivation in myelofibrosis (MF) and secondary acute myeloid leukemia (sAML) that was insensitive to JAK2 inhibition. Here, we provide evidence that NFκB pathway inhibition via pevonedistat targets malignant cells in MPN patient samples as well as in MPN and patient-derived xenograft mouse models that are nonredundant with ruxolitinib. Colony forming assays revealed preferential inhibition of MF colony growth compared with normal colony formation. In mass cytometry studies, pevonedistat blunted canonical TNFα responses in MF and sAML patient CD34+ cells. Pevonedistat also inhibited hyperproduction of inflammatory cytokines more effectively than ruxolitinib. Upon pevonedistat treatment alone or in combination with ruxolitinib, MPN mouse models exhibited reduced disease burden and improved survival. These studies demonstrating efficacy of pevonedistat in MPN cells in vitro as well as in vivo provide a rationale for therapeutic inhibition of NFκB signaling for MF treatment. Based on these findings, a Phase 1 clinical trial combining pevonedistat with ruxolitinib has been initiated.
Collapse
Affiliation(s)
- Tim Kong
- Division of Hematology, Department of Medicine
| | | | | | | | | | | | | | - Hamza Celik
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO; and
| | - Grant A. Challen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO; and
| | | | - Stephen T. Oh
- Division of Hematology, Department of Medicine
- Department of Pathology and Immunology, and
- Immunomonitoring Laboratory, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
25
|
Lu Y, Liu Z, Wang W, Chen X, Zhou X, Fu W. Expression Signature of the AT-Rich Interactive Domain Gene Family Identified in Digestive Cancer. Front Med (Lausanne) 2022; 8:775357. [PMID: 35127746 PMCID: PMC8811461 DOI: 10.3389/fmed.2021.775357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/29/2021] [Indexed: 12/29/2022] Open
Abstract
BackgroundThe AT-rich interactive domain (ARID) gene family of 15 proteins has an important role in development and proliferation. Gene expression alterations of the ARID family are correlated with the pathogenesis of digestive cancer, but systematic research has not been conducted.MethodsWe obtained transcriptome sequencing data, clinical characteristics and stemness indices of the seven main types of digestive cancer (cholangiocarcinoma, colon adenocarcinoma, oesophageal carcinoma, liver hepatocellular carcinoma, pancreatic adenocarcinoma, rectum adenocarcinoma and stomach adenocarcinoma) from public pan-cancer data to combine the analysis of the expression and prognostic signature of the ARID gene family. The stromal and immune scores for each sample were calculated to explore the correlations between the ARID gene family members and the tumour microenvironment.ResultsAfter screening, 1,920 digestive cancer samples were included in our study. ARID3C was expressed at low levels throughout the digestive cancer samples. The expression levels of ARID1A and JARID1C were relatively high, but there was striking heterogeneity across the different cancer types for specific family members. The survival analysis indicated that many genes were significantly related to the prognosis of patients with liver hepatocellular carcinoma. The stemness indices, stromal score, and immune score analysis showed that the expression of a single ARID gene had characteristic consistency in each tumour, but the levels among the different genes still varied.ConclusionOur systematic study of the ARID gene family and its association with the immune infiltrate, tumour microenvironment and outcomes of digestive cancer patients focus on the complex relations and indicate the need to study each ARID member as an individual in a specific cancer type.
Collapse
|
26
|
Qi M, Sun H, Guo Y, Zhou Y, Gu X, Jin J, Chen X, Wang F, Ma H, Guo X, Chen H, Shen B. m 6 A reader protein YTHDF2 regulates spermatogenesis by timely clearance of phase-specific transcripts. Cell Prolif 2022; 55:e13164. [PMID: 34850470 PMCID: PMC8780898 DOI: 10.1111/cpr.13164] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/06/2021] [Accepted: 11/16/2021] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES Accumulating evidences show that the regulatory network of m6 A modification is essential for mammalian spermatogenesis. However, as an m6 A reader, the roles of YTHDF2 remain enigmatic due to the lack of a proper model. Here, we employed the germ cell conditional knockout mouse model and explored the function of YTHDF2 in spermatogenesis. MATERIALS AND METHODS Ythdf2 germ cell conditional knockout mice were obtained by crossing Ythdf2-floxed mice with Vasa-Cre and Stra8-Cre mice. Haematoxylin and eosin (HE) staining, immunofluorescent staining and Western blotting were used for phenotyping. CASA, IVF and ICSI were applied for sperm function analysis. RNA-seq, YTHDF2-RIP-seq and quantitative real-time PCR were used to explore transcriptome changes and molecular mechanism analysis. RESULTS Our results showed that YTHDF2 was highly expressed in spermatogenic cells. The germ cell conditional knockout males were sterile, and their sperm displayed malformation, impaired motility, and lost fertilization ability. During differentiated spermatogonia transiting to pachytene spermatocyte, most m6 A-modified YTHDF2 targets that were degraded in control germ cells persisted in pachytene spermatocytes of Ythdf2-vKO mice. These delayed mRNAs were mainly enriched in pathways related to the regulation of transcription, and disturbed the transcriptome of round spermatid and elongated spermatid subsequently. CONCLUSION Our data demonstrate that YTHDF2 facilitates the timely turnover of phase-specific transcripts to ensure the proper progression of spermatogenesis, which highlights a critical role of YTHDF2 in spermatogenesis.
Collapse
Affiliation(s)
- Meijie Qi
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
- Center for Reproductive MedicineDivision of Life Sciences and MedicineThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Haifeng Sun
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Yueshuai Guo
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Yu Zhou
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Xueying Gu
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Jiachuan Jin
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Xiaoxu Chen
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Fangzhu Wang
- Reproductive Medicine CenterGansu Provincial Maternity and Child‐Care HospitalLanzhouChina
| | - Honghui Ma
- Department of CardiologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Xuejiang Guo
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Hao Chen
- Department of Human Cell Biology and GeneticsSchool of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Bin Shen
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
- Gusu SchoolNanjing Medical UniversityNanjingChina
- Center for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingChina
- Women’s Hospital of Nanjing Medical UniversityNanjing Maternity and Child Health Care HospitalNanjing Medical UniversityNanjingChina
| |
Collapse
|
27
|
Guo L, Ma H, Kong Y, Leng G, Liu G, Zhang Y. Long non-coding RNA TNK2 AS1/microRNA-125a-5p axis promotes tumor growth and modulated phosphatidylinositol 3 kinase/AKT pathway. J Gastroenterol Hepatol 2022; 37:124-133. [PMID: 34494305 DOI: 10.1111/jgh.15683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/06/2021] [Accepted: 08/30/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIM Long non-coding RNA (lncRNA) TNK2 AS1 is a noncoding RNA with the capability of affecting microRNAs (miRNAs) levels and gene expression. The study was designed to investigate the mechanism of TNK2 AS1 in gastric cancer. METHODS The loss and gain of function of TNK2 AS1 were investigated by analyzing the malignant behavior of AGS cells including the abilities of migration, invasion, and epithelial-mesenchymal transition (EMT) process via wound healing and transwell assay, as well as western blot. The targeting relationship of LncRNA TNK2 AS1 was analyzed through searching bioinformatics database, luciferase reporter assay, and RNA immunoprecipitation (RIP) assay. Tumor-bearing experiment in nude mice was performed to further confirm the regulatory role of TNK2 AS1 in vivo. Immunofluorescence assay for Ki67 expression was carried out in tumor tissues of mice model. RESULTS The results showed that TNK2 AS1 overexpression promoted the malignant behaviors of AGS cells, which could be weakened by miR-125a-5p mimic addition. In addition, Jumonji, At-rich interaction domain (JARID2), and phosphatidylinositol 3 kinase (PI3K)/AKT pathway were regulated by TNK2-AS1/miR-125a-5p axis. In vivo, TNK2 AS1/miR-125a-5p axis promoted tumor growth and led to increases in green fluorescence intensity and vimentin expression and a decrease in E-cadherin level, which could be mediated by JARID2 and PI3K/AKT pathway. CONCLUSION Therefore, a conclusion was drawn that TNK2-AS1/miR-125a-5p promoted the progression of gastric cancer.
Collapse
Affiliation(s)
- Liuqing Guo
- Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Hanwei Ma
- Lanzhou University Second Hospital, Lanzhou, P.R. China
| | - Yin Kong
- Lanzhou University Second Hospital, Lanzhou, P.R. China
| | | | - Guiyuan Liu
- Lanzhou University Second Hospital, Lanzhou, P.R. China
| | | |
Collapse
|
28
|
Kang M, Na HY, Ahn S, Kim JW, Lee S, Ahn S, Lee JH, Youk J, Kim HT, Kim KJ, Suh KJ, Lee JS, Kim SH, Kim JW, Kim YJ, Lee KW, Yoon YS, Kim JH, Chung JH, Han HS, Lee JS. Gallbladder adenocarcinomas undergo subclonal diversification and selection from precancerous lesions to metastatic tumors. eLife 2022; 11:78636. [PMID: 36476508 PMCID: PMC9771369 DOI: 10.7554/elife.78636] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
We aimed to elucidate the evolutionary trajectories of gallbladder adenocarcinoma (GBAC) using multi-regional and longitudinal tumor samples. Using whole-exome sequencing data, we constructed phylogenetic trees in each patient and analyzed mutational signatures. A total of 11 patients including 2 rapid autopsy cases were enrolled. The most frequently altered gene in primary tumors was ERBB2 and TP53 (54.5%), followed by FBXW7 (27.3%). Most mutations in frequently altered genes in primary tumors were detectable in concurrent precancerous lesions (biliary intraepithelial neoplasia [BilIN]), but a substantial proportion was subclonal. Subclonal diversity was common in BilIN (n=4). However, among subclones in BilIN, a certain subclone commonly shrank in concurrent primary tumors. In addition, selected subclones underwent linear and branching evolution, maintaining subclonal diversity. Combined analysis with metastatic tumors (n=11) identified branching evolution in nine patients (81.8%). Of these, eight patients (88.9%) had a total of 11 subclones expanded at least sevenfold during metastasis. These subclones harbored putative metastasis-driving mutations in cancer-related genes such as SMAD4, ROBO1, and DICER1. In mutational signature analysis, six mutational signatures were identified: 1, 3, 7, 13, 22, and 24 (cosine similarity >0.9). Signatures 1 (age) and 13 (APOBEC) decreased during metastasis while signatures 22 (aristolochic acid) and 24 (aflatoxin) were relatively highlighted. Subclonal diversity arose early in precancerous lesions and clonal selection was a common event during malignant transformation in GBAC. However, selected cancer clones continued to evolve and thus maintained subclonal diversity in metastatic tumors.
Collapse
Affiliation(s)
- Minsu Kang
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Hee Young Na
- Department of Pathology, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Soomin Ahn
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Ji-Won Kim
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea,Genealogy IncSeoulRepublic of Korea
| | - Sejoon Lee
- Center for Precision Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Soyeon Ahn
- Medical Research Collaboration Center, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Ju Hyun Lee
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Jeonghwan Youk
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Haesook T Kim
- Department of Data Science, Dana Farber Cancer Institute, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Kui-Jin Kim
- Biomedical Research Institute, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Koung Jin Suh
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Jun Suh Lee
- Department of Surgery, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Se Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Yu Jung Kim
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Yoo-Seok Yoon
- Department of Surgery, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Jin-Haeng Chung
- Department of Pathology, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Ho-Seong Han
- Department of Surgery, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Jong Seok Lee
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| |
Collapse
|
29
|
Crispino J, Rampal R. Can molecular insights guide treatment of AML evolved from MPNs? Best Pract Res Clin Haematol 2021; 34:101323. [PMID: 34865695 DOI: 10.1016/j.beha.2021.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Leukemic transformation of myeloproliferative neoplasms (MPNs) is associated with dismal outcomes. The genetic complexity of leukemic transformation of MPNs is being deciphered and will likely result in targeted therapy approaches. Ongoing trials are investigating the efficacy of emerging treatments for this high-risk patient population. This review has outlined recent progress in the understanding and treatment of leukemia arising from MPNs.
Collapse
Affiliation(s)
- John Crispino
- St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-3678, USA.
| | - Raajit Rampal
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 443, New York, NY, 10022, USA
| |
Collapse
|
30
|
Celik H, Krug E, Zhang CR, Han W, Issa N, Koh WK, Bjeije H, Kukhar O, Allen M, Li T, Fisher DAC, Fowles JS, Wong TN, Stubbs MC, Koblish HK, Oh ST, Challen GA. A Humanized Animal Model Predicts Clonal Evolution and Therapeutic Vulnerabilities in Myeloproliferative Neoplasms. Cancer Discov 2021; 11:3126-3141. [PMID: 34193440 PMCID: PMC8716669 DOI: 10.1158/2159-8290.cd-20-1652] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 06/04/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022]
Abstract
Myeloproliferative neoplasms (MPN) are chronic blood diseases with significant morbidity and mortality. Although sequencing studies have elucidated the genetic mutations that drive these diseases, MPNs remain largely incurable with a significant proportion of patients progressing to rapidly fatal secondary acute myeloid leukemia (sAML). Therapeutic discovery has been hampered by the inability of genetically engineered mouse models to generate key human pathologies such as bone marrow fibrosis. To circumvent these limitations, here we present a humanized animal model of myelofibrosis (MF) patient-derived xenografts (PDX). These PDXs robustly engrafted patient cells that recapitulated the patient's genetic hierarchy and pathologies such as reticulin fibrosis and propagation of MPN-initiating stem cells. The model can select for engraftment of rare leukemic subclones to identify patients with MF at risk for sAML transformation and can be used as a platform for genetic target validation and therapeutic discovery. We present a novel but generalizable model to study human MPN biology. SIGNIFICANCE Although the genetic events driving MPNs are well defined, therapeutic discovery has been hampered by the inability of murine models to replicate key patient pathologies. Here, we present a PDX system to model human myelofibrosis that reproduces human pathologies and is amenable to genetic and pharmacologic manipulation. This article is highlighted in the In This Issue feature, p. 2945.
Collapse
Affiliation(s)
- Hamza Celik
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Ethan Krug
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Christine R Zhang
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Wentao Han
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Nancy Issa
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Won Kyun Koh
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Hassan Bjeije
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Ostap Kukhar
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Maggie Allen
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Tiandao Li
- Center of Regenerative Medicine, Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel A C Fisher
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jared S Fowles
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Terrence N Wong
- Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | | | | | - Stephen T Oh
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Grant A Challen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
31
|
Yao B, Ye L, Chen J, Zhuo S, Lin H. LINC00473 protects against cerebral ischemia reperfusion injury via sponging miR-15b-5p and miR-15a-5p to regulate SRPK1 expression. Brain Inj 2021; 35:1462-1471. [PMID: 34752173 DOI: 10.1080/02699052.2021.1972156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cerebral ischemia is associated with a high burden of neurological disability. Recently, emerging evidence has demonstrated that long non-coding RNAs (lncRNAs) are crucial regulators in cerebral ischemia reperfusion (I/R) injury. Herein, we investigated the function and potential mechanism of long intergenic non-protein coding RNA 473 (LINC00473) in cerebral I/R injury. METHODS We established oxygen glucose deprivation/reperfusion (OGD/R) model in Neuro-2a (N2a) cells to mimic the cerebral I/R injury in vitro. RT-qPCR and Western blot assays were conducted to detect target gene expression. Functional assays measured the effects of LINC00473 on cell viability, apoptosis and reactive oxygen species (ROS) production. A series of mechanism assays were carried out to detect the potential mechanism of LINC00473 in cerebral I/R injury. RESULTS LINC00473 was significantly down-regulated in OGD/R-induced injury model. LINC00473 overexpression reversed the reduced cell viability as well as the enhanced apoptosis and ROS level induced by OGD/R. Moreover, LINC00473 functioned as a competing endogenous RNA (ceRNA) to sponge miR-15b-5p and miR-15a-5p and thereby regulated SRSF protein kinase 1 (SRPK1) expression. CONCLUSIONS Our findings confirmed the protective role of LINC00473 in cerebral I/R injury, which might provide a novel target for treating ischemic brain injury.
Collapse
Affiliation(s)
- Boxin Yao
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Lichao Ye
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Jixing Chen
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shitu Zhuo
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Huasong Lin
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
32
|
Liao M, Dong Q, Chen R, Xu L, Jiang Y, Guo Z, Xiao M, He W, Cao C, Hu R, Sun W, Jiang H, Wang J. Oridonin inhibits DNMT3A R882 mutation-driven clonal hematopoiesis and leukemia by inducing apoptosis and necroptosis. Cell Death Discov 2021; 7:297. [PMID: 34663800 PMCID: PMC8523644 DOI: 10.1038/s41420-021-00697-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/14/2021] [Accepted: 10/05/2021] [Indexed: 01/10/2023] Open
Abstract
DNA (cytosine-5)-methyltransferase 3A (DNMT3A) mutations occur in ~20% of de novo acute myeloid leukemia (AML) patients, and >50% of these mutations in AML samples are heterozygous missense alterations within the methyltransferase domain at residue R882. DNMT3A R882 mutations in AML patients promote resistance to anthracycline chemotherapy and drive relapse. In this study, we performed high-throughput screening and identified that oridonin, an ent-kaurene diterpenoid extracted from the Chinese herb Rabdosia rubescens, inhibits DNMT3A R882 mutant leukemic cells at a low-micromolar concentration (IC50 = 2.1 µM) by activating both RIPK1-Caspase-8-Caspase-3-mediated apoptosis and RIPK1-RIPK3-MLKL-mediated necroptosis. The inhibitory effect of oridonin against DNMT3A R882 mutant leukemia cells can also be observed in vivo. Furthermore, oridonin inhibits clonal hematopoiesis of hematopoietic stem cells (HSCs) with Dnmt3a R878H mutation comparing to normal HSCs by inducing apoptosis and necroptosis. Overall, oridonin is a potential and promising drug candidate or lead compound targeting DNMT3A R882 mutation-driven clonal hematopoiesis and leukemia.
Collapse
Affiliation(s)
- Min Liao
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Qiongye Dong
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, 100190, Beijing, China
| | - Ruiqing Chen
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Liqian Xu
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Yuxuan Jiang
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Zhenxing Guo
- Department of Hematology/Oncology, First Hospital of Tsinghua University, 100016, Beijing, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Wei He
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Changcai Cao
- Shandong Hongmai Biotechnology Co., Ltd. Room 1201, building B, Research Institute of Tianjin University, No. 51, Lutai Avenue, Zibo High tech Zone, 255000, Tianjin, China
| | - Ronghua Hu
- Department of Hematology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Wanling Sun
- Department of Hematology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
| | - Hong Jiang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China.
| | - Jianwei Wang
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
33
|
Zeisig BB, So CWE. Therapeutic Opportunities of Targeting Canonical and Noncanonical PcG/TrxG Functions in Acute Myeloid Leukemia. Annu Rev Genomics Hum Genet 2021; 22:103-125. [PMID: 33929894 DOI: 10.1146/annurev-genom-111120-102443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcriptional deregulation is a key driver of acute myeloid leukemia (AML), a heterogeneous blood cancer with poor survival rates. Polycomb group (PcG) and Trithorax group (TrxG) genes, originally identified in Drosophila melanogaster several decades ago as master regulators of cellular identity and epigenetic memory, not only are important in mammalian development but also play a key role in AML disease biology. In addition to their classical canonical antagonistic transcriptional functions, noncanonical synergistic and nontranscriptional functions of PcG and TrxG are emerging. Here, we review the biochemical properties of major mammalian PcG and TrxG complexes and their roles in AML disease biology, including disease maintenance as well as drug resistance. We summarize current efforts on targeting PcG and TrxG for treatment of AML and propose rational synthetic lethality and drug-induced antagonistic pleiotropy options involving PcG and TrxG as potential new therapeutic avenues for treatment of AML.
Collapse
Affiliation(s)
- Bernd B Zeisig
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London SE5 9NU, United Kingdom;
- Department of Haematological Medicine, King's College Hospital, London SE5 9RS, United Kingdom
| | - Chi Wai Eric So
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London SE5 9NU, United Kingdom;
- Department of Haematological Medicine, King's College Hospital, London SE5 9RS, United Kingdom
| |
Collapse
|
34
|
Kuang W, Jiang W, Chen Y, Tian Y, Liu Z. The function and mechanism of the JARID2/CCND1 axis in modulating glioma cell growth and sensitivity to temozolomide (TMZ). Cancer Biol Ther 2021; 22:392-403. [PMID: 34251962 DOI: 10.1080/15384047.2021.1942711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
A maximal surgical resection followed by radiotherapy and chemotherapy with temozolomide (TMZ) as the representative agent is the standard therapy for gliomas. However, tumor cell resistance to radiotherapy and chemotherapy leads to poor prognosis and high mortality in patients with glioma. In the present study, we demonstrated that JARID2 was downregulated and CCND1 was upregulated within glioma tissues of different grades and glioma cells. In tissue samples, JARID2 was negatively correlated with CCND1. JARID2 overexpression significantly inhibited glioma cell viability, promoted glioma cell apoptosis upon TMZ treatment, and increased p21, cleaved-PARP, and cleaved-caspase3 in TMZ-treated glioma cells. JASPAR tool predicted the possible binding sites between JARID2 and CCND1 promoter regions; through direct binding to CCND1 promoter region, JARID2 negatively regulated CCND1 expression. Under TMZ treatment, JARID2 overexpression inhibited CCND1 expression, promoted glioma cell apoptosis, and increased p21, cleaved-PARP, and cleaved-caspase3 in glioma cells treated with TMZ; meanwhile, CCND1 overexpression exerted opposite effects on glioma cells treated with TMZ and partially reversed the effects of JARID2 overexpression. In conclusion, JARID2 targets and inhibits CCND1. The JARID2/CCND1 axis modulates glioma cell growth and glioma cell sensitivity to TMZ.
Collapse
Affiliation(s)
- Weilu Kuang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Wuzhong Jiang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yinyun Chen
- The Third Department of Gastroenterology, Hunan Provincial People's Hospital, Changsha, P.R. China
| | - Yifu Tian
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Zhengzheng Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
35
|
Marinaccio C, Suraneni P, Celik H, Volk A, Wen QJ, Ling T, Bulic M, Lasho T, Koche RP, Famulare CA, Farnoud N, Stein B, Schieber M, Gurbuxani S, Root DE, Younger ST, Hoffman R, Gangat N, Ntziachristos P, Chandel NS, Levine RL, Rampal RK, Challen GA, Tefferi A, Crispino JD. LKB1/ STK11 Is a Tumor Suppressor in the Progression of Myeloproliferative Neoplasms. Cancer Discov 2021; 11:1398-1410. [PMID: 33579786 PMCID: PMC8178182 DOI: 10.1158/2159-8290.cd-20-1353] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/18/2020] [Accepted: 02/09/2021] [Indexed: 12/30/2022]
Abstract
The myeloproliferative neoplasms (MPN) frequently progress to blast phase disease, an aggressive form of acute myeloid leukemia. To identify genes that suppress disease progression, we performed a focused CRISPR/Cas9 screen and discovered that depletion of LKB1/Stk11 led to enhanced in vitro self-renewal of murine MPN cells. Deletion of Stk11 in a mouse MPN model caused rapid lethality with enhanced fibrosis, osteosclerosis, and an accumulation of immature cells in the bone marrow, as well as enhanced engraftment of primary human MPN cells in vivo. LKB1 loss was associated with increased mitochondrial reactive oxygen species and stabilization of HIF1α, and downregulation of LKB1 and increased levels of HIF1α were observed in human blast phase MPN specimens. Of note, we observed strong concordance of pathways that were enriched in murine MPN cells with LKB1 loss with those enriched in blast phase MPN patient specimens, supporting the conclusion that STK11 is a tumor suppressor in the MPNs. SIGNIFICANCE: Progression of the myeloproliferative neoplasms to acute myeloid leukemia occurs in a substantial number of cases, but the genetic basis has been unclear. We discovered that loss of LKB1/STK11 leads to stabilization of HIF1a and promotes disease progression. This observation provides a potential therapeutic avenue for targeting progression.This article is highlighted in the In This Issue feature, p. 1307.
Collapse
Affiliation(s)
| | | | - Hamza Celik
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Andrew Volk
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - Te Ling
- St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | | | - Richard P Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Noushin Farnoud
- Center for Hematologic Malignancies, Memorial Sloan Kettering, New York, New York
| | | | | | | | - David E Root
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Scott T Younger
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | | | | | - Panagiotis Ntziachristos
- Northwestern University, Chicago, Illinois
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Ross L Levine
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering, New York, New York
| | - Raajit K Rampal
- Center for Hematologic Malignancies, Memorial Sloan Kettering, New York, New York
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering, New York, New York
| | - Grant A Challen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | | | - John D Crispino
- Northwestern University, Chicago, Illinois.
- St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
36
|
Liu Y, Huang X, Guo L, Luo N. LINC00649 Facilitates the Cellular Process of Bladder Cancer Cells via Signaling Axis miR-16-5p/JARID2. Urol Int 2021; 106:304-312. [PMID: 33789312 DOI: 10.1159/000506239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/27/2020] [Indexed: 11/19/2022]
Abstract
Bladder cancer (BC), as one of the most common cancers around the world, begins in the inner side of the bladder and is inclined to spread to the remaining parts of the body. Extensive documents have shown that long noncoding RNAs function as stimuli in various cancer types. With regard to LINC00649, there is limited investigation on its role previously. In our research, we discovered that LINC00649 was considerably highly expressed in BC cells and the lack of LINC00649 would cause inactivity in cellular proliferation, migration, and invasion. miR-16-5p turned out to be competitively incorporated by LINC00649 in the upstream or JARID2 downstream. In BC cells, LINC00649 was found to bind with miR-16-5p to increase the expression of JARID2. Overly expressed JARID2 was found to reverse the LINC00649 shortage-mediated suppressive impacts on the cellular process of BC cells. Concisely, it was the first study on the molecular mechanism of LINC00649 in BC. This work detected that LINC00649 enhanced cell proliferation, migration, and invasion of BC cells by acting as a sponge of miR-16-5p and upregulating JARID2, providing novel insight into understating BC.
Collapse
Affiliation(s)
- Yongsong Liu
- Department of Urology, The Second People's Hospital of Yibin, Yibin, China
| | - Xiande Huang
- Department of Urology, Gansu Provincial Hospital, Lanzhou, China
| | - Lijun Guo
- Department of Urology, Gansu Provincial Hospital, Lanzhou, China
| | - Nengqin Luo
- Department of Urology, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
37
|
Piunti A, Shilatifard A. The roles of Polycomb repressive complexes in mammalian development and cancer. Nat Rev Mol Cell Biol 2021; 22:326-345. [PMID: 33723438 DOI: 10.1038/s41580-021-00341-1] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
More than 80 years ago, the first Polycomb-related phenotype was identified in Drosophila melanogaster. Later, a group of diverse genes collectively called Polycomb group (PcG) genes were identified based on common mutant phenotypes. PcG proteins, which are well-conserved in animals, were originally characterized as negative regulators of gene transcription during development and subsequently shown to function in various biological processes; their deregulation is associated with diverse phenotypes in development and in disease, especially cancer. PcG proteins function on chromatin and can form two distinct complexes with different enzymatic activities: Polycomb repressive complex 1 (PRC1) is a histone ubiquitin ligase and PRC2 is a histone methyltransferase. Recent studies have revealed the existence of various mutually exclusive PRC1 and PRC2 variants. In this Review, we discuss new concepts concerning the biochemical and molecular functions of these new PcG complex variants, and how their epigenetic activities are involved in mammalian development and cancer.
Collapse
Affiliation(s)
- Andrea Piunti
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
38
|
Pedersen RK, Andersen M, Stiehl T, Ottesen JT. Mathematical modelling of the hematopoietic stem cell-niche system: Clonal dominance based on stem cell fitness. J Theor Biol 2021; 518:110620. [PMID: 33587928 DOI: 10.1016/j.jtbi.2021.110620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022]
Abstract
Human blood cell production is maintained by hematopoietic stem cells (HSC) which give rise to all types of mature blood cells. Experimental observation of HSC in their physiologic bone-marrow microenvironment, the so-called stem cell niche, is challenging. Therefore, the details of HSC dynamics and the cellular interactions in the stem cell niche remain elusive. Mutations that lead to a competitive advantage are the cause of clinical challenges when treating HSC-derived malignancies such as acute myeloid leukemia or the myeloproliferative neoplasms (MPNs). To investigate the significance of the interaction between the HSC and the stem cell niche in these malignancies, we propose and analyse a mechanism-based mathematical model of HSC dynamics within the bone-marrow microenvironment. The model is based on the central hypothesis that HSC self-renewal depends on the niche. In the model, the interaction of HSC with specific niches located in the bone marrow are key to the indefinite HSC renewal necessary for long-term maintenance of blood cell production. We formulate a general model of n distinct clones that differ with respect to cell properties. We identify an attractive trapping region and compute and classify all steady states. A concept of HSC fitness naturally arises from the model analysis. HSC fitness is found to determine the asymptotic behaviour of the model, as the HSC clone with the highest fitness is related to the unique locally stable steady state. Based on biological assumptions about HSC, we propose two reduced models of different complexity. A thorough mathematical analysis reveals that both reduced models have the same asymptotic behaviour as the full model. We compare the simpler of the two models, a logistic equation of the disease burden, to clinical data of MPN-patients. The reduced model is found to agree well with data and suggests a simple interpretation and possible prediction of patient prognosis. The proposed mathematical model and the reduced forms have the potential to provide insights into the regulation of HSC dynamics and blood cell formation, and ultimately for future advances in treatment of hematologic malignancies.
Collapse
Affiliation(s)
| | - Morten Andersen
- IMFUFA, Department of Science and Environment, Roskilde University, Denmark
| | - Thomas Stiehl
- IWR (Interdisciplinary Center for Scientific Computing), Heidelberg University, Germany
| | - Johnny T Ottesen
- IMFUFA, Department of Science and Environment, Roskilde University, Denmark.
| |
Collapse
|
39
|
Abstract
2-Oxoglutarate-dependent dioxygenases (2OGDDs) are a superfamily of enzymes that play diverse roles in many biological processes, including regulation of hypoxia-inducible factor-mediated adaptation to hypoxia, extracellular matrix formation, epigenetic regulation of gene transcription and the reprogramming of cellular metabolism. 2OGDDs all require oxygen, reduced iron and 2-oxoglutarate (also known as α-ketoglutarate) to function, although their affinities for each of these co-substrates, and hence their sensitivity to depletion of specific co-substrates, varies widely. Numerous 2OGDDs are recurrently dysregulated in cancer. Moreover, cancer-specific metabolic changes, such as those that occur subsequent to mutations in the genes encoding succinate dehydrogenase, fumarate hydratase or isocitrate dehydrogenase, can dysregulate specific 2OGDDs. This latter observation suggests that the role of 2OGDDs in cancer extends beyond cancers that harbour mutations in the genes encoding members of the 2OGDD superfamily. Herein, we review the regulation of 2OGDDs in normal cells and how that regulation is corrupted in cancer.
Collapse
Affiliation(s)
- Julie-Aurore Losman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, MA, USA
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Peppi Koivunen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, MA, USA.
- Howard Hughes Medical Institute (HHMI), Chevy Chase, MD, USA.
| |
Collapse
|
40
|
Jacquelin S, Kramer F, Mullally A, Lane SW. Murine Models of Myelofibrosis. Cancers (Basel) 2020; 12:cancers12092381. [PMID: 32842500 PMCID: PMC7563264 DOI: 10.3390/cancers12092381] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/22/2023] Open
Abstract
Myelofibrosis (MF) is subtype of myeloproliferative neoplasm (MPN) characterized by a relatively poor prognosis in patients. Understanding the factors that drive MF pathogenesis is crucial to identifying novel therapeutic approaches with the potential to improve patient care. Driver mutations in three main genes (janus kinase 2 (JAK2), calreticulin (CALR), and myeloproliferative leukemia virus oncogene (MPL)) are recurrently mutated in MPN and are sufficient to engender MPN using animal models. Interestingly, animal studies have shown that the underlying molecular mutation and the acquisition of additional genetic lesions is associated with MF outcome and transition from early stage MPN such as essential thrombocythemia (ET) and polycythemia vera (PV) to secondary MF. In this issue, we review murine models that have contributed to a better characterization of MF pathobiology and identification of new therapeutic opportunities in MPN.
Collapse
Affiliation(s)
- Sebastien Jacquelin
- Cancer program QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- Correspondence: (S.J.); (S.W.L.)
| | - Frederike Kramer
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.K.); (A.M.)
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.K.); (A.M.)
| | - Steven W. Lane
- Cancer program QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- Cancer Care Services, The Royal Brisbane and Women’s Hospital, Brisbane 4029, Australia
- University of Queensland, St Lucia, QLD 4072, Australia
- Correspondence: (S.J.); (S.W.L.)
| |
Collapse
|
41
|
Vizán P, Gutiérrez A, Espejo I, García-Montolio M, Lange M, Carretero A, Lafzi A, de Andrés-Aguayo L, Blanco E, Thambyrajah R, Graf T, Heyn H, Bigas A, Di Croce L. The Polycomb-associated factor PHF19 controls hematopoietic stem cell state and differentiation. SCIENCE ADVANCES 2020; 6:eabb2745. [PMID: 32821835 PMCID: PMC7406347 DOI: 10.1126/sciadv.abb2745] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Adult hematopoietic stem cells (HSCs) are rare multipotent cells in bone marrow that are responsible for generating all blood cell types. HSCs are a heterogeneous group of cells with high plasticity, in part, conferred by epigenetic mechanisms. PHF19, a subunit of the Polycomb repressive complex 2 (PRC2), is preferentially expressed in mouse hematopoietic precursors. Here, we now show that, in stark contrast to results published for other PRC2 subunits, genetic depletion of Phf19 increases HSC identity and quiescence. While proliferation of HSCs is normally triggered by forced mobilization, defects in differentiation impede long-term correct blood production, eventually leading to aberrant hematopoiesis. At molecular level, PHF19 deletion triggers a redistribution of the histone repressive mark H3K27me3, which notably accumulates at blood lineage-specific genes. Our results provide novel insights into how epigenetic mechanisms determine HSC identity, control differentiation, and are key for proper hematopoiesis.
Collapse
Affiliation(s)
- Pedro Vizán
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Arantxa Gutiérrez
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Isabel Espejo
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Marc García-Montolio
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Martin Lange
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Ana Carretero
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Atefeh Lafzi
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona 08028, Spain
| | - Luisa de Andrés-Aguayo
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Roshana Thambyrajah
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona 08003, Spain
| | - Thomas Graf
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona 08028, Spain
| | - Anna Bigas
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona 08003, Spain
- CIBERONC, Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona 08003, Spain
| |
Collapse
|
42
|
Hematopoietic regeneration under the spell of epigenetic-epitranscriptomic factors and transposable elements. Curr Opin Hematol 2020; 27:264-272. [DOI: 10.1097/moh.0000000000000585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Gluud M, Willerslev-Olsen A, Gjerdrum LMR, Lindahl LM, Buus TB, Andersen MH, Bonefeld CM, Krejsgaard T, Litvinov IV, Iversen L, Becker JC, Persson JL, Koralov SB, Litman T, Geisler C, Woetmann A, Odum N. MicroRNAs in the Pathogenesis, Diagnosis, Prognosis and Targeted Treatment of Cutaneous T-Cell Lymphomas. Cancers (Basel) 2020; 12:cancers12051229. [PMID: 32414221 PMCID: PMC7281391 DOI: 10.3390/cancers12051229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/11/2022] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) represents a heterogeneous group of potentially devastating primary skin malignancies. Despite decades of intense research efforts, the pathogenesis is still not fully understood. In the early stages, both clinical and histopathological diagnosis is often difficult due to the ability of CTCL to masquerade as benign skin inflammatory dermatoses. Due to a lack of reliable biomarkers, it is also difficult to predict which patients will respond to therapy or progress towards severe recalcitrant disease. In this review, we discuss recent discoveries concerning dysregulated microRNA (miR) expression and putative pathological roles of oncogenic and tumor suppressive miRs in CTCL. We also focus on the interplay between miRs, histone deacetylase inhibitors, and oncogenic signaling pathways in malignant T cells as well as the impact of miRs in shaping the inflammatory tumor microenvironment. We highlight the potential use of miRs as diagnostic and prognostic markers, as well as their potential as therapeutic targets. Finally, we propose that the combined use of miR-modulating compounds with epigenetic drugs may provide a novel avenue for boosting the clinical efficacy of existing anti-cancer therapies in CTCL.
Collapse
Affiliation(s)
- Maria Gluud
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Andreas Willerslev-Olsen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Lise Mette Rahbek Gjerdrum
- Department of Pathology, Zealand University Hospital, DK-4000 Roskilde, Denmark;
- Department of Clinical Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lise M. Lindahl
- Department of Dermatology, Aarhus University Hospital, DK-8200 Aarhus, Denmark; (L.M.L.); (L.I.)
| | - Terkild B. Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology and Oncology, Copenhagen University Hospital, Herlev Hospital, DK-2730 Herlev, Denmark;
| | - Charlotte Menne Bonefeld
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Thorbjorn Krejsgaard
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Ivan V. Litvinov
- Division of Dermatology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, DK-8200 Aarhus, Denmark; (L.M.L.); (L.I.)
| | - Jürgen C. Becker
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), University Hospital Essen and Deutsches Krebsforschungszentrum (DKFZ), D-45141 Essen, Germany;
| | - Jenny L. Persson
- Department of Molecular Biology, Umea University, 90187 Umea, Sweden;
| | - Sergei B. Koralov
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA;
| | - Thomas Litman
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Carsten Geisler
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Anders Woetmann
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
| | - Niels Odum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.G.); (A.W.-O.); (T.B.B.); (C.M.B.); (T.K.); (T.L.); (C.G.); (A.W.)
- Correspondence: ; Tel.: +45-2875-7879
| |
Collapse
|
44
|
Ostrander EL, Kramer AC, Mallaney C, Celik H, Koh WK, Fairchild J, Haussler E, Zhang CRC, Challen GA. Divergent Effects of Dnmt3a and Tet2 Mutations on Hematopoietic Progenitor Cell Fitness. Stem Cell Reports 2020; 14:551-560. [PMID: 32220332 PMCID: PMC7160307 DOI: 10.1016/j.stemcr.2020.02.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
The DNA methylation regulators DNMT3A and TET2 are recurrently mutated in hematological disorders. Despite possessing antagonistic biochemical activities, loss-of-function murine models show overlapping phenotypes in terms of increased hematopoietic stem cell (HSC) fitness. Here, we directly compared the effects of these mutations on hematopoietic progenitor function and disease initiation. In contrast to Dnmt3a-null HSCs, which possess limitless self-renewal in vivo, Tet2-null HSCs unexpectedly exhaust at the same rate as control HSCs in serial transplantation assays despite an initial increase in self-renewal. Moreover, loss of Tet2 more acutely sensitizes hematopoietic cells to the addition of a common co-operating mutation (Flt3ITD) than loss of Dnmt3a, which is associated with a more rapid expansion of committed progenitor cells. The effect of Tet2 mutation manifests more profound myeloid lineage skewing in committed hematopoietic progenitor cells rather than long-term HSCs. Molecular characterization revealed divergent transcriptomes and chromatin accessibility underlying these functional differences. Tet2-null HSCs exhaust at the same rate as wild-type HSCs in serial transplantation Loss of Tet2 sensitizes cells to Flt3ITD mutation more dramatically than Dnmt3a Loss of Dnmt3a permits epigenetic plasticity between hematopoietic progenitors Tet2 deficiency manifests profound myeloid lineage skewing in progenitor cells
Collapse
Affiliation(s)
- Elizabeth L Ostrander
- Division of Oncology, Department of Medicine, Washington University School of Medicine, 660 Euclid Avenue, St. Louis, MO 63110, USA
| | - Ashley C Kramer
- Division of Oncology, Department of Medicine, Washington University School of Medicine, 660 Euclid Avenue, St. Louis, MO 63110, USA
| | - Cates Mallaney
- Division of Oncology, Department of Medicine, Washington University School of Medicine, 660 Euclid Avenue, St. Louis, MO 63110, USA
| | - Hamza Celik
- Division of Oncology, Department of Medicine, Washington University School of Medicine, 660 Euclid Avenue, St. Louis, MO 63110, USA
| | - Won Kyun Koh
- Division of Oncology, Department of Medicine, Washington University School of Medicine, 660 Euclid Avenue, St. Louis, MO 63110, USA
| | - Jake Fairchild
- Division of Oncology, Department of Medicine, Washington University School of Medicine, 660 Euclid Avenue, St. Louis, MO 63110, USA
| | - Emily Haussler
- Division of Oncology, Department of Medicine, Washington University School of Medicine, 660 Euclid Avenue, St. Louis, MO 63110, USA
| | - Christine R C Zhang
- Division of Oncology, Department of Medicine, Washington University School of Medicine, 660 Euclid Avenue, St. Louis, MO 63110, USA
| | - Grant A Challen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, 660 Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
45
|
Adhikari A, Mainali P, Davie JK. JARID2 and the PRC2 complex regulate the cell cycle in skeletal muscle. J Biol Chem 2019; 294:19451-19464. [PMID: 31578284 DOI: 10.1074/jbc.ra119.010060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/24/2019] [Indexed: 11/06/2022] Open
Abstract
JARID2 is a noncatalytic member of the polycomb repressive complex 2 (PRC2) which methylates of histone 3 lysine 27 (H3K27). In this work, we show that JARID2 and the PRC2 complex regulate the cell cycle in skeletal muscle cells to control proliferation and mitotic exit. We found that the stable depletion of JARID2 leads to increased proliferation and cell accumulation in S phase. The regulation of the cell cycle by JARID2 is mediated by direct repression of both cyclin D1 and cyclin E1, both of which are targets of PRC2-mediated H3K27 methylation. Intriguingly, we also find that the retinoblastoma protein (RB1) is a direct target of JARID2 and the PRC2 complex. The depletion of JARID2 is not sufficient to activate RB1. However, the ectopic expression of RB1 can suppress cyclin D1 expression in JARID2-depleted cells. Transient depletion of JARID2 in skeletal muscle cells leads to a transient up-regulation of cyclin D1 that is quickly suppressed with no resulting effect on proliferation, Taken together, we show that JARID2 and the PRC2 complex regulate skeletal muscle proliferation in a precise manner that involves the repression of cyclin D1, thus restraining proliferation and repressing RB1, which is required for mitotic exit and terminal differentiation.
Collapse
Affiliation(s)
- Abhinav Adhikari
- Department of Biochemistry and Molecular Biology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Pramish Mainali
- Department of Biochemistry and Molecular Biology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Judith K Davie
- Department of Biochemistry and Molecular Biology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| |
Collapse
|
46
|
Pieters T, T'Sas S, Demoen L, Almeida A, Haenebalcke L, Matthijssens F, Lemeire K, D'Hont J, Van Rockeghem F, Hochepied T, Lintermans B, Reunes L, Lammens T, Berx G, Haigh JJ, Goossens S, Van Vlierberghe P. Novel strategy for rapid functional in vivo validation of oncogenic drivers in haematological malignancies. Sci Rep 2019; 9:10577. [PMID: 31332244 PMCID: PMC6646380 DOI: 10.1038/s41598-019-46853-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022] Open
Abstract
In cancer research, it remains challenging to functionally validate putative novel oncogenic drivers and to establish relevant preclinical models for evaluation of novel therapeutic strategies. Here, we describe an optimized and efficient pipeline for the generation of novel conditional overexpression mouse models in which putative oncogenes, along with an eGFP/Luciferase dual reporter, are expressed from the endogenous ROSA26 (R26) promoter. The efficiency of this approach was demonstrated by the generation and validation of novel R26 knock-in (KI) mice that allow conditional overexpression of Jarid2, Runx2, MN1 and a dominant negative allele of ETV6. As proof of concept, we confirm that MN1 overexpression in the hematopoietic lineage is sufficient to drive myeloid leukemia. In addition, we show that T-cell specific activation of MN1 in combination with loss of Pten increases tumour penetrance and stimulates the formation of Lyl1+ murine T-cell lymphoblastic leukemias or lymphomas (T-ALL/T-LBL). Finally, we demonstrate that these luciferase-positive murine AML and T-ALL/T-LBL cells are transplantable into immunocompromised mice allowing preclinical evaluation of novel anti-leukemic drugs in vivo.
Collapse
Affiliation(s)
- Tim Pieters
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,VIB Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Sara T'Sas
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,VIB Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Lisa Demoen
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - André Almeida
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Lieven Haenebalcke
- VIB Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Filip Matthijssens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Kelly Lemeire
- VIB Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jinke D'Hont
- VIB Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Frederique Van Rockeghem
- VIB Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tino Hochepied
- VIB Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Beatrice Lintermans
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Lindy Reunes
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Tim Lammens
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Geert Berx
- VIB Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Jody J Haigh
- Mammalian Functional Genetics Group, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Research Institute in Oncology and Hematology, Cancer Care Manitoba, Winnipeg, Manitoba, Canada
| | - Steven Goossens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium. .,VIB Inflammation Research Center, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium. .,Cancer Research Institute Ghent, Ghent, Belgium.
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium. .,Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|