1
|
Liu Y, Liu Y, Zhu Y, Hu D, Nie H, Xie Y, Sun R, He J, Zhang H, Lu F. KDM2A and KDM2B protect a subset of CpG islands from DNA methylation. J Genet Genomics 2025; 52:39-50. [PMID: 39522683 DOI: 10.1016/j.jgg.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
In the mammalian genome, most CpGs are methylated. However, CpGs within the CpG islands (CGIs) are largely unmethylated, which are important for gene expression regulation. The mechanism underlying the low methylation levels at CGIs remains largely elusive. KDM2 proteins (KDM2A and KDM2B) are H3K36me2 demethylases known to bind specifically at CGIs. Here, we report that depletion of each or both KDM2 proteins, or mutation of all their JmjC domains that harbor the H3K36me2 demethylation activity, leads to an increase in DNA methylation at selective CGIs. The Kdm2a/2b double knockout shows a stronger increase in DNA methylation compared with the single mutant of Kdm2a or Kdm2b, indicating that KDM2A and KDM2B redundantly regulate DNA methylation at CGIs. In addition, the increase of CGI DNA methylation upon mutations of KDM2 proteins is associated with the chromatin environment. Our findings reveal that KDM2A and KDM2B function redundantly in regulating DNA methylation at a subset of CGIs in an H3K36me2 demethylation-dependent manner.
Collapse
Affiliation(s)
- Yuan Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunji Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Hu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hu Nie
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Xie
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongrong Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin He
- Department of Biochemistry & Molecular Biology, College of Natural Science, Michigan State University, East Lansing, MI 48824, USA
| | - Honglian Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Falong Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Starshin A, Abramov P, Lobanova Y, Sharko F, Filonova G, Kaluzhny D, Kaplun D, Deyev I, Mazur A, Prokchortchouk E, Zhenilo S. Dissecting the Kaiso binding profile in clear renal cancer cells. Epigenetics Chromatin 2024; 17:38. [PMID: 39702290 DOI: 10.1186/s13072-024-00565-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND There has been a notable increase in interest in the transcriptional regulator Kaiso, which has been linked to the regulation of clonal hematopoiesis, myelodysplastic syndrome, and tumorigenesis. Nevertheless, there are no consistent data on the binding sites of Kaiso in vivo in the genome. Previous ChIP-seq analyses for Kaiso contradicted the accumulated data of Kaiso binding sites obtained in vitro. Here, we studied this discrepancy by characterizing the distribution profile of Kaiso binding sites in Caki-1 cells using Kaiso-deficient cells as a negative control, and compared its pattern on chromatin with that in lymphoblastoid cell lines. RESULTS We employed Caki-1 kidney carcinoma cells and their derivative, which lacks the Kaiso gene, as a model system to identify the genomic targets of Kaiso. The principal binding motifs for Kaiso are CGCG and CTGCNAT, with 60% of all binding sites containing both sequences. The significance of methyl-DNA binding activity was confirmed through examination of the genomic distribution of the E535A mutant variant of Kaiso, which cannot bind methylated DNA in vitro but is able to interact with CTGCNA sequences. Our findings indicate that Kaiso is present at CpG islands with a preference for methylated ones. We identified Kaiso target genes whose methylation and transcription are dependent on its expression. Furthermore, Kaiso binding sites are enriched at CpG islands, with partial methylation at the 5' and/or 3' boundaries. We discovered CpG islands exhibiting wave-like methylation patterns, with Kaiso detected in the majority of these areas. Similar data were obtained in other cell lines. CONCLUSION The present study delineates the genomic distribution of Kaiso in cancer cells, confirming its role as a factor with a complex mode of DNA binding and a strong association with CpG islands, particularly with methylated and eroded CpG islands, revealing a new potential Kaiso target gene-SQSTM1, involved in differentiation of acute myeloid leukemia cells. Furthermore, we discovered the existence of a new class of CpG islands characterized by wave-like DNA methylation.
Collapse
Affiliation(s)
- Alexey Starshin
- Federal Research Centre, Fundamentals of Biotechnology», Russian Academy of Sciences, 119071, Moscow, Russia
| | - Pavel Abramov
- Federal Research Centre, Fundamentals of Biotechnology», Russian Academy of Sciences, 119071, Moscow, Russia
| | - Yaroslava Lobanova
- Federal Research Centre, Fundamentals of Biotechnology», Russian Academy of Sciences, 119071, Moscow, Russia
| | - Fedor Sharko
- Federal Research Centre, Fundamentals of Biotechnology», Russian Academy of Sciences, 119071, Moscow, Russia
| | - Galina Filonova
- Federal Research Centre, Fundamentals of Biotechnology», Russian Academy of Sciences, 119071, Moscow, Russia
| | - Dmitry Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Daria Kaplun
- Federal Research Centre, Fundamentals of Biotechnology», Russian Academy of Sciences, 119071, Moscow, Russia
| | - Igor Deyev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
| | - Alexander Mazur
- Federal Research Centre, Fundamentals of Biotechnology», Russian Academy of Sciences, 119071, Moscow, Russia
| | - Egor Prokchortchouk
- Federal Research Centre, Fundamentals of Biotechnology», Russian Academy of Sciences, 119071, Moscow, Russia
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Svetlana Zhenilo
- Federal Research Centre, Fundamentals of Biotechnology», Russian Academy of Sciences, 119071, Moscow, Russia.
| |
Collapse
|
3
|
Mahendran G, Shangaradas AD, Romero-Moreno R, Wickramarachchige Dona N, Sarasija SHGS, Perera S, Silva GN. Unlocking the epigenetic code: new insights into triple-negative breast cancer. Front Oncol 2024; 14:1499950. [PMID: 39744000 PMCID: PMC11688480 DOI: 10.3389/fonc.2024.1499950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and clinically challenging subtype of breast cancer, lacking the expression of estrogen receptor (ER), progesterone receptor (PR), and HER2/neu. The absence of these receptors limits therapeutic options necessitating the exploration of novel treatment strategies. Epigenetic modifications, which include DNA methylation, histone modifications, and microRNA (miRNA) regulation, play a pivotal role in TNBC pathogenesis and represent promising therapeutic targets. This review delves into the therapeutic potential of epigenetic interventions in TNBC, with a focus on DNA methylation, histone modifications, and miRNA therapeutics. We examine the role of DNA methylation in gene silencing within TNBC and the development of DNA methylation inhibitors designed to reactivate silenced tumor suppressor genes. Histone modifications, through histone deacetylation and acetylation in particular, are critical in regulating gene expression. We explore the efficacy of histone deacetylase inhibitors (HDACi), which have shown promise in reversing aberrant histone deacetylation patterns, thereby restoring normal gene function, and suppressing tumor growth. Furthermore, the review highlights the dual role of miRNAs in TNBC as both oncogenes and tumor suppressors and discusses the therapeutic potential of miRNA mimics and inhibitors in modulating these regulatory molecules to inhibit cancer progression. By integrating these epigenetic therapies, we propose a multifaceted approach to target the underlying epigenetic mechanisms that drive TNBC progression. The synergistic use of DNA methylation inhibitors, HDACi, and the miRNA-based therapies offers a promising avenue for personalized treatment strategies, aiming to enhance the clinical outcome for patients with TNBC.
Collapse
Affiliation(s)
- Gowthami Mahendran
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | | | | | | | | | - Sumeth Perera
- Department of Biochemistry, Faculty of Medicine, Sabaragamuwa University of Sri Lanka, Ratnapura, Sri Lanka
| | - Gayathri N. Silva
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
4
|
Zhang YW, Gvozdenovic A, Aceto N. A Molecular Voyage: Multiomics Insights into Circulating Tumor Cells. Cancer Discov 2024; 14:920-933. [PMID: 38581442 DOI: 10.1158/2159-8290.cd-24-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/08/2024]
Abstract
Circulating tumor cells (CTCs) play a pivotal role in metastasis, the leading cause of cancer-associated death. Recent improvements of CTC isolation tools, coupled with a steady development of multiomics technologies at single-cell resolution, have enabled an extensive exploration of CTC biology, unlocking insights into their molecular profiles. A detailed molecular portrait requires CTC interrogation across various levels encompassing genomic, epigenetic, transcriptomic, proteomic and metabolic features. Here, we review how state-of-the-art multiomics applied to CTCs are shedding light on how cancer spreads. Further, we highlight the potential implications of CTC profiling for clinical applications aimed at enhancing cancer diagnosis and treatment. SIGNIFICANCE Exploring the complexity of cancer progression through cutting-edge multiomics studies holds the promise of uncovering novel aspects of cancer biology and identifying therapeutic vulnerabilities to suppress metastasis.
Collapse
Affiliation(s)
- Yu Wei Zhang
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Ana Gvozdenovic
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| |
Collapse
|
5
|
Yasumizu Y, Hagiwara M, Umezu Y, Fuji H, Iwaisako K, Asagiri M, Uemoto S, Nakamura Y, Thul S, Ueyama A, Yokoi K, Tanemura A, Nose Y, Saito T, Wada H, Kakuda M, Kohara M, Nojima S, Morii E, Doki Y, Sakaguchi S, Ohkura N. Neural-net-based cell deconvolution from DNA methylation reveals tumor microenvironment associated with cancer prognosis. NAR Cancer 2024; 6:zcae022. [PMID: 38751935 PMCID: PMC11094754 DOI: 10.1093/narcan/zcae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/18/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
DNA methylation is a pivotal epigenetic modification that defines cellular identity. While cell deconvolution utilizing this information is considered useful for clinical practice, current methods for deconvolution are limited in their accuracy and resolution. In this study, we collected DNA methylation data from 945 human samples derived from various tissues and tumor-infiltrating immune cells and trained a neural network model with them. The model, termed MEnet, predicted abundance of cell population together with the detailed immune cell status from bulk DNA methylation data, and showed consistency to those of flow cytometry and histochemistry. MEnet was superior to the existing methods in the accuracy, speed, and detectable cell diversity, and could be applicable for peripheral blood, tumors, cell-free DNA, and formalin-fixed paraffin-embedded sections. Furthermore, by applying MEnet to 72 intrahepatic cholangiocarcinoma samples, we identified immune cell profiles associated with cancer prognosis. We believe that cell deconvolution by MEnet has the potential for use in clinical settings.
Collapse
Affiliation(s)
- Yoshiaki Yasumizu
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Masaki Hagiwara
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Basic Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan
| | - Yuto Umezu
- Faculty of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hiroaki Fuji
- Department of Hepato-Biliary-Pancreatic Surgery, Hyogo Medical University, Nishinomiya, Hyogo, Japan
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Keiko Iwaisako
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Masataka Asagiri
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Shinji Uemoto
- Shiga University Medical Science, Otsu, Shiga, Japan
| | - Yamami Nakamura
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Sophia Thul
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Azumi Ueyama
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kazunori Yokoi
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsushi Tanemura
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yohei Nose
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takuro Saito
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hisashi Wada
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Mamoru Kakuda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masaharu Kohara
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Satoshi Nojima
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shimon Sakaguchi
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Experimental Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Kyoto, Japan
| | - Naganari Ohkura
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Basic Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
6
|
Liu Y, Sun Y, Yang J, Wu D, Yu S, Liu J, Hu T, Luo J, Zhou H. DNMT1-targeting remodeling global DNA hypomethylation for enhanced tumor suppression and circumvented toxicity in oral squamous cell carcinoma. Mol Cancer 2024; 23:104. [PMID: 38755637 PMCID: PMC11097543 DOI: 10.1186/s12943-024-01993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND The faithful maintenance of DNA methylation homeostasis indispensably requires DNA methyltransferase 1 (DNMT1) in cancer progression. We previously identified DNMT1 as a potential candidate target for oral squamous cell carcinoma (OSCC). However, how the DNMT1- associated global DNA methylation is exploited to regulate OSCC remains unclear. METHODS The shRNA-specific DNMT1 knockdown was employed to target DNMT1 on oral cancer cells in vitro, as was the use of DNMT1 inhibitors. A xenografted OSCC mouse model was established to determine the effect on tumor suppression. High-throughput microarrays of DNA methylation, bulk and single-cell RNA sequencing analysis, multiplex immunohistochemistry, functional sphere formation and protein immunoblotting were utilized to explore the molecular mechanism involved. Analysis of human samples revealed associations between DNMT1 expression, global DNA methylation and collaborative molecular signaling with oral malignant transformation. RESULTS We investigated DNMT1 expression boosted steadily during oral malignant transformation in human samples, and its inhibition considerably minimized the tumorigenicity in vitro and in a xenografted OSCC model. DNMT1 overexpression was accompanied by the accumulation of cancer-specific DNA hypomethylation during oral carcinogenesis; conversely, DNMT1 knockdown caused atypically extensive genome-wide DNA hypomethylation in cancer cells and xenografted tumors. This novel DNMT1-remodeled DNA hypomethylation pattern hampered the dual activation of PI3K-AKT and CDK2-Rb and inactivated GSK3β collaboratively. When treating OSCC mice, targeting DNMT1 achieved greater anticancer efficacy than the PI3K inhibitor, and reduced the toxicity of blood glucose changes caused by the PI3K inhibitor or combination of PI3K and CDK inhibitors as well as adverse insulin feedback. CONCLUSIONS Targeting DNMT1 remodels a novel global DNA hypomethylation pattern to facilitate anticancer efficacy and minimize potential toxic effects via balanced signaling synergia. Our study suggests DNMT1 is a crucial gatekeeper regarding OSCC destiny and treatment outcome.
Collapse
Affiliation(s)
- Yangfan Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- School of Stomatology, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Jin Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Deyang Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shuang Yu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Junjiang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jingjing Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
7
|
Bin P, Wang C, Zhang H, Yan Y, Ren W. Targeting methionine metabolism in cancer: opportunities and challenges. Trends Pharmacol Sci 2024; 45:395-405. [PMID: 38580603 DOI: 10.1016/j.tips.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/07/2024]
Abstract
Reprogramming of methionine metabolism is a conserved hallmark of tumorigenesis. Recent studies have revealed mechanisms regulating methionine metabolism within the tumor microenvironment (TME) that drive both cancer development and antitumor immunity evasion. In this review article we summarize advancements in our understanding of tumor regulation of methionine metabolism and therapies in development that target tumor methionine metabolism. We also delineate the challenges of methionine blockade therapies in cancer and discuss emerging strategies to address them.
Collapse
Affiliation(s)
- Peng Bin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Chuanlong Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hangchao Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuqi Yan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenkai Ren
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Liao R, Chen X, Cao Q, Bai L, Ma C, Dai Z, Dong C. AMD1 promotes breast cancer aggressiveness via a spermidine-eIF5A hypusination-TCF4 axis. Breast Cancer Res 2024; 26:70. [PMID: 38654332 PMCID: PMC11040792 DOI: 10.1186/s13058-024-01825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Basal-like breast cancer (BLBC) is the most aggressive subtype of breast cancer due to its aggressive characteristics and lack of effective therapeutics. However, the mechanism underlying its aggressiveness remains largely unclear. S-adenosylmethionine decarboxylase proenzyme (AMD1) overexpression occurs specifically in BLBC. Here, we explored the potential molecular mechanisms and functions of AMD1 promoting the aggressiveness of BLBC. METHODS The potential effects of AMD1 on breast cancer cells were tested by western blotting, colony formation, cell proliferation assay, migration and invasion assay. The spermidine level was determined by high performance liquid chromatography. The methylation status of CpG sites within the AMD1 promoter was evaluated by bisulfite sequencing PCR. We elucidated the relationship between AMD1 and Sox10 by ChIP assays and quantitative real-time PCR. The effect of AMD1 expression on breast cancer cells was evaluated by in vitro and in vivo tumorigenesis model. RESULTS In this study, we showed that AMD1 expression was remarkably elevated in BLBC. AMD1 copy number amplification, hypomethylation of AMD1 promoter and transcription activity of Sox10 contributed to the overexpression of AMD1 in BLBC. AMD1 overexpression enhanced spermidine production, which enhanced eIF5A hypusination, activating translation of TCF4 with multiple conserved Pro-Pro motifs. Our studies showed that AMD1-mediated metabolic system of polyamine in BLBC cells promoted tumor cell proliferation and tumor growth. Clinically, elevated expression of AMD1 was correlated with high grade, metastasis and poor survival, indicating poor prognosis of breast cancer patients. CONCLUSION Our work reveals the critical association of AMD1-mediated spermidine-eIF5A hypusination-TCF4 axis with BLBC aggressiveness, indicating potential prognostic indicators and therapeutic targets for BLBC.
Collapse
Affiliation(s)
- Ruocen Liao
- Department of Breast Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
- Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Xingyu Chen
- Department of Pathology and Pathophysiology, Department of Surgical Oncology (breast center), Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Ministry of Education, Zhejiang University School of Medicine, 310058, Hangzhou, China
- Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Qianhua Cao
- Department of Pathology and Pathophysiology, Department of Surgical Oncology (breast center), Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Ministry of Education, Zhejiang University School of Medicine, 310058, Hangzhou, China
- Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Longchang Bai
- Department of Pathology and Pathophysiology, Department of Surgical Oncology (breast center), Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Ministry of Education, Zhejiang University School of Medicine, 310058, Hangzhou, China
- Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Chenglong Ma
- Department of Pathology and Pathophysiology, Department of Surgical Oncology (breast center), Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Ministry of Education, Zhejiang University School of Medicine, 310058, Hangzhou, China
- Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Zhijun Dai
- Department of Breast Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| | - Chenfang Dong
- Department of Pathology and Pathophysiology, Department of Surgical Oncology (breast center), Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Ministry of Education, Zhejiang University School of Medicine, 310058, Hangzhou, China.
- Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| |
Collapse
|
9
|
Chen X, Poetsch A. The Role of Cdo1 in Ferroptosis and Apoptosis in Cancer. Biomedicines 2024; 12:918. [PMID: 38672271 PMCID: PMC11047957 DOI: 10.3390/biomedicines12040918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Cysteine dioxygenase type 1 (Cdo1) is a tumor suppressor gene. It regulates the metabolism of cysteine, thereby influencing the cellular antioxidative capacity. This function puts Cdo1 in a prominent position to promote ferroptosis and apoptosis. Cdo1 promotes ferroptosis mainly by decreasing the amounts of antioxidants, leading to autoperoxidation of the cell membrane through Fenton reaction. Cdo1 promotes apoptosis mainly through the product of cysteine metabolism, taurine, and low level of antioxidants. Many cancers exhibit altered function of Cdo1, underscoring its crucial role in cancer cell survival. Genetic and epigenetic alterations have been found, with methylation of Cdo1 promoter as the most common mutation. The fact that no cancer was found to be caused by altered Cdo1 function alone indicates that the tumor suppressor role of Cdo1 is mild. By compiling the current knowledge about apoptosis, ferroptosis, and the role of Cdo1, this review suggests possibilities for how the mild anticancer role of Cdo1 could be harnessed in new cancer therapies. Here, developing drugs targeting Cdo1 is considered meaningful in neoadjuvant therapies, for example, helping against the development of anti-cancer drug resistance in tumor cells.
Collapse
Affiliation(s)
| | - Ansgar Poetsch
- Queen Mary School, Nanchang University, Nanchang 330047, China;
| |
Collapse
|
10
|
Lei X, Liao R, Chen X, Wang Z, Cao Q, Bai L, Ma C, Deng X, Ma Y, Wu X, Li J, Dai Z, Dong C. IMPA2 promotes basal-like breast cancer aggressiveness by a MYC-mediated positive feedback loop. Cancer Lett 2024; 582:216527. [PMID: 38048842 DOI: 10.1016/j.canlet.2023.216527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/02/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023]
Abstract
Basal-like breast cancer (BLBC) is the most aggressive subtype with poor prognosis; however, the mechanisms underlying aggressiveness in BLBC remain poorly understood. In this study, we showed that in contrast to other subtypes, inositol monophosphatase 2 (IMPA2) was dramatically increased in BLBC. Mechanistically, IMPA2 expression was upregulated due to copy number amplification, hypomethylation of IMPA2 promoter and MYC-mediated transcriptional activation. IMPA2 promoted MI-PI cycle and IP3 production, and IP3 then elevated intracellular Ca2+ concentration, leading to efficient activation of NFAT1. In turn, NFAT1 up-regulated MYC expression, thereby fulfilling a positive feedback loop that enhanced aggressiveness of BLBC cells. Knockdown of IMPA2 expression caused the inhibition of tumorigenicity and metastasis of BLBC cells in vitro and in vivo. Clinically, high IMPA2 expression was strongly correlated with large tumor size, high grade, metastasis and poor survival, indicating poor prognosis in breast cancer patients. These findings suggest that IMPA2-mediated MI-PI cycle allows crosstalk between metabolic and oncogenic pathways to promote BLBC progression.
Collapse
Affiliation(s)
- Xingyu Lei
- Department of Pathology and Pathophysiology, Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ruocen Liao
- Department of Breast Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xingyu Chen
- Department of Pathology and Pathophysiology, Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhenzhen Wang
- Department of Ultrasound Medicine, Cancer Center, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qianhua Cao
- Department of Pathology and Pathophysiology, Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Longchang Bai
- Department of Pathology and Pathophysiology, Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Chenglong Ma
- Department of Pathology and Pathophysiology, Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xinyue Deng
- Department of Breast Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yihua Ma
- Department of Pathology and Pathophysiology, Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xuebiao Wu
- Department of Pathology and Pathophysiology, Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Department of Pathophysiology, Gannan Medical University, Gannan, China
| | - Jun Li
- Department of Pathology and Pathophysiology, Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Zhijun Dai
- Department of Breast Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Chenfang Dong
- Department of Pathology and Pathophysiology, Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Krasilnikova MM, Humphries CL, Shinsky EM. Friedreich's ataxia: new insights. Emerg Top Life Sci 2023; 7:313-323. [PMID: 37698160 DOI: 10.1042/etls20230017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Friedreich ataxia (FRDA) is an inherited disease that is typically caused by GAA repeat expansion within the first intron of the FXN gene coding for frataxin. This results in the frataxin deficiency that affects mostly muscle, nervous, and cardiovascular systems with progressive worsening of the symptoms over the years. This review summarizes recent progress that was achieved in understanding of molecular mechanism of the disease over the last few years and latest treatment strategies focused on overcoming the frataxin deficiency.
Collapse
Affiliation(s)
- Maria M Krasilnikova
- Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, U.S.A
| | - Casey L Humphries
- Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, U.S.A
| | - Emily M Shinsky
- Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, U.S.A
| |
Collapse
|
12
|
Nikolaienko O, Eikesdal HP, Ognedal E, Gilje B, Lundgren S, Blix ES, Espelid H, Geisler J, Geisler S, Janssen EAM, Yndestad S, Minsaas L, Leirvaag B, Lillestøl R, Knappskog S, Lønning PE. Prenatal BRCA1 epimutations contribute significantly to triple-negative breast cancer development. Genome Med 2023; 15:104. [PMID: 38053165 PMCID: PMC10698991 DOI: 10.1186/s13073-023-01262-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Normal cell BRCA1 epimutations have been associated with increased risk of triple-negative breast cancer (TNBC). However, the fraction of TNBCs that may have BRCA1 epimutations as their underlying cause is unknown. Neither are the time of occurrence and the potential inheritance patterns of BRCA1 epimutations established. METHODS To address these questions, we analyzed BRCA1 methylation status in breast cancer tissue and matched white blood cells (WBC) from 408 patients with 411 primary breast cancers, including 66 TNBCs, applying a highly sensitive sequencing assay, allowing allele-resolved methylation assessment. Furthermore, to assess the time of origin and the characteristics of normal cell BRCA1 methylation, we analyzed umbilical cord blood of 1260 newborn girls and 200 newborn boys. Finally, we assessed BRCA1 methylation status among 575 mothers and 531 fathers of girls with (n = 102) and without (n = 473) BRCA1 methylation. RESULTS We found concordant tumor and mosaic WBC BRCA1 epimutations in 10 out of 66 patients with TNBC and in four out of six patients with estrogen receptor (ER)-low expression (< 10%) tumors (combined: 14 out of 72; 19.4%; 95% CI 11.1-30.5). In contrast, we found concordant WBC and tumor methylation in only three out of 220 patients with 221 ER ≥ 10% tumors and zero out of 114 patients with 116 HER2-positive tumors. Intraindividually, BRCA1 epimutations affected the same allele in normal and tumor cells. Assessing BRCA1 methylation in umbilical WBCs from girls, we found mosaic, predominantly monoallelic BRCA1 epimutations, with qualitative features similar to those in adults, in 113/1260 (9.0%) of individuals, but no correlation to BRCA1 methylation status either in mothers or fathers. A significantly lower fraction of newborn boys carried BRCA1 methylation (9/200; 4.5%) as compared to girls (p = 0.038). Similarly, WBC BRCA1 methylation was found less common among fathers (16/531; 3.0%), as compared to mothers (46/575; 8.0%; p = 0.0003). CONCLUSIONS Our findings suggest prenatal BRCA1 epimutations might be the underlying cause of around 20% of TNBC and low-ER expression breast cancers. Such constitutional mosaic BRCA1 methylation likely arise through gender-related mechanisms in utero, independent of Mendelian inheritance.
Collapse
Affiliation(s)
- Oleksii Nikolaienko
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Jonas Lies Vei 65, N5021, Bergen, Norway
| | - Hans P Eikesdal
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Jonas Lies Vei 65, N5021, Bergen, Norway
| | - Elisabet Ognedal
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Jonas Lies Vei 65, N5021, Bergen, Norway
| | - Bjørnar Gilje
- Department of Hematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Steinar Lundgren
- Cancer Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Egil S Blix
- Department of Oncology, University Hospital of North Norway, Tromsø, Norway
| | - Helge Espelid
- Department of Surgery, Haugesund Hospital, Haugesund, Norway
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Stephanie Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Emiel A M Janssen
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, Stavanger University, Stavanger, Norway
| | - Synnøve Yndestad
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Jonas Lies Vei 65, N5021, Bergen, Norway
| | - Laura Minsaas
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Jonas Lies Vei 65, N5021, Bergen, Norway
| | - Beryl Leirvaag
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Jonas Lies Vei 65, N5021, Bergen, Norway
| | - Reidun Lillestøl
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Jonas Lies Vei 65, N5021, Bergen, Norway
| | - Stian Knappskog
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Jonas Lies Vei 65, N5021, Bergen, Norway
| | - Per E Lønning
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway.
- Department of Oncology, Haukeland University Hospital, Jonas Lies Vei 65, N5021, Bergen, Norway.
| |
Collapse
|
13
|
Choudalakis M, Kungulovski G, Mauser R, Bashtrykov P, Jeltsch A. Refined read-out: The hUHRF1 Tandem-Tudor domain prefers binding to histone H3 tails containing K4me1 in the context of H3K9me2/3. Protein Sci 2023; 32:e4760. [PMID: 37593997 PMCID: PMC10464304 DOI: 10.1002/pro.4760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
UHRF1 is an essential chromatin protein required for DNA methylation maintenance, mammalian development, and gene regulation. We investigated the Tandem-Tudor domain (TTD) of human UHRF1 that is known to bind H3K9me2/3 histones and is a major driver of UHRF1 localization in cells. We verified binding to H3K9me2/3 but unexpectedly discovered stronger binding to H3 peptides and mononucleosomes containing K9me2/3 with additional K4me1. We investigated the combined binding of TTD to H3K4me1-K9me2/3 versus H3K9me2/3 alone, engineered mutants with specific and differential changes of binding, and discovered a novel read-out mechanism for H3K4me1 in an H3K9me2/3 context that is based on the interaction of R207 with the H3K4me1 methyl group and on counting the H-bond capacity of H3K4. Individual TTD mutants showed up to a 10,000-fold preference for the double-modified peptides, suggesting that after a conformational change, WT TTD could exhibit similar effects. The frequent appearance of H3K4me1-K9me2 regions in human chromatin demonstrated in our TTD chromatin pull-down and ChIP-western blot data suggests that it has specific biological roles. Chromatin pull-down of TTD from HepG2 cells and full-length murine UHRF1 ChIP-seq data correlate with H3K4me1 profiles indicating that the H3K4me1-K9me2/3 interaction of TTD influences chromatin binding of full-length UHRF1. We demonstrate the H3K4me1-K9me2/3 specific binding of UHRF1-TTD to enhancers and promoters of cell-type-specific genes at the flanks of cell-type-specific transcription factor binding sites, and provided evidence supporting an H3K4me1-K9me2/3 dependent and TTD mediated downregulation of these genes by UHRF1. All these findings illustrate the important physiological function of UHRF1-TTD binding to H3K4me1-K9me2/3 double marks in a cellular context.
Collapse
Affiliation(s)
- Michel Choudalakis
- Department of BiochemistryInstitute of Biochemistry and Technical Biochemistry, University of StuttgartStuttgartGermany
| | - Goran Kungulovski
- Department of BiochemistryInstitute of Biochemistry and Technical Biochemistry, University of StuttgartStuttgartGermany
| | - Rebekka Mauser
- Department of BiochemistryInstitute of Biochemistry and Technical Biochemistry, University of StuttgartStuttgartGermany
| | - Pavel Bashtrykov
- Department of BiochemistryInstitute of Biochemistry and Technical Biochemistry, University of StuttgartStuttgartGermany
| | - Albert Jeltsch
- Department of BiochemistryInstitute of Biochemistry and Technical Biochemistry, University of StuttgartStuttgartGermany
| |
Collapse
|
14
|
Zhou S, Ou H, Wu Y, Qi D, Pei X, Yu X, Hu X, Wu E. Targeting tumor endothelial cells with methyltransferase inhibitors: Mechanisms of action and the potential of combination therapy. Pharmacol Ther 2023:108434. [PMID: 37172786 DOI: 10.1016/j.pharmthera.2023.108434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Tumor endothelial cells (TECs) reside in the inner lining of blood vessels and represent a promising target for targeted cancer therapy. DNA methylation is a chemical process that involves the transfer of a methyl group to a specific base in the DNA strand, catalyzed by DNA methyltransferase (DNMT). DNMT inhibitors (DNMTis) can inhibit the activity of DNMTs, thereby preventing the transfer of methyl groups from s-adenosyl methionine (SAM) to cytosine. Currently, the most viable therapy for TECs is the development of DNMTis to release cancer suppressor genes from their repressed state. In this review, we first outline the characteristics of TECs and describe the development of tumor blood vessels and TECs. Abnormal DNA methylation is closely linked to tumor initiation, progression, and cell carcinogenesis, as evidenced by numerous studies. Therefore, we summarize the role of DNA methylation and DNA methyltransferase and the therapeutic potential of four types of DNMTi in targeting TECs. Finally, we discuss the accomplishments, challenges, and opportunities associated with combination therapy with DNMTis for TECs.
Collapse
Affiliation(s)
- Shu Zhou
- State Key Laboratory of Biosensing, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Hailong Ou
- State Key Laboratory of Biosensing, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yatao Wu
- State Key Laboratory of Biosensing, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Dan Qi
- Texas A & M University Schools of Medicine and Pharmacy, College Station, TX 77843, USA
| | - Xiaming Pei
- Department of Urology, Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Xiaohui Yu
- Department of Urology, Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Xiaoxiao Hu
- State Key Laboratory of Biosensing, College of Biology, Hunan University, Changsha, Hunan 410082, China; Research Institute of Hunan University in Chongqing, Chongqing 401120, China.
| | - Erxi Wu
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott & White Health, Temple, TX 78508, USA; Texas A & M University Schools of Medicine and Pharmacy, College Station, TX 77843, USA; LIVESTRONG Cancer Institutes, Department of Oncology, Dell Medical School, the University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
15
|
Lu Y, Cao Q, Yu Y, Sun Y, Jiang X, Li X. Pan-cancer analysis revealed H3K4me1 at bivalent promoters premarks DNA hypermethylation during tumor development and identified the regulatory role of DNA methylation in relation to histone modifications. BMC Genomics 2023; 24:235. [PMID: 37138231 PMCID: PMC10157937 DOI: 10.1186/s12864-023-09341-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND DNA hypermethylation at promoter CpG islands (CGIs) is a hallmark of cancers and could lead to dysregulation of gene expression in the development of cancers, however, its dynamics and regulatory mechanisms remain elusive. Bivalent genes, that direct development and differentiation of stem cells, are found to be frequent targets of hypermethylation in cancers. RESULTS Here we performed comprehensive analysis across multiple cancer types and identified that the decrease in H3K4me1 levels coincides with DNA hypermethylation at the bivalent promoter CGIs during tumorigenesis. Removal of DNA hypermethylation leads to increment of H3K4me1 at promoter CGIs with preference for bivalent genes. Nevertheless, the alteration of H3K4me1 by overexpressing or knockout LSD1, the demethylase of H3K4, doesn't change the level or pattern of DNA methylation. Moreover, LSD1 was found to regulate the expression of a bivalent gene OVOL2 to promote tumorigenesis. Knockdown of OVOL2 in LSD1 knockout HCT116 cells restored the cancer cell phenotype. CONCLUSION In summary, our work identified a universal indicator that can pre-mark DNA hypermethylation in cancer cells, and dissected the interplay between H3K4me1 and DNA hypermethylation in detail. Current study also reveals a novel mechanism underlying the oncogenic role of LSD1, providing clues for cancer therapies.
Collapse
Affiliation(s)
- Yang Lu
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Qiang Cao
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Yue Yu
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Yazhou Sun
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Xuan Jiang
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China.
| | - Xin Li
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
16
|
Wang X, Dai L, Liu Y, Li C, Fan D, Zhou Y, Li P, Kong Q, Su J. Partial erosion on under-methylated regions and chromatin reprogramming contribute to oncogene activation in IDH mutant gliomas. Epigenetics Chromatin 2023; 16:13. [PMID: 37118755 PMCID: PMC10142198 DOI: 10.1186/s13072-023-00490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND IDH1/2 hotspot mutations are well known to drive oncogenic mutations in gliomas and are well-defined in the WHO 2021 classification of central nervous system tumors. Specifically, IDH mutations lead to aberrant hypermethylation of under-methylated regions (UMRs) in normal tissues through the disruption of TET enzymes. However, the chromatin reprogramming and transcriptional changes induced by IDH-related hypermethylation in gliomas remain unclear. RESULTS Here, we have developed a precise computational framework based on Hidden Markov Model to identify altered methylation states of UMRs at single-base resolution. By applying this framework to whole-genome bisulfite sequencing data from 75 normal brain tissues and 15 IDH mutant glioma tissues, we identified two distinct types of hypermethylated UMRs in IDH mutant gliomas. We named them partially hypermethylated UMRs (phUMRs) and fully hypermethylated UMRs (fhUMRs), respectively. We found that the phUMRs and fhUMRs exhibit distinct genomic features and chromatin states. Genes related to fhUMRs were more likely to be repressed in IDH mutant gliomas. In contrast, genes related to phUMRs were prone to be up-regulated in IDH mutant gliomas. Such activation of phUMR genes is associated with the accumulation of active H3K4me3 and the loss of H3K27me3, as well as H3K36me3 accumulation in gene bodies to maintain gene expression stability. In summary, partial erosion on UMRs was accompanied by locus-specific changes in key chromatin marks, which may contribute to oncogene activation. CONCLUSIONS Our study provides a computational strategy for precise decoding of methylation encroachment patterns in IDH mutant gliomas, revealing potential mechanistic insights into chromatin reprogramming that contribute to oncogenesis.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
| | - Lijun Dai
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
| | - Yang Liu
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
| | - Chenghao Li
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
| | - Dandan Fan
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
| | - Yue Zhou
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, 325011, Zhejiang, China
| | - Pengcheng Li
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
| | - Qingran Kong
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, 325011, Zhejiang, China
| | - Jianzhong Su
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China.
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, 325011, Zhejiang, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, China.
| |
Collapse
|
17
|
Yu Y, Li X, Jiao R, Lu Y, Jiang X, Li X. H3K27me3-H3K4me1 transition at bivalent promoters instructs lineage specification in development. Cell Biosci 2023; 13:66. [PMID: 36991495 DOI: 10.1186/s13578-023-01017-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Bivalent genes, of which promoters are marked by both H3K4me3 (trimethylation of histone H3 on lysine 4) and H3K27me3 (trimethylation of histone H3 on lysine 27), play critical roles in development and tumorigenesis. Monomethylation on lysine 4 of histone H3 (H3K4me1) is commonly associated with enhancers, but H3K4me1 is also present at promoter regions as an active bimodal or a repressed unimodal pattern. Whether the co-occurrence of H3K4me1 and bivalent marks at promoters plays regulatory role in development is largely unknown. RESULTS We report that in the process of lineage differentiation, bivalent promoters undergo H3K27me3-H3K4me1 transition, the loss of H3K27me3 accompanies by bimodal pattern loss or unimodal pattern enrichment of H3K4me1. More importantly, this transition regulates tissue-specific gene expression to orchestrate the development. Furthermore, knockout of Eed (Embryonic Ectoderm Development) or Suz12 (Suppressor of Zeste 12) in mESCs (mouse embryonic stem cells), the core components of Polycomb repressive complex 2 (PRC2) which catalyzes H3K27 trimethylation, generates an artificial H3K27me3-H3K4me1 transition at partial bivalent promoters, which leads to up-regulation of meso-endoderm related genes and down-regulation of ectoderm related genes, thus could explain the observed neural ectoderm differentiation failure upon retinoic acid (RA) induction. Finally, we find that lysine-specific demethylase 1 (LSD1) interacts with PRC2 and contributes to the H3K27me3-H3K4me1 transition in mESCs. CONCLUSIONS These findings suggest that H3K27me3-H3K4me1 transition plays a key role in lineage differentiation by regulating the expression of tissue specific genes, and H3K4me1 pattern in bivalent promoters could be modulated by LSD1 via interacting with PRC2.
Collapse
Affiliation(s)
- Yue Yu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xinjie Li
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Rui Jiao
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yang Lu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xuan Jiang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| | - Xin Li
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
18
|
Aukema SM, Glaser S, van den Hout MFCM, Dahlum S, Blok MJ, Hillmer M, Kolarova J, Sciot R, Schott DA, Siebert R, Stumpel CTRM. Molecular characterization of an embryonal rhabdomyosarcoma occurring in a patient with Kabuki syndrome: report and literature review in the light of tumor predisposition syndromes. Fam Cancer 2023; 22:103-118. [PMID: 35856126 PMCID: PMC9829644 DOI: 10.1007/s10689-022-00306-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/05/2022] [Indexed: 01/13/2023]
Abstract
Kabuki syndrome is a well-recognized syndrome characterized by facial dysmorphism and developmental delay/intellectual disability and in the majority of patients a germline variant in KMT2D is found. As somatic KMT2D variants can be found in 5-10% of tumors a tumor predisposition in Kabuki syndrome is discussed. So far less than 20 patients with Kabuki syndrome and a concomitant malignancy have been published. Here we report on a female patient with Kabuki syndrome and a c.2558_2559delCT germline variant in KMT2D who developed an embryonal rhabdomyosarcoma (ERMS) at 10 years. On tumor tissue we performed DNA-methylation profiling and exome sequencing (ES). Copy number analyses revealed aneuploidies typical for ERMS including (partial) gains of chromosomes 2, 3, 7, 8, 12, 15, and 20 and 3 focal deletions of chromosome 11p. DNA methylation profiling mapped the case to ERMS by a DNA methylation-based sarcoma classifier. Sequencing suggested gain of the wild-type KMT2D allele in the trisomy 12. Including our patient literature review identified 18 patients with Kabuki syndrome and a malignancy. Overall, the landscape of malignancies in patients with Kabuki syndrome was reminiscent of that of the pediatric population in general. Histopathological and molecular data were only infrequently reported and no report included next generation sequencing and/or DNA-methylation profiling. Although we found no strong arguments pointing towards KS as a tumor predisposition syndrome, based on the small numbers any relation cannot be fully excluded. Further planned studies including profiling of additional tumors and long term follow-up of KS-patients into adulthood could provide further insights.
Collapse
Affiliation(s)
- Sietse M Aukema
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
| | - Selina Glaser
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Mari F C M van den Hout
- Department of Pathology, Research Institute GROW, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sonja Dahlum
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Marinus J Blok
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Morten Hillmer
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Julia Kolarova
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Raf Sciot
- Department of Pathology, University Hospital, University of Leuven, 3000, Louvain, Belgium
| | - Dina A Schott
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands
- Department of Pediatrics, Zuyderland Medical Center, Heerlen, The Netherlands
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Constance T R M Stumpel
- Department of Clinical Genetics, Maastricht University Medical Centre (MUMC+), PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
- Department of Clinical Genetics and GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands.
| |
Collapse
|
19
|
Miao Z, Cao Q, Liao R, Chen X, Li X, Bai L, Ma C, Deng X, Dai Z, Li J, Dong C. Elevated transcription and glycosylation of B3GNT5 promotes breast cancer aggressiveness. J Exp Clin Cancer Res 2022; 41:169. [PMID: 35526049 PMCID: PMC9077843 DOI: 10.1186/s13046-022-02375-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/27/2022] [Indexed: 12/12/2022] Open
Abstract
Background Basal-like breast cancer (BLBC) is the most aggressive subtype of breast cancer because of its aggressive biological characteristics and no effective targeted agents. However, the mechanism underlying its aggressive behavior remain poorly understood. β1,3-N-acetylglucosaminyltransferase V (B3GNT5) overexpression occurs specifically in BLBC. Here, we studied the possible molecular mechanisms of B3GBT5 promoting the aggressiveness of BLBC. Methods The potential effects of B3GNT5 on breast cancer cells were tested by colony formation, mammosphere formation, cell proliferation assay, flow cytometry and Western blotting. The glycosylation patterns of B3GNT5 and associated functions were determined by Western blotting, quantitative real-time PCR and flow cytometry. The effect of B3GNT5 expression on BLBC was assessed by in vitro and in vivo tumorigenesis model. Results In this study, we showed that B3GNT5 copy number amplification and hypomethylation of B3GNT5 promoter contributed to the overexpression of B3GNT5 in BLBC. Knockout of B3GNT5 strongly reduced surface expression of SSEA-1 and impeded cancer stem cell (CSC)-like properties of BLBC cells. Our results also showed that B3GNT5 protein was heavily N-glycosylated, which is critical for its protein stabilization. Clinically, elevated expression of B3GNT5 was correlated with high grade, large tumor size and poor survival, indicating poor prognosis of breast cancer patients. Conclusions Our work uncovers the critical association of B3GNT5 overexpression and glycosylation with enhanced CSCs properties in BLBC. These findings suggest that B3GNT5 has the potential to become a prognostic marker and therapeutic target for BLBC. Supplementary information The online version contains supplementary material available at 10.1186/s13046-022-02375-5.
Collapse
|
20
|
Xu Y, Xiao H, Hu W, Shen HC, Liu W, Tan S, Ren C, Zhang X, Yang X, Yu G, Yang T, Yu D, Zong L. CIMP-positive glioma is associated with better prognosis: A systematic analysis. Medicine (Baltimore) 2022; 101:e30635. [PMID: 36181110 PMCID: PMC9524892 DOI: 10.1097/md.0000000000030635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/29/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND CpG island methylator phenotype (CIMP) was closely related to the degree of pathological differentiation of tumors, and it's an important determinant of glioma pathogenicity. However, the molecular and pathological features of CIMP-positive glioma have not been fully elucidated. In addition, CIMP have been reported to be a useful prognostic marker in several human cancers, yet its prognostic value in gliomas is still controversial. Therefore, we aimed to evaluate gene mutations and pathological features of CIMP-positive glioma and explore the prognostic value of CIMP in gliomas. METHODS We comprehensively searched PubMed, Embase, and MEDLINE for studies describing gene mutations, pathological features and overall survival of gliomas stratified by CIMP status. Odds ratios (OR), hazard ratios (HR), and their 95% confidence intervals (CI) were used to estimate the correlation between CIMP and the outcome parameters. RESULTS Twelve studies with 2386 gliomas (1051 CIMP-positive and 1335 CIMP-negative) were included. Our results showed that CIMP was more frequent in isocitrate dehydrogenase 1 (IDH1)-mutated gliomas (OR 229.07; 95% CI 138.72-378.26) and 1p19q loss of heterozygosis (LOH) gliomas (OR 5.65; 95% CI 2.66-12.01). Pathological analysis showed that CIMP was common in low-malignant oligodendroglioma (OR 5.51; 95% CI 3.95-7.70) with molecular features including IDH1 mutations and 1p19q LOH, but rare in glioblastoma (OR 0.14; 95% CI 0.10-0.19). However, CIMP showed no obvious correlation with anaplastic oligoastrocytomas (OR 1.57; 95% CI 1.24-2.00) or oligoastrocytomas (OR 0.79; 95% CI 0.35-1.76). Concerning the prognosis, we found that CIMP-positive gliomas had longer overall survival (HR 0.57; 95% CI 0.97-0.16) than CIMP-negative gliomas. CONCLUSIONS CIMP could be used as a potential independent prognostic indicator for glioma.
Collapse
Affiliation(s)
- Yingying Xu
- Department of General Surgery, Yizhen People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Huashi Xiao
- Clinical Medical College, Dalian Medical University, Liaoning Province, China
| | - Wenqing Hu
- Department of Gastrointestinal Surgery, Changzhi People’s Hospital, The Affiliated Hospital of Changzhi Medical College, Changzhi, Shanxi Province, China
| | - He-Chun Shen
- Department of General Practice, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Wanjun Liu
- Department of Clinical Medical Testing Laboratory, Clinical Medical School of Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu Province, China
| | - Siyuan Tan
- Department of General Surgery, Yizhen People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Chuanli Ren
- Department of Clinical Medical Testing Laboratory, Clinical Medical School of Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu Province, China
| | - Xiaomin Zhang
- Central Laboratory, Changzhi People’s Hospital, The Affiliated Hospital of Changzhi Medical College, Changzhi, Shanxi Province, China
| | - Xishuai Yang
- Neurology Department, Changzhi People’s Hospital, The Affiliated Hospital of Changzhi Medical College, Changzhi, Shanxi Province, China
| | - Guo Yu
- Laboratory of Pharmacogenomics and Pharmacokinetic Research, Subei People’s Hospital, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Ting Yang
- Central Laboratory, Changzhi People’s Hospital, The Affiliated Hospital of Changzhi Medical College, Changzhi, Shanxi Province, China
| | - Duonan Yu
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University School of Medicine, Yangzhou, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou, Jiangsu Province, China
| | - Liang Zong
- Department of Gastrointestinal Surgery, Changzhi People’s Hospital, The Affiliated Hospital of Changzhi Medical College, Changzhi, Shanxi Province, China
| |
Collapse
|
21
|
Zhao Y, Hu X, Yu H, Liu X, Sun H, Shao C. Alternations of gene expression in PI3K and AR pathways and DNA methylation features contribute to metastasis of prostate cancer. Cell Mol Life Sci 2022; 79:436. [PMID: 35864178 PMCID: PMC11072339 DOI: 10.1007/s00018-022-04456-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The molecular heterogeneity of prostate cancer (PCa) gives rise to distinct tumor subclasses based on epigenetic modification and gene expression signatures. Identification of clinically actionable molecular subtypes of PCa is key to improving patient outcome, and the balance between specific pathways may influence PCa outcome. It is also urgent to identify progression-related markers through cytosine-guanine (CpG) methylation in predicting metastasis for patients with PCa. METHODS We performed bioinformatics analysis of transcriptomic, and clinical data in an integrated cohort of 551 prostate samples. The datasets included retrospective The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts. Two algorithms, Least Absolute Shrinkage and Selector Operation and Support Vector Machine-Recursive Feature Elimination, were used to select significant CpGs. RESULTS We found that PCa progression is more likely to occur after the third year through conditional survival (CS) analysis, and prostate-specific antigen (PSA) was a better predictor of Progression-free survival (PFS) than Gleason score (GS). Our study first demonstrated that PCa tumors have distinct expression profiles based on the expression of genes involved in androgen receptor (AR) and PI3K-AKT, which influence disease outcome. Our results also indicated that there are multiple phenotypes relevant to the AR-PI3K axis in PCa, where tumors with mixed phenotype may be more aggressive or have worse outcome than quiescent phenotype. In terms of epigenetics, we obtained CpG sites and their corresponding genes which have a good predictive value of PFS. However, various evidences showed that the predictive value of CpGs corresponding genes was much lower than GpG sites in Overall survival (OS) and PFS. CONCLUSIONS PCa classification specific to AR and PI3K pathways provides novel biological insight into previously established PCa subtypes and may help develop personalized therapies. Our results support the potential clinical utility of DNA methylation signatures to distinguish tumor metastasis and to predict prognosis and outcomes.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Urology, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361000, China
| | - Xin Hu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Haoran Yu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Xin Liu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Huimin Sun
- Department of Urology, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361000, China
| | - Chen Shao
- Department of Urology, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361000, China.
| |
Collapse
|
22
|
Pokorna Z, Hrabal V, Tichy V, Vojtesek B, Coates PJ. DNA Demethylation Switches Oncogenic ΔNp63 to Tumor Suppressive TAp63 in Squamous Cell Carcinoma. Front Oncol 2022; 12:924354. [PMID: 35912167 PMCID: PMC9331744 DOI: 10.3389/fonc.2022.924354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
The TP63 gene encodes two major protein variants; TAp63 contains a p53-like transcription domain and consequently has tumor suppressor activities whereas ΔNp63 lacks this domain and acts as an oncogene. The two variants show distinct expression patterns in normal tissues and tumors, with lymphocytes and lymphomas/leukemias expressing TAp63, and basal epithelial cells and some carcinomas expressing high levels of ΔNp63, most notably squamous cell carcinomas (SCC). Whilst the transcriptional functions of TAp63 and ΔNp63 isoforms are known, the mechanisms involved in their regulation are poorly understood. Using squamous epithelial cells that contain high levels of ΔNp63 and low/undetectable TAp63, the DNA demethylating agent decitabine (5-aza-2’-deoxycytidine, 5-dAza) caused a dose-dependent increase in TAp63, with a simultaneous reduction in ΔNp63, indicating DNA methylation-dependent regulation at the isoform-specific promoters. The basal cytokeratin KRT5, a direct ΔNp63 transcriptional target, was also reduced, confirming functional alteration of p63 activity after DNA demethylation. We also showed high level methylation of three CpG sites in the TAP63 promoter in these cells, which was reduced by decitabine. DNMT1 depletion using inducible shRNAs partially replicated these effects, including an increase in the ratio of TAP63:ΔNP63 mRNAs, a reduction in ΔNp63 protein and reduced KRT5 mRNA levels. Finally, high DNA methylation levels were found at the TAP63 promoter in clinical SCC samples and matched normal tissues. We conclude that DNA methylation at the TAP63 promoter normally silences transcription in squamous epithelial cells, indicating DNA methylation as a therapeutic approach to induce this tumor suppressor in cancer. That decitabine simultaneously reduced the oncogenic activity of ΔNp63 provides a “double whammy” for SCC and other p63-positive carcinomas. Whilst a variety of mechanisms may be involved in producing the opposite effects of DNA demethylation on TAp63 and ΔNp63, we propose an “either or” mechanism in which TAP63 transcription physically interferes with the ability to initiate transcription from the downstream ΔNP63 promoter on the same DNA strand. This mechanism can explain the observed inverse expression of p63 isoforms in normal cells and cancer.
Collapse
Affiliation(s)
- Zuzana Pokorna
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Vaclav Hrabal
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Vlastimil Tichy
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Borivoj Vojtesek
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Philip J. Coates
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czechia
- *Correspondence: Philip J. Coates,
| |
Collapse
|
23
|
Zhang X, Jia X, Zhong B, Wei L, Li J, Zhang W, Fang H, Li Y, Lu Y, Wang X. Evaluating methylation of human ribosomal DNA at each CpG site reveals its utility for cancer detection using cell-free DNA. Brief Bioinform 2022; 23:6634225. [PMID: 35804466 DOI: 10.1093/bib/bbac278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Ribosomal deoxyribonucleic acid (DNA) (rDNA) repeats are tandemly located on five acrocentric chromosomes with up to hundreds of copies in the human genome. DNA methylation, the most well-studied epigenetic mechanism, has been characterized for most genomic regions across various biological contexts. However, rDNA methylation patterns remain largely unexplored due to the repetitive structure. In this study, we designed a specific mapping strategy to investigate rDNA methylation patterns at each CpG site across various physiological and pathological processes. We found that CpG sites on rDNA could be categorized into two types. One is within or adjacent to transcribed regions; the other is distal to transcribed regions. The former shows highly variable methylation levels across samples, while the latter shows stable high methylation levels in normal tissues but severe hypomethylation in tumors. We further showed that rDNA methylation profiles in plasma cell-free DNA could be used as a biomarker for cancer detection. It shows good performances on public datasets, including colorectal cancer [area under the curve (AUC) = 0.85], lung cancer (AUC = 0.84), hepatocellular carcinoma (AUC = 0.91) and in-house generated hepatocellular carcinoma dataset (AUC = 0.96) even at low genome coverage (<1×). Taken together, these findings broaden our understanding of rDNA regulation and suggest the potential utility of rDNA methylation features as disease biomarkers.
Collapse
Affiliation(s)
- Xianglin Zhang
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xiaodong Jia
- Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Bixi Zhong
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Lei Wei
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Jiaqi Li
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Wei Zhang
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Huan Fang
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yanda Li
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yinying Lu
- Comprehensive Liver Cancer Center, Fifth Medical Center of PLA General Hospital, Beijing 100039, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China.,Guangdong Key Laboratory of Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xiaowo Wang
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Lee MK, Brown MS, Wilkins OM, Pattabiraman DR, Christensen BC. Distinct cytosine modification profiles define epithelial-to-mesenchymal cell-state transitions. Epigenomics 2022; 14:519-535. [PMID: 35382559 PMCID: PMC9118069 DOI: 10.2217/epi-2022-0023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Epithelial-to-mesenchymal transition (EMT) is an early step in the invasion-metastasis cascade, involving progression through intermediate cell states. Due to challenges with isolating intermediate cell states, genome-wide cytosine modifications that define transition are not completely understood. Methods: The authors measured multiple DNA cytosine modification marks and chromatin accessibility across clonal populations residing in specific EMT states. Results: Clones exhibiting more intermediate EMT phenotypes demonstrated increased 5-hydroxymethylcytosine and decreased 5-methylcytosine. Open chromatin regions containing increased 5-hydroxymethylcytosine CpG loci were enriched in EMT transcription factor motifs and were associated with Rho GTPases. Conclusion: The results indicate the importance of both distinct and shared epigenetic profiles associated with EMT processes that may be targeted to prevent EMT progression.
Collapse
Affiliation(s)
- Min Kyung Lee
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Meredith S Brown
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Owen M Wilkins
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Diwakar R Pattabiraman
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Department of Community & Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| |
Collapse
|
25
|
Locus-Specific Methylation of GSTP1, RNF219, and KIAA1539 Genes with Single Molecule Resolution in Cell-Free DNA from Healthy Donors and Prostate Tumor Patients: Application in Diagnostics. Cancers (Basel) 2021; 13:cancers13246234. [PMID: 34944854 PMCID: PMC8699300 DOI: 10.3390/cancers13246234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Prostate cancer (PCa) is the second most commonly diagnosed cancer in men, which is constantly accompanied by benign prostate hyperplasia (BPH). To reach a 100% 5-year survival rate in PCa, which is characteristic for PCa if it is diagnosed in early stages, efficient PCa diagnostics against the background of BPH are demanded. The article describes a liquid biopsy approach to differential PCa diagnostics based on the data on locus-specific methylation of the three genes (GSTP1, RNF219, and KIAA1539) obtained with NGS of cell-free DNA from blood plasma of PCa, BPH, and healthy individuals. We offered a diagnostic approach including the analysis of simultaneous methylation status of two CpGs in one cell-free DNA molecule, allowing the discrimination of all patients with absolute sensitivity and specificity. Abstract The locus-specific methylation of three genes (GSTP1, RNF219, and KIAA1539 (also known as FAM214B)) in the blood plasma cell-free DNA (cfDNA) of 20 patients with prostate cancer (PCa), 18 healthy donors (HDs), and 17 patients with benign prostatic hyperplasia (BPH) was studied via the MiSeq platform. The methylation status of two CpGs within the same loci were used as the diagnostic feature for discriminating the patient groups. Many variables had good diagnostic characteristics, e.g., each of the variables GSTP1.C3.C9, GSTP1.C9, and GSTP1.C9.T17 demonstrated an 80% sensitivity at a 100% specificity for PCa patients vs. the others comparison. The analysis of RNF219 gene loci methylation allowed discriminating BPH patients with absolute sensitivity and specificity. The data on the methylation of the genes GSTP1 and RNF219 allowed discriminating PCa patients, as well as HDs, with absolute sensitivity and specificity. Thus, the data on the locus-specific methylation of cfDNA (with single-molecule resolution) combined with a diagnostic approach considering the simultaneous methylation of several CpGs in one locus enabled the discrimination of HD, BPH, and PCa patients.
Collapse
|
26
|
Zagkos L, Roberts J, Auley MM. A mathematical model which examines age-related stochastic fluctuations in DNA maintenance methylation. Exp Gerontol 2021; 156:111623. [PMID: 34774717 DOI: 10.1016/j.exger.2021.111623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
Due to its complexity and its ubiquitous nature the ageing process remains an enduring biological puzzle. Many molecular mechanisms and biochemical process have become synonymous with ageing. However, recent findings have pinpointed epigenetics as having a key role in ageing and healthspan. In particular age related changes to DNA methylation offer the possibility of monitoring the trajectory of biological ageing and could even be used to predict the onset of diseases such as cancer, Alzheimer's disease and cardiovascular disease. At the molecular level emerging evidence strongly suggests the regulatory processes which govern DNA methylation are subject to intracellular stochasticity. It is challenging to fully understand the impact of stochasticity on DNA methylation levels at the molecular level experimentally. An ideal solution is to use mathematical models to capture the essence of the stochasticity and its outcomes. In this paper we present a novel stochastic model which accounts for specific methylation levels within a gene promoter. Uncertainty of the eventual site-specific methylation levels for different values of methylation age, depending on the initial methylation levels were analysed. Our model predicts the observed bistable levels in CpG islands. In addition, simulations with various levels of noise indicate that uncertainty predominantly spreads through the hypermethylated region of stability, especially for large values of input noise. A key outcome of the model is that CpG islands with high to intermediate methylation levels tend to be more susceptible to dramatic DNA methylation changes due to increasing methylation age.
Collapse
Affiliation(s)
- Loukas Zagkos
- Department of Mathematics, School of Science and Engineering, University of Chester, Thornton Science Park, Chester CH2 4NU, UK; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London W2 1PG, UK.
| | - Jason Roberts
- Department of Mathematics, School of Science and Engineering, University of Chester, Thornton Science Park, Chester CH2 4NU, UK
| | - Mark Mc Auley
- Department of Chemical Engineering, School of Science and Engineering, University of Chester, Thornton Science Park, Chester CH2 4NU, UK
| |
Collapse
|
27
|
Fatma H, Siddique HR, Maurya SK. The multiple faces of NANOG in cancer: a therapeutic target to chemosensitize therapy-resistant cancers. Epigenomics 2021; 13:1885-1900. [PMID: 34693722 DOI: 10.2217/epi-2021-0228] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The transcription factor NANOG regulates self-renewal and pluripotency in embryonic cells, and its downregulation leads to cell differentiation. Recent studies have linked upregulation of NANOG in various cancers and the regulation of expression of different molecules, and vice versa, to induce proliferation, metastasis, invasion and chemoresistance. Thus NANOG is an oncogene that functions by inducing stem cells' circuitries and heterogeneity in cancers. Understanding NANOG's role in various cancers may lead to it becoming a therapeutic target to halt cancer progression. The NANOG network can also be targeted to resensitize resistant cancer cells to conventional therapies. The current review focuses on NANOG regulation in the various signaling networks leading to cancer progression and chemoresistance, and highlights the therapeutic aspect of targeting NANOG in various cancers.
Collapse
Affiliation(s)
- Homa Fatma
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Santosh K Maurya
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| |
Collapse
|
28
|
Wang X, Rosikiewicz W, Sedkov Y, Martinez T, Hansen BS, Schreiner P, Christensen J, Xu B, Pruett-Miller SM, Helin K, Herz HM. PROSER1 mediates TET2 O-GlcNAcylation to regulate DNA demethylation on UTX-dependent enhancers and CpG islands. Life Sci Alliance 2021; 5:5/1/e202101228. [PMID: 34667079 PMCID: PMC8548262 DOI: 10.26508/lsa.202101228] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/18/2023] Open
Abstract
PROSER1 promotes the interaction between TET2 and the glycosyltransferase OGT to regulate TET2 O-GlcNAcylation and stability on genomic elements that depend on the activity of the MLL3/4 complexes. DNA methylation at enhancers and CpG islands usually leads to gene repression, which is counteracted by DNA demethylation through the TET protein family. However, how TET enzymes are recruited and regulated at these genomic loci is not fully understood. Here, we identify TET2, the glycosyltransferase OGT and a previously undescribed proline and serine rich protein, PROSER1 as interactors of UTX, a component of the enhancer-associated MLL3/4 complexes. We find that PROSER1 mediates the interaction between OGT and TET2, thus promoting TET2 O-GlcNAcylation and protein stability. In addition, PROSER1, UTX, TET1/2, and OGT colocalize on many genomic elements genome-wide. Loss of PROSER1 results in lower enrichment of UTX, TET1/2, and OGT at enhancers and CpG islands, with a concomitant increase in DNA methylation and transcriptional down-regulation of associated target genes and increased DNA hypermethylation encroachment at H3K4me1-predisposed CpG islands. Furthermore, we provide evidence that PROSER1 acts as a more general regulator of OGT activity by controlling O-GlcNAcylation of multiple other chromatin signaling pathways. Taken together, this study describes for the first time a regulator of TET2 O-GlcNAcylation and its implications in mediating DNA demethylation at UTX-dependent enhancers and CpG islands and supports an important role for PROSER1 in regulating the function of various chromatin-associated proteins via OGT-mediated O-GlcNAcylation.
Collapse
Affiliation(s)
- Xiaokang Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yurii Sedkov
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tanner Martinez
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Baranda S Hansen
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Patrick Schreiner
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jesper Christensen
- Biotech Research and Innovation Centre and The Novo Nordisk Foundation for Stem Cell Biology, University of Copenhagen, Copenhagen, Denmark
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kristian Helin
- Biotech Research and Innovation Centre and The Novo Nordisk Foundation for Stem Cell Biology, University of Copenhagen, Copenhagen, Denmark.,Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Hans-Martin Herz
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
29
|
Li W, Wu H, Sui S, Wang Q, Xu S, Pang D. Targeting Histone Modifications in Breast Cancer: A Precise Weapon on the Way. Front Cell Dev Biol 2021; 9:736935. [PMID: 34595180 PMCID: PMC8476812 DOI: 10.3389/fcell.2021.736935] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/16/2021] [Indexed: 12/27/2022] Open
Abstract
Histone modifications (HMs) contribute to maintaining genomic stability, transcription, DNA repair, and modulating chromatin in cancer cells. Furthermore, HMs are dynamic and reversible processes that involve interactions between numerous enzymes and molecular components. Aberrant HMs are strongly associated with tumorigenesis and progression of breast cancer (BC), although the specific mechanisms are not completely understood. Moreover, there is no comprehensive overview of abnormal HMs in BC, and BC therapies that target HMs are still in their infancy. Therefore, this review summarizes the existing evidence regarding HMs that are involved in BC and the potential mechanisms that are related to aberrant HMs. Moreover, this review examines the currently available agents and approved drugs that have been tested in pre-clinical and clinical studies to evaluate their effects on HMs. Finally, this review covers the barriers to the clinical application of therapies that target HMs, and possible strategies that could help overcome these barriers and accelerate the use of these therapies to cure patients.
Collapse
Affiliation(s)
- Wei Li
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Hao Wu
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Shiyao Sui
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Qin Wang
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Shouping Xu
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China
| | - Da Pang
- Harbin Medical University Third Hospital: Tumor Hospital of Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
30
|
Sklias A, Halaburkova A, Vanzan L, Jimenez NF, Cuenin C, Bouaoun L, Cahais V, Ythier V, Sallé A, Renard C, Durand G, Le Calvez-Kelm F, Khoueiry R, Murr R, Herceg Z. Epigenetic remodelling of enhancers in response to estrogen deprivation and re-stimulation. Nucleic Acids Res 2021; 49:9738-9754. [PMID: 34403459 PMCID: PMC8464064 DOI: 10.1093/nar/gkab697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/14/2021] [Indexed: 12/24/2022] Open
Abstract
Estrogen hormones are implicated in a majority of breast cancers and estrogen receptor alpha (ER), the main nuclear factor mediating estrogen signaling, orchestrates a complex molecular circuitry that is not yet fully elucidated. Here, we investigated genome-wide DNA methylation, histone acetylation and transcription after estradiol (E2) deprivation and re-stimulation to better characterize the ability of ER to coordinate gene regulation. We found that E2 deprivation mostly resulted in DNA hypermethylation and histone deacetylation in enhancers. Transcriptome analysis revealed that E2 deprivation leads to a global down-regulation in gene expression, and more specifically of TET2 demethylase that may be involved in the DNA hypermethylation following short-term E2 deprivation. Further enrichment analysis of transcription factor (TF) binding and motif occurrence highlights the importance of ER connection mainly with two partner TF families, AP-1 and FOX. These interactions take place in the proximity of E2 deprivation-mediated differentially methylated and histone acetylated enhancers. Finally, while most deprivation-dependent epigenetic changes were reversed following E2 re-stimulation, DNA hypermethylation and H3K27 deacetylation at certain enhancers were partially retained. Overall, these results show that inactivation of ER mediates rapid and mostly reversible epigenetic changes at enhancers, and bring new insight into early events, which may ultimately lead to endocrine resistance.
Collapse
Affiliation(s)
- Athena Sklias
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon Cedex 08, France
| | - Andrea Halaburkova
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon Cedex 08, France
| | - Ludovica Vanzan
- Department of Genetic Medicine and Development (GEDEV), University of Geneva, Geneva, Switzerland
| | - Nora Fernandez Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Biocruces-Bizkaia Health Research Institute, Leioa, Basque Country 48940, Spain
| | - Cyrille Cuenin
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon Cedex 08, France
| | - Liacine Bouaoun
- Section of Environment and Radiation, International Agency for Research on Cancer (IARC), 69372 Lyon Cedex 08, France
| | - Vincent Cahais
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon Cedex 08, France
| | - Victor Ythier
- Department of Genetic Medicine and Development (GEDEV), University of Geneva, Geneva, Switzerland
| | - Aurélie Sallé
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon Cedex 08, France
| | - Claire Renard
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon Cedex 08, France
| | - Geoffroy Durand
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Florence Le Calvez-Kelm
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Rita Khoueiry
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon Cedex 08, France
| | - Rabih Murr
- Department of Genetic Medicine and Development (GEDEV), University of Geneva, Geneva, Switzerland
- Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), 69372 Lyon Cedex 08, France
| |
Collapse
|
31
|
Nishiyama A, Nakanishi M. Navigating the DNA methylation landscape of cancer. Trends Genet 2021; 37:1012-1027. [PMID: 34120771 DOI: 10.1016/j.tig.2021.05.002] [Citation(s) in RCA: 377] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
DNA methylation is a chemical modification that defines cell type and lineage through the control of gene expression and genome stability. Disruption of DNA methylation control mechanisms causes a variety of diseases, including cancer. Cancer cells are characterized by aberrant DNA methylation (i.e., genome-wide hypomethylation and site-specific hypermethylation), mainly targeting CpG islands in gene expression regulatory elements. In particular, the early findings that a variety of tumor suppressor genes (TSGs) are targets of DNA hypermethylation in cancer led to the proposal of a model in which aberrant DNA methylation promotes cellular oncogenesis through TSGs silencing. However, recent genome-wide analyses have revealed that this classical model needs to be reconsidered. In this review, we will discuss the molecular mechanisms of DNA methylation abnormalities in cancer as well as their therapeutic potential.
Collapse
Affiliation(s)
- Atsuya Nishiyama
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
32
|
Dynamic patterns of DNA methylation in the normal prostate epithelial differentiation program are targets of aberrant methylation in prostate cancer. Sci Rep 2021; 11:11405. [PMID: 34075163 PMCID: PMC8169877 DOI: 10.1038/s41598-021-91037-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022] Open
Abstract
Understanding the epigenetic control of normal differentiation programs might yield principal information about critical regulatory states that are disturbed in cancer. We utilized the established non-malignant HPr1-AR prostate epithelial cell model that upon androgen exposure commits to a luminal cell differentiation trajectory from that of a basal-like state. We profile the dynamic transcriptome associated with this transition at multiple time points (0 h, 1 h, 24 h, 96 h), and confirm that expression patterns are strongly indicative of a progressive basal to luminal cell differentiation program based on human expression signatures. Furthermore, we establish dynamic patterns of DNA methylation associated with this program by use of whole genome bisulfite sequencing (WGBS). Expression patterns associated with androgen induced luminal cell differentiation were found to have significantly elevated DNA methylation dynamics. Shifts in methylation profiles were strongly associated with Polycomb repressed regions and to promoters associated with bivalency, and strongly enriched for binding motifs of AR and MYC. Importantly, we found that dynamic DNA methylation patterns observed in the normal luminal cell differentiation program were significant targets of aberrant methylation in prostate cancer. These findings suggest that the normal dynamics of DNA methylation in luminal differentiation contribute to the aberrant methylation patterns in prostate cancer.
Collapse
|
33
|
Li Y, Chen X, Lu C. The interplay between DNA and histone methylation: molecular mechanisms and disease implications. EMBO Rep 2021; 22:e51803. [PMID: 33844406 PMCID: PMC8097341 DOI: 10.15252/embr.202051803] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/16/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
Methylation of cytosine in CpG dinucleotides and histone lysine and arginine residues is a chromatin modification that critically contributes to the regulation of genome integrity, replication, and accessibility. A strong correlation exists between the genome-wide distribution of DNA and histone methylation, suggesting an intimate relationship between these epigenetic marks. Indeed, accumulating literature reveals complex mechanisms underlying the molecular crosstalk between DNA and histone methylation. These in vitro and in vivo discoveries are further supported by the finding that genes encoding DNA- and histone-modifying enzymes are often mutated in overlapping human diseases. Here, we summarize recent advances in understanding how DNA and histone methylation cooperate to maintain the cellular epigenomic landscape. We will also discuss the potential implication of these insights for understanding the etiology of, and developing biomarkers and therapies for, human congenital disorders and cancers that are driven by chromatin abnormalities.
Collapse
Affiliation(s)
- Yinglu Li
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Xiao Chen
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNYUSA
| |
Collapse
|
34
|
Chen F, Bai M, Cao X, Xue J, Zhao Y, Wu N, Wang L, Zhang D, Zhao Y. Cellular macromolecules-tethered DNA walking indexing to explore nanoenvironments of chromatin modifications. Nat Commun 2021; 12:1965. [PMID: 33785750 PMCID: PMC8009891 DOI: 10.1038/s41467-021-22284-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 03/02/2021] [Indexed: 02/01/2023] Open
Abstract
Exploring spatial organization and relationship of diverse biomolecules within cellular nanoenvironments is important to elucidate the fundamental processes of life. However, it remains methodologically challenging. Herein, we report a molecular recognition mechanism cellular macromolecules-tethered DNA walking indexing (Cell-TALKING) to probe the nanoenvironments containing diverse chromatin modifications. As an example, we characterize the nanoenvironments of three DNA modifications around one histone posttranslational modification (PTM). These DNA modifications in fixed cells are labeled with respective DNA barcoding probes, and then the PTM site is tethered with a DNA walking probe. Cell-TALKING can continuously produce cleavage records of any barcoding probes nearby the walking probe. New 3'-OH ends are generated on the cleaved barcoding probes to induce DNA amplification for downstream detections. Combining fluorescence imaging, we identify various combinatorial chromatin modifications and investigate their dynamic changes during cell cycles. We also explore the nanoenvironments in different cancer cell lines and clinical specimens. In principle, using high-throughput sequencing instead of fluorescence imaging may allow the detection of complex cellular nanoenvironments containing tens of biomolecules such as transcription factors.
Collapse
Affiliation(s)
- Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Min Bai
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Xiaowen Cao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Jing Xue
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yue Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Na Wu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Lei Wang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, PR China
| | - Dexin Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
35
|
Mancarella D, Plass C. Epigenetic signatures in cancer: proper controls, current challenges and the potential for clinical translation. Genome Med 2021; 13:23. [PMID: 33568205 PMCID: PMC7874645 DOI: 10.1186/s13073-021-00837-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 01/21/2021] [Indexed: 12/26/2022] Open
Abstract
Epigenetic alterations are associated with normal biological processes such as aging or differentiation. Changes in global epigenetic signatures, together with genetic alterations, are driving events in several diseases including cancer. Comparative studies of cancer and healthy tissues found alterations in patterns of DNA methylation, histone posttranslational modifications, and changes in chromatin accessibility. Driven by sophisticated, next-generation sequencing-based technologies, recent studies discovered cancer epigenomes to be dominated by epigenetic patterns already present in the cell-of-origin, which transformed into a neoplastic cell. Tumor-specific epigenetic changes therefore need to be redefined and factors influencing epigenetic patterns need to be studied to unmask truly disease-specific alterations. The underlying mechanisms inducing cancer-associated epigenetic alterations are poorly understood. Studies of mutated epigenetic modifiers, enzymes that write, read, or edit epigenetic patterns, or mutated chromatin components, for example oncohistones, help to provide functional insights on how cancer epigenomes arise. In this review, we highlight the importance and define challenges of proper control tissues and cell populations to exploit cancer epigenomes. We summarize recent advances describing mechanisms leading to epigenetic changes in tumorigenesis and briefly discuss advances in investigating their translational potential.
Collapse
Affiliation(s)
- Daniela Mancarella
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. .,Faculty of Biosciences, Ruprecht-Karls-University of Heidelberg, 69120, Heidelberg, Germany.
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,German Consortium for Translational Cancer Research (DKTK), 69120, Heidelberg, Germany
| |
Collapse
|
36
|
Epigenetic reprogramming during prostate cancer progression: A perspective from development. Semin Cancer Biol 2021; 83:136-151. [PMID: 33545340 DOI: 10.1016/j.semcancer.2021.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Conrad Waddington's theory of epigenetic landscape epitomize the process of cell fate and cellular decision-making during development. Wherein the epigenetic code maintains patterns of gene expression in pluripotent and differentiated cellular states during embryonic development and differentiation. Over the years disruption or reprogramming of the epigenetic landscape has been extensively studied in the course of cancer progression. Cellular dedifferentiation being a key hallmark of cancer allow us to take cues from the biological processes involved during development. Here, we discuss the role of epigenetic landscape and its modifiers in cell-fate determination, differentiation and prostate cancer progression. Lately, the emergence of RNA-modifications has also furthered our understanding of epigenetics in cancer. The overview of the epigenetic code regulating androgen signalling, and progression to aggressive neuroendocrine stage of PCa reinforces its gene regulatory functions during the development of prostate gland as well as cancer progression. Additionally, we also highlight the clinical implications of cancer cell epigenome, and discuss the recent advancements in the therapeutic strategies targeting the advanced stage disease.
Collapse
|
37
|
The Role of H3K4 Trimethylation in CpG Islands Hypermethylation in Cancer. Biomolecules 2021; 11:biom11020143. [PMID: 33499170 PMCID: PMC7912453 DOI: 10.3390/biom11020143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/30/2020] [Accepted: 01/15/2021] [Indexed: 01/01/2023] Open
Abstract
CpG methylation in transposons, exons, introns and intergenic regions is important for long-term silencing, silencing of parasitic sequences and alternative promoters, regulating imprinted gene expression and determining X chromosome inactivation. Promoter CpG islands, although rich in CpG dinucleotides, are unmethylated and remain so during all phases of mammalian embryogenesis and development, except in specific cases. The biological mechanisms that contribute to the maintenance of the unmethylated state of CpG islands remain elusive, but the modification of established DNA methylation patterns is a common feature in all types of tumors and is considered as an event that intrinsically, or in association with genetic lesions, feeds carcinogenesis. In this review, we focus on the latest results describing the role that the levels of H3K4 trimethylation may have in determining the aberrant hypermethylation of CpG islands in tumors.
Collapse
|
38
|
Castro-Piedras I, Vartak D, Sharma M, Pandey S, Casas L, Molehin D, Rasha F, Fokar M, Nichols J, Almodovar S, Rahman RL, Pruitt K. Identification of Novel MeCP2 Cancer-Associated Target Genes and Post-Translational Modifications. Front Oncol 2020; 10:576362. [PMID: 33363010 PMCID: PMC7758440 DOI: 10.3389/fonc.2020.576362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/26/2020] [Indexed: 12/23/2022] Open
Abstract
Abnormal regulation of DNA methylation and its readers has been associated with a wide range of cellular dysfunction. Disruption of the normal function of DNA methylation readers contributes to cancer progression, neurodevelopmental disorders, autoimmune disease and other pathologies. One reader of DNA methylation known to be especially important is MeCP2. It acts a bridge and connects DNA methylation with histone modifications and regulates many gene targets contributing to various diseases; however, much remains unknown about how it contributes to cancer malignancy. We and others previously described novel MeCP2 post-translational regulation. We set out to test the hypothesis that MeCP2 would regulate novel genes linked with tumorigenesis and that MeCP2 is subject to additional post-translational regulation not previously identified. Herein we report novel genes bound and regulated by MeCP2 through MeCP2 ChIP-seq and RNA-seq analyses in two breast cancer cell lines representing different breast cancer subtypes. Through genomics analyses, we localize MeCP2 to novel gene targets and further define the full range of gene targets within breast cancer cell lines. We also further examine the scope of clinical and pre-clinical lysine deacetylase inhibitors (KDACi) that regulate MeCP2 post-translationally. Through proteomics analyses, we identify many additional novel acetylation sites, nine of which are mutated in Rett Syndrome. Our study provides important new insight into downstream targets of MeCP2 and provide the first comprehensive map of novel sites of acetylation associated with both pre-clinical and FDA-approved KDACi used in the clinic. This report examines a critical reader of DNA methylation and has important implications for understanding MeCP2 regulation in cancer models and identifying novel molecular targets associated with epigenetic therapies.
Collapse
Affiliation(s)
- Isabel Castro-Piedras
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - David Vartak
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Monica Sharma
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Somnath Pandey
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Laura Casas
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Deborah Molehin
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Fahmida Rasha
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Mohamed Fokar
- Center for Biotechnology & Genomics, Texas Tech University, Lubbock, TX, United States
| | - Jacob Nichols
- Department of Internal Medicine, Texas Tech University, Lubbock, TX, United States
| | - Sharilyn Almodovar
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | | | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
39
|
Cui XL, Nie J, Ku J, Dougherty U, West-Szymanski DC, Collin F, Ellison CK, Sieh L, Ning Y, Deng Z, Zhao CWT, Bergamaschi A, Pekow J, Wei J, Beadell AV, Zhang Z, Sharma G, Talwar R, Arensdorf P, Karpus J, Goel A, Bissonnette M, Zhang W, Levy S, He C. A human tissue map of 5-hydroxymethylcytosines exhibits tissue specificity through gene and enhancer modulation. Nat Commun 2020; 11:6161. [PMID: 33268789 PMCID: PMC7710742 DOI: 10.1038/s41467-020-20001-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
DNA 5-hydroxymethylcytosine (5hmC) modification is known to be associated with gene transcription and frequently used as a mark to investigate dynamic DNA methylation conversion during mammalian development and in human diseases. However, the lack of genome-wide 5hmC profiles in different human tissue types impedes drawing generalized conclusions about how 5hmC is implicated in transcription activity and tissue specificity. To meet this need, we describe the development of a 5hmC tissue map by characterizing the genomic distributions of 5hmC in 19 human tissues derived from ten organ systems. Subsequent sequencing results enabled the identification of genome-wide 5hmC distributions that uniquely separates samples by tissue type. Further comparison of the 5hmC profiles with transcriptomes and histone modifications revealed that 5hmC is preferentially enriched on tissue-specific gene bodies and enhancers. Taken together, the results provide an extensive 5hmC map across diverse human tissue types that suggests a potential role of 5hmC in tissue-specific development; as well as a resource to facilitate future studies of DNA demethylation in pathogenesis and the development of 5hmC as biomarkers.
Collapse
Affiliation(s)
- Xiao-Long Cui
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | - Ji Nie
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | - Jeremy Ku
- Bluestar Genomics Inc., San Diego, CA, USA
| | | | - Diana C West-Szymanski
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA.,Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | | | - Laura Sieh
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | | | - Zifeng Deng
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Carolyn W T Zhao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | | | - Joel Pekow
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jiangbo Wei
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | - Alana V Beadell
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Geeta Sharma
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | | | - Jason Karpus
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.,Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | - Ajay Goel
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA. .,Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
40
|
Epigenetic modifications of c-MYC: Role in cancer cell reprogramming, progression and chemoresistance. Semin Cancer Biol 2020; 83:166-176. [PMID: 33220458 DOI: 10.1016/j.semcancer.2020.11.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022]
Abstract
Both genetic and epigenetic mechanisms intimately regulate cancer development and chemoresistance. Different genetic alterations are observed in multiple genes, and most are irreversible. Aside from genetic alterations, epigenetic alterations play a crucial role in cancer. The reversible nature of epigenetic modifications makes them an attractive target for cancer prevention and therapy. Specific epigenetic alteration is also being investigated as a potential biomarker in multiple cancers. c-MYC is one of the most important transcription factors that are centrally implicated in multiple types of cancer cells reprogramming, proliferation, and chemoresistance. c-MYC shows not only genetic alterations but epigenetic changes in multiple cancers. It has been observed that epigenome aberrations can reversibly alter the expression of c-MYC, both transcriptional and translational levels. Understanding the underlying mechanism of the epigenetic alterations of c-MYC, that has its role in multiple levels of cancer pathogenesis, can give a better understanding of various unresolved questions regarding cancer. Recently, some researchers reported that targeting the epigenetic modifiers of c-MYC can successfully inhibit cancer cell proliferation, sensitize the chemoresistant cells, and increase the patient survival rate. As c-MYC is an important transcription factor, epigenetic therapy might be one of the best alternatives for the conventional therapies that assumes the "one-size-fits-all" role. It can also increase the precision of targeting and enhance the effectiveness of treatments among various cancer subtypes. In this review, we highlighted the role of epigenetically modified c-MYC in cancer cell reprogramming, progression, and chemoresistance. We also summarize the potential therapeutic approaches to target these modifications for the prevention of cancer development and chemoresistant phenotypes.
Collapse
|
41
|
Chen H, Liang H. A High-Resolution Map of Human Enhancer RNA Loci Characterizes Super-enhancer Activities in Cancer. Cancer Cell 2020; 38:701-715.e5. [PMID: 33007258 PMCID: PMC7658066 DOI: 10.1016/j.ccell.2020.08.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/21/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022]
Abstract
Although enhancers play critical roles in cancer, quantifying enhancer activities in clinical samples remains challenging, especially for super-enhancers. Enhancer activities can be inferred from enhancer RNA (eRNA) signals, which requires enhancer transcription loci definition. Only a small proportion of human eRNA loci has been precisely identified, limiting investigations of enhancer-mediated oncogenic mechanisms. Here, we characterize super-enhancer regions using aggregated RNA sequencing (RNA-seq) data from large cohorts. Super-enhancers usually contain discrete loci featuring sharp eRNA expression peaks. We identify >300,000 eRNA loci in ∼377 Mb super-enhancer regions that are regulated by evolutionarily conserved, well-positioned nucleosomes and are frequently dysregulated in cancer. The eRNAs provide explanatory power for cancer phenotypes beyond that provided by mRNA expression through resolving intratumoral heterogeneity with enhancer cell-type specificity. Our study provides a high-resolution map of eRNA loci through which super-enhancer activities can be quantified by RNA-seq and a user-friendly data portal, enabling a broad range of biomedical investigations.
Collapse
Affiliation(s)
- Han Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
42
|
Wang YA, Sfakianos J, Tewari AK, Cordon-Cardo C, Kyprianou N. Molecular tracing of prostate cancer lethality. Oncogene 2020; 39:7225-7238. [PMID: 33046797 DOI: 10.1038/s41388-020-01496-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 01/14/2023]
Abstract
Prostate cancer is diagnosed mostly in men over the age of 50 years, and has favorable 5-year survival rates due to early cancer detection and availability of curative surgical management. However, progression to metastasis and emergence of therapeutic resistance are responsible for the majority of prostate cancer mortalities. Recent advancement in sequencing technologies and computational capabilities have improved the ability to organize and analyze large data, thus enabling the identification of novel biomarkers for survival, metastatic progression and patient prognosis. Large-scale sequencing studies have also uncovered genetic and epigenetic signatures associated with prostate cancer molecular subtypes, supporting the development of personalized targeted-therapies. However, the current state of mainstream prostate cancer management does not take full advantage of the personalized diagnostic and treatment modalities available. This review focuses on interrogating biomarkers of prostate cancer progression, including gene signatures that correspond to the acquisition of tumor lethality and those of predictive and prognostic value in progression to advanced disease, and suggest how we can use our knowledge of biomarkers and molecular subtypes to improve patient treatment and survival outcomes.
Collapse
Affiliation(s)
- Yuanshuo Alice Wang
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - John Sfakianos
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ashutosh K Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Carlos Cordon-Cardo
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
43
|
Muse ME, Titus AJ, Salas LA, Wilkins OM, Mullen C, Gregory KJ, Schneider SS, Crisi GM, Jawale RM, Otis CN, Christensen BC, Arcaro KF. Enrichment of CpG island shore region hypermethylation in epigenetic breast field cancerization. Epigenetics 2020; 15:1093-1106. [PMID: 32255732 PMCID: PMC7518670 DOI: 10.1080/15592294.2020.1747748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/14/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022] Open
Abstract
While changes in DNA methylation are known to occur early in breast carcinogenesis and the landscape of breast tumour DNA methylation is profoundly altered compared with normal tissue, there have been limited efforts to identify DNA methylation field cancerization effects in histologically normal breast tissue adjacent to tumour. Matched tumour, histologically normal tissue of the ipsilateral breast (ipsilateral-normal), and histologically normal tissue of the contralateral breast (contralateral-normal) were obtained from nine women undergoing bilateral mastectomy. Laser capture microdissection was used to select epithelial cells from normal tissue, and neoplastic cells from tumour for genome-scale measures of DNA methylation with the Illumina HumanMethylationEPIC array. We identified substantially more CpG loci that were differentially methylated between contralateral-normal and tumour (63,271 CpG loci q < 0.01), than between ipsilateral-normal and tumour (38,346 CpG loci q < 0.01). We identified differential methylation in ipsilateral-normal relative to contralateral-normal tissue (9,562 CpG loci p < 0.01). In this comparison, hypomethylated loci were significantly enriched for breast cancer-relevant transcription factor binding sites including those for ESR1, FoxA1, and GATA3 and hypermethylated loci were significantly enriched for CpG island shore regions. In addition, progression of shore hypermethylation was observed in tumours compared to matched ipsilateral normal tissue, and these alterations tracked to several well-established tumour suppressor genes. Our results indicate an epigenetic field effect in surrounding histologically normal tissue. This work offers an opportunity to focus investigations of early DNA methylation alterations in breast carcinogenesis and potentially develop epigenetic biomarkers of disease risk. ABBREVIATIONS DCIS: ductal carcinoma in situ; GO: gene ontology; OR: odds ratio; CI: confidence interval; TFBS: transcription factor binding site; LOLA: Locus Overlap Analysis.
Collapse
Affiliation(s)
- Meghan E. Muse
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Hanover, NH, USA
| | - Alexander J. Titus
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Hanover, NH, USA
| | - Lucas A. Salas
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Hanover, NH, USA
| | - Owen M. Wilkins
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Hanover, NH, USA
| | - Chelsey Mullen
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Kelly J. Gregory
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA, USA
| | - Sallie S. Schneider
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA, USA
| | - Giovanna M. Crisi
- Department of Pathology, University of Massachusetts Medical School-Baystate Health, Springfield, MA, USA
| | - Rahul M. Jawale
- Department of Pathology, University of Massachusetts Medical School-Baystate Health, Springfield, MA, USA
| | - Christopher N. Otis
- Department of Pathology, University of Massachusetts Medical School-Baystate Health, Springfield, MA, USA
| | - Brock C. Christensen
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Hanover, NH, USA
- Department of Molecular & Systems Biology, Dartmouth Geisel School of Medicine, Hanover, NH, USA
- Department of Community & Family Medicine, Dartmouth Geisel School of Medicine, Hanover, NH, USA
| | - Kathleen F. Arcaro
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
44
|
Mitsumori R, Sakaguchi K, Shigemizu D, Mori T, Akiyama S, Ozaki K, Niida S, Shimoda N. Lower DNA methylation levels in CpG island shores of CR1, CLU, and PICALM in the blood of Japanese Alzheimer's disease patients. PLoS One 2020; 15:e0239196. [PMID: 32991610 PMCID: PMC7523949 DOI: 10.1371/journal.pone.0239196] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 09/01/2020] [Indexed: 11/18/2022] Open
Abstract
The aim of the present study was to (1) investigate the relationship between late-onset Alzheimer’s disease (AD) and DNA methylation levels in six of the top seven AD-associated genes identified through a meta-analysis of recent genome wide association studies, APOE, BIN1, PICALM, CR1, CLU, and ABCA7, in blood, and (2) examine its applicability to the diagnosis of AD. We examined methylation differences at CpG island shores in the six genes using Sanger sequencing, and one of two groups of 48 AD patients and 48 elderly controls was used for a test or replication analysis. We found that methylation levels in three out of the six genes, CR1, CLU, and PICALM, were significantly lower in AD subjects. The combination of CLU methylation levels and the APOE genotype classified AD patients with AUC = 0.84 and 0.80 in the test and replication analyses, respectively. Our study implicates methylation differences at the CpG island shores of AD-associated genes in the onset of AD and suggests their diagnostic value.
Collapse
Affiliation(s)
- Risa Mitsumori
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kazuya Sakaguchi
- Department of Regenerative Medicine, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Daichi Shigemizu
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Taiki Mori
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Shintaro Akiyama
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kouichi Ozaki
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Shumpei Niida
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Nobuyoshi Shimoda
- Department of Regenerative Medicine, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| |
Collapse
|
45
|
Zhao SG, Chen WS, Li H, Foye A, Zhang M, Sjöström M, Aggarwal R, Playdle D, Liao A, Alumkal JJ, Das R, Chou J, Hua JT, Barnard TJ, Bailey AM, Chow ED, Perry MD, Dang HX, Yang R, Moussavi-Baygi R, Zhang L, Alshalalfa M, Laura Chang S, Houlahan KE, Shiah YJ, Beer TM, Thomas G, Chi KN, Gleave M, Zoubeidi A, Reiter RE, Rettig MB, Witte O, Yvonne Kim M, Fong L, Spratt DE, Morgan TM, Bose R, Huang FW, Li H, Chesner L, Shenoy T, Goodarzi H, Asangani IA, Sandhu S, Lang JM, Mahajan NP, Lara PN, Evans CP, Febbo P, Batzoglou S, Knudsen KE, He HH, Huang J, Zwart W, Costello JF, Luo J, Tomlins SA, Wyatt AW, Dehm SM, Ashworth A, Gilbert LA, Boutros PC, Farh K, Chinnaiyan AM, Maher CA, Small EJ, Quigley DA, Feng FY. The DNA methylation landscape of advanced prostate cancer. Nat Genet 2020; 52:778-789. [PMID: 32661416 PMCID: PMC7454228 DOI: 10.1038/s41588-020-0648-8] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023]
Abstract
Although DNA methylation is a key regulator of gene expression, the comprehensive methylation landscape of metastatic cancer has never been defined. Through whole-genome bisulfite sequencing paired with deep whole-genome and transcriptome sequencing of 100 castration-resistant prostate metastases, we discovered alterations affecting driver genes only detectable with integrated whole-genome approaches. Notably, we observed that 22% of tumors exhibited a novel epigenomic subtype associated with hyper-methylation and somatic mutations in TET2, DNMT3B, IDH1, and BRAF. We also identified intergenic regions where methylation is associated with RNA expression of the oncogenic driver genes AR, MYC and ERG. Finally, we showed that differential methylation during progression preferentially occurs at somatic mutational hotspots and putative regulatory regions. This study is a large integrated study of whole-genome, whole-methylome and whole-transcriptome sequencing in metastatic cancer and provides a comprehensive overview of the important regulatory role of methylation in metastatic castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Shuang G Zhao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - William S Chen
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Yale School of Medicine, New Haven, CT, USA
| | - Haolong Li
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Adam Foye
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Meng Zhang
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Martin Sjöström
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Denise Playdle
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - Joshi J Alumkal
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Rajdeep Das
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Jonathan Chou
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Junjie T Hua
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Travis J Barnard
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Adina M Bailey
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Eric D Chow
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.,Center for Advanced Technology, University of California San Francisco, San Francisco, CA, USA
| | - Marc D Perry
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Ha X Dang
- McDonnell Genome Institute, Washington University, St. Louis, MO, USA.,Department of Internal Medicine, Washington University, St. Louis, MO, USA.,Siteman Cancer Center, Washington University, St. Louis, MO, USA
| | - Rendong Yang
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Ruhollah Moussavi-Baygi
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Li Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Mohammed Alshalalfa
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - S Laura Chang
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Kathleen E Houlahan
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Human Genetics, Institute for Precision Health, UCLA, Los Angeles, CA, USA
| | - Yu-Jia Shiah
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Tomasz M Beer
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Division of Hematology/Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - George Thomas
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Kim N Chi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Cancer Agency, Vancouver Centre, Vancouver, British Columbia, Canada
| | - Martin Gleave
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert E Reiter
- Jonsson Comprehensive Cancer Center, Departments of Medicine and Urology, University of California Los Angeles, Los Angeles, CA, USA
| | - Matthew B Rettig
- Jonsson Comprehensive Cancer Center, Departments of Medicine and Urology, University of California Los Angeles, Los Angeles, CA, USA.,Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Owen Witte
- Department of Microbiology, Immunology, and Molecular Genetics at the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - M Yvonne Kim
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Lawrence Fong
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Todd M Morgan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Rohit Bose
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.,Department of Urology, University of California San Francisco, San Francisco, CA, USA.,Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Franklin W Huang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Hui Li
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Lisa Chesner
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Tanushree Shenoy
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.,Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Irfan A Asangani
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Shahneen Sandhu
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Joshua M Lang
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Nupam P Mahajan
- Siteman Cancer Center, Washington University, St. Louis, MO, USA.,Department of Surgery, Washington University, St. Louis, MO, USA
| | - Primo N Lara
- Division of Hematology Oncology, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA.,Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA
| | - Christopher P Evans
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA.,Department of Urologic Surgery, University of California Davis, Sacramento, CA, USA
| | | | | | - Karen E Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Housheng H He
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jiaoti Huang
- Department of Pathology, Duke University, Durham, NC, USA
| | - Wilbert Zwart
- Netherlands Cancer Institute, Oncode Institute, Amsterdam, the Netherlands
| | - Joseph F Costello
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jianhua Luo
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Scott A Tomlins
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Alexander W Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Luke A Gilbert
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Human Genetics, Institute for Precision Health, UCLA, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, Departments of Medicine and Urology, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Arul M Chinnaiyan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.,Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Christopher A Maher
- McDonnell Genome Institute, Washington University, St. Louis, MO, USA.,Department of Internal Medicine, Washington University, St. Louis, MO, USA.,Siteman Cancer Center, Washington University, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Department of Urology, University of California San Francisco, San Francisco, CA, USA.,Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Felix Y Feng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA. .,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA. .,Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA. .,Department of Urology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
46
|
So JY, Skrypek N, Yang HH, Merchant AS, Nelson GW, Chen WD, Ishii H, Chen JM, Hu G, Achyut BR, Yoon EC, Han L, Huang C, Cam MC, Zhao K, Lee MP, Yang L. Induction of DNMT3B by PGE2 and IL6 at Distant Metastatic Sites Promotes Epigenetic Modification and Breast Cancer Colonization. Cancer Res 2020; 80:2612-2627. [PMID: 32265226 PMCID: PMC7299749 DOI: 10.1158/0008-5472.can-19-3339] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/26/2020] [Accepted: 03/27/2020] [Indexed: 11/16/2022]
Abstract
Current cancer treatments are largely based on the genetic characterization of primary tumors and are ineffective for metastatic disease. Here we report that DNA methyltransferase 3B (DNMT3B) is induced at distant metastatic sites and mediates epigenetic reprogramming of metastatic tumor cells. Multiomics analysis and spontaneous metastatic mouse models revealed that DNMT3B alters multiple pathways including STAT3, NFκB, PI3K/Akt, β-catenin, and Notch signaling, which are critical for cancer cell survival, apoptosis, proliferation, invasion, and colonization. PGE2 and IL6 were identified as critical inflammatory mediators in DNMT3B induction. DNMT3B expression levels positively correlated with human metastatic progression. Targeting IL6 or COX-2 reduced DNMT3B induction and improved chemo or PD1 therapy. We propose a novel mechanism linking the metastatic microenvironment with epigenetic alterations that occur at distant sites. These results caution against the "Achilles heel" in cancer therapies based on primary tumor characterization and suggests targeting DNMT3B induction as new option for treating metastatic disease. SIGNIFICANCE: These findings reveal that DNMT3B epigenetically regulates multiple pro-oncogenic signaling pathways via the inflammatory microenvironment at distant sites, cautioning the clinical approach basing current therapies on genetic characterization of primary tumors.
Collapse
Affiliation(s)
- Jae Young So
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Nicolas Skrypek
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Howard H Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Anand S Merchant
- Collaborative Bioinformatics Resource, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - George W Nelson
- Collaborative Bioinformatics Resource, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Wei-Dong Chen
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Hiroki Ishii
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Jennifer M Chen
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Gangqing Hu
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Bhagelu R Achyut
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Esther C Yoon
- Department of Pathology, New York Medical College, Valhalla, New York
| | - Liying Han
- Department of Pathology, New York Medical College, Valhalla, New York
| | - Chuanshu Huang
- Department of Environmental Medicine and Biochemistry and Molecular Pharmacology, New York University School of Medicine, Tuxedo, New York
| | - Margaret C Cam
- Collaborative Bioinformatics Resource, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Maxwell P Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Li Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
47
|
The DNA methylation landscape in cancer. Essays Biochem 2020; 63:797-811. [PMID: 31845735 PMCID: PMC6923322 DOI: 10.1042/ebc20190037] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
As one of the most abundant and well-studied epigenetic modifications, DNA methylation plays an essential role in normal development and cellular biology. Global alterations to the DNA methylation landscape contribute to alterations in the transcriptome and deregulation of cellular pathways. Indeed, improved methods to study DNA methylation patterning and dynamics at base pair resolution and across individual DNA molecules on a genome-wide scale has highlighted the scope of change to the DNA methylation landscape in disease states, particularly during tumorigenesis. More recently has been the development of DNA hydroxymethylation profiling techniques, which allows differentiation between 5mC and 5hmC profiles and provides further insights into DNA methylation dynamics and remodeling in tumorigenesis. In this review, we describe the distribution of DNA methylation and DNA hydroxymethylation in different genomic contexts, first in normal cells, and how this is altered in cancer. Finally, we discuss DNA methylation profiling technologies and the most recent advances in single-cell methods, bisulfite-free approaches and ultra-long read sequencing techniques.
Collapse
|
48
|
Weng J, Li S, Lin H, Mei H, Liu Y, Xiao C, Zhu Z, Cai W, Ding X, Mi Y, Wen Y. PCDHGA9 represses epithelial-mesenchymal transition and metastatic potential in gastric cancer cells by reducing β-catenin transcriptional activity. Cell Death Dis 2020; 11:206. [PMID: 32231199 PMCID: PMC7105466 DOI: 10.1038/s41419-020-2398-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) has a high mortality rate, and metastasis is the main reason for treatment failure. It is important to study the mechanism of tumour invasion and metastasis based on the regulation of key genes. In a previous study comparing the expression differences between GES-1 and SGC-7901 cells, PCDHGA9 was selected for further research. In vitro and in vivo experiments showed that PCDHGA9 inhibited invasion and metastasis. A cluster analysis suggested that PCDHGA9 inhibited epithelial-mesenchymal transition (EMT) through the Wnt/β-catenin and TGF-β pathways. Laser confocal techniques and western blotting revealed that PCDHGA9 inhibited the nuclear translocation of β-catenin, regulated T cell factor (TCF)/ /lymphoid enhancer factor (LEF) transcriptional activity, directly impacted the signal transmission of the TGF-β/Smad2/3 pathway, strengthened the adhesion complex, weakened the effects of TGF-β, and blocked the activation of the Wnt pathway. In addition, PCDHGA9 expression was regulated by methylation, which was closely related to poor clinical prognosis. The aim of this study was to elucidate the molecular mechanism by which PCDHGA9 inhibits EMT and metastasis in GC to provide a new theoretical basis for identifying GC metastasis and a new target for improving the outcome of metastatic GC.
Collapse
Affiliation(s)
- Junyong Weng
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 200080, Shanghai, China.,Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, 200003, Shanghai, China
| | - Shanbao Li
- Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, 201800, Shanghai, China
| | - Hao Lin
- Department of Medicine II, University Hospital, Liver Centre Munich, LMU, Munich, 80539, Germany
| | - Haitao Mei
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 200080, Shanghai, China
| | - Yang Liu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 200080, Shanghai, China
| | - Chao Xiao
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 200080, Shanghai, China.,Department of General Surgery, Shanghai Huashan Hospital, Fudan University, 200000, Shanghai, China
| | - Zhonglin Zhu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 200080, Shanghai, China.,Department of General Surgery, Henan Provincial People's Hospital, 450003, Zhengzhou, Henan, China
| | - Weiwei Cai
- Department of Medicine, The Third Hospital of Quanzhou, 362000, Quanzhou, China
| | - Xusheng Ding
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, 200003, Shanghai, China
| | - Yushuai Mi
- Department of General Surgery, The Second Hospital of Shandong University, 250033, Jinan, Shandong, China.
| | - Yugang Wen
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 200080, Shanghai, China.
| |
Collapse
|
49
|
Li T, Garcia-Gomez A, Morante-Palacios O, Ciudad L, Özkaramehmet S, Van Dijck E, Rodríguez-Ubreva J, Vaquero A, Ballestar E. SIRT1/2 orchestrate acquisition of DNA methylation and loss of histone H3 activating marks to prevent premature activation of inflammatory genes in macrophages. Nucleic Acids Res 2020; 48:665-681. [PMID: 31799621 PMCID: PMC6954413 DOI: 10.1093/nar/gkz1127] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022] Open
Abstract
Sirtuins 1 and 2 (SIRT1/2) are two NAD-dependent deacetylases with major roles in inflammation. In addition to deacetylating histones and other proteins, SIRT1/2-mediated regulation is coupled with other epigenetic enzymes. Here, we investigate the links between SIRT1/2 activity and DNA methylation in macrophage differentiation due to their relevance in myeloid cells. SIRT1/2 display drastic upregulation during macrophage differentiation and their inhibition impacts the expression of many inflammation-related genes. In this context, SIRT1/2 inhibition abrogates DNA methylation gains, but does not affect demethylation. Inhibition of hypermethylation occurs at many inflammatory loci, which results in more drastic upregulation of their expression upon macrophage polarization following bacterial lipopolysaccharide (LPS) challenge. SIRT1/2-mediated gains of methylation concur with decreases in activating histone marks, and their inhibition revert these histone marks to resemble an open chromatin. Remarkably, specific inhibition of DNA methyltransferases is sufficient to upregulate inflammatory genes that are maintained in a silent state by SIRT1/2. Both SIRT1 and SIRT2 directly interact with DNMT3B, and their binding to proinflammatory genes is lost upon exposure to LPS or through pharmacological inhibition of their activity. In all, we describe a novel role for SIRT1/2 to restrict premature activation of proinflammatory genes.
Collapse
Affiliation(s)
- Tianlu Li
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Antonio Garcia-Gomez
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Octavio Morante-Palacios
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sevgi Özkaramehmet
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Evelien Van Dijck
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alejandro Vaquero
- Chromatin Biology Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
50
|
MacKenzie DJ, Robertson NA, Rather I, Reid C, Sendzikaite G, Cruickshanks H, McBryan T, Hodges A, Pritchard C, Blyth K, Adams PD. DNMT3B Oncogenic Activity in Human Intestinal Cancer Is Not Linked to CIMP or BRAFV600E Mutation. iScience 2020; 23:100838. [PMID: 32058953 PMCID: PMC7000804 DOI: 10.1016/j.isci.2020.100838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/22/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Approximately 10% of human colorectal cancer (CRC) are associated with activated BRAFV600E mutation, typically in absence of APC mutation and often associated with a CpG island methylator (CIMP) phenotype. To protect from cancer, normal intestinal epithelial cells respond to oncogenic BRAFV600E by activation of intrinsic p53 and p16-dependent tumor suppressor mechanisms, such as cellular senescence. Conversely, CIMP is thought to contribute to bypass of these tumor suppressor mechanisms, e.g. via epigenetic silencing of tumor suppressor genes, such as p16. It has been repeatedly proposed that DNMT3B is responsible for BRAFV600E-induced CIMP in human CRC. Here we set out to test this by in silico, in vitro, and in vivo approaches. We conclude that although both BRAFV600E and DNMT3B harbor oncogenic potential in vitro and in vivo and show some evidence of cooperation in tumor promotion, they do not frequently cooperate to promote CIMP and human intestinal cancer.
Collapse
Affiliation(s)
| | - Neil A Robertson
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Iqbal Rather
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Claire Reid
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | - Tony McBryan
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Andrew Hodges
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Catrin Pritchard
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Karen Blyth
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK; Cancer Research UK Beatson Institute, Glasgow, UK
| | - Peter D Adams
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|