1
|
Rastogi I, Mannone JA, Gibadullin R, Moseman JE, Sidney J, Sette A, McNeel DG, Gellman SH. β-amino acid substitution in the SIINFEKL antigen alters immunological recognition. Cancer Biol Ther 2025; 26:2486141. [PMID: 40200635 PMCID: PMC11988276 DOI: 10.1080/15384047.2025.2486141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Peptide vaccines offer a direct way to initiate an immunogenic response to a defined antigen epitope. However, peptide vaccines are unstable in vivo, subject to rapid enzymatic proteolysis. Replacement of an α-amino acid residue with a homologous β-amino acid residue (native side chain, but backbone extended by a single CH2 unit) impairs proteolysis at nearby amide bonds. Therefore, antigen analogues containing α-to-β replacements have been examined for functional mimicry of native all-α antigens. Another group previously took this approach in the ovalbumin (OVA) antigen model by evaluating single α-to-β analogues of the murine major histocompatibility complex (MHC) I-restricted peptide SIINFEKL. METHODS We re-examined this set of α/β SIINFEKL antigens. We tested the susceptibility to proteolysis in mouse serum and their ability to activate OVA-antigen-specific CD8 T cells in vitro. Additionally, we tested the α/β antigens in vivo for their ability to induce an antigen-specific immunogenic response in naïve mice and in OVA-expressing tumor-bearing mice. RESULTS The α/β antigens were comparable to the native antigen in their susceptibility to proteolysis in serum. Each α/β antigen was capable of activating antigen-specific CD8 T cells in vitro. However, antigen-specific CD8 T cells induced against α/β antigens in vivo were not cross-reactive to the native antigen. Moreover, immunization with α/β analogues did not elicit anti-tumor effects in tumor-bearing mice. CONCLUSIONS We conclude that even though α/β analogues of the SIINFEKL antigen can elicit a T cell-based response, this class of backbone-modified peptides is not promising from the perspective of antitumor vaccine development.
Collapse
Affiliation(s)
- Ichwaku Rastogi
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - John A. Mannone
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ruslan Gibadullin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jena E. Moseman
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, CA, USA
| | - Douglas G. McNeel
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
2
|
Guo X, Bai J, Wang X, Guo S, Shang Z, Shao Z. Evoking the Cancer-immunity cycle by targeting the tumor-specific antigens in Cancer immunotherapy. Int Immunopharmacol 2025; 154:114576. [PMID: 40168803 DOI: 10.1016/j.intimp.2025.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/17/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025]
Abstract
Cancer-related deaths continue to rise, largely due to the suboptimal efficacy of current treatments. Fortunately, immunotherapy has emerged as a promising alternative, offering new hope for cancer patients. Among various immunotherapy approaches, targeting tumor-specific antigens (TSAs) has gained particular attention due to its demonstrated success in clinical settings. Despite these advancements, there are still gaps in our understanding of TSAs. Therefore, this review explores the life cycle of TSAs in cancer, the methods used to identify them, and recent advances in TSAs-targeted cancer therapies. Enhancing medical professionals' understanding of TSAs will help facilitate the development of more effective TSAs-based cancer treatments.
Collapse
Affiliation(s)
- Xiaomeng Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Junqiang Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinmiao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shutian Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Zhe Shao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Day Surgery Center, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Liu S, Sun H, Song T, Liang C, Deng L, Zhu H, Zhao F, Li S. Comprehensive characterization of T cell subtypes in lung adenocarcinoma: Prognostic, predictive, and therapeutic implications. Transl Oncol 2025; 55:102332. [PMID: 40184717 DOI: 10.1016/j.tranon.2025.102332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND T cells are crucial for immunosurveillance and tumor eradication, with their dysregulation or absence in the tumor microenvironment linked to immunotherapy resistance. In lung adenocarcinoma (LUAD), this resistance is a significant barrier to effective treatment, highlighting the need for robust biomarkers and therapeutic targets to improve clinical outcomes. METHODS T cell-related markers were identified through single-cell RNA sequencing analysis. The TCGA dataset was used for consensus clustering to define molecular subtypes associated with distinct survival outcomes and immune profiles. A T cell-related prognostic signature was developed by integrating LUAD datasets from TCGA, GSE31210, GSE50081, and GSE68465 using 10 machine learning algorithms. Further analysis linked risk scores to immune infiltration and drug sensitivity. The role of a hub gene in CD4+ T cell function and its involvement in tumor immunity was explored through in vitro experiments and molecular biology techniques. RESULTS Cluster analysis identified three LUAD subtypes, with cluster1 showing the best prognosis and immune characteristics. A Lasso + PLSRcox-based signature was a significant risk factor for predicting LUAD patient outcomes, outperforming traditional clinicopathological factors. The risk score correlated with immune microenvironment features, immune cell infiltration, and sensitivity to immunotherapy and chemotherapy. CPA3 expression was elevated in activated CD4+ T cells, particularly in Th1 cells, promoting differentiation and IFN-γ secretion. Overexpression of CPA3 enhanced tumor cell apoptosis and increased Granzyme B and IFN-γ levels, highlighting its role in immune responses. CONCLUSION We developed a powerful prognostic signature in LUAD that accurately predicts clinical outcomes and can guide immunotherapy and chemotherapy responses.
Collapse
Affiliation(s)
- Shiquan Liu
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Department of Thoracic Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Hao Sun
- Xinqiao Hospital, Army Military Medical University, Chongqing, China; Faculty of Science, Autonomous University of Madrid, Spainish National Research Council (UAM-CSIC), Madrid, Spain
| | - Tianye Song
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ce Liang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lele Deng
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haiyong Zhu
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Fangchao Zhao
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Shujun Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
4
|
Wermke M, Araurjo DM, Chatterjee M, Tsimberidou AM, Holderried TAW, Jazaeri AA, Reshef R, Bokemeyer C, Alsdorf W, Wetzko K, Brossart P, Aslan K, Backert L, Bunk S, Fritsche J, Gulde S, Hengler S, Hilf N, Hossain MB, Hukelmann J, Kalra M, Krishna D, Kursunel MA, Maurer D, Mayer-Mokler A, Mendrzyk R, Mohamed A, Pozo K, Satelli A, Letizia M, Schuster H, Schoor O, Wagner C, Rammensee HG, Reinhardt C, Singh-Jasuja H, Walter S, Weinschenk T, Luke JJ, Britten CM. Autologous T cell therapy for PRAME + advanced solid tumors in HLA-A*02 + patients: a phase 1 trial. Nat Med 2025:10.1038/s41591-025-03650-6. [PMID: 40205198 DOI: 10.1038/s41591-025-03650-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025]
Abstract
In contrast to chimeric antigen receptor T cells, T cell receptor (TCR)-engineered T cells can target intracellular tumor-associated antigens crucial for treating solid tumors. However, most trials published so far show limited clinical activity. Here we report interim data from a first-in-human, multicenter, open-label, 3 + 3 dose-escalation/de-escalation phase 1 trial studying IMA203, an autologous preferentially expressed antigen in melanoma (PRAME)-directed TCR T cell therapy in HLA-A*02+ patients with PRAME+ recurrent and/or refractory solid tumors, including melanoma and sarcoma. Primary objectives include the evaluation of safety and tolerability and the determination of the maximum tolerated dose (MTD) and/or recommended dose for extension. Secondary objectives include the evaluation of IMA203 TCR-engineered T cell persistence in peripheral blood, tumor response as well as duration of response. A total of 27 patients were enrolled in the phase 1a dose escalation and 13 patients in the phase 1b dose extension. IMA203 T cells were safe, and the MTD was not reached. Of the 41 patients receiving treatment (that is, who started lymphodepletion), severe cytokine release syndrome was observed in 4.9% (2/41), and severe neurotoxicity did not occur. In the 40 patients treated with IMA203, an overall response rate consisting of patients with unconfirmed or confirmed response (u/cORR) of 52.5% (21/40) and a cORR of 28.9% (11/38) was observed with a median duration of response of 4.4 months (range, 2.4-23.0, 95% confidence interval: 2.6-not reached) across multiple indications. Rapid T cell engraftment and long-term persistence of IMA203 T cells were observed. IMA203 T cells trafficked to all organs, and confirmed responses were more frequent in patients with higher dose. T cell exhaustion was not observed in the periphery; deep responses were enriched at higher PRAME expression; and higher T cell infiltration resulted in longer progression-free survival. Overall, IMA203 showed promising anti-tumor activity in multiple solid tumors, including refractory melanoma. ClinicalTrials.gov identifier: NCT03686124 .
Collapse
Affiliation(s)
- Martin Wermke
- Department of Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
- National Center for Tumor Diseases, Dresden, Germany
| | - Dejka M Araurjo
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manik Chatterjee
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany
| | - Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tobias A W Holderried
- Department of Hematology, Oncology, Immunooncology, Stem Cell Transplantation, and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ran Reshef
- Columbia University Medical Center, New York, NY, USA
| | - Carsten Bokemeyer
- Department of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Winfried Alsdorf
- Department of Oncology, Hematology, and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Wetzko
- Department of Medicine I, University Hospital Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Peter Brossart
- Department of Hematology, Oncology, Immunooncology, Stem Cell Transplantation, and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Katrin Aslan
- Immatics Biotechnologies GmbH, Tübingen, Germany
| | | | | | | | - Swapna Gulde
- Immatics Biotechnologies GmbH, Tübingen, Germany
| | | | - Norbert Hilf
- Immatics Biotechnologies GmbH, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jason J Luke
- Cancer Immunotherapeutics Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
5
|
Jamal A, Aldreiwish AD, Banawas SS, Alqurashi YE, Kamal MA, Ahmad F. The paths toward immunotherapy of esophageal cancer: An overview of clinical trials. Int Immunopharmacol 2025; 151:114261. [PMID: 40015204 DOI: 10.1016/j.intimp.2025.114261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/26/2025] [Accepted: 02/06/2025] [Indexed: 03/01/2025]
Abstract
As the seventh-leading contributor to global cancer-related deaths, esophageal cancer (EC) is one of the most challenging types of cancer. Despite advancements in conventional therapies, including surgery, chemotherapy, and radiotherapy, the five-year survival rate remains low, underscoring the need for the development of more efficacious treatment approaches. Immunotherapy has emerged as a promising treatment approach, offering new hope for EC patients. This review provides an in-depth examination of the latest immunotherapeutic strategies for EC, focusing on immune checkpoint inhibitors, adoptive cell therapy, cancer vaccines, and oncolytic virotherapy. We critically analyze the current clinical data to highlight the progress and pitfalls of each immunotherapeutic approach for EC. Additionally, we explore the potential for combination therapies, which could overcome the resistance often seen with monotherapies. Finally, we discuss the limitations of current treatments and outline key areas for future research to improve patient outcomes and survival.
Collapse
Affiliation(s)
- Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Allolo D Aldreiwish
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Saeed S Banawas
- Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Yaser E Alqurashi
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| |
Collapse
|
6
|
Leung KK, Schaefer K, Lin Z, Yao Z, Wells JA. Engineered Proteins and Chemical Tools to Probe the Cell Surface Proteome. Chem Rev 2025. [PMID: 40178992 DOI: 10.1021/acs.chemrev.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The cell surface proteome, or surfaceome, is the hub for cells to interact and communicate with the outside world. Many disease-associated changes are hard-wired within the surfaceome, yet approved drugs target less than 50 cell surface proteins. In the past decade, the proteomics community has made significant strides in developing new technologies tailored for studying the surfaceome in all its complexity. In this review, we first dive into the unique characteristics and functions of the surfaceome, emphasizing the necessity for specialized labeling, enrichment, and proteomic approaches. An overview of surfaceomics methods is provided, detailing techniques to measure changes in protein expression and how this leads to novel target discovery. Next, we highlight advances in proximity labeling proteomics (PLP), showcasing how various enzymatic and photoaffinity proximity labeling techniques can map protein-protein interactions and membrane protein complexes on the cell surface. We then review the role of extracellular post-translational modifications, focusing on cell surface glycosylation, proteolytic remodeling, and the secretome. Finally, we discuss methods for identifying tumor-specific peptide MHC complexes and how they have shaped therapeutic development. This emerging field of neo-protein epitopes is constantly evolving, where targets are identified at the proteome level and encompass defined disease-associated PTMs, complexes, and dysregulated cellular and tissue locations. Given the functional importance of the surfaceome for biology and therapy, we view surfaceomics as a critical piece of this quest for neo-epitope target discovery.
Collapse
Affiliation(s)
- Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
| | - Kaitlin Schaefer
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
| | - Zhi Lin
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
| | - Zi Yao
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
7
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Advances in Therapeutic Cancer Vaccines, Their Obstacles, and Prospects Toward Tumor Immunotherapy. Mol Biotechnol 2025; 67:1336-1366. [PMID: 38625508 DOI: 10.1007/s12033-024-01144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Over the past few decades, cancer immunotherapy has experienced a significant revolution due to the advancements in immune checkpoint inhibitors (ICIs) and adoptive cell therapies (ACTs), along with their regulatory approvals. In recent times, there has been hope in the effectiveness of cancer vaccines for therapy as they have been able to stimulate de novo T-cell reactions against tumor antigens. These tumor antigens include both tumor-associated antigen (TAA) and tumor-specific antigen (TSA). Nevertheless, the constant quest to fully achieve these abilities persists. Therefore, this review offers a broad perspective on the existing status of cancer immunizations. Cancer vaccine design has been revolutionized due to the advancements made in antigen selection, the development of antigen delivery systems, and a deeper understanding of the strategic intricacies involved in effective antigen presentation. In addition, this review addresses the present condition of clinical tests and deliberates on their approaches, with a particular emphasis on the immunogenicity specific to tumors and the evaluation of effectiveness against tumors. Nevertheless, the ongoing clinical endeavors to create cancer vaccines have failed to produce remarkable clinical results as a result of substantial obstacles, such as the suppression of the tumor immune microenvironment, the identification of suitable candidates, the assessment of immune responses, and the acceleration of vaccine production. Hence, there are possibilities for the industry to overcome challenges and enhance patient results in the coming years. This can be achieved by recognizing the intricate nature of clinical issues and continuously working toward surpassing existing limitations.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
8
|
Alenezi SK. CAR T cells in lung cancer: Targeting tumor-associated antigens to revolutionize immunotherapy. Pathol Res Pract 2025; 269:155947. [PMID: 40168775 DOI: 10.1016/j.prp.2025.155947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Tumor-targeted T cells engineered for targeting and killing tumor cells have revolutionized cancer treatment, specifically in hematologic malignancies, through chimeric antigen receptor (CAR) T cell therapy. However, the migration of this success to lung cancer is challenging due to the tumor microenvironment (TME), antigen heterogeneity, and limitations of T cell infiltration. This review aims to evaluate current strategies addressing these barriers, focusing on the optimization of tumor-associated antigen (TAA) targeting, such as epidermal growth factor receptor (EGFR), mucin-1 (MUC1), and mesothelin (MSLN), which are frequently overexpressed in lung cancer and offer promising targets for CAR T-cell therapy. In this review, we discuss recent progress in CAR T cell engineering, applying enhanced costimulatory molecules, cytokine-secreting CAR T cells, and engineered modifications to improve T cell resilience in immunosuppressive environments. Additionally, this review also evaluates combination therapies of immune checkpoint inhibitors and recently published clinical trials on lung cancer with CAR T cells. We offer insights into the way to optimize CAR T cell therapy for lung cancer by analyzing antigen selection, immune evasion, and the strategies to enhance T cell persistence and tumor infiltration.
Collapse
Affiliation(s)
- Sattam Khulaif Alenezi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia.
| |
Collapse
|
9
|
Wu Z, Wang X, Shi S, Kong D, Ren C, Bian L, Gu Y, An F, Zhan Q, Yan C, Hu C, Chen Y, Jiang R, Chen J. Heterogeneity of T cells regulates tumor immunity mediated by Helicobacter pylori infection in gastric cancer. BMC Cancer 2025; 25:567. [PMID: 40155861 PMCID: PMC11954285 DOI: 10.1186/s12885-025-13957-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
The impact of Helicobacter pylori (H. pylori) status on gastric cancer survival remains unclear. In this study, we conducted a prognostic analysis of 488 gastric cancer patients and performed single-cell RNA sequencing (scRNA-seq) on 18,717 T cells from six tumor samples with varying H. pylori statuses. Our findings revealed that gastric cancer patients with H. pylori infection had significantly longer survival times compared to those with negative H. pylori status. After unsupervised re-clustering of T cells based on scRNA-seq data, we identified ten CD4+ and twelve CD8+ clusters. Among them, four CD8+ T cell clusters exhibited distinct distributions based on H. pylori infection status. One cluster, marked by CXCL13, showed high levels of IFNG and GZMB in H. pylori-infected patients, while another cluster, which expressed immune suppression related genes like AREG and PTGER2, was predominantly comprised of cells from non-infected patients. High PTGER2 expression was significantly associated with worse prognosis in patients with high CD8 expression. These insights advance our understanding of H. pylori's influence on T cell responses in gastric cancer, aiding in treatment and prognostic strategies.
Collapse
Affiliation(s)
- Zhisheng Wu
- School of Chemistry and Chemical Engineering, Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Medical School, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Xinya Wang
- Wuxi People's Hospital, Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Wuxi, China
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Shujing Shi
- Department of Rehabilitation, School of Sport and Health, Nanjing Sport Institute, Nanjing, China
| | - Deyuan Kong
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Chuanli Ren
- Department of Laboratory Medicine, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Lijun Bian
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuanliang Gu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fangmei An
- Wuxi People's Hospital, Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Wuxi, China
- Department of Gastroenterology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Qiang Zhan
- Wuxi People's Hospital, Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Wuxi, China
- Department of Gastroenterology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Caiwang Yan
- Wuxi People's Hospital, Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Wuxi, China
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chupeng Hu
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China.
| | - Yun Chen
- School of Chemistry and Chemical Engineering, Center of Interventional Radiology and Vascular Surgery, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Medical School, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China.
- Wuxi People's Hospital, Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Wuxi, China.
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
- Research center for clinical oncology, Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| | - Runqiu Jiang
- Jiangsu Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
| | - Jinfei Chen
- Department of Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
10
|
Weller C, Bartok O, McGinnis CS, Palashati H, Chang TG, Malko D, Shmueli MD, Nagao A, Hayoun D, Murayama A, Sakaguchi Y, Poulis P, Khatib A, Erlanger Avigdor B, Gordon S, Cohen Shvefel S, Zemanek MJ, Nielsen MM, Boura-Halfon S, Sagie S, Gumpert N, Yang W, Alexeev D, Kyriakidou P, Yao W, Zerbib M, Greenberg P, Benedek G, Litchfield K, Petrovich-Kopitman E, Nagler A, Oren R, Ben-Dor S, Levin Y, Pilpel Y, Rodnina M, Cox J, Merbl Y, Satpathy AT, Carmi Y, Erhard F, Suzuki T, Buskirk AR, Olweus J, Ruppin E, Schlosser A, Samuels Y. Translation dysregulation in cancer as a source for targetable antigens. Cancer Cell 2025:S1535-6108(25)00082-0. [PMID: 40154482 DOI: 10.1016/j.ccell.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/14/2024] [Accepted: 03/03/2025] [Indexed: 04/01/2025]
Abstract
Aberrant peptides presented by major histocompatibility complex (MHC) molecules are targets for tumor eradication, as these peptides can be recognized as foreign by T cells. Protein synthesis in malignant cells is dysregulated, which may result in the generation and presentation of aberrant peptides that can be exploited for T cell-based therapies. To investigate the role of translational dysregulation in immunological tumor control, we disrupt translation fidelity by deleting tRNA wybutosine (yW)-synthesizing protein 2 (TYW2) in tumor cells and characterize the downstream impact on translation fidelity and immunogenicity using immunopeptidomics, genomics, and functional assays. These analyses reveal that TYW2 knockout (KO) cells generate immunogenic out-of-frame peptides. Furthermore, Tyw2 loss increases tumor immunogenicity and leads to anti-programmed cell death 1 (PD-1) checkpoint blockade sensitivity in vivo. Importantly, reduced TYW2 expression is associated with increased response to checkpoint blockade in patients. Together, we demonstrate that defects in translation fidelity drive tumor immunogenicity and may be leveraged for cancer immunotherapy.
Collapse
Affiliation(s)
- Chen Weller
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Osnat Bartok
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Christopher S McGinnis
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Heyilimu Palashati
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway; Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Tian-Gen Chang
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dmitry Malko
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Merav D Shmueli
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Deborah Hayoun
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ayaka Murayama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Panagiotis Poulis
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Aseel Khatib
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Bracha Erlanger Avigdor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sagi Gordon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sapir Cohen Shvefel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marie J Zemanek
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Morten M Nielsen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway; Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Sigalit Boura-Halfon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shira Sagie
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nofar Gumpert
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Weiwen Yang
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway; Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Dmitry Alexeev
- Computational Systems Biochemistry Research Group, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Pelgia Kyriakidou
- Computational Systems Biochemistry Research Group, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Winnie Yao
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Mirie Zerbib
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Polina Greenberg
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gil Benedek
- Tissue Typing and Immunogenetics Unit, Hadassah Hebrew University Hospital, Jerusalem 9112102, Israel
| | - Kevin Litchfield
- CRUK Lung Cancer Centre of Excellence, University College London Cancer Institute, London WC1E 6DD, UK; Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London WC1E 6DD, UK
| | | | - Adi Nagler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shifra Ben-Dor
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yishai Levin
- de Botton Institute for Protein Profiling, the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marina Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Jürgen Cox
- Computational Systems Biochemistry Research Group, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Yifat Merbl
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Yaron Carmi
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Florian Erhard
- Faculty for Informatics and Data Science, University of Regensburg, 93040 Regensburg, Germany
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Allen R Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway; Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andreas Schlosser
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, Julius-Maximilians-University Würzburg, 97080 Würzburg, Germany
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
11
|
Zhang W, Liu S, Hou Y, Xu S, An J, Lee K, Miao Q, Wang N, Wang Y, Ma M. Functional nanoplatform for modulating cellular forces to enhance antitumor immunity via mechanotransduction. J Control Release 2025; 379:850-865. [PMID: 39863022 DOI: 10.1016/j.jconrel.2025.01.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Immune cells are sensitive to the perception of mechanical stimuli in the tumor microenvironment. Changes in biophysical cues within tumor tissue can alter the force-sensing mechanisms experienced by cells. Mechanical stimuli within the extracellular matrix are transformed into biochemical signals through mechanotransduction. Delving into how these minute biophysical cues affect the activation of immune cells, metabolic reprogramming, and subsequent effector functions could offer perspectives on therapeutic interventions for immune-related disorders. Our study used a ternary phycocyanin-podophyllotoxin-IDO1 self-assembled nanoplatform to investigate molecule-scale regulation of mechanical cues in the tumor microenvironment on immune cell functions to modulate immune responses. After treatment, a caspase cascade was mediated by remodeling mechanical cues, including cytoskeleton-related assembly, force channel activation, and metabolic reprogramming, all of which contributed to enhancing anti-tumor immunity via mechanotransduction. The results will be helpful for understanding the interaction between cell force remodeling and antitumor immunity via mechanotransduction.
Collapse
Affiliation(s)
- Wanheng Zhang
- Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China; Department of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shuqin Liu
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yan Hou
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Shihui Xu
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Jiayan An
- School of Life Science, University of Liverpool, Liverpool L69 3BX, UK
| | - Kyubae Lee
- Department of Biomedical Materials, Konyang University, Daejeon 35365, Republic of Korea
| | - Qi Miao
- Department of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Nana Wang
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China.
| | - Yongtao Wang
- School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Mengze Ma
- Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
12
|
Shraim R, Mooney B, Conkrite KL, Hamilton AK, Morin GB, Sorensen PH, Maris JM, Diskin SJ, Sacan A. ImmunoTar-integrative prioritization of cell surface targets for cancer immunotherapy. Bioinformatics 2025; 41:btaf060. [PMID: 39932005 PMCID: PMC11904301 DOI: 10.1093/bioinformatics/btaf060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/11/2024] [Accepted: 02/07/2025] [Indexed: 02/19/2025] Open
Abstract
MOTIVATION Cancer remains a leading cause of mortality globally. Recent improvements in survival have been facilitated by the development of targeted and less toxic immunotherapies, such as chimeric antigen receptor (CAR)-T cells and antibody-drug conjugates (ADCs). These therapies, effective in treating both pediatric and adult patients with solid and hematological malignancies, rely on the identification of cancer-specific surface protein targets. While technologies like RNA sequencing and proteomics exist to survey these targets, identifying optimal targets for immunotherapies remains a challenge in the field. RESULTS To address this challenge, we developed ImmunoTar, a novel computational tool designed to systematically prioritize candidate immunotherapeutic targets. ImmunoTar integrates user-provided RNA-sequencing or proteomics data with quantitative features from multiple public databases, selected based on predefined criteria, to generate a score representing the gene's suitability as an immunotherapeutic target. We validated ImmunoTar using three distinct cancer datasets, demonstrating its effectiveness in identifying both known and novel targets across various cancer phenotypes. By compiling diverse data into a unified platform, ImmunoTar enables comprehensive evaluation of surface proteins, streamlining target identification and empowering researchers to efficiently allocate resources, thereby accelerating the development of effective cancer immunotherapies. AVAILABILITY AND IMPLEMENTATION Code and data to run and test ImmunoTar are available at https://github.com/sacanlab/immunotar.
Collapse
Affiliation(s)
- Rawan Shraim
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
- School of Biomedical Engineering, Science and Health System, Drexel University, Philadelphia, PA 19104, United States
| | - Brian Mooney
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 0B4, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 4S6, Canada
| | - Karina L Conkrite
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Amber K Hamilton
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Gregg B Morin
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 0B4, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Sharon J Diskin
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ahmet Sacan
- School of Biomedical Engineering, Science and Health System, Drexel University, Philadelphia, PA 19104, United States
| |
Collapse
|
13
|
Lopez de Rodas M, Villalba-Esparza M, Sanmamed MF, Chen L, Rimm DL, Schalper KA. Biological and clinical significance of tumour-infiltrating lymphocytes in the era of immunotherapy: a multidimensional approach. Nat Rev Clin Oncol 2025; 22:163-181. [PMID: 39820025 DOI: 10.1038/s41571-024-00984-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
Immune-checkpoint inhibitors (ICIs) have improved clinical outcomes across several solid tumour types. Prominent efforts have focused on understanding the anticancer mechanisms of these agents, identifying biomarkers of response and uncovering resistance mechanisms to develop new immunotherapeutic approaches. This research has underscored the crucial roles of the tumour microenvironment and, particularly, tumour-infiltrating lymphocytes (TILs) in immune-mediated tumour elimination. Numerous studies have evaluated the prognostic and predictive value of TILs and the mechanisms that govern T cell dysfunction, fuelled by technical developments in single-cell transcriptomics, proteomics, high-dimensional spatial platforms and advanced computational models. However, questions remain regarding the definition of TILs, optimal strategies to study them, specific roles of different TIL subpopulations and their clinical implications in different treatment contexts. Additionally, most studies have focused on the abundance of major TIL subpopulations but have not developed standardized quantification strategies or analysed other crucial aspects such as their functional profile, spatial distribution and/or arrangement, tumour antigen-reactivity, clonal diversity and heterogeneity. In this Review, we discuss a conceptual framework for the systematic study of TILs and summarize the evidence regarding their biological properties and biomarker potential for ICI therapy. We also highlight opportunities, challenges and strategies to support future developments in this field.
Collapse
Affiliation(s)
- Miguel Lopez de Rodas
- Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Cancer Center Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Maria Villalba-Esparza
- Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Miguel F Sanmamed
- Department of Immunology and Immunotherapy, Centro de Investigación Médica Aplicada and Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - David L Rimm
- Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Kurt A Schalper
- Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
14
|
Li Y, Xu Y, Su W, Xu J, Ye Z, Wang Z, Liu Q, Chen F. Exploring the immuno-nano nexus: A paradigm shift in tumor vaccines. Biomed Pharmacother 2025; 184:117897. [PMID: 39921945 DOI: 10.1016/j.biopha.2025.117897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025] Open
Abstract
Tumor vaccines have become a crucial strategy in cancer immunotherapy. Challenges of traditional tumor vaccines include inadequate immune activation and low efficacy of antigen delivery. Nanoparticles, with their tunable properties and versatile functionalities, have redefined the landscape of tumor vaccine design. In this review, we outline the multifaceted roles of nanoparticles in tumor vaccines, ranging from their capacity as delivery vehicles to their function as immunomodulatory adjuvants capable of stimulating anti-tumor immunity. We discuss how this innovative approach significantly boosts antigen presentation by leveraging tailored nanoparticles that facilitate efficient uptake by antigen-presenting cells. These nanoparticles have been meticulously designed to overcome biological barriers, ensuring optimal delivery to lymph nodes and effective interaction with the immune system. Overall, this review highlights the transformative power of nanotechnology in redefining the principles of tumor vaccines. The intent is to inform more efficacious and precise cancer immunotherapies. The integration of these advanced nanotechnological strategies should unlock new frontiers in tumor vaccine development, enhancing their potential to elicit robust and durable anti-tumor immunity.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yike Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Wenwen Su
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Jia Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Zifei Ye
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Zhuoyi Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Qihui Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| | - Fangfang Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
15
|
Baharom F, Hermans D, Delamarre L, Seder RA. Vax-Innate: improving therapeutic cancer vaccines by modulating T cells and the tumour microenvironment. Nat Rev Immunol 2025; 25:195-211. [PMID: 39433884 DOI: 10.1038/s41577-024-01091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/23/2024]
Abstract
T cells have a critical role in mediating antitumour immunity. The success of immune checkpoint inhibitors (ICIs) for cancer treatment highlights how enhancing endogenous T cell responses can mediate tumour regression. However, mortality remains high for many cancers, especially in the metastatic setting. Based on advances in the genetic characterization of tumours and identification of tumour-specific antigens, individualized therapeutic cancer vaccines targeting mutated tumour antigens (neoantigens) are being developed to generate tumour-specific T cells for improved therapeutic responses. Early clinical trials using individualized neoantigen vaccines for patients with advanced disease had limited clinical efficacy despite demonstrated induction of T cell responses. Therefore, enhancing T cell activity by improving the magnitude, quality and breadth of T cell responses following vaccination is one current goal for improving outcome against metastatic tumours. Another major consideration is how T cells can be further optimized to function within the tumour microenvironment (TME). In this Perspective, we focus on neoantigen vaccines and propose a new approach, termed Vax-Innate, in which vaccination through intravenous delivery or in combination with tumour-targeting immune modulators may improve antitumour efficacy by simultaneously increasing the magnitude, quality and breadth of T cells while transforming the TME into a largely immunostimulatory environment for T cells.
Collapse
Affiliation(s)
| | - Dalton Hermans
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Robert A Seder
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Gu XY, Gu SL, Chen ZY, Tong JL, Li XY, Dong H, Zhang CY, Qian WX, Ma XC, Yi CH, Yi YX. Uncovering immune cell heterogeneity in hepatocellular carcinoma by combining single-cell RNA sequencing with T-cell receptor sequencing. World J Hepatol 2025; 17:99046. [PMID: 40027555 PMCID: PMC11866147 DOI: 10.4254/wjh.v17.i2.99046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/13/2024] [Accepted: 12/31/2024] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Understanding the status and function of tumor-infiltrating immune cells is essential for improving immunotherapeutic effects and predicting the clinical response in human patients with carcinoma. However, little is known about tumor-infiltrating immune cells, and the corresponding research results in hepatocellular carcinoma (HCC) are limited. AIM To investigate potential biomarker genes that are important for the development of HCC and to understand how immune cell subsets react throughout this process. METHODS Using single-cell RNA sequencing and T-cell receptor sequencing, the heterogeneity and potential functions of immune cell subpopulations from HCC tissue and normal tissue adjacent to carcinoma, as well as their possible interactions, were analyzed. RESULTS Eight T-cell clusters from patients were analyzed and identified using bioinformatics, including six typical major T-cell clusters and two newly identified T-cell clusters, among which Fc epsilon receptor 1G+ T cells were characterized by the upregulation of Fc epsilon receptor 1G, tyrosine kinase binding protein, and T cell receptor delta constant, whereas metallothionein 1E+ T cells proliferated significantly in tumors. Differentially expressed genes, such as regulator of cell cycle, cysteine and serine rich nuclear protein 1, SMAD7 and metallothionein 1E, were identified as significantly upregulated in tumors and have potential as biomarkers. In association with T-cell receptor analysis, we inferred the clonal expansion characteristics of each T-cell cluster in HCC patients. CONCLUSION We identified lymphocyte subpopulations and potential biomarker genes critical for HCC development and revealed the clonal amplification of infiltrating T cells. These data provide valuable resources for understanding the response of immune cell subsets in HCC.
Collapse
Affiliation(s)
- Xin-Yu Gu
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu Province, China
- Department of General Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Shuang-Lin Gu
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu Province, China
| | - Zi-Yi Chen
- Genetic Center, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410078, Hunan Province, China
| | - Jin-Long Tong
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu Province, China
| | - Xiao-Yue Li
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu Province, China
| | - Hui Dong
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu Province, China
| | - Cai-Yun Zhang
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu Province, China
| | - Wen-Xian Qian
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu Province, China
| | - Xiu-Chang Ma
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu Province, China
| | - Chang-Hua Yi
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu Province, China
- College of Medical Technology, Shaoyang University, Shaoyang 422000, Hunan Province, China
| | - Yong-Xiang Yi
- Department of Infectious Diseases, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu Province, China
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China.
| |
Collapse
|
17
|
Singh H, Mohanto S, Kumar A, Mishra AK, Kumar A, Mishra A, Ahmed MG, Singh MK, Yadav AP, Chopra S, Chopra H. Genetic and molecular profiling in Merkel Cell Carcinoma: Focus on MCPyV oncoproteins and emerging diagnostic techniques. Pathol Res Pract 2025:155869. [PMID: 40023704 DOI: 10.1016/j.prp.2025.155869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/21/2024] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Merkel Cell Carcinoma (MCC) is an uncommon yet highly malignant form of skin cancer, frequently linked to the Merkel cell polyomavirus (MCPyV). This review comprehensively covers data from year 2000 to 2024, employing keywords such as MCC, MCPyV Oncoproteins, Immunohistochemistry, Southern Blot, Western Blot, Polymerase Chain Reaction (PCR), Digital Droplet PCR (ddPCR), Next-Generation Sequencing (NGS), and In Situ Hybridization (ISH). The search engines utilized were Google, PubMed Central, Scopus, and other journal databases like ScienceDirect. This review is essential for researchers and the broader medical community as it consolidates two decades of research on the genetic and molecular profiling of MCC, particularly focusing on MCPyV's role in its pathogenesis. It highlights the diagnostic advancements and therapeutic potential of targeting viral oncoproteins and provides insights into the development of both in vivo and in vitro models for better understanding MCC. The findings emphasize the significance of early detection, molecular diagnostics, and personalized treatment approaches, aiming to improve outcomes for patients with this malignant malignancy.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India.
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Anil Kumar
- Moradabad Educational Trust Group of Institutions, Faculty of Pharmacy, Moradabad, Uttar Pradesh 244001, India
| | - Arun Kumar Mishra
- SOS School of Pharmacy, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Mukesh Kr Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh 244102, India
| | | | - Shivani Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| | - Hitesh Chopra
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
18
|
Zhou Y, Wei Y, Tian X, Wei X. Cancer vaccines: current status and future directions. J Hematol Oncol 2025; 18:18. [PMID: 39962549 PMCID: PMC11834487 DOI: 10.1186/s13045-025-01670-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
Cancer continues to be a major global health burden, with high morbidity and mortality. Building on the success of immune checkpoint inhibitors and adoptive cellular therapy, cancer vaccines have garnered significant interest, but their clinical success remains modest. Benefiting from advancements in technology, many meticulously designed cancer vaccines have shown promise, warranting further investigations to reach their full potential. Cancer vaccines hold unique benefits, particularly for patients resistant to other therapies, and they offer the ability to initiate broad and durable T cell responses. In this review, we highlight the antigen selection for cancer vaccines, introduce the immune responses induced by vaccines, and propose strategies to enhance vaccine immunogenicity. Furthermore, we summarize key features and notable clinical advances of various vaccine platforms. Lastly, we delve into the mechanisms of tumor resistance and explore the potential benefits of combining cancer vaccines with standard treatments and other immunomodulatory approaches to improve vaccine efficacy.
Collapse
Affiliation(s)
- Yingqiong Zhou
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiaohe Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
19
|
Filippini DM, Broseghini E, Liberale C, Gallerani G, Siepe G, Nobili E, Ferracin M, Molteni G. Vaccine-Based Immunotherapy for Oropharyngeal and Nasopharyngeal Cancers. J Clin Med 2025; 14:1170. [PMID: 40004705 PMCID: PMC11856027 DOI: 10.3390/jcm14041170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Viral infections such as human papillomavirus (HPV) and Epstein-Barr virus (EBV) play a critical role in the onset of oropharyngeal (OPC) and nasopharyngeal cancer (NPC), respectively. Despite advancements in targeted therapies and immunotherapies, in the recurrent/metastatic setting, these tumors remain incurable diseases with poor prognosis. The development of therapeutic tumor vaccines, utilizing either neoantigens or oncoviral antigens, represents a promising addition to the cancer immunotherapy arsenal. Research on vaccine-based immunotherapy for OPC and NPC focuses on targeting viral antigens, particularly HPV E6/E7 and EBV EBNA1/LMP2. The potential for vaccine platforms, including peptide-based, DNA, RNA, and viral vector-based vaccines, to induce durable immune responses against viral antigens is reported. The early-phase clinical trials evaluating vaccine-based therapies for HPV-related OPC and EBV-related NPC revealed safety and preliminary signs of efficacy; however, further clinical trials are crucial for validation. This review provides an overview of the current landscape of vaccine-based strategies for HPV-related OPC and EBV-related NPC, discussing their biological mechanisms and immune processes involved in anti-HPV and anti-EBV vaccine treatments, with a particular focus on the immune factors that influence these therapies.
Collapse
Affiliation(s)
- Daria Maria Filippini
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (G.G.); (M.F.)
| | | | - Carlotta Liberale
- Unit of Otorhinolaryngology, Head & Neck Department, University of Verona, 37134 Verona, Italy;
| | - Giulia Gallerani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (G.G.); (M.F.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Giambattista Siepe
- Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Elisabetta Nobili
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (G.G.); (M.F.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Gabriele Molteni
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (G.G.); (M.F.)
- Department of Otolaryngology-Head and Neck Surgery, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
20
|
Meng Y, Yao Z, Ke X, Hu M, Ren H, Gao S, Zhang H. Extracellular vesicles-based vaccines: Emerging immunotherapies against cancer. J Control Release 2025; 378:438-459. [PMID: 39667569 DOI: 10.1016/j.jconrel.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Cancer vaccines are promising therapeutic approaches to enhance specific T-cell immunity against most solid tumors. By stimulating anti-tumor immunity, clearing minimal residual disease, and minimizing adverse effects, these vaccines target tumor cells and are effective when combined with immune checkpoint blockade or other immunotherapies. However, the development of tumor cell-based vaccines faces quality issues due to poor immunogenicity, tumor heterogeneity, a suppressive tumor immune microenvironment, and ineffective delivery methods. In contrast, extracellular vesicles (EVs), naturally released by cells, are considered the ideal drug carriers and vaccine platforms. EVs offer highly organ-specific targeting, induce broader and more effective immune responses, and demonstrate superior tissue delivery ability. The development of EV vaccines is crucial for advancing cancer immunotherapy. Compared to cell-based vaccines, EV vaccines produced under Good Manufacturing Practices (GMP) offer advantages such as high safety, ease of preservation and transport, and a wide range of sources. This review summarizes the latest research findings on EV vaccine and potential applications in this field. It also highlights novel neoantigens for the development of EV vaccines against cancer.
Collapse
Affiliation(s)
- Yuhua Meng
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Zhimeng Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China; Department of Urology Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xiurong Ke
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mengyuan Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Hongzheng Ren
- Gongli Hospital of Shanghai Pudong New Area, Department of Pathology, Shanghai, China
| | - Shegan Gao
- College of Clinical Medicine, The First Affiliated Hospital of Henan University of Science and Technology, Henan Key Laboratory of Cancer Epigenetics, Luoyang, Henan, China.
| | - Hao Zhang
- Gongli Hospital of Shanghai Pudong New Area, Department of Pathology, Shanghai, China; Department of Pathology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, Guangdong, China; Department of Thoracic Surgery and General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
21
|
Sebastião AI, Simões G, Oliveira F, Mateus D, Falcão A, Carrascal MA, Gomes C, Neves B, Cruz MT. Dendritic cells in triple-negative breast cancer: From pathophysiology to therapeutic applications. Cancer Treat Rev 2025; 133:102884. [PMID: 39837068 DOI: 10.1016/j.ctrv.2025.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/28/2024] [Accepted: 01/11/2025] [Indexed: 01/23/2025]
Abstract
Breast cancer is the second most commonly diagnosed cancer in women and the fifth leading cause of cancer-related deaths worldwide. It is a highly heterogeneous disease, consisting of multiple subtypes that vary significantly in clinical characteristics and survival outcomes. Triple-negative breast cancer (TNBC) is a particularly aggressive and challenging subtype of breast cancer. Several immunotherapeutic approaches have been tested in patients with TNBC to improve disease outcomes, including the administration of dendritic cell (DC)-based vaccines. DCs are a heterogeneous cell population that play a crucial role in bridging the innate and adaptive immune systems. Therefore, DCs have been increasingly used in cancer vaccines due to their ability to prime and boost antigen specific T-cell immune responses. This review aims to provide a comprehensive overview of TNBC, including potential targets and pharmacological strategies, as well as an overview of DCs and their relevance in TNBC. In addition, we review ongoing clinical trials and shed light on the evolving landscape of DC-based immunotherapy for TNBC.
Collapse
Affiliation(s)
- Ana Isabel Sebastião
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra (CNC-UC), Coimbra, 3004-504, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gonçalo Simões
- Center for Neuroscience and Cell Biology, University of Coimbra (CNC-UC), Coimbra, 3004-504, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filomena Oliveira
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Daniela Mateus
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra (CNC-UC), Coimbra, 3004-504, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; BioMark@UC/CEB-LABBELS, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
| | | | - Célia Gomes
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research - iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Bruno Neves
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra (CNC-UC), Coimbra, 3004-504, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|
22
|
Luan F, Cui Y, Huang R, Yang Z, Qiao S. Comprehensive pan-cancer analysis reveals NTN1 as an immune infiltrate risk factor and its potential prognostic value in SKCM. Sci Rep 2025; 15:3223. [PMID: 39863609 PMCID: PMC11762998 DOI: 10.1038/s41598-025-85444-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Netrin-1 (NTN1) is a laminin-related secreted protein involved in axon guidance and cell migration. Previous research has established a significant connection between NTN1 and nervous system development. In recent years, mounting evidence indicates that NTN1 also plays a crucial role in tumorigenesis and tumor progression. For instance, inhibiting Netrin-1 has been shown to suppress tumor growth and epithelial-mesenchymal transition (EMT) characteristics in endometrial cancer. To further elucidate the influence of genes on tumors, we utilized a variety of machine learning techniques and found that NTN1 is strongly linked to multiple cancer types, suggesting it as a potential therapeutic target. This study aimed to elucidate the role of NTN1 in pan-cancer using multi-omics data and explore its potential as a prognostic biomarker in SKCM. Analysis of the TCGA, GTEx, and UALCAN databases revealed significant differences in NTN1 expression at both the mRNA and protein levels. Prognostic value was evaluated through univariate Cox regression and Kaplan-Meier methods. Mutation and methylation analyses were conducted using the cBioPortal and SMART databases. We identified genes interacting with and correlated to NTN1 through STRING and GEPIA2, respectively. Subsequently, we performed GO and KEGG enrichment analyses. The results suggested that NTN1 might be involved in crucial biological processes and pathways related to cancer development and progression, including cell adhesion, axon guidance, immune response, and various signaling pathways. We then explored the correlation between NTN1 and immune infiltration as well as immunotherapy using the ESTIMATE package, TIMER2.0, TISIDB, TIDE, TIMSO, and TCIA. The relationship between NTN1 and tumor heterogeneity, stemness, DNA methyltransferases, and MMR genes was also examined. Lastly, we constructed a nomogram based on NTN1 in SKCM and investigated its association with drug sensitivity. NTN1 expression was significantly associated with tumor immune infiltration, molecular subtypes, and clinicopathological features in various cancers. Genetic analysis revealed that Deep deletions were the most common type of NTN1 alteration. Additionally, a positive correlation was observed between NTN1 CNAs and its expression levels. In most cancers, NTN1 showed positive correlations with immune and stromal scores, as well as with specific immune cell populations. Its predictive value for immunotherapy response was comparable to that of tumor mutational burden. Furthermore, NTN1 exhibited positive correlations with tumor heterogeneity, stemness, DNA methyltransferase genes, and MMR genes. In SKCM, NTN1 was identified as an independent risk factor and demonstrated potential associations with multiple drugs. NTN1 exhibits substantial clinical utility as a prognostic marker and indicator of immune response across various tumor types. This comprehensive analysis provides insights into its potential implications in pan-cancer research.
Collapse
Affiliation(s)
- Fuxiang Luan
- The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Yuying Cui
- The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Ruizhe Huang
- The First Clinical College of Changsha Medical University, Changsha, China
| | - Zhuojie Yang
- Academy of medical sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Shishi Qiao
- The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
23
|
Aggeletopoulou I, Pantzios S, Triantos C. Personalized Immunity: Neoantigen-Based Vaccines Revolutionizing Hepatocellular Carcinoma Treatment. Cancers (Basel) 2025; 17:376. [PMID: 39941745 PMCID: PMC11815775 DOI: 10.3390/cancers17030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Hepatocellular carcinoma (HCC), the most prevalent form of primary liver cancer, presents significant therapeutic challenges due to its molecular complexity, late-stage diagnosis, and inherent resistance to conventional treatments. The intermediate to low mutational burden in HCC and its ability to evade the immune system through multiple mechanisms complicate the development of effective therapies. Recent advancements in immunotherapy, particularly neoantigen-based vaccines, offer a promising, personalized approach to HCC treatment. Neoantigens are tumor-specific peptides derived from somatic mutations in tumor cells. Unlike normal cellular antigens, neoantigens are foreign to the immune system, making them highly specific targets for immunotherapy. Neoantigens arise from genetic alterations such as point mutations, insertions, deletions, and gene fusions, which are expressed as neoepitopes that are not present in healthy tissues, thus evading the immune tolerance mechanisms that typically protect normal cells. Preclinical and early-phase clinical studies of neoantigen-based vaccines have shown promising results, demonstrating the ability of these vaccines to elicit robust T cell responses against HCC. The aim of the current review is to provide an in-depth exploration of the therapeutic potential of neoantigen-based vaccines in HCC, focusing on neoantigen identification, vaccine platforms, and their integration with immune checkpoint inhibitors to enhance immunogenicity. It also evaluates preclinical and clinical data on efficacy and safety while addressing challenges in clinical translation. By taking advantage of the unique antigenic profile of each patient's tumor, neoantigen-based vaccines represent a promising approach in the treatment of HCC, offering the potential for improved patient outcomes, long-term remission, and a shift towards personalized, precision medicine in liver cancer therapy.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece;
| | - Spyridon Pantzios
- Hepatogastroenterology Unit, Academic Department of Internal Medicine, General Oncology Hospital of Kifissia “Agioi Anargyroi”, National and Kapodistrian University of Athens, 14564 Athens, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece;
| |
Collapse
|
24
|
Basingab FS, Alshahrani OA, Alansari IH, Almarghalani NA, Alshelali NH, Alsaiary AH, Alharbi N, Zaher KA. From Pioneering Discoveries to Innovative Therapies: A Journey Through the History and Advancements of Nanoparticles in Breast Cancer Treatment. BREAST CANCER (DOVE MEDICAL PRESS) 2025; 17:27-51. [PMID: 39867813 PMCID: PMC11761866 DOI: 10.2147/bctt.s501448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
Nanoparticle technology has revolutionized breast cancer treatment by offering innovative solutions addressing the gaps in traditional treatment methods. This paper aimed to comprehensively explore the historical journey and advancements of nanoparticles in breast cancer treatment, highlighting their transformative impact on modern medicine. The discussion traces the evolution of nanoparticle-based therapies from their early conceptualization to their current applications and future potential. We initially explored the historical context of breast cancer treatment, highlighting the limitations of conventional therapies, such as surgery, radiation, and chemotherapy. The advent of nanotechnology has introduced a new era characterized by the development of various nanoparticles, including liposomes, dendrimers, and gold nanoparticles, designed to target cancer cells with remarkable precision. We further described the mechanisms of action for nanoparticles, including passive and active targeting, and reviewed significant breakthroughs and clinical trials that have validated their efficacy. Current applications of nanoparticles in breast cancer treatment have been examined, showcasing clinically approved therapies and comparing their effectiveness with traditional methods. This article also discusses the latest advancements in nanoparticle research, including drug delivery systems and combination therapy innovations, while addressing the current technical, biological, and regulatory challenges. The technical challenges include efficient and targeted delivery to tumor sites without affecting healthy tissue; biological, such as potential toxicity, immune system activation, or resistance mechanisms; economic, involving high production and scaling costs; and regulatory, requiring rigorous testing for safety, efficacy, and long-term effects to meet stringent approval standards. Finally, we have explored emerging trends, the potential for personalized medicine, and the ethical and social implications of this transformative technology. In conclusion, through comprehensive analysis and case studies, this paper underscores the profound impact of nanoparticles on breast cancer treatment and their future potential.
Collapse
Affiliation(s)
- Fatemah S Basingab
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Omniah A Alshahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Ibtehal H Alansari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Nada A Almarghalani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Nada H Alshelali
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Abeer Hamad Alsaiary
- Biology Department, College of Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Najwa Alharbi
- Department of Biology Science, Faculty of Science, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| | - Kawther A Zaher
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21859, Saudi Arabia
| |
Collapse
|
25
|
Wang M, Yu F, Zhang Y. Present and future of cancer nano-immunotherapy: opportunities, obstacles and challenges. Mol Cancer 2025; 24:26. [PMID: 39827147 PMCID: PMC11748575 DOI: 10.1186/s12943-024-02214-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025] Open
Abstract
Clinically, multimodal therapies are adopted worldwide for the management of cancer, which continues to be a leading cause of death. In recent years, immunotherapy has firmly established itself as a new paradigm in cancer care that activates the body's immune defense to cope with cancer. Immunotherapy has resulted in significant breakthroughs in the treatment of stubborn tumors, dramatically improving the clinical outcome of cancer patients. Multiple forms of cancer immunotherapy, including immune checkpoint inhibitors (ICIs), adoptive cell therapy and cancer vaccines, have become widely available. However, the effectiveness of these immunotherapies is not much satisfying. Many cancer patients do not respond to immunotherapy, and disease recurrence appears to be unavoidable because of the rapidly evolving resistance. Moreover, immunotherapies can give rise to severe off-target immune-related adverse events. Strategies to remove these hindrances mainly focus on the development of combinatorial therapies or the exploitation of novel immunotherapeutic mediations. Nanomaterials carrying anticancer agents to the target site are considered as practical approaches for cancer treatment. Nanomedicine combined with immunotherapies offers the possibility to potentiate systemic antitumor immunity and to facilitate selective cytotoxicity against cancer cells in an effective and safe manner. A myriad of nano-enabled cancer immunotherapies are currently under clinical investigation. Owing to gaps between preclinical and clinical studies, nano-immunotherapy faces multiple challenges, including the biosafety of nanomaterials and clinical trial design. In this review, we provide an overview of cancer immunotherapy and summarize the evidence indicating how nanomedicine-based approaches increase the efficacy of immunotherapies. We also discuss the key challenges that have emerged in the era of nanotechnology-based cancer immunotherapy. Taken together, combination nano-immunotherapy is drawing increasing attention, and it is anticipated that the combined treatment will achieve the desired success in clinical cancer therapy.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China.
| | - Fei Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| |
Collapse
|
26
|
Leko V, Groh E, Levi ST, Copeland AR, White BS, Gasmi B, Li Y, Hill V, Gurusamy D, Levin N, Kim SP, Sindiri S, Gartner JJ, Prickett TD, Parkhust M, Lowery FJ, Goff SL, Rosenberg SA, Robbins P. Utilization of primary tumor samples for cancer neoantigen discovery. J Immunother Cancer 2025; 13:e010993. [PMID: 39800378 PMCID: PMC11748769 DOI: 10.1136/jitc-2024-010993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND The use of tumor-infiltrating T lymphocytes (TIL) that recognize cancer neoantigens has led to lasting remissions in metastatic melanoma and certain cases of metastatic epithelial cancer. For the treatment of the latter, selecting cells for therapy typically involves laborious screening of TIL for recognition of autologous tumor-specific mutations, detected through next-generation sequencing of freshly resected metastatic tumors. Our study explored the feasibility of using archived formalin-fixed, paraffin-embedded (FFPE) primary tumor samples for cancer neoantigen discovery, to potentially expedite this process and reduce the need for resections normally required for tumor sequencing. METHOD Whole-exome sequencing was conducted on matched primary and metastatic colorectal cancer samples from 22 patients. The distribution of metastatic tumor mutations that were confirmed as neoantigens through cognate TIL screening was evaluated in the corresponding primary tumors. Mutations unique to primary tumors were screened for recognition by metastasis-derived TIL and circulating T lymphocytes. RESULTS We found that 25 (65.8%) of the 38 validated neoantigens identified in metastatic tumors from 18 patients with colorectal cancer were also present in matched primary tumor samples. This included all 12 neoantigens encoded by putative cancer driver genes, which are generally regarded as superior targets for adoptive cell therapy. The detection rate for other neoantigens, representing mutations without an established role in cancer biology, was 50% (13/26). Gene products encoding neoantigens detected in the primary tumors were not more likely to be clonal or broadly distributed among the analyzed metastatic lesions compared with those undetected in the primary tumors. Additionally, we found that mutations detected only in primary tumor samples did not elicit recognition by metastatic tumor-derived TIL but could elicit specific recognition by the autologous circulating memory T cells. CONCLUSIONS Our findings indicate that primary FFPE tumor-derived screening libraries could be used to discover most neoantigens present in metastatic tumors requiring treatment. Furthermore, this approach can reveal additional neoantigens not present in resected metastatic tumors, prompting further research to understand their clinical relevance as potential therapeutic targets.
Collapse
Affiliation(s)
- Vid Leko
- Immune Deficiency Cellular Therapy Program, National Cancer Institute, Bethesda, Maryland, USA
| | - Eric Groh
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Shoshana T Levi
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Amy R Copeland
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Billel Gasmi
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Yong Li
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Victoria Hill
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Noam Levin
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Sivasish Sindiri
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Jared J Gartner
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Todd D Prickett
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Maria Parkhust
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Frank J Lowery
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Stephanie L Goff
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Paul Robbins
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
27
|
Lei W, Zhou K, Lei Y, Li Q, Zhu H. Cancer vaccines: platforms and current progress. MOLECULAR BIOMEDICINE 2025; 6:3. [PMID: 39789208 PMCID: PMC11717780 DOI: 10.1186/s43556-024-00241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
Cancer vaccines, crucial in the immunotherapeutic landscape, are bifurcated into preventive and therapeutic types, both integral to combating oncogenesis. Preventive cancer vaccines, like those against HPV and HBV, reduce the incidence of virus-associated cancers, while therapeutic cancer vaccines aim to activate dendritic cells and cytotoxic T lymphocytes for durable anti-tumor immunity. Recent advancements in vaccine platforms, such as synthetic peptides, mRNA, DNA, cellular, and nano-vaccines, have enhanced antigen presentation and immune activation. Despite the US Food and Drug Administration approval for several vaccines, the full therapeutic potential remains unrealized due to challenges such as antigen selection, tumor-mediated immunosuppression, and optimization of delivery systems. This review provides a comprehensive analysis of the aims and implications of preventive and therapeutic cancer vaccine, the innovative discovery of neoantigens enhancing vaccine specificity, and the latest strides in vaccine delivery platforms. It also critically evaluates the role of adjuvants in enhancing immunogenicity and mitigating the immunosuppressive tumor microenvironment. The review further examines the synergistic potential of combining cancer vaccines with other therapies, such as chemotherapy, radiotherapy, and immune checkpoint inhibitors, to improve therapeutic outcomes. Overcoming barriers such as effective antigen identification, immunosuppressive microenvironments, and adverse effects is critical for advancing vaccine development. By addressing these challenges, cancer vaccines can offer significant improvements in patient outcomes and broaden the scope of personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Wanting Lei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ye Lei
- College of Liberal Arts, Neijiang Normal University, Neijiang, 641100, Sichuan, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
28
|
Zhao X, Xuan F, Li Z, Yin X, Zeng X, Chen J, Fang C. A KIF20A-based thermosensitive hydrogel vaccine effectively potentiates immune checkpoint blockade therapy for hepatocellular carcinoma. NPJ Vaccines 2025; 10:1. [PMID: 39753573 PMCID: PMC11699128 DOI: 10.1038/s41541-024-01060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly prevalent malignancy with limited treatment efficacy despite advances in immune checkpoint blockade (ICB) therapy. The inherently weak immune responses in HCC necessitate novel strategies to improve anti-tumor immunity and synergize with ICB therapy. Kinesin family member 20A (KIF20A) is a tumor-associated antigen (TAA) overexpressed in HCC, and it could be a promising target for vaccine development. This study confirmed KIF20A as a promising immunogenic antigen through transcriptomic mRNA sequencing analysis in the context of HCC. Therefore, we developed a thermosensitive hydrogel vaccine formulation (K/RLip@Gel) to optimize antigen delivery while enabling sustained in vivo release. The vaccine efficiently elicited robust immune responses by activating DCs and T cells. Moreover, K/RLip@Gel improved the therapeutic efficacy of PD-L1 blockade in subcutaneous and orthotopic cell-derived xenograft (CDX) models, along with immune-humanized patient-derived xenograft (PDX) HCC models, which was evidenced by improved maturation of DCs and elevated infiltration and activation of CD8+ T cells. These findings highlight the potential of KIF20A-based vaccines to synergistically improve ICB therapy outcomes in HCC, providing a promising approach for enhancing anti-tumor immunity and improving clinical outcomes.
Collapse
Affiliation(s)
- Xingyang Zhao
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Feichao Xuan
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zirong Li
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiangyi Yin
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojun Zeng
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiali Chen
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chihua Fang
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
- Institute of Digital Intelligent Minimally Invasive Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou, China.
- South China Institute of National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Guangzhou, China.
| |
Collapse
|
29
|
Zhang YT, Fu X, Ting Lim JJ, Zhang SX. Engraftment of a surrogate antigen onto tumor cell surface via pHLIP peptide to universally target CAR-T cell therapy to solid tumors. Cancer Lett 2025; 608:217319. [PMID: 39489212 PMCID: PMC11972592 DOI: 10.1016/j.canlet.2024.217319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
CAR-T cells and monoclonal antibodies (mAbs) are immunotherapeutics that have shown efficacies against certain malignancies. However, their broad application is hindered by the scarcity of tumor-associated antigens on tumor cell surfaces. Previous investigations unveiled the unique capacity of pH-low insertion peptide (pHLIP) to anchor to plasma membranes under acidic conditions. Considering that an acidic tumor microenvironment is a hallmark of solid tumors, we engineered a novel peptide, Myc-pHLIP, by tethering a surrogate epitope tag, the c-Myc-tag, to pHLIP. We evaluated the efficiency of Myc-pHLIP in inserting the artificial c-Myc-tag onto the plasma membrane of malignant cells and determined if this engraftment could convert it into a therapeutic target for CAR-T cells or mAbs. Our in vitro experiments demonstrated that incubating Myc-pHLIP with tumor cells in acidic media triggered significant killing by either Myc-targeted CAR-T cells (Myc-CAR-T), or by an anti-Myc mAb in the presence of NK cells. In vivo studies demonstrated substantial antitumor effects with sequential administration of Myc-pHLIP followed by either Myc-CAR-T or Myc-mAb. These findings establish that Myc-pHLIP has the potential to act as a universal surrogate tumor antigen capable of directing CAR-T cells or mAbs to treat any solid tumors by concurrently targeting both malignant and stromal cells.
Collapse
Affiliation(s)
- Yan-Ting Zhang
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA; Coriell Institute for Medical Research, 403 Haddon Ave, Camden, NJ, 08103, USA; Department Biomedical Sciences, Cooper Medical School of Rowan University, 401 Broadway, Camden, NJ, 08103, USA
| | - Xinping Fu
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Jane Jing Ting Lim
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Shaun Xiaoliu Zhang
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
30
|
Wu Y, Jiang X, Yu Z, Xing Z, Ma Y, Qing H. Mechanisms of Anti-PD Therapy Resistance in Digestive System Neoplasms. Recent Pat Anticancer Drug Discov 2025; 20:1-25. [PMID: 38305306 DOI: 10.2174/0115748928269276231120103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 02/03/2024]
Abstract
Digestive system neoplasms are highly heterogeneous and exhibit complex resistance mechanisms that render anti-programmed cell death protein (PD) therapies poorly effective. The tumor microenvironment (TME) plays a pivotal role in tumor development, apart from supplying energy for tumor proliferation and impeding the body's anti-tumor immune response, the TME actively facilitates tumor progression and immune escape via diverse pathways, which include the modulation of heritable gene expression alterations and the intricate interplay with the gut microbiota. In this review, we aim to elucidate the mechanisms underlying drug resistance in digestive tumors, focusing on immune-mediated resistance, microbial crosstalk, metabolism, and epigenetics. We will highlight the unique characteristics of each digestive tumor and emphasize the significance of the tumor immune microenvironment (TIME). Furthermore, we will discuss the current therapeutic strategies that hold promise for combination with cancer immune normalization therapies. This review aims to provide a thorough understanding of the resistance mechanisms in digestive tumors and offer insights into potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuxia Wu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiangyan Jiang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zeyuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zongrui Xing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yong Ma
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Huiguo Qing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
31
|
Palecki J, Bhasin A, Bernstein A, Mille PJ, Tester WJ, Kelly WK, Zarrabi KK. T-Cell redirecting bispecific antibodies: a review of a novel class of immuno-oncology for advanced prostate cancer. Cancer Biol Ther 2024; 25:2356820. [PMID: 38801069 PMCID: PMC11135853 DOI: 10.1080/15384047.2024.2356820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Novel T-cell immunotherapies such as bispecific T-cell engagers (BiTEs) are emerging as promising therapeutic strategies for prostate cancer. BiTEs are engineered bispecific antibodies containing two distinct binding domains that allow for concurrent binding to tumor-associated antigens (TAAs) as well as immune effector cells, thus promoting an immune response against cancer cells. Prostate cancer is rich in tumor associated antigens such as, but not limited to, PSMA, PSCA, hK2, and STEAP1 and there is strong biologic rationale for employment of T-cell redirecting BiTEs within the prostate cancer disease space. Early generation BiTE constructs employed in clinical study have demonstrated meaningful antitumor activity, but challenges related to drug delivery, immunogenicity, and treatment-associated adverse effects limited their success. The ongoing development of novel BiTE constructs continues to address these barriers and to yield promising results in terms of efficacy and safety. This review will highlight some of most recent developments of BiTE therapies for patients with advanced prostate cancer and the evolving data surrounding BiTE constructs undergoing clinical evaluation.
Collapse
Affiliation(s)
- Julia Palecki
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Amman Bhasin
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Andrew Bernstein
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Patrick J. Mille
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - William J. Tester
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Wm. Kevin Kelly
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Kevin K. Zarrabi
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| |
Collapse
|
32
|
Aparicio B, Theunissen P, Hervas-Stubbs S, Fortes P, Sarobe P. Relevance of mutation-derived neoantigens and non-classical antigens for anticancer therapies. Hum Vaccin Immunother 2024; 20:2303799. [PMID: 38346926 PMCID: PMC10863374 DOI: 10.1080/21645515.2024.2303799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/06/2024] [Indexed: 02/15/2024] Open
Abstract
Efficacy of cancer immunotherapies relies on correct recognition of tumor antigens by lymphocytes, eliciting thus functional responses capable of eliminating tumor cells. Therefore, important efforts have been carried out in antigen identification, with the aim of understanding mechanisms of response to immunotherapy and to design safer and more efficient strategies. In addition to classical tumor-associated antigens identified during the last decades, implementation of next-generation sequencing methodologies is enabling the identification of neoantigens (neoAgs) arising from mutations, leading to the development of new neoAg-directed therapies. Moreover, there are numerous non-classical tumor antigens originated from other sources and identified by new methodologies. Here, we review the relevance of neoAgs in different immunotherapies and the results obtained by applying neoAg-based strategies. In addition, the different types of non-classical tumor antigens and the best approaches for their identification are described. This will help to increase the spectrum of targetable molecules useful in cancer immunotherapies.
Collapse
Affiliation(s)
- Belen Aparicio
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Patrick Theunissen
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
- DNA and RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Sandra Hervas-Stubbs
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Puri Fortes
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
- DNA and RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Spanish Network for Advanced Therapies (TERAV ISCIII), Spain
| | - Pablo Sarobe
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| |
Collapse
|
33
|
Wiseman CL, Holmes JP, Calfa C, Dakhil SR, Bhattacharya S, Peoples GE, Lacher MD, Lopez-Lago M, Kharazi A, Del Priore G, Chang M, Adams DL, Williams WV. Results of a phase I/IIa trial of SV-BR-1-GM inoculation with low-dose cyclophosphamide and interferon alpha (Bria-IMT) in metastatic breast cancer. Hum Vaccin Immunother 2024; 20:2379864. [PMID: 39165083 PMCID: PMC11340742 DOI: 10.1080/21645515.2024.2379864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 08/22/2024] Open
Abstract
This Phase I/IIa open-label, single-arm clinical trial addressing advanced, refractory, metastatic breast cancer was conducted at six medical centers in the United States. We repeated inoculations with irradiated SV-BR-1-GM, a breast cancer cell line with antigen-presenting activity engineered to release granulocyte-macrophage colony-stimulating factor (GM-CSF), with pre-dose low-dose cyclophosphamide and post-dose local interferon alpha. Twenty-six patients were enrolled; 23 (88.5%) were inoculated, receiving a total of 79 inoculations. There were six Grade 4 and one Grade 5 adverse events noted (judged unrelated to SV-BR-1-GM). Disease control (stable disease [SD]) occurred in 8 of 16 evaluable patients; 4 showed objective regression of metastases, including 1 patient with near-complete regressions in 20 of 20 pulmonary lesions. All patients with regressions had human leukocyte antigen (HLA) matches with SV-BR-1-GM; non-responders were equally divided between matching and nonmatching (p = .01, Chi-squared), and having ≥2 HLA matches with SV-BR-1-GM (n = 6) correlated with clinical benefit. Delayed-type hypersensitivity (DTH) testing to candida antigen and SV-BR-1-GM generated positive responses (≥5 mm) in 11 (42.3%) and 13 (50%) patients, respectively. Quantifying peripheral circulating tumor cells (CTCs) and cancer-associated macrophage-like cells (CAMLs) showed that a drop in CAMLs was significantly correlated with an improvement in progression-free survival (PFS; 4.1 months vs. 1.8 months, p = .0058). Eight of 10 patients significantly upregulated programmed cell death ligand 1 (PD-L1) on CTCs/CAMLs with treatment (p = .0012). These observations support the safety of the Bria-IMT regimen, demonstrate clinical regressions, imply a role for HLA matching, and identify a possible value for monitoring CAMLs in peripheral blood.
Collapse
Affiliation(s)
| | - Jarrod P. Holmes
- Hematology Oncology, Providence Medical Group Santa Rosa - Cancer Center, Santa Rosa, CA, USA
| | - Carmen Calfa
- Medical Oncology, University of Miami, Miami, FL, USA
| | | | | | | | | | | | - Alex Kharazi
- Development, BriaCell Therapeutics Corp, Philadelphia, PA, USA
- Discovery, Stemedica Cell Technologies, Inc, San Diego, USA
| | - Giuseppe Del Priore
- Development, BriaCell Therapeutics Corp, Philadelphia, PA, USA
- Obstetrics & Gynecology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Mingjin Chang
- Development, BriaCell Therapeutics Corp, Philadelphia, PA, USA
| | | | | |
Collapse
|
34
|
Erickson SM, Manning BM, Kumar A, Patel MR. Engineered Cellular Therapies for the Treatment of Thoracic Cancers. Cancers (Basel) 2024; 17:35. [PMID: 39796666 PMCID: PMC11718842 DOI: 10.3390/cancers17010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Thoracic malignancies (lung cancers and malignant pleural mesothelioma) are prevalent worldwide and are associated with high morbidity and mortality. Effective treatments are needed for patients with advanced disease. Cell therapies are a promising approach to the treatment of advanced cancers that make use of immune effector cells that have the ability to mediate antitumor immune responses. In this review, we discuss the prospect of chimeric antigen receptor-T (CAR-T) cells, natural killer (NK) cells, T cell receptor-engineered (TCR-T) cells, and tumor-infiltrating lymphocytes (TILs) as treatments for thoracic malignancies. CAR-T cells and TILs have proven successful in several hematologic cancers and advanced melanoma, respectively, but outside of melanoma, results have thus far been unsuccessful in most other solid tumors. NK cells and TCR-T cells are additional cell therapy platforms with their own unique advantages and challenges. Obstacles that must be overcome to develop effective cell therapy for these malignancies include selecting an appropriate target antigen, combating immunosuppressive cells and signaling molecules present in the tumor microenvironment, persistence, and delivering a sufficient quantity of antitumor immune cells to the tumor. Induced pluripotent stem cells (iPSCs) offer great promise as a source for both NK and T cell-based therapies due to their unlimited expansion potential. Here, we review clinical trial data, as well as recent basic scientific advances that offer insight into how we may overcome these obstacles, and provide an overview of ongoing trials testing novel strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Spencer M. Erickson
- Internal Medicine Residency Program, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Benjamin M. Manning
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA (A.K.)
| | - Akhilesh Kumar
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA (A.K.)
| | - Manish R. Patel
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA (A.K.)
| |
Collapse
|
35
|
Wu Y, Xiao Y, Ding Y, Ran R, Wei K, Tao S, Mao H, Wang J, Pang S, Shi J, Zhu C, Wan W, Yang Q, Chen C. Colorectal cancer cell-derived exosomal miRNA-372-5p induces immune escape from colorectal cancer via PTEN/AKT/NF-κB/PD-L1 pathway. Int Immunopharmacol 2024; 143:113261. [PMID: 39353381 DOI: 10.1016/j.intimp.2024.113261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Tumor cells can escape immune surveillance by changing their own escape or expressing abnormal genes and proteins, resulting in unlimited proliferation and invasive growth of cells. These changes are related to microRNAs (miRNAs), which reduce the killing effect of immune cells, devastate the immune response, and interfere with apoptosis through the aberrant expression of relevant miRNAs. In the preliminary phase of this study, miRNAs in clinical plasma exosomes of colorectal cancer patients were differentially analyzed by RNA sequencing technology, and miR-372-5p derived from extracellular vesicles (sEVs) was found to be a key signaling molecule mediating the regulation of macrophages by colorectal cancer (CRC). miRNA-372-5p is upregulated in colorectal cancer patient tissues and serum, as well as colorectal cancer cell lines and their exosomes. Subsequently, we found that macrophages could take up sEV secreted by colorectal cancer cells HCT116, affecting the expression of the immune checkpoint PD-L1, resulting in the generation of a tumor-immunosuppressive microenvironment and suppression of T cell activation in CRC. Gene enrichment mapping and database revealed that miR-372-5p regulates PD-L1 expression in colorectal cancer through the homologous phosphatase-tensin (PTEN)-phosphatidylinositol 3-kinase-protein kinase B (AKT)-nuclear factor-κB (NF-κB) pathway. Further studies confirmed that miRNA-372-5p-treated macrophages co-cultured with T cells affected the regulation of PD-L1 expression through the PTEN/AKT/NF-κB signaling pathway, resulting in decreased CD3+CD8+ T cell activity, decreased cytokine IL-2 and increased IFN-γ. And miRNA-372-5p could down-regulate the expression of PD-L1 in HCT116 through the PTEN/AKT/NF-κB pathway, inhibit tumor cell proliferation and promote apoptosis. Conclusion: Colorectal cancer cell-derived exosome miR-372-5p can be phagocytosed by colorectal cancer and macrophage cells, regulate the expression of PD-L1 in colorectal cancer cells and macrophages by targeting the PTEN/AKT/NF-κB pathway, and induce the immunosuppressive microenvironment of CRC to promote CRC development. This suggests that inhibiting the secretion of HCT116-specific sEV-miR-372-5p or targeting PD-L1 in tumor-associated macrophages could be a novel approach for CRC treatment and possibly a sensitizing approach for CRC anti-PD-L1 therapy.
Collapse
Affiliation(s)
- Yulun Wu
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu medical university, 2600 Donghai Avenue, Bengbu, Anhui 233030, China; Department of Life Sciences, Bengbu Medical University, Anhui 233030, China.
| | - Yuhan Xiao
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu medical university, 2600 Donghai Avenue, Bengbu, Anhui 233030, China; School of Laboratory Medicine, Bengbu Medical University, Anhui 233030, China.
| | - Yongxing Ding
- The Third the Pople's Hospital of Bengbu, Anhui 233000, China.
| | - Ruorong Ran
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu medical university, 2600 Donghai Avenue, Bengbu, Anhui 233030, China.
| | - Ke Wei
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu medical university, 2600 Donghai Avenue, Bengbu, Anhui 233030, China.
| | - Shuang Tao
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu medical university, 2600 Donghai Avenue, Bengbu, Anhui 233030, China.
| | - Huilan Mao
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu medical university, 2600 Donghai Avenue, Bengbu, Anhui 233030, China.
| | - Jing Wang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu medical university, 2600 Donghai Avenue, Bengbu, Anhui 233030, China.
| | - Siyan Pang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu medical university, 2600 Donghai Avenue, Bengbu, Anhui 233030, China.
| | - Jiwen Shi
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu medical university, 2600 Donghai Avenue, Bengbu, Anhui 233030, China.
| | - Chengle Zhu
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu medical university, 2600 Donghai Avenue, Bengbu, Anhui 233030, China.
| | - Wenrui Wan
- Department of Biotechnology, Bengbu Medical University, Anhui 233030, China.
| | - Qingling Yang
- Department of Biochemistry and Molecular Biology, Bengbu Medical University, Anhui 233030, China.
| | - Changjie Chen
- Department of Biochemistry and Molecular Biology, Bengbu Medical University, Anhui 233030, China.
| |
Collapse
|
36
|
Householder KD, Xiang X, Jude KM, Deng A, Obenaus M, Wilson SC, Chen X, Wang N, Garcia KC. De novo design and structure of a peptide-centric TCR mimic binding module. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628822. [PMID: 39763827 PMCID: PMC11702606 DOI: 10.1101/2024.12.16.628822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
T cell receptor (TCR) mimics offer a promising platform for tumor-specific targeting of peptide-MHC in cancer immunotherapy. Here, we designed a de novo α-helical TCR mimic (TCRm) specific for the NY-ESO-1 peptide presented by HLA-A*02, achieving high on-target specificity with nanomolar affinity (Kd = 9.5 nM). The structure of the TCRm/pMHC complex at 2.05 Å resolution revealed a rigid TCR-like docking mode with an unusual degree of focus on the up-facing NY-ESO-1 side chains, suggesting the potential for reduced off-target reactivity. Indeed, a structure-informed in silico screen of 14,363 HLA-A*02 peptides correctly predicted two off-target peptides, yet our TCRm maintained a wide therapeutic window as a T cell engager. These results represent a path for precision targeting of tumor antigens with peptide-focused α-helical TCR mimics.
Collapse
Affiliation(s)
- Karsten D. Householder
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA 94305 USA
- Program in Immunology, Stanford University School of Medicine; Stanford, CA 94305 USA
| | - Xinyu Xiang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA 94305 USA
| | - Kevin M. Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA 94305 USA
| | - Arthur Deng
- Department of Computer Science, Stanford University; Stanford, CA 94305
| | - Matthias Obenaus
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA 94305 USA
| | - Steven C. Wilson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA 94305 USA
| | - Xiaojing Chen
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA 94305 USA
| | - Nan Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA 94305 USA
- Howard Hughes Medical Institute, Stanford University School of Medicine; Stanford, CA 94305
| | - K. Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine; Stanford, CA 94305 USA
- Department of Structural Biology, Stanford University School of Medicine; Stanford, CA 94305
- Howard Hughes Medical Institute, Stanford University School of Medicine; Stanford, CA 94305
| |
Collapse
|
37
|
Duan Z, Li D, Li N, Lin S, Ren H, Hong J, Hinrichs CS, Ho M. CAR-T cells based on a TCR mimic nanobody targeting HPV16 E6 exhibit antitumor activity against cervical cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200892. [PMID: 39524212 PMCID: PMC11546159 DOI: 10.1016/j.omton.2024.200892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/10/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
The E6 and E7 oncoproteins of human papillomavirus (HPV) are considered promising targets for HPV-related cancers. In this study, we evaluated novel T cell receptor mimic (TCRm) nanobodies targeting the E629-38 peptide complexed with human leukocyte antigen (HLA)-A∗02:01 in the chimeric antigen receptor (CAR) format. We isolated two dromedary camel nanobodies, F5 and G9, through phage display screening. F5 bound more efficiently to the complex expressed on cells, including peptide-pulsed T2, overexpressed 293E6, and cervical cancer lines CaSki and SS4050, compared to G9. CAR-T cells based on the F5 nanobody specifically killed target cells, including 293E6, CaSki, and SS4050 in vitro, through activation of nuclear factor of activated T cells (NFAT) and nuclear factor κB (NF-κB) signaling. Importantly, F5 CAR-T cells inhibited the growth of CaSki and SS4050 tumor xenografts in mice. These findings demonstrate that HPV-16+ cervical cancer can be targeted by F5 nanobody-based CAR-T cells, offering a valuable alternative strategy for treating HPV-16+ malignancies.
Collapse
Affiliation(s)
- Zhijian Duan
- Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shaoli Lin
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hua Ren
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica Hong
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Mitchell Ho
- Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
38
|
Zhang P, Chu Q. Identification of BRCA new prognostic targets and neoantigen candidates from fusion genes. Discov Oncol 2024; 15:805. [PMID: 39692896 DOI: 10.1007/s12672-024-01571-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024] Open
Abstract
Cancer-associated gene fusions serve as a potential source of highly immunogenic neoantigens. In this study, we identified fusion proteins from fusion genes and extracted fusion peptides to accurately predict Breast cancer (BRCA) neo-antigen candidates by high-throughput artificial intelligence computation. Firstly, Deepsurv was used to evaluate the prognosis of patients, providing a landscape of prognostic fusion genes in BRCA. Next, AGFusion was utilized to generate full-length fusion protein sequences and annotate functional domains. Advanced neural networks and Transformer-based analyses were implemented to predict the binding of fusion peptides to 112 types of HLA, thereby forming a new immunotherapy candidates' library of BRCA neo-antigens (n = 7791, covering 88.41% of patients). Among them, 15 neo-antigens were validated and factually translated into mass spectrometry data of BRCA patients. Finally, AlphaFold2 was applied to predict the binding sites of these neo-antigens to MHC (HLA) molecules. Notably, we identified a prognostic neoantigen from the TBC1D4-COMMD6 fusion that significantly improves patient prognosis and extensively binds to 16 types of HLA alleles. These highly immunogenic and tumor-specific neoantigens offer emerging targets for personalized cancer immunotherapies and act as prospective predictors for tumor survival prognosis and responses to immune checkpoint therapies.
Collapse
Affiliation(s)
- Pei Zhang
- Beijing Institute of Technology, No.5 South Zhongguancun Rd, Haidian District, Beijing, 100081, China
| | - Qingzhao Chu
- Beijing Institute of Technology, No.5 South Zhongguancun Rd, Haidian District, Beijing, 100081, China.
| |
Collapse
|
39
|
Ayyadurai P, Ragavendran C. Nano-bio-encapsulation of phyto-vaccines: a breakthrough in targeted cancer immunotherapy. Mol Biol Rep 2024; 52:58. [PMID: 39692899 DOI: 10.1007/s11033-024-10164-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
Nano bio-encapsulation of phyto-vaccines for cancer has marked a cutting-edge strategy that brings together nanotechnology with plant-derived vaccines to enhance cancer therapy. Phyto-vaccines, isolated from bioactive compounds found in plants called protein bodies, have been shown to potentially stimulate the immune system to recognise and destroy cancer cells. However, challenges such as poor stability, rapid degradation, and limited bioavailability in the body have hindered their clinical application. Nano bio-encapsulation offers a solution by packaging these phyto-vaccines into nanoscale carriers such as lectins have provided ways to overcome these limitations. They protect the protein bodies from degradation by proteolytic enzymes, enhance targeted delivery to cancer cells, and enable controlled release. This approach not only improves the bio-distribution and potency of the vaccines but also minimizes side effects, making it a highly promising, sustainable, and efficient method for cancer immunotherapy. As research progresses, this technology has the potential to revolutionize cancer treatment by providing safer and more precise therapeutic options. This review focuses on the concept of nano bio-encapsulation of phyto-vaccines for cancer treatment. It explores how nanotechnology can enhance the stability, bioavailability, and targeted delivery of plant-derived vaccines, addressing the limitations of traditional vaccines. The review delves into the potential of this innovative strategy to advance cancer immunotherapy, providing a comprehensive overview of current research and future directions.
Collapse
Affiliation(s)
- Pavithra Ayyadurai
- Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Chinnasamy Ragavendran
- Department of Cariology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai, 600 077, India.
| |
Collapse
|
40
|
Waaga-Gasser AM, Böldicke T. Genetically Engineered T Cells and Recombinant Antibodies to Target Intracellular Neoantigens: Current Status and Future Directions. Int J Mol Sci 2024; 25:13504. [PMID: 39769267 PMCID: PMC11727813 DOI: 10.3390/ijms252413504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Recombinant antibodies and, more recently, T cell receptor (TCR)-engineered T cell therapies represent two immunological strategies that have come to the forefront of clinical interest for targeting intracellular neoantigens in benign and malignant diseases. T cell-based therapies targeting neoantigens use T cells expressing a recombinant complete TCR (TCR-T cell), a chimeric antigen receptor (CAR) with the variable domains of a neoepitope-reactive TCR as a binding domain (TCR-CAR-T cell) or a TCR-like antibody as a binding domain (TCR-like CAR-T cell). Furthermore, the synthetic T cell receptor and antigen receptor (STAR) and heterodimeric TCR-like CAR (T-CAR) are designed as a double-chain TCRαβ-based receptor with variable regions of immunoglobulin heavy and light chains (VH and VL) fused to TCR-Cα and TCR-Cβ, respectively, resulting in TCR signaling. In contrast to the use of recombinant T cells, anti-neopeptide MHC (pMHC) antibodies and intrabodies neutralizing intracellular neoantigens can be more easily applied to cancer patients. However, different limitations should be considered, such as the loss of neoantigens, the modification of antigen peptide presentation, tumor heterogenicity, and the immunosuppressive activity of the tumor environment. The simultaneous application of immune checkpoint blocking antibodies and of CRISPR/Cas9-based genome editing tools to engineer different recombinant T cells with enhanced therapeutic functions could make T cell therapies more efficient and could pave the way for its routine clinical application.
Collapse
Affiliation(s)
- Ana Maria Waaga-Gasser
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Böldicke
- Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
41
|
Cao S, Jia W, Zhao Y, Liu H, Cao J, Li Z. A recent perspective on designing tumor vaccines for tumor immunology. Int Immunopharmacol 2024; 142:113090. [PMID: 39244900 DOI: 10.1016/j.intimp.2024.113090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
With the rapid development of immunotherapy, therapeutic tumor vaccines, which aim to enhance the immunogenicity of tumor cells and activate the patient's immune system to kill tumor cells, as well as eliminate or inhibit tumor growth, have drawn increasing attention in the field of tumor therapy. However, due to the lack of immune cell infiltration, low immunogenicity, immune escape and other problems, the efficacy of tumor vaccine is often limited. Researchers have developed a variety of strategies to enhance tumor immune recognition, such as improving the immunogenicity of tumor antigens, selecting a suitable vaccine platform, or combining tumor vaccines with other anticancer treatments. In this review, we will deliberate on how to overcome the problem of therapeutic tumor vaccines, and discuss the up-to-date progress and achievements in the tumor vaccine development, as well as their future in cancer treatment.
Collapse
Affiliation(s)
- Shougen Cao
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Wenyu Jia
- Department of Endocrinology, Qingdao Municipal Hospital, Qingdao 266071, Shandong, China
| | - Yifan Zhao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071 China
| | - Heng Liu
- School of Nursing, Qingdao University, Qingdao 266071 China
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071 China.
| | - Zequn Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China.
| |
Collapse
|
42
|
Rana PS, Ignatz-Hoover JJ, Guo C, Mosley AL, Malek E, Federov Y, Adams DJ, Driscoll JJ. Immunoproteasome Activation Expands the MHC Class I Immunopeptidome, Unmasks Neoantigens, and Enhances T-cell Anti-Myeloma Activity. Mol Cancer Ther 2024; 23:1743-1760. [PMID: 39210605 PMCID: PMC11612626 DOI: 10.1158/1535-7163.mct-23-0931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/30/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Proteasomes generate antigenic peptides that are presented on the tumor surface to cytotoxic T-lymphocytes. Immunoproteasomes are highly specialized proteasome variants that are expressed at higher levels in antigen-presenting cells and contain replacements of the three constitutive proteasome catalytic subunits to generate peptides with a hydrophobic C-terminus that fit within the groove of MHC class I (MHC-I) molecules. A hallmark of cancer is the ability to evade immunosurveillance by disrupting the antigen presentation machinery and downregulating MHC-I antigen presentation. High-throughput screening was performed to identify compound A, a novel molecule that selectively increased immunoproteasome activity and expanded the number and diversity of MHC-I-bound peptides presented on multiple myeloma cells. Compound A increased the presentation of individual MHC-I-bound peptides by >100-fold and unmasked tumor-specific neoantigens on myeloma cells. Global proteomic integral stability assays determined that compound A binds to the proteasome structural subunit PSMA1 and promotes association of the proteasome activator PA28α/β (PSME1/PSME2) with immunoproteasomes. CRISPR/Cas9 silencing of PSMA1, PSME1, or PSME2 as well as treatment with immunoproteasome-specific suicide inhibitors abolished the effects of compound A on antigen presentation. Treatment of multiple myeloma cell lines and patient bone marrow-derived CD138+ cells with compound A increased the anti-myeloma activity of allogenic and autologous T cells. Compound A was well-tolerated in vivo and co-treatment with allogeneic T cells reduced the growth of myeloma xenotransplants in NOD/SCID gamma mice. Taken together, our results demonstrate the paradigm shifting impact of immunoproteasome activators to diversify the antigenic landscape, expand the immunopeptidome, potentiate T-cell-directed therapy, and reveal actionable neoantigens for personalized T-cell immunotherapy.
Collapse
Affiliation(s)
- Priyanka S. Rana
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - James J. Ignatz-Hoover
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Chunna Guo
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amber L. Mosley
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ehsan Malek
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
- Adult Hematologic Malignancies and Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Yuriy Federov
- Small Molecule Drug Discovery Core, Case Western Reserve University, Cleveland, Ohio
| | - Drew J. Adams
- Small Molecule Drug Discovery Core, Case Western Reserve University, Cleveland, Ohio
| | - James J. Driscoll
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
- Adult Hematologic Malignancies and Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| |
Collapse
|
43
|
Hu W, Bian Y, Ji H. TIL Therapy in Lung Cancer: Current Progress and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409356. [PMID: 39422665 PMCID: PMC11633538 DOI: 10.1002/advs.202409356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/03/2024] [Indexed: 10/19/2024]
Abstract
Lung cancer remains the most prevalent malignant tumor worldwide and is the leading cause of cancer-related mortality. Although immune checkpoint blockade has revolutionized the treatment of advanced lung cancer, many patients still do not respond well, often due to the lack of functional T cell infiltration. Adoptive cell therapy (ACT) using expanded immune cells has emerged as an important therapeutic modality. Tumor-infiltrating lymphocytes (TIL) therapy is one form of ACT involving the administration of expanded and activated autologous T cells derived from surgically resected cancer tissues and reinfusion into patients and holds great therapeutic potential for lung cancer. In this review, TIL therapy is introduced and its suitability for lung cancer is discussed. Then its historical and clinical developments are summarized, and the methods developed up-to-date to identify tumor-recognizing TILs and optimize TIL composition. Some perspectives toward future TIL therapy for lung cancer are also provided.
Collapse
Affiliation(s)
- Weilei Hu
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- Key Laboratory of Multi‐Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yifei Bian
- Key Laboratory of Multi‐Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hongbin Ji
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- Key Laboratory of Multi‐Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
- School of Life Science and TechnologyShanghai Tech UniversityShanghai200120China
| |
Collapse
|
44
|
Trautmann T, Yakobian N, Nguyen R. CAR T-cells for pediatric solid tumors: where to go from here? Cancer Metastasis Rev 2024; 43:1445-1461. [PMID: 39317919 PMCID: PMC11554711 DOI: 10.1007/s10555-024-10214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Despite the great success that chimeric antigen receptor (CAR) T-cells have had in patients with B-cell malignancies and multiple myeloma, they continue to have limited efficacy against most solid tumors. Especially in the pediatric population, pre- and post-treatment biopsies are rarely performed due to ethical reasons, and thus, our understanding is still very limited regarding the mechanisms in the tumor microenvironment by which tumor cells exclude effectors and attract immune-suppressive cells. Nevertheless, based on the principles that are known, current T-cell engineering has leveraged some of these processes and created more potent CAR T-cells. The recent discovery of new oncofetal antigens and progress made in CAR design have expanded the potential pool of candidate antigens for therapeutic development. The most promising approaches to enhance CAR T-cells are novel CAR gating strategies, creative ways of cytokine delivery to the TME without enhancing systemic toxicity, and hijacking the chemokine axis of tumors for migratory purposes. With these new modifications, the next step in the era of CAR T-cell development will be the clinical validation of these promising preclinical findings.
Collapse
Affiliation(s)
- Tina Trautmann
- Pediatric Oncology Branch, NCI, NIH, NCI, 10 Center Drive, 1W-5832, Bethesda, MD, 20892, USA
| | - Natalia Yakobian
- Pediatric Oncology Branch, NCI, NIH, NCI, 10 Center Drive, 1W-5832, Bethesda, MD, 20892, USA
| | - Rosa Nguyen
- Pediatric Oncology Branch, NCI, NIH, NCI, 10 Center Drive, 1W-5832, Bethesda, MD, 20892, USA.
| |
Collapse
|
45
|
Fang XL, Cao XP, Xiao J, Hu Y, Chen M, Raza HK, Wang HY, He X, Gu JF, Zhang KJ. Overview of role of survivin in cancer: expression, regulation, functions, and its potential as a therapeutic target. J Drug Target 2024; 32:223-240. [PMID: 38252514 DOI: 10.1080/1061186x.2024.2309563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/11/2023] [Indexed: 01/24/2024]
Abstract
Survivin holds significant importance as a member of the inhibitor of apoptosis protein (IAP) family due to its predominant expression in tumours rather than normal terminally differentiated adult tissues. The high expression level of survivin in tumours is closely linked to chemotherapy resistance, heightened tumour recurrence, and increased tumour aggressiveness and serves as a negative prognostic factor for cancer patients. Consequently, survivin has emerged as a promising therapeutic target for cancer treatment. In this review, we delve into the various biological characteristics of survivin in cancers and its pivotal role in maintaining immune system homeostasis. Additionally, we explore different therapeutic strategies aimed at targeting survivin.
Collapse
Affiliation(s)
- Xian-Long Fang
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
| | - Xue-Ping Cao
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
| | - Jun Xiao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yun Hu
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
| | - Mian Chen
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
| | - Hafiz Khuram Raza
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
| | - Huai-Yuan Wang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xu He
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jin-Fa Gu
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
| | - Kang-Jian Zhang
- Academician Expert Workstation of Fengxian District, Shanghai Yuansong Biotechnology Limited Company, Shanghai, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
46
|
Ishwar D, Premachandran S, Das S, Venkatakrishnan K, Tan B. Profiling Breast Tumor Heterogeneity and Identifying Breast Cancer Subtypes Through Tumor-Associated Immune Cell Signatures and Immuno Nano Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406475. [PMID: 39460487 DOI: 10.1002/smll.202406475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Breast cancer is a complex and heterogeneous disease with varying cellular, genetic, epigenetic, and molecular expressions. The detection of intratumor heterogeneity in breast cancer poses significant challenges due to its complex multifaceted characteristics, yet its identification is crucial for guiding effective treatment decisions and understanding the disease progression. Currently, there exists no method capable of capturing the full extent of breast tumor heterogeneity. In this study, the aim is to identify and characterize metabolic heterogeneity in breast tumors using immune cells and an ultrafast laser-fabricated Immuno Nano Sensor. Combining spectral markers from both Natural Killer (NK) and T cells, a machine-learning approach is implemented to distinguish cancer from healthy samples, identify primary versus metastatic tumors, and determine estrogen receptor (ER)/progesterone receptor (PR) status at the single-cell level. The platform successfully distinguished heterogeneous breast cancer samples from healthy individuals, achieving 97.8% sensitivity and 92.2% specificity, and accurately identified primary tumors from metastatic tumors. Characteristic spectral signatures allow for discrimination between ER/PR-positive and negative tumors with 97.5% sensitivity. This study demonstrates the potential of immune cell-based metabolic profiling in providing a comprehensive assessment of breast tumor heterogeneity and paving the way for minimally invasive liquid biopsy approaches in breast cancer diagnosis and management.
Collapse
Affiliation(s)
- Deeptha Ishwar
- Faculty of Dentistry, Department of Stomatology, University of Montreal, Montreal, Quebec, H3T 1J4, Canada
| | - Srilakshmi Premachandran
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Sunit Das
- Department of Surgery, Division of Neurosurgery, University of Toronto, 30 Bond Street, Toronto, M5B1W8, Canada
| | - Krishnan Venkatakrishnan
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada
| | - Bo Tan
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada
| |
Collapse
|
47
|
Haus-Cohen M, Reiter Y. Harnessing antibody-mediated recognition of the intracellular proteome with T cell receptor-like specificity. Front Immunol 2024; 15:1486721. [PMID: 39650646 PMCID: PMC11621052 DOI: 10.3389/fimmu.2024.1486721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024] Open
Abstract
The clinical success of cancer immunotherapy has driven ongoing efforts to identify novel targets that can effectively guide potent effector functions to eliminate malignant cells. Traditionally, immunotherapies have focused on surface antigens; however, these represent only a small fraction of the cancer proteome, limiting their therapeutic potential. In contrast, the majority of proteins within the human proteome are intracellular, yet they are represented on the cell surface as short peptides presented by MHC class I molecules. These peptide-MHC complexes offer a vast and largely untapped resource for cancer immunotherapy targets. The intracellular proteome, including neo-antigens, presents an exciting opportunity for the development of novel cell-based and soluble immunotherapies. Targeting these intracellular-derived peptide-MHC molecules on malignant cell surfaces can be achieved using specific T-cell receptors (TCRs) or TCR-mimicking antibodies, known as TCR-like (TCRL) antibodies. Current therapeutic strategies under investigation include adoptive cell transfer of TCR-engineered or TCRL-T cells and CAR-T cells that target peptide-MHC complexes, as well as soluble TCR- and TCRL-based agents like bispecific T cell engagers. Recent clinical developments in targeting the intracellular proteome using TCRL- and TCR-based molecules have shown promising results, with two therapies recently receiving FDA approval for the treatment of unresectable or metastatic uveal melanoma and synovial sarcoma. This review focuses on the processes for selecting and isolating TCR- and TCRL-based targeting moieties, with an emphasis on pre-clinical and clinical studies that explore the potential of peptide-MHC targeting agents in cancer immunotherapy.
Collapse
Affiliation(s)
| | - Yoram Reiter
- Laboratory of Molecular Immunology and Immunotherapy, Faculty of Biology Technion
– Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
48
|
Li G, Schnell D, Bhattacharjee A, Yarmarkovich M, Salomonis N. Quantifying tumor specificity using Bayesian probabilistic modeling for drug and immunotherapeutic target discovery. CELL REPORTS METHODS 2024; 4:100900. [PMID: 39515334 PMCID: PMC11705768 DOI: 10.1016/j.crmeth.2024.100900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
In diseases such as cancer, the design of new therapeutic strategies requires extensive, costly, and unfortunately sometimes deadly testing to reveal life threatening off-target effects. We hypothesized that the disease specificity of targets can be systematically learned for all genes by jointly evaluating complementary molecular measurements of healthy tissues using a hierarchical Bayesian modeling approach. Our method, BayesTS, integrates protein and gene expression evidence and includes tunable parameters to moderate tissue essentiality. Applied to all protein coding genes, BayesTS outperforms alternative strategies to define therapeutic targets and nominates previously unknown targets while allowing for incorporation of new types of modalities. To expand target repertoires, we show that extension of BayesTS to splicing antigens and combinatorial target pairs results in more specific targets for therapy. We expect that BayesTS will facilitate improved target prioritization for oncology drug development, ultimately leading to the discovery of more effective and safer treatments.
Collapse
Affiliation(s)
- Guangyuan Li
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Biomedical Informatics, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA.
| | - Daniel Schnell
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Anukana Bhattacharjee
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mark Yarmarkovich
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Biomedical Informatics, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
49
|
Remsik J, Boire A. T cells standing at the gates of brain metastasis. Immunity 2024; 57:2491-2493. [PMID: 39536714 DOI: 10.1016/j.immuni.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Insufficient influx of T cells into the tumor microenvironment, including brain metastasis, dramatically limits efficacy of conventional immunotherapy. In this issue of Immunity, Messmer et al. interrogate spatiotemporal dependencies of melanoma brain metastasis T cell infiltration by intravital microscopy. They find that T cells enter these brain tumors through peritumoral venous vessels and can be stimulated with immunotherapy.
Collapse
Affiliation(s)
- Jan Remsik
- Laboratory for Immunology of Metastatic Ecosystems, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Adrienne Boire
- Human Oncology & Pathogenesis, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
50
|
Casciano F, Caruso L, Zauli E, Gonelli A, Zauli G, Vaccarezza M. Emerging Mechanisms of Physical Exercise Benefits in Adjuvant and Neoadjuvant Cancer Immunotherapy. Biomedicines 2024; 12:2528. [PMID: 39595094 PMCID: PMC11591576 DOI: 10.3390/biomedicines12112528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
The primary factors that can be modified in one's lifestyle are the most influential determinants and significant preventable causes of various types of cancer. Exercise has demonstrated numerous advantages in preventing cancer and aiding in its treatment. However, the precise mechanisms behind these effects are still not fully understood. To contribute to our comprehension of exercise's impact on cancer immunotherapy and provide recommendations for future research in exercise oncology, we will examine the roles and underlying mechanisms of exercise on immune cells. In addition to reducing the likelihood of developing cancer, exercise can also improve the effectiveness of certain approved anticancer treatments, such as targeted therapy, immunotherapy, and radiotherapy. Exercise is a pivotal modulator of the immune response, and thus, it can play an emerging important role in new immunotherapies. The mechanisms responsible for these effects involve the regulation of intra-tumoral angiogenesis, myokines, adipokines, their associated pathways, cancer metabolism, and anticancer immunity. Our review assesses the potential of physical exercise as an adjuvant/neoadjuvant tool, reducing the burden of cancer relapse, and analyzes emerging molecular mechanisms predicting favorable adjuvanticity effects.
Collapse
Affiliation(s)
- Fabio Casciano
- Department of Environmental Sciences and Prevention and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Lorenzo Caruso
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Arianna Gonelli
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Mauro Vaccarezza
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|