1
|
Muraoka S, Baba T, Akazawa T, Katayama KI, Kusumoto H, Yamashita S, Kohjimoto Y, Iwabuchi S, Hashimoto S, Hara I, Inoue N. Tumor-derived lactic acid promotes acetylation of histone H3K27 and differentiation of IL-10-producing regulatory B cells through direct and indirect signaling pathways. Int J Cancer 2025; 156:840-852. [PMID: 39482832 DOI: 10.1002/ijc.35229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024]
Abstract
Tumor cells are known to enhance glycolysis, even under normoxic conditions, via the Warburg effect, producing excess lactic acid in the tumor microenvironment. Lactic acid enhances the IL-23/IL-17 pathway and induces chronic inflammation. The acidic microenvironment formed by lactic acid suppresses immune cell proliferation and activation. In the present study, we clarified that lactic acid had two novel activities for immune cells. First, lactic acid specifically enhanced acetylation at lysine 27 of histone H3 (H3K27ac) in splenic B cells and monocytes/macrophages, and this epigenetically up-regulates the expression of genes. Acetylation and methylation of other residues of histone H3 were rarely induced. Second, lactic acid induced a particularly-marked enhancement of Il10 gene expression in B cells, leading to an increase in IL-10-producing regulatory B (Breg) cells. Furthermore, two pathways should be involved in both the enhancement of H3K27ac and the induction of Breg cells by lactic acid: a direct pathway that enhances the CD40 signal in B cells, and an indirect pathway that affects B cells by activating the exchange protein directly activated by cAMP (EPAC) 1/2 in non-B cells. In tumor-bearing mice, the levels of H3K27ac of tumor-infiltrating B cells were significantly higher than splenic B cells and were suppressed by intraperitoneal injection of the EPAC1/2 inhibitor. In conclusion, tumor-derived lactic acid increases H3K27ac and IL-10-producing Breg cells, causing the suppression of anti-tumor immunity.
Collapse
Affiliation(s)
- Satoshi Muraoka
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - Takashi Baba
- Department of Molecular Genetics, Wakayama Medical University, Wakayama, Japan
| | - Takashi Akazawa
- Department of Cancer Drug Discovery and Development, Research Center, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan
| | - Kei-Ichi Katayama
- Department of Molecular Genetics, Wakayama Medical University, Wakayama, Japan
| | - Hiroki Kusumoto
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | | | - Yasuo Kohjimoto
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Wakayama Medical University, Wakayama, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Wakayama Medical University, Wakayama, Japan
| | - Isao Hara
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - Norimitsu Inoue
- Department of Molecular Genetics, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
2
|
Zeng Y, Huang Y, Tan Q, Peng L, Wang J, Tong F, Dong X. Influence of lactate in resistance to anti‑PD‑1/PD‑L1 therapy: Mechanisms and clinical applications (Review). Mol Med Rep 2025; 31:48. [PMID: 39670310 DOI: 10.3892/mmr.2024.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/01/2024] [Indexed: 12/14/2024] Open
Abstract
Metabolic reprogramming is a prominent characteristic of tumor cells, evidenced by heightened secretion of lactate, which is linked to tumor progression. Furthermore, the accumulation of lactate in the tumor microenvironment (TME) influences immune cell activity, including the activity of macrophages, dendritic cells and T cells, fostering an immunosuppressive milieu. Anti‑programmed cell death protein 1 (PD‑1)/programmed death‑ligand 1 (PD‑L1) therapy is associated with a prolonged survival time of patients with non‑small cell lung cancer. However, some patients still develop resistance to anti‑PD‑1/PD‑L1 therapy. Lactate is associated with resistance to anti‑PD‑1/PD‑L1 therapy. The present review summarizes what is known about lactate metabolism in tumor cells and how it affects immune cell function. In addition, the present review emphasizes the relationship between lactate secretion and immunotherapy resistance. The present review also explores the potential for targeting lactate within the TME to enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Yi Zeng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yu Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qiaoyun Tan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ling Peng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jian Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
3
|
Jiang Z, Xiong N, Yan R, Li ST, Liu H, Mao Q, Sun Y, Shen S, Ye L, Gao P, Zhang P, Jia W, Zhang H. PDHX acetylation facilitates tumor progression by disrupting PDC assembly and activating lactylation-mediated gene expression. Protein Cell 2025; 16:49-63. [PMID: 39311688 DOI: 10.1093/procel/pwae052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/29/2024] [Indexed: 01/07/2025] Open
Abstract
Deactivation of the mitochondrial pyruvate dehydrogenase complex (PDC) is important for the metabolic switching of cancer cell from oxidative phosphorylation to aerobic glycolysis. Studies examining PDC activity regulation have mainly focused on the phosphorylation of pyruvate dehydrogenase (E1), leaving other post-translational modifications largely unexplored. Here, we demonstrate that the acetylation of Lys 488 of pyruvate dehydrogenase complex component X (PDHX) commonly occurs in hepatocellular carcinoma, disrupting PDC assembly and contributing to lactate-driven epigenetic control of gene expression. PDHX, an E3-binding protein in the PDC, is acetylated by the p300 at Lys 488, impeding the interaction between PDHX and dihydrolipoyl transacetylase (E2), thereby disrupting PDC assembly to inhibit its activation. PDC disruption results in the conversion of most glucose to lactate, contributing to the aerobic glycolysis and H3K56 lactylation-mediated gene expression, facilitating tumor progression. These findings highlight a previously unrecognized role of PDHX acetylation in regulating PDC assembly and activity, linking PDHX Lys 488 acetylation and histone lactylation during hepatocellular carcinoma progression and providing a potential biomarker and therapeutic target for further development.
Collapse
Affiliation(s)
- Zetan Jiang
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Nanchi Xiong
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
- Insitute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| | - Ronghui Yan
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shi-Ting Li
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
| | - Haiying Liu
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qiankun Mao
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yuchen Sun
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shengqi Shen
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
| | - Ling Ye
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Ping Gao
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
| | - Pinggen Zhang
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Weidong Jia
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Huafeng Zhang
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
- Insitute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| |
Collapse
|
4
|
Muto S, Ozaki Y, Yamaguchi H, Watanabe M, Okabe N, Matsumura Y, Hamada K, Suzuki H. Tumor β-Catenin Expression Associated With Poor Prognosis to Anti-PD-1 Antibody Monotherapy in Non-small Cell Lung Cancer. CANCER DIAGNOSIS & PROGNOSIS 2025; 5:32-41. [PMID: 39758230 PMCID: PMC11696345 DOI: 10.21873/cdp.10409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/07/2025]
Abstract
Background/Aim Tumor intrinsic β-catenin signaling has been reported to influence the tumor immune microenvironment and may be a resistance mechanism to immune checkpoint inhibitors in various cancers. Patients and Methods We studied the association between tumor β-catenin expression and survival in 50 patients with non-small cell lung cancer (NSCLC) treated with anti-programmed death-1 antibody monotherapy. Tumor β-catenin expression was evaluated by immunohistochemistry. Results Patients with positive tumor β-catenin expression (20% of all patients) had worse progression-free survival and overall survival compared with those with negative tumor β-catenin expression. Patients with positive tumor β-catenin expression had reduced CD8+ cell and CD11c+ cell infiltration into tumor nests than those with negative tumor β-catenin expression. RT-PCR of tumor tissue revealed that patients with positive tumor β-catenin expression showed lower gene expression of CD8A, CD4, IFN-γ, BATF3, and CCL4. Knockdown of CTNNB1 tended to increase CCL4 expression, likely mediated by ATF3, in a lung cancer cell line with positive β-catenin expression. Conclusion NSCLC patients with positive tumor β-catenin expression that were treated with anti-programmed death-1 antibody monotherapy had poor prognosis.
Collapse
Affiliation(s)
- Satoshi Muto
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Yuki Ozaki
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Hikaru Yamaguchi
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Masayuki Watanabe
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Naoyuki Okabe
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Yuki Matsumura
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Kazuyuki Hamada
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Hiroyuki Suzuki
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
5
|
Liu X, Xu D, Zhou C, Zhong Y, Geng H, Huang C, Shen Y, Xia X, Wang C, Zhu C, Cao H. Association of PD-1 + Treg/PD-1 + CD8 ratio and tertiary lymphoid structures with prognosis and response in advanced gastric cancer patients receiving preoperative treatment. J Transl Med 2024; 22:1152. [PMID: 39731106 DOI: 10.1186/s12967-024-05867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/08/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Recent studies have highlighted the distinct ratio of PD-1 + Treg/PD-1 + CD8 for prognosis prediction. However, it remains unclear about the association of this ratio and tertiary lymphoid structures (TLS) with prognosis and response to neoadjuvant or conversion therapy in advanced gastric cancer. METHODS Firstly, fresh postoperative samples from 68 gastric cancer patients in Renji Hospital were collected. Meanwhile, immune cell infiltration as well as clinical prognosis analysis were conducted. Subsequently, we further systematically evaluated flow cytometry analysis of tumor samples and TLS expression in 38 gastric cancer patients with different response situations after neoadjuvant therapy. Also, a Renji conversion therapy cohort including 10 patients with complete matching samples before and after treatment was established to receive RNA sequencing analysis and multiplex immunohistochemistry (mIHC) tests. The corresponding TLS score and immune cell infiltration were further compared based on therapeutic response variations. RESULTS In general, the ratio of PD-1 + Treg/PD-1 + CD8>1 could be regarded as an independent predictor of prognosis in advanced gastric cancer patients. Moreover, PD-1 + Treg/PD-1 + CD8 < 1 and high expression of TLS could indicate better neoadjuvant therapy response and extended survival time in advanved gastric cancer patients. Besides, PD-1 + Treg/PD-1 + CD8 low &TLS high group could predict better progression free survival time (PFS) in complete response (CR) subgroup. In response group after conversion therapy, the number of PD-1 + CD8 + T cells significantly increased, mainly occurring outside the TLSs. Meanwhile, the TLSs were also considerably activated as we could observed. CONCLUSIONS This study underlined that combining PD-1 + Treg/PD-1 + CD8 ratio and TLS were significantly associated with prognosis and preoperative treatment response in advanced gastric cancer. Inspiringly, these indicators have the potential to elucidate the immune balance of advanced gastric cancer patients and can accurately guide subsequent therapeutic strategies.
Collapse
Affiliation(s)
- Xu Liu
- Department of Gastrointestinal Surgery, School of Medicine, RenJi Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Pudong New Area, Shanghai, 200025, China
| | - Danhua Xu
- Department of Gastrointestinal Surgery, School of Medicine, RenJi Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Pudong New Area, Shanghai, 200025, China
| | - Chengbei Zhou
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200025, China
| | - Yiqing Zhong
- Department of Gastrointestinal Surgery, School of Medicine, RenJi Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Pudong New Area, Shanghai, 200025, China
| | - Haigang Geng
- Department of Gastrointestinal Surgery, School of Medicine, RenJi Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Pudong New Area, Shanghai, 200025, China
| | - Chen Huang
- Department of Gastrointestinal Surgery, School of Medicine, RenJi Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Pudong New Area, Shanghai, 200025, China
| | - Yanying Shen
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200025, China
| | - Xiang Xia
- Department of Gastrointestinal Surgery, School of Medicine, RenJi Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Pudong New Area, Shanghai, 200025, China
| | - Chaojie Wang
- Department of Gastrointestinal Surgery, School of Medicine, RenJi Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Pudong New Area, Shanghai, 200025, China
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, School of Medicine, RenJi Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Pudong New Area, Shanghai, 200025, China.
| | - Hui Cao
- Department of Gastrointestinal Surgery, School of Medicine, RenJi Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Pudong New Area, Shanghai, 200025, China.
| |
Collapse
|
6
|
Griffin KV, Saunders MN, Lyssiotis CA, Shea LD. Engineering immunity using metabolically active polymeric nanoparticles. Trends Biotechnol 2024:S0167-7799(24)00345-7. [PMID: 39732608 DOI: 10.1016/j.tibtech.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/30/2024]
Abstract
Immune system functions play crucial roles in both health and disease, and these functions are regulated by their metabolic programming. The field of immune engineering has emerged to develop therapeutic strategies, including polymeric nanoparticles (NPs), that can direct immune cell phenotype and function by directing immunometabolic changes. Precise control of bioenergetic processes may offer the opportunity to prevent undesired immune activity and improve disease-specific outcomes. In this review we discuss the role that polymeric NPs can play in shaping immunometabolism and subsequent immune system activity through particle-mediated delivery of metabolically active agents as either structural components or cargo.
Collapse
Affiliation(s)
- Kate V Griffin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Michael N Saunders
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Xue Q, Peng W, Zhang S, Wei X, Ye L, Wang Z, Xiang X, Liu Y, Wang H, Zhou Q. Lactylation-driven TNFR2 expression in regulatory T cells promotes the progression of malignant pleural effusion. J Immunother Cancer 2024; 12:e010040. [PMID: 39721754 DOI: 10.1136/jitc-2024-010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Although tumor necrosis factor receptor 2 (TNFR2) has been recognized as an attractive next-generation candidate target for cancer immunotherapy, the factors that regulate the gene expression and their mechanistic effects on tumor-infiltrating regulatory T cells (Treg cells) remain poorly understood. METHODS Single-cell RNA sequencing analysis was employed to analyze the phenotypic and functional differences between TNFR2+ Treg cells and TNFR2- Treg cells. Malignant pleural effusion (MPE) from humans and mouse was used to investigate the potential mechanisms by which lactate regulates TNFR2 expression. RESULTS Treg cells with high TNFR2 expression exhibited elevated levels of immune checkpoint molecules. Additionally, the high expression of TNFR2 on Treg cells was positively correlated with a poor prognosis in MPE patients. Moreover, we revealed that lactate upregulated TNFR2 expression on Treg cells, thereby enhancing their immunosuppressive function in MPE. Mechanistically, lactate modulated the gene transcription of transcription factor nuclear factor-κB p65 (NF-κB p65) through histone H3K18 lactylation (H3K18la), subsequently upregulating the gene expression of TNFR2 and expediting the progression of MPE. Notably, lactate metabolism blockade combined with immune checkpoint blockade (ICB) therapy effectively enhanced the efficacy of ICB therapy, prolonged the survival time of MPE mice, and improved immunosuppression in the microenvironment of MPE. CONCLUSIONS The study explains the mechanism that regulates TNFR2 expression on Treg cells and its function in MPE progression, providing novel insights into the epigenetic regulation of tumor development and metabolic strategies for MPE treatment by targeting lactate metabolism in Treg cells.
Collapse
Affiliation(s)
- Qianqian Xue
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbei Peng
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Siyu Zhang
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoshan Wei
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Linlin Ye
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Wang
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Xiang
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Liu
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Haolei Wang
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Feng B, Li R, Li W, Tang L. Metabolic immunoengineering approaches to enhance CD8 + T cell-based cancer immunotherapy. Cell Syst 2024; 15:1225-1244. [PMID: 39701038 DOI: 10.1016/j.cels.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/24/2024] [Accepted: 11/14/2024] [Indexed: 12/21/2024]
Abstract
Many cancer immunotherapies rely on robust CD8+ T cells capable of eliminating cancer cells and establishing long-term tumor control. Recent insights into immunometabolism highlight the importance of nutrients and metabolites in T cell activation and differentiation. Within the tumor microenvironment (TME), CD8+ tumor-infiltrating lymphocytes (TILs) undergo metabolic adaptations to survive but compromise their effector function and differentiation. Targeting metabolism holds promise for enhancing CD8+ T cell-mediated antitumor immunity. Here, we overview the metabolic features of CD8+ TILs and their impact on T cell effector function and differentiation. We also highlight immunoengineering strategies by leveraging the Yin-Yang of metabolic modulation for improving cancer immunotherapy.
Collapse
Affiliation(s)
- Bing Feng
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Institute of Materials Science & Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Rongrong Li
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Weilin Li
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Li Tang
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Institute of Materials Science & Engineering, EPFL, 1015 Lausanne, Switzerland.
| |
Collapse
|
9
|
Yang C, Zha M, Li L, Qiao J, Kwok LY, Wang D, Chen Y. Bifidobacterium animalis ssp. lactis BX-245-fermented milk alleviates tumor burden in mice with colorectal cancer. J Dairy Sci 2024:S0022-0302(24)01268-2. [PMID: 39694256 DOI: 10.3168/jds.2024-25614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/08/2024] [Indexed: 12/20/2024]
Abstract
Colorectal cancer (CRC) arises from the accumulation of abnormal mutations in colorectal cells during prolonged inflammation. This study aimed to investigate the potential of probiotic fermented milk containing the probiotic strain, Bifidobacterium animalis ssp. lactis BX-245 (BX-245), in alleviating tumor burden in CRC mice induced by azoxymethane and dextran sodium sulfate. The study monitored changes in tumor size and number, gut microbiota, metabolomics, and inflammation levels before and after the intervention. Our findings indicate that intragastric administration of BX245-fermented milk effectively modulated the intratumor microbiota, as well as the gut microbiota and its metabolism. We also observed a decreased relative abundance of intratumor Akkermansia in the CRC mice, while the intratumor Parabacteroides exhibited a significant positive correlation with tumor number and weight. Moreover, administering BX245-fermented milk significantly reduced gut barrier permeability, alleviated gut barrier damage, and increased serum interleukin-2 and interferon-γ levels compared with the ordinary fermented milk group. Collectively, our data suggest that administering probiotic fermented milk containing specific functional strains like BX245 could result in a reduction in tumor burden in CRC mice. Conversely, ordinary fermented milk did not show the same tumor-inhibiting effects. The current results are preliminary, and further confirmation is necessary to establish the causal relationship among probiotic milk, changes in gut microbiota, and disease alleviation.
Collapse
Affiliation(s)
- Chengcong Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Musu Zha
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Lu Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Jiaqi Qiao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Dandan Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Yongfu Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China.
| |
Collapse
|
10
|
Liu Z, Dai B, Bao J, Pan Y. T cell metabolism in kidney immune homeostasis. Front Immunol 2024; 15:1498808. [PMID: 39737193 PMCID: PMC11684269 DOI: 10.3389/fimmu.2024.1498808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Kidney immune homeostasis is intricately linked to T cells. Inappropriate differentiation, activation, and effector functions of T cells lead to a spectrum of kidney disease. While executing immune functions, T cells undergo a series of metabolic rewiring to meet the rapid energy demand. The key enzymes and metabolites involved in T cell metabolism metabolically and epigenetically modulate T cells' differentiation, activation, and effector functions, thereby being capable of modulating kidney immune homeostasis. In this review, we first summarize the latest advancements in T cell immunometabolism. Second, we outline the alterations in the renal microenvironment under certain kidney disease conditions. Ultimately, we highlight the metabolic modulation of T cells within kidney immune homeostasis, which may shed light on new strategies for treating kidney disease.
Collapse
Affiliation(s)
- Zikang Liu
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Binbin Dai
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Jiwen Bao
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yangbin Pan
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
11
|
Aokage K, Koyama S, Kumagai S, Nomura K, Shimada Y, Yoh K, Wakabayashi M, Fukutani M, Furuya H, Miyoshi T, Tane K, Samejima J, Taki T, Hayashi T, Matsubayashi J, Ishii G, Nishikawa H, Ikeda N, Tsuboi M. Efficacy, Safety, and Influence on the Tumor Microenvironment of Neoadjuvant Pembrolizumab plus Ramucirumab for PD-L1-Positive NSCLC: A Phase II Trial (EAST ENERGY). Clin Cancer Res 2024; 30:5584-5592. [PMID: 39453771 DOI: 10.1158/1078-0432.ccr-24-1561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/19/2024] [Accepted: 10/23/2024] [Indexed: 10/27/2024]
Abstract
PURPOSE Angiogenesis inhibitors are known to modify tumor immunity. Combination of angiogenesis inhibitors with immune checkpoint inhibitors has shown efficacy against many types of cancers, including non-small cell lung cancer (NSCLC). We investigated the feasibility of neoadjuvant therapy with pembrolizumab and ramucirumab, a VEGFR-2 antagonist for patients with PD-L1-positive NSCLC, and its influence on the tumor microenvironment. PATIENTS AND METHODS Patients with pathologically proven, PD-L1-positive, clinical stage IB to IIIA NSCLC were eligible. Patients received two cycles of pembrolizumab (200 mg/body) and ramucirumab (10 mg/kg) every 3 weeks. Surgery was scheduled 4 to 8 weeks after the last dose. The primary endpoint was the major pathologic response rate by a blinded independent pathologic review. The sample size was 24 patients. Exploratory endpoints were evaluated to elucidate the effects of neoadjuvant therapy on the tumor microenvironment. RESULTS The 24 eligible patients were enrolled between July 2019 and April 2022. The major pathologic response rate was 50.0% (90% confidence interval, 31.9%-68.1%). Six patients showed pathologic complete response. Grade 3 adverse events (AE) occurred in nine patients (37.5%), including three immune-related AEs (acute tubulointerstitial nephritis in two cases and polymyalgia rheumatica in one case). There were no grade 4 or 5 AEs. The transcriptome and multiplex IHC results suggested that tumors with greater CD8+ T-cell infiltration and higher expression of effector molecules at the baseline could show better sensitivity to treatment. CONCLUSIONS This new neoadjuvant combination of pembrolizumab plus ramucirumab was feasible, and anti-VEGF agents may enhance the effects of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Keiju Aokage
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shohei Koyama
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Shogo Kumagai
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Kotaro Nomura
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | | | - Kiyotaka Yoh
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Masashi Wakabayashi
- Clinical Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Miki Fukutani
- Clinical Research Center, Hiroshima University Hospital, Hiroshima, Japan
| | - Hideki Furuya
- Clinical Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tomohiro Miyoshi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kenta Tane
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Joji Samejima
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tetsuro Taki
- Development of Pathology and Clinical Laboratories, National Cancer Center, Kashiwa, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Jun Matsubayashi
- Division of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan
| | - Genichiro Ishii
- Development of Pathology and Clinical Laboratories, National Cancer Center, Kashiwa, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Norihiko Ikeda
- Department of Surgery, Tokyo Medical University, Tokyo, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
12
|
Huang T, Li F, Wang Y, Gu J, Lu L. Regulatory T cell: A promising therapeutic target in tumor microenvironment. Chin Med J (Engl) 2024:00029330-990000000-01367. [PMID: 39679474 DOI: 10.1097/cm9.0000000000003450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Indexed: 12/17/2024] Open
Abstract
ABSTRACT Regulatory T cell (Tregs) predominantly maintain the immune balance and prevent autoimmunity via their immunosuppressive functions. However, tumor-infiltrating Tregs (TI-Tregs) may mediate tumor immune tolerance in complex tumor microenvironments, resulting in poor prognosis. Distinguishing specific TI-Treg subpopulations from peripheral Tregs and intratumoral conventional T cells (Tconvs) has recently emerged as an important topic in antitumor therapy. In this review, we summarize novel therapeutic approaches targeting both the metabolic pathways and hallmarks of TI-Tregs in preclinical and clinical studies. Although the phenotypic and functional diversity of TI-Tregs remains unclear, our review provides new insights into TI-Treg-based therapies and facilitates precision medicine for tumor treatment.
Collapse
Affiliation(s)
- Tianning Huang
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210029, China
| | - Fan Li
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210029, China
| | - Yiming Wang
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210029, China
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jian Gu
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210029, China
| | - Ling Lu
- Department of Plastic and Cosmetic Surgery of the Affiliated Friendship Plastic Surgery Hospital & Hepatobiliary Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210029, China
- Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221011, China
| |
Collapse
|
13
|
Ren N, Zhang H, Li T, Ji H, Zhang Z, Wu H. ATP5J regulates microglial activation via mitochondrial dysfunction, exacerbating neuroinflammation in intracerebral hemorrhage. Front Immunol 2024; 15:1509370. [PMID: 39735538 PMCID: PMC11671693 DOI: 10.3389/fimmu.2024.1509370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/02/2024] [Indexed: 12/31/2024] Open
Abstract
Microglial-mediated neuroinflammation is crucial in the pathophysiological mechanisms of secondary brain injury (SBI) following intracerebral hemorrhage (ICH). Mitochondria are central regulators of inflammation, influencing key pathways such as alternative splicing, and play a critical role in cell differentiation and function. Mitochondrial ATP synthase coupling factor 6 (ATP5J) participates in various pathological processes, such as cell proliferation, migration, and inflammation. However, the role of ATP5J in microglial activation and neuroinflammation post-ICH is poorly understood. This study aimed to investigate the effects of ATP5J on microglial activation and subsequent neuroinflammation in ICH and to elucidate the underlying mechanisms. We observed that ATP5J was upregulated in microglia after ICH. AAV9-mediated ATP5J overexpression worsened neurobehavioral deficits, disrupted the blood-brain barrier, and increased brain water content in ICH mice. Conversely, ATP5J knockdown ameliorated these effects. ATP5J overexpression also intensified microglial activation, neuronal apoptosis, and inflammatory responses in surrounding tissues post-ICH. ATP5J impaired microglial dynamics and reduced the proliferation and migration of microglia to injury sites. We used oxyhemoglobin (OxyHb) to stimulate BV2 cells and model ICH in vitro. Further in vitro studies showed that ATP5J overexpression enhanced OxyHb-induced microglial functional transformation. Mechanistically, ATP5J silencing reversed dynamin-related protein 1 (Drp1) and mitochondrial fission 1 protein (Fis1) upregulation in microglia post-OxyHb induction; reduced mitochondrial overdivision, excessive mitochondrial permeability transition pore opening, and reactive oxygen species production; restored normal mitochondrial ridge morphology; and partially restored mitochondrial respiratory electron transport chain activity. ATP5J silencing further alleviated OxyHb-induced mitochondrial dysfunction by regulating mitochondrial metabolism. Our results indicate that ATP5J is a key factor in regulating microglial functional transformation post-ICH by modulating mitochondrial dysfunction and metabolism, thereby positively regulate neuroinflammation. By inhibiting ATP5J, SBI following ICH could be prevented. Therefore, ATP5J could be a candidate for molecular and therapeutic target exploration to alleviate neuroinflammation post-ICH.
Collapse
Affiliation(s)
| | | | | | | | - Zhen Zhang
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, China
| | - He Wu
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Chen H, Lin Y, Chen J, Luo X, Kan Y, He Y, Zhu R, Jin J, Li D, Wang Y, Han Z. Targeting caspase-8: a new strategy for combating hepatocellular carcinoma. Front Immunol 2024; 15:1501659. [PMID: 39726605 PMCID: PMC11669555 DOI: 10.3389/fimmu.2024.1501659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents the most prevalent form of primary liver cancer and has a high mortality rate. Caspase-8 plays a pivotal role in an array of cellular signaling pathways and is essential for the governance of programmed cell death mechanisms, inflammatory responses, and the dynamics of the tumor microenvironment. Dysregulation of caspase-8 is intricately linked to the complex biological underpinnings of HCC. In this manuscript, we provide a comprehensive review of the regulatory roles of caspase-8 in apoptosis, necroptosis, pyroptosis, and PANoptosis, as well as its impact on inflammatory reactions and the intricate interplay with critical immune cells within the tumor microenvironment, such as tumor-associated macrophages, T cells, natural killer cells, and dendritic cells. Furthermore, we emphasize how caspase-8 plays pivotal roles in the development, progression, and drug resistance observed in HCC, and explore the potential of targeting caspase-8 as a promising strategy for HCC treatment.
Collapse
Affiliation(s)
- Haoran Chen
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jie Chen
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Xuemei Luo
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Yubo Kan
- Sichuan Provincial Woman’s and Children’s Hospital/The Affiliated Women’s and Children’s Hospital of Chengdu Medical College, Chengdu, China
| | - Yuqi He
- Department of Blood Transfusion, Lu’an People’s Hospital, the Affiliated Hospital of Anhui Medical University, Lu’an, China
| | - Renhe Zhu
- Department of Blood Transfusion, Lu’an People’s Hospital, the Affiliated Hospital of Anhui Medical University, Lu’an, China
| | - Jiahui Jin
- Department of gastroenterology, Baoji Central Hospital, Baoji, China
| | - Dongxuan Li
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Yi Wang
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Zhongyu Han
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
15
|
Härm J, Fan YT, Brenner D. Navigating the metabolic landscape of regulatory T cells: from autoimmune diseases to tumor microenvironments. Curr Opin Immunol 2024; 92:102511. [PMID: 39674060 DOI: 10.1016/j.coi.2024.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/16/2024]
Abstract
Regulatory T cells (Tregs) are essential for maintaining immune homeostasis, playing crucial roles in modulating autoimmune conditions and contributing to the suppressive tumor microenvironment. Their cellular metabolism governs their generation, stability, proliferation, and suppressive function. Enhancing Treg metabolism to boost their suppressive function offers promising therapeutic potential for alleviating inflammatory symptoms in autoimmune diseases. Conversely, inhibiting Treg metabolism to reduce their suppressive function can enhance the efficacy of traditional immunotherapy in cancer patients. This review explores recent advances in targeting Treg metabolism in autoimmune diseases and the metabolic adaptations of Tregs within the tumor microenvironment that increase their immunosuppressive function.
Collapse
Affiliation(s)
- Janika Härm
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Yu-Tong Fan
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Dirk Brenner
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
16
|
Viel S, Vivier E, Walzer T, Marçais A. Targeting metabolic dysfunction of CD8 T cells and natural killer cells in cancer. Nat Rev Drug Discov 2024:10.1038/s41573-024-01098-w. [PMID: 39668206 DOI: 10.1038/s41573-024-01098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 12/14/2024]
Abstract
The importance of metabolic pathways in regulating immune responses is now well established, and a mapping of the bioenergetic metabolism of different immune cell types is under way. CD8 T cells and natural killer (NK) cells contribute to cancer immunosurveillance through their cytotoxic functions and secretion of cytokines and chemokines, complementing each other in target recognition mechanisms. Several immunotherapies leverage these cell types by either stimulating their activity or redirecting their specificity against tumour cells. However, the anticancer activity of CD8 T cells and NK cells is rapidly diminished in the tumour microenvironment, closely linked to a decline in their metabolic capacities. Various strategies have been developed to restore cancer immunosurveillance, including targeting bioenergetic metabolism or genetic engineering. This Review provides an overview of metabolic dysfunction in CD8 T cells and NK cells within the tumour microenvironment, highlighting current therapies aiming to overcome these issues.
Collapse
Affiliation(s)
- Sébastien Viel
- Plateforme de Biothérapie et de Production de Médicaments de Thérapie Innovante, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Eric Vivier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
- APHM, Hôpital de la Timone, Marseille, France
- Paris Saclay Cancer Cluster, Villejuif, France
- Université Paris-Saclay, Gustave Roussy, Inserm, Prédicteurs moléculaires et nouvelles cibles en oncologie, Villejuif, France
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie, (Team Lyacts), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS UMR5308 ENS de Lyon, Lyon, France
| | - Antoine Marçais
- CIRI, Centre International de Recherche en Infectiologie, (Team Lyacts), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS UMR5308 ENS de Lyon, Lyon, France.
| |
Collapse
|
17
|
Gao Y, Li A, Li Y, Guo H, He L, Li K, Shcharbin D, Shi X, Shen M. Dendrimer/Copper(II) Complex-Mediated siRNA Delivery Disrupts Lactate Metabolism to Reprogram the Local Immune Microenvironment against Tumor Growth and Metastasis. Biomacromolecules 2024; 25:7995-8005. [PMID: 39570391 DOI: 10.1021/acs.biomac.4c01249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Solid tumors reprogram metabolic pathways to meet their biosynthesis demands, resulting in elevated levels of metabolites in the tumor microenvironment (TME), including lactate. Excessive accumulation and active transportation of lactate within the TME drives tumor progression, metastasis, and immunosuppression. Interruption of TME lactate metabolism is expected to restore antitumor responses and sensitize tumor immunotherapy. Herein, we developed phenylboronic acid- and pyridine-modified poly(amidoamine) dendrimer/copper(II) (Cu(II)) complexes, namely, D-Cu complexes, to deliver monocarboxylate transporter 4 siRNA (siMCT4) and disrupt the tumor lactate shuttle. The D-Cu complexes are shown to have a Cu(II)-mediated chemodynamic effect and T1-weighted magnetic resonance imaging potential (r1 relaxivity = 1.19 mM-1 s-1), enabling effective siMCT4 delivery to inhibit lactate efflux within cancer cells. In combination with a CD11b immune agonist, the treatment of D-Cu/siMCT4 polyplexes in a mouse breast tumor model alleviates local TME immunosuppression, leading to excellent inhibition of both primary tumor growth and lung metastasis.
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Aiyu Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yanying Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Honghua Guo
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201600, China
| | - Liangyu He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Kangan Li
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201600, China
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, Akademicheskaja 27, 220072 Minsk, Belarus
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
18
|
Zhang R, Gao Y, Li C, Tao R, Mao G, Song T, Nie W, Liu S, Tao K, Li W. Hypoxia reconstructed colorectal tumor microenvironment weakening anti-tumor immunity: construction of a new prognosis predicting model through transcriptome analysis. Front Immunol 2024; 15:1425687. [PMID: 39712012 PMCID: PMC11659140 DOI: 10.3389/fimmu.2024.1425687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
Background Hypoxia in the tumor microenvironment (TME) plays a pivotal role in the progression and prognosis of colorectal cancer (CRC). However, effective methods for assessing TME hypoxia remain lacking. This study aims to develop a novel hypoxia-related prognostic score (HPS) based on hypoxia-associated genes to improve CRC prognostication and inform treatment strategies. Methods Transcriptomic data from CRC patients were analyzed using Lasso regression to identify hypoxia-associated genes with the strongest prognostic significance. The identified genes were validated in vitro by assessing their expression under normoxic and hypoxic conditions in normal intestinal epithelial cells and CRC tumor cell lines. Functional relevance was explored through differential gene expression analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and protein-protein interaction (PPI) network construction. The association of HPS with extracellular matrix (ECM) composition, immune cell infiltration, and immune suppression was also investigated. Results Seven hypoxia-associated signature genes were identified, each demonstrating a strong correlation with CRC prognosis. The hypoxia-related prognostic score (HPS), derived from these genes, was significantly linked to changes in the TME. Specifically, HPS values were associated with alterations in ECM composition and distinct immune cell infiltration patterns. Higher HPS values corresponded to increased infiltration of immune-suppressive cells and reduced presence of anti-tumor immune cells. This imbalance promoted an immune-suppressive TME, facilitating tumor progression and immune evasion. Conclusions The hypoxia-related prognostic score (HPS) captures the regulatory influence of TME hypoxia on immune responses, offering valuable insights into its role in tumor progression. HPS holds promise as a prognostic tool and a guide for developing personalized treatment strategies in CRC.
Collapse
Affiliation(s)
- Ruizhi Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yisong Gao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chong Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruikang Tao
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Gan Mao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Song
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenxiang Nie
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suao Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Tong H, Jiang Z, Song L, Tan K, Yin X, He C, Huang J, Li X, Jing X, Yun H, Li G, Zhao Y, Kang Q, Wei Y, Li R, Long Z, Yin J, Luo Q, Liang X, Wan Y, Zheng A, Lin N, Zhang T, Xu J, Yang X, Jiang Y, Li Y, Xiang Y, Zhang Y, Feng L, Lei Z, Shi H, Ma X. Dual impacts of serine/glycine-free diet in enhancing antitumor immunity and promoting evasion via PD-L1 lactylation. Cell Metab 2024; 36:2493-2510.e9. [PMID: 39577415 DOI: 10.1016/j.cmet.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024]
Abstract
The effect of the serine/glycine-free diet (-SG diet) on colorectal cancer (CRC) remains unclear; meanwhile, programmed death-1 (PD-1) inhibitors are less effective for most CRC patients. Here, we demonstrate that the -SG diet inhibits CRC growth and promotes the accumulation of cytotoxic T cells to enhance antitumor immunity. Additionally, we also identified the lactylation of programmed death-ligand 1 (PD-L1) in tumor cells as a mechanism of immune evasion during cytotoxic T cell-mediated antitumor responses, and blocking the PD-1/PD-L1 signaling pathway is able to rejuvenate the function of CD8+ T cells recruited by the -SG diet, indicating the potential of combining the -SG diet with immunotherapy. We conducted a single-arm, phase I study (ChiCTR2300067929). The primary outcome suggests that the -SG diet is feasible and safe for regulating systemic immunity. Secondary outcomes include patient tolerability and potential antitumor effects. Collectively, our findings highlight the promising therapeutic potential of the -SG diet for treating solid tumors.
Collapse
Affiliation(s)
- Huan Tong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zedong Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Linlin Song
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China; Department of Ultrasound & Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Keqin Tan
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaomeng Yin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | - Juan Huang
- Department of Hematology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiaoyue Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Wupai Technology Limited Liability Company, Chengdu, Sichuan, China
| | - Xiaofan Jing
- Department of Nutrition, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Yun
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guangqi Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunuo Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianlong Kang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuhao Wei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Renwei Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiwen Long
- Recovery Plus Clinic, New York, NY 10019, USA
| | - Jun Yin
- Recovery Plus Clinic, New York, NY 10019, USA
| | - Qiang Luo
- Department of Oncology, Xinjin District Hospital of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiao Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanzhi Wan
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Aiping Zheng
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Nan Lin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiayi Xu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinggang Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuting Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yueyi Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Xiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lusi Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen Lei
- Recovery Plus Clinic, New York, NY 10019, USA.
| | - Hubing Shi
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China.
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
20
|
Zhong M, Yu Z, Wu Q, Lu B, Sun P, Zhang X, Yang L, Wu H. PCDHGA10 as a potential prognostic biomarker and correlated with immune infiltration in gastric cancer. Front Immunol 2024; 15:1500478. [PMID: 39687617 PMCID: PMC11647002 DOI: 10.3389/fimmu.2024.1500478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Background Gastric cancer (GC) is one of the most common malignant tumors and is associated with poor prognosis. To improve the prognosis of GC patients, an effective immune-related prognostic biomarker is urgent. Here, we aim to explore the correlation between the expression of procalcitonin gamma subfamily A, 10 (PCDHGA10) and clinicopathological characteristics, especially its relation with tumor-infiltrating immune cells (TILs) in GC. Methods The differential mRNA expression of PCDHGA10 between GC tissues and normal gastric mucosa and prognostic potential were assessed from The Cancer Genome Atlas (TCGA). Then, based on tissue microarrays (TMAs) with multiplex immunohistochemistry (mIHC) from GC patients, we statistically assess the correlation between PCDHGA10 protein expression and the clinical profiles and prognosis of the patients. Additionally, with IHC and mIHC, we applied the machine-learning algorithms to evaluate the localization and expression levels of TILs and immune checkpoints in the tumor microenvironment. We analyzed the relationship between PCDHGA10 protein expression and TILs and immune checkpoints. Results Through the database and TMA analysis, the expression of PCDHGA10 was significantly higher in GC tissues compared with normal tissues. High PCDHGA10 expression independently predicted poor prognosis in GC. Additionally, elevated PCDHGA10 expression was positively associated with the number of CD8+ T cells, CD68+ macrophages, Foxp3+ T cells, and CD4+ T cells in GC tissues and the stromal region. Besides, the expression of PCDHGA10 was positively correlated with immune checkpoints, including CTLA-4, LAG3, and PD-L1. Conclusions PCDHGA10 might be a potential prognostic marker and an immunological therapeutic target for GC.
Collapse
Affiliation(s)
- Mingyang Zhong
- Department of General Surgery, Medical School of Nantong University, & Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zhuoqun Yu
- Department of General Surgery, Medical School of Nantong University, & Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Qianqian Wu
- Clinical and Translational Research Center & Institute of Oncology, Affiliated Hospital of Nantong University, Department of Oncology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Bing Lu
- Clinical and Translational Research Center & Institute of Oncology, Affiliated Hospital of Nantong University, Department of Oncology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - PingPing Sun
- Clinical and Translational Research Center & Institute of Oncology, Affiliated Hospital of Nantong University, Department of Oncology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xiaojing Zhang
- Clinical and Translational Research Center & Institute of Oncology, Affiliated Hospital of Nantong University, Department of Oncology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Lei Yang
- Clinical and Translational Research Center & Institute of Oncology, Affiliated Hospital of Nantong University, Department of Oncology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Han Wu
- Department of General Surgery, Medical School of Nantong University, & Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
21
|
Wang S, Liu C, Yang C, Jin Y, Cui Q, Wang D, Ge T, He G, Li W, Zhang G, Liu A, Xia Y, Liu Y, Yu J. PI3K/AKT/mTOR and PD‑1/CTLA‑4/CD28 pathways as key targets of cancer immunotherapy (Review). Oncol Lett 2024; 28:567. [PMID: 39390982 PMCID: PMC11465225 DOI: 10.3892/ol.2024.14700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/08/2024] [Indexed: 10/12/2024] Open
Abstract
T cells play an important role in cancer, and energy metabolism can determine both the proliferation and differentiation of T cells. The inhibition of immune checkpoint molecules programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte associated protein 4 (CTLA-4) are a promising cancer treatment. In recent years, research on CD28 has increased. Although numerous reports involve CD28 and its downstream PI3K/AKT/mTOR signaling mechanisms in T cell metabolism, they have not yet been elucidated. A literature search strategy was used for the databases PubMed, Scopus, Web of Science and Cochrane Library to ensure broad coverage of medical and scientific literature, using a combination of keywords including, but not limited to, 'lung cancer' and 'immunotherapy'. Therefore, the present study reviewed the interaction and clinical application of the PD-1/CTLA-4/CD28 and PI3K/AKT/mTOR pathways in T cells, aiming to provide a theoretical basis for immunotherapy in clinical cancer patients.
Collapse
Affiliation(s)
- Shuangcui Wang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 301617, P.R. China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Changyu Liu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
- School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Chenxin Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Yutong Jin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Qian Cui
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 301617, P.R. China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Dong Wang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 301617, P.R. China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Ting Ge
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 301617, P.R. China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Guixin He
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 301617, P.R. China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Wentao Li
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 301617, P.R. China
| | - Guan Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 301617, P.R. China
| | - Aqing Liu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 301617, P.R. China
| | - Ying Xia
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 301617, P.R. China
| | - Yunhe Liu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 301617, P.R. China
| | - Jianchun Yu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 301617, P.R. China
| |
Collapse
|
22
|
Dong X, Liu H, Fang C, Zhang Y, Yang Q, Wang H, Li X, Zhang K. Sonocatalytic oncolysis microbiota curb intrinsic microbiota lactate metabolism and blockade CD24-Siglec10 immune escape to revitalize immunological surveillance. Biomaterials 2024; 311:122662. [PMID: 38878482 DOI: 10.1016/j.biomaterials.2024.122662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/22/2024] [Accepted: 06/08/2024] [Indexed: 08/06/2024]
Abstract
Intrinsic lactate retention of chemically- or genetically-engineered bacteria therapy aggravates tumor immunosuppression, which will collaborate with immune escape to cause immunological surveillance failure. To address them, sonocatalytic oncolysis Escherichia coli (E.coli) that chemically chelated anti-CD24 and TiO1+x have been engineered to blockade CD24-siglec10 interaction, regulate microbiota colonization and curb its lactate metabolism, which are leveraged to revitalize immunological surveillance and repress breast cancer. The chemically-engineered E.coli inherited their parent genetic information and expansion function. Therefore, their intrinsic hypoxia tropism and CD24 targeting allow them to specifically accumulate and colonize in solid breast cancer to lyse tumor cells. The conjugated CD24 antibody is allowed to blockade CD24-Siglec10 signaling axis and revitalize immunological surveillance. More significantly, the chelated TiO1+x sonosensitizers produce ROS to render bacteria expansion controllable and curb immunosuppression-associated lactate birth that are usually neglected. Systematic experiments successfully vlaidate hypoxia-objective active targeting, sonocatalytic therapy, microbiota expansion-enabled oncolysis, CD24-Siglec10 communication blockade and precise microbiota abundance & lactate metabolism attenuations. These actions contribute to the potentiated anti-tumor immunity and activated anti-metastasis immune memory against breast cancer development. Our pioneering work provide a route to sonocatalytic cancer immunotherapy.
Collapse
Affiliation(s)
- Xiulin Dong
- Department of Ultrasound and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, PR China
| | - Hui Liu
- Department of Ultrasound and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, PR China
| | - Chao Fang
- Department of Ultrasound and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, PR China
| | - Yan Zhang
- Department of Ultrasound and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, PR China; Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yan-chang-zhong Road, Shanghai, 200072, PR China
| | - Qiaoling Yang
- Department of Ultrasound and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, PR China
| | - Hai Wang
- Department of Ultrasound and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, PR China
| | - Xiaolong Li
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, PR China.
| | - Kun Zhang
- Department of Ultrasound and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, PR China.
| |
Collapse
|
23
|
Choi YJ, Yang MK, Kim N, Khwarg SI, Choung H, Kim JE. Expression of nuclear receptors and glucose metabolic pathway proteins in sebaceous carcinoma: Androgen receptor and monocarboxylate transporter 1 have a key role in disease progression. Oncol Lett 2024; 28:593. [PMID: 39421321 PMCID: PMC11484244 DOI: 10.3892/ol.2024.14726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Standard systemic treatments are not consistently effective for treating unresectable or advanced sebaceous carcinoma (SC). The present study investigated the pathogenic roles of nuclear receptors (NRs), glucose metabolic dysregulation and immune checkpoint proteins in SC as prognostic markers or therapeutic targets. Patients with pathologically confirmed SC between January 2002 and December 2019 at three university hospitals in South Korea were included in the present study. Immunohistochemistry was performed on paraffin-embedded tumor tissues for glucocorticoid receptors (GR), androgen receptors (AR), estrogen receptors (ER), progesterone receptors (PR), glucose transporter 1 (GLUT1), monocarboxylate transporters (MCT1 and MCT4), CD147, phosphorylated adenosine monophosphate-activated protein kinase (pAMPK) and the immune checkpoint protein, programmed cell death-ligand 1 (PD-L1). The results were semi-quantitatively assessed and the associations of these proteins with various clinicopathological parameters were determined. A total of 39 cases of SC comprising 19 periocular and 20 extraocular tumors were enrolled. NRs were frequently detected in the tumor nuclei, with GR having the highest frequency (89.7%), followed by AR, ER (both 51.3%) and PR (41.0%). Regarding glucose metabolism, CD147, GLUT1 and MCT1 were highly expressed at 100, 89.7 and 87.2%, respectively, whereas MCT4 and pAMPK expression levels were relatively low at 38.5 and 35.9%, respectively. Membranous expression of PD-L1 was detected in five cases (12.8%), four of which were extraocular. In the multivariate analysis, advanced stage, low AR positivity and high MCT1 expression were independent poor prognostic factors for metastasis-free survival (all P<0.05). The present results suggested that hormonal and metabolic dysregulation may be associated with the pathogenesis of SC, and that AR and MCT1 in particular may serve as prognostic indicators and potential therapeutic targets. Additionally, ~10% of SC cases exhibited PD-L1 expression within the druggable range, and these patients are expected to benefit from treatment with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Youn Joo Choi
- Department of Ophthalmology, Kangdong Sacred Heart Hospital, Hallym University Medical Center, Seoul 05355, Republic of Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Min Kyu Yang
- Department of Ophthalmology, Asan Medical Center, Ulsan University College of Medicine, Seoul 05505, Republic of Korea
| | - Namju Kim
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Sang In Khwarg
- Department of Ophthalmology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hokyung Choung
- Department of Ophthalmology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul 07061, Republic of Korea
| | - Ji Eun Kim
- Department of Pathology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul 07061, Republic of Korea
| |
Collapse
|
24
|
Cordani M, Michetti F, Zarrabi A, Zarepour A, Rumio C, Strippoli R, Marcucci F. The role of glycolysis in tumorigenesis: From biological aspects to therapeutic opportunities. Neoplasia 2024; 58:101076. [PMID: 39476482 PMCID: PMC11555605 DOI: 10.1016/j.neo.2024.101076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 11/11/2024]
Abstract
Glycolytic metabolism generates energy and intermediates for biomass production. Tumor-associated glycolysis is upregulated compared to normal tissues in response to tumor cell-autonomous or non-autonomous stimuli. The consequences of this upregulation are twofold. First, the metabolic effects of glycolysis become predominant over those mediated by oxidative metabolism. Second, overexpressed components of the glycolytic pathway (i.e. enzymes or metabolites) acquire new functions unrelated to their metabolic effects and which are referred to as "moonlighting" functions. These functions include induction of mutations and other tumor-initiating events, effects on cancer stem cells, induction of increased expression and/or activity of oncoproteins, epigenetic and transcriptional modifications, bypassing of senescence and induction of proliferation, promotion of DNA damage repair and prevention of DNA damage, antiapoptotic effects, inhibition of drug influx or increase of drug efflux. Upregulated metabolic functions and acquisition of new, non-metabolic functions lead to biological effects that support tumorigenesis: promotion of tumor initiation, stimulation of tumor cell proliferation and primary tumor growth, induction of epithelial-mesenchymal transition, autophagy and metastasis, immunosuppressive effects, induction of drug resistance and effects on tumor accessory cells. These effects have negative consequences on the prognosis of tumor patients. On these grounds, it does not come to surprise that tumor-associated glycolysis has become a target of interest in antitumor drug discovery. So far, however, clinical results with glycolysis inhibitors have fallen short of expectations. In this review we propose approaches that may allow to bypass some of the difficulties that have been encountered so far with the therapeutic use of glycolysis inhibitors.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid 28040, Spain
| | - Federica Michetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, Rome 00149, Italy
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, Milan 20134, Italy
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, Rome 00149, Italy.
| | - Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, Milan 20134, Italy.
| |
Collapse
|
25
|
Sun K, Shen Y, Xiao X, Xu H, Zhang Q, Li M. Crosstalk between lactate and tumor-associated immune cells: clinical relevance and insight. Front Oncol 2024; 14:1506849. [PMID: 39678492 PMCID: PMC11638036 DOI: 10.3389/fonc.2024.1506849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024] Open
Abstract
Lactate, which was traditionally viewed as a metabolic byproduct of anaerobic glycolysis, has emerged as a significant signaling molecule involved in the development of tumors. Current studies highlight its dual function, where it not only fuels tumor development but also modulates immune responses. Lactate has an effect on various tumor-associated immune cells, promoting immunosuppressive conditions that facilitate tumor growth and immune evasion. This phenomenon is strongly associated with the Warburg effect, a metabolic shift observed in many cancers that favors glycolysis over oxidative phosphorylation, resulting in elevated lactate production. Exploring the complex interplay between lactate metabolism and tumor immunity provides a novel understanding regarding the mechanisms of tumor immune evasion and resistance to therapies. This review discusses the unique biology of lactate in the TME, its impact on immune cell dynamics, and its potential as a tumor treatment target.
Collapse
Affiliation(s)
- Kemin Sun
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ye Shen
- School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Xiang Xiao
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Xu
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Quanli Zhang
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, China
- Department of Scientific Research, Jiangsu Cancer Hospital & the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu, China
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ming Li
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
26
|
Jiang M, Wang Y, Zhao X, Yu J. From metabolic byproduct to immune modulator: the role of lactate in tumor immune escape. Front Immunol 2024; 15:1492050. [PMID: 39654883 PMCID: PMC11625744 DOI: 10.3389/fimmu.2024.1492050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Lactic acid, a key metabolic byproduct within the tumor microenvironment, has garnered significant attention for its role in immune evasion mechanisms. Tumor cells produce and release large amounts of lactic acid into the tumor microenvironment through aberrant glycolysis via the Warburg effect, leading to a drop in pH. Elevated lactic acid levels profoundly suppress proliferation capacity, cytotoxic functions, and migratory abilities of immune effector cells such as macrophages and natural killer cells at the tumor site. Moreover, lactic acid can modulate the expression of surface molecules on immune cells, interfering with their recognition and attack of tumor cells, and it regulates signaling pathways that promote the expansion and enhanced function of immunosuppressive cells like regulatory T cells, thereby fostering immune tolerance within the tumor microenvironment. Current research is actively exploring strategies targeting lactic acid metabolism to ameliorate tumor immune evasion. Key approaches under investigation include inhibiting the activity of critical enzymes in lactic acid production to reduce its synthesis or blocking lactate transporters to alter intracellular and extracellular lactate distribution. These methods hold promise when combined with existing immunotherapies such as immune checkpoint inhibitors and chimeric antigen receptor T-cell therapies to enhance the immune system's ability to eliminate tumor cells. This could pave the way for novel combinatorial treatment strategies in clinical cancer therapy, effectively overcoming tumor immune evasion phenomena, and ultimately improving overall treatment efficacy.
Collapse
Affiliation(s)
- Mengqian Jiang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuanchun Wang
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Shandong Second Medical University, Weifang, China
| | - Xiaoyong Zhao
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Precision Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
27
|
Wu Y, Wang Y, Dong Y, Sun LV, Zheng Y. Lactate promotes H3K18 lactylation in human neuroectoderm differentiation. Cell Mol Life Sci 2024; 81:459. [PMID: 39562370 DOI: 10.1007/s00018-024-05510-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/01/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
In mammals, early embryonic gastrulation process is high energy demanding. Previous studies showed that, unlike endoderm and mesoderm cells, neuroectoderm differentiated from human embryonic stem cells relied on aerobic glycolysis as the major energy metabolic process, which generates lactate as the final product. Here we explored the function of intracellular lactate during neuroectoderm differentiation. Our results revealed that the intracellular lactate level was elevated in neuroectoderm and exogenous lactate could further promote hESCs differentiation towards neuroectoderm. Changing intracellular lactate levels by sodium lactate or LDHA inhibitors had no obvious effect on BMP or WNT/β-catenin signaling during neuroectoderm differentiation. Notably, histone lactylation, especially H3K18 lactylation was significant upregulated during this process. We further performed CUT&Tag experiments and the results showed that H3K18la is highly enriched at gene promoter regions. By analyzing data from CUT&Tag and RNA-seq experiments, we further identified that four genes, including PAX6, were transcriptionally upregulated by lactate during neuroectoderm differentiation. A H3K18la modification site at PAX6 promoter was verified and exogenous lactate could also rescue the level of PAX6 after shPAX6 inhibition.
Collapse
Affiliation(s)
- Yu Wu
- Obstetrics and Gynecology Hospital, Institute of Developmental Biology & Molecular Medicine, Department of Cellular & Developmental Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yumeng Wang
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yuhao Dong
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore, 119077, Singapore
| | - Ling V Sun
- Obstetrics and Gynecology Hospital, Institute of Developmental Biology & Molecular Medicine, Department of Cellular & Developmental Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yufang Zheng
- Obstetrics and Gynecology Hospital, Institute of Developmental Biology & Molecular Medicine, Department of Cellular & Developmental Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
28
|
Tomar MS, Mohit, Kumar A, Shrivastava A. Circadian immunometabolism: A future insight for targeted therapy in cancer. Sleep Med Rev 2024; 80:102031. [PMID: 39603026 DOI: 10.1016/j.smrv.2024.102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Circadian rhythms send messages to regulate the sleep-wake cycle in living beings, which, regulate various biological activities. It is well known that altered sleep-wake cycles affect host metabolism and significantly deregulate the host immunity. The dysregulation of circadian-related genes is critical for various malignancies. One of the hallmarks of cancer is altered metabolism, the effects of which spill into surrounding microenvironments. Here, we review the emerging literature linking the circadian immunometabolic axis to cancer. Small metabolites are the products of various metabolic pathways, that are usually perturbed in cancer. Genes that regulate circadian rhythms also regulate host metabolism and control metabolite content in the tumor microenvironment. Immune cell infiltration into the tumor site is critical to perform anticancer functions, and altered metabolite content affects their trafficking to the tumor site. A compromised immune response in the tumor microenvironment aids cancer cell proliferation and immune evasion, resulting in metastases. The role of circadian rhythms in these processes is largely overlooked and demands renewed attention in the search for targets against cancer growth and spread. The precision medicine approach requires targeting the circadian immune metabolism in cancer.
Collapse
Affiliation(s)
- Manendra Singh Tomar
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Mohit
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India; Department of Prosthodontics, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462020, India.
| | - Ashutosh Shrivastava
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India.
| |
Collapse
|
29
|
Zhang Y, Wang W, Liu Q, Jiang J, Zhao P, Huang C, Li Y, Fu Y. CD19 +CD73 + B cells infiltration indicates poor prognosis and unfavorable responses to immunotherapy in gastric cancer. Int Immunopharmacol 2024; 141:113002. [PMID: 39213870 DOI: 10.1016/j.intimp.2024.113002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVES Cluster of Differentiation 73 (CD73) is expressed on immune cells and plays a significant role in tumor inhibition by suppressing antitumor immunity. The objectives of this study were to explore the expression and functional mechanisms of CD73 on B cells in patients with gastric cancer (GC). METHODS The prognostic significance of CD19+CD73+ B cells was evaluated in 390 GC patients through dual immunohistochemistry staining. Flow cytometry was employed to analyze the phenotype of the CD19 subpopulation using fresh tumor and non-tumor tissue samples from 8 GC patients. A bioinformatics analysis of CD19+CD73+ B cells was also performed within the scRNA-seq cohort, and the CD19+ B cell subtype was assessed using multiple immunofluorescence staining. RESULTS The infiltration of CD19+CD73+ B cells was observed to be elevated in gastric cancer (GC) tissue compared to normal tissues. A strong correlation was observed between high CD19+CD73+ B cell infiltration, poor overall survival, and diminished responsiveness to neoadjuvant immunotherapy in GC. These cells emerged as a novel subset of regulatory B cells (Bregs) linked to adenosine metabolism and the exhaustion of CD8+ T cells. The CD19+CD73+ B cells also correlated with the production of immunosuppressive cytokines IL-10 and TGFB1. Further analysis indicated an association between CD19+CD73+ B cells and advanced-stage GC. CONCLUSIONS The presence of CD19+CD73+ B cells in GC may serve as a prognostic indicator for clinical outcomes and a predictive marker for poor responsiveness to neoadjuvant immunotherapy. The correlation between the presence of CD19+CD73+ B cells and CD8+ T cell exhaustion, along with immunosuppression, highlights the tumor-promoting function of these cells.
Collapse
Affiliation(s)
- Yawei Zhang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wendong Wang
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qi Liu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianwu Jiang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Zhao
- Department of Surgery, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Changjun Huang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingying Li
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Fu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
30
|
Zhu C, Liao JY, Liu YY, Chen ZY, Chang RZ, Chen XP, Zhang BX, Liang JN. Immune dynamics shaping pre-metastatic and metastatic niches in liver metastases: from molecular mechanisms to therapeutic strategies. Mol Cancer 2024; 23:254. [PMID: 39543660 PMCID: PMC11562679 DOI: 10.1186/s12943-024-02171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Liver metastases are commonly detected in the advanced stages of various malignant tumors, representing a significant clinical challenge. Throughout the process of liver metastases formation, immune cells play a pivotal role, particularly in the pre-metastatic and metastatic niches within the liver. Immune cells establish extensive and intricate interactions with tumor cells and other components in the liver, collectively promoting and sustaining the growth of liver metastases. Despite the limited efficacy of existing therapeutic modalities against some advanced liver metastases, novel immune-based treatment approaches are continuously being explored and validated. Building on the systematic elucidation of the immunosuppressive characteristics of liver metastases, we explored the potential of novel immunotherapies applicable to patients with liver metastases from multiple dimensions.
Collapse
Affiliation(s)
- Chang Zhu
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Jing-Yu Liao
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Yi-Yang Liu
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Ze-Yu Chen
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Rui-Zhi Chang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
| | - Jun-Nan Liang
- Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.
| |
Collapse
|
31
|
Bao T, Wang Z, He W, Wang F, Xu J, Cao H. Analysis of immune status and prognostic model incorporating lactic acid metabolism-associated genes. Cancer Cell Int 2024; 24:378. [PMID: 39543617 PMCID: PMC11566181 DOI: 10.1186/s12935-024-03555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Cancer development is intricately linked with metabolic dysregulation, including lactic acid metabolism, which plays a pivotal role in tumor progression and immune evasion. However, its specific implications in gastric adenocarcinoma (STAD) remain unclear. This study introduces a novel methodology to evaluate lactic acid metabolism comprehensively in STAD, aiming to elucidate its prognostic significance and impact on immunotherapy efficacy. Targeted therapies directed at key lactic acid metabolism genes (LMGs) identified within the tumor microenvironment (TME) hold promise for personalized treatment strategies. METHODS Lactic acid metabolism patterns were assessed in 415 STAD patients using a panel of 21 LMGs. Cox regression and Lasso regression analyses were employed to develop a predictive risk model based on differentially expressed genes (DEGs). Validation of the model was conducted using independent cohorts from the GEO and TCGA databases, as well as additional datasets focused on immunotherapy responses. Further investigations into TME dynamics of lactic acid metabolism included functional assays targeting SLC16A3, a pivotal gene identified through our analyses. RESULTS Patients were stratified into distinct risk groups based on their lactic acid metabolism profiles. Low-risk patients exhibited attenuated lactic acid metabolism, correlating with favorable clinical outcomes characterized by prolonged survival and enhanced responsiveness to immunotherapy. Notably, tumor cells within the TME demonstrated heightened levels of active lactic acid metabolism, particularly impacting tumor-infiltrating lymphocytes such as CD8 + T cells and regulatory T cells. Mechanistically, SLC16A3 emerged as a critical regulator promoting STAD cell proliferation, invasion, and migration while modulating the metabolic landscape. CONCLUSION This study underscores the prognostic value of a lactic acid metabolism-based model in STAD, providing insights into its potential as a predictive biomarker for patient stratification and therapeutic targeting. The findings highlight SLC16A3 as a promising candidate for therapeutic intervention aimed at modulating lactic acid metabolism in the TME, thereby advancing personalized treatment strategies in gastric cancer management.
Collapse
Affiliation(s)
- Tianshang Bao
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zeyu Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weipai He
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Wang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Hui Cao
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
32
|
Wang J, He Y, Hu F, Hu C, Sun Y, Yang K, Yang S. Metabolic Reprogramming of Immune Cells in the Tumor Microenvironment. Int J Mol Sci 2024; 25:12223. [PMID: 39596288 PMCID: PMC11594648 DOI: 10.3390/ijms252212223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Metabolic reprogramming of immune cells within the tumor microenvironment (TME) plays a pivotal role in shaping tumor progression and responses to therapy. The intricate interplay between tumor cells and immune cells within this ecosystem influences their metabolic landscapes, thereby modulating the immune evasion tactics employed by tumors and the efficacy of immunotherapeutic interventions. This review delves into the metabolic reprogramming that occurs in tumor cells and a spectrum of immune cells, including T cells, macrophages, dendritic cells, and myeloid-derived suppressor cells (MDSCs), within the TME. The metabolic shifts in these cell types span alterations in glucose, lipid, and amino acid metabolism. Such metabolic reconfigurations can profoundly influence immune cell function and the mechanisms by which tumors evade immune surveillance. Gaining a comprehensive understanding of the metabolic reprogramming of immune cells in the TME is essential for devising novel cancer therapeutic strategies. By targeting the metabolic states of immune cells, it is possible to augment their anti-tumor activities, presenting new opportunities for immunotherapeutic approaches. These strategies hold promise for enhancing treatment outcomes and circumventing the emergence of drug resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Kun Yang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (J.W.); (Y.H.); (F.H.); (C.H.); (Y.S.)
| | - Shuya Yang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (J.W.); (Y.H.); (F.H.); (C.H.); (Y.S.)
| |
Collapse
|
33
|
Galassi C, Chan TA, Vitale I, Galluzzi L. The hallmarks of cancer immune evasion. Cancer Cell 2024; 42:1825-1863. [PMID: 39393356 DOI: 10.1016/j.ccell.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
According to the widely accepted "three Es" model, the host immune system eliminates malignant cell precursors and contains microscopic neoplasms in a dynamic equilibrium, preventing cancer outgrowth until neoplastic cells acquire genetic or epigenetic alterations that enable immune escape. This immunoevasive phenotype originates from various mechanisms that can be classified under a novel "three Cs" conceptual framework: (1) camouflage, which hides cancer cells from immune recognition, (2) coercion, which directly or indirectly interferes with immune effector cells, and (3) cytoprotection, which shields malignant cells from immune cytotoxicity. Blocking the ability of neoplastic cells to evade the host immune system is crucial for increasing the efficacy of modern immunotherapy and conventional therapeutic strategies that ultimately activate anticancer immunosurveillance. Here, we review key hallmarks of cancer immune evasion under the "three Cs" framework and discuss promising strategies targeting such immunoevasive mechanisms.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA; Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Ilio Vitale
- Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy; Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Zhang A, Fan T, Liu Y, Yu G, Li C, Jiang Z. Regulatory T cells in immune checkpoint blockade antitumor therapy. Mol Cancer 2024; 23:251. [PMID: 39516941 PMCID: PMC11545879 DOI: 10.1186/s12943-024-02156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Regulatory T cells (Tregs), an essential component of the human immune system, are a heterogeneous group of T lymphocytes with the ability to suppress immune responses and maintain immune homeostasis. Recent evidence indicates that Tregs may impair antitumor immunity and facilitate cancer progression by weakening functions of effector T cells (Teffs). Consequently, targeting Tregs to eliminate them from tumor microenvironments to improve Teffs' activity could emerge as an effective strategy for cancer immunotherapy. This review outlines the biology of Tregs, detailing their origins, classification, and crucial markers. Our focus lies on the complex role of Tregs in cancer's development, progression and treatment, particularly on their suppressive role upon antitumor responses via multiple mechanisms. We delve into Tregs' involvement in immune checkpoint blockade (ICB) therapy, their dual effect on cancer immunotherapy and their potential biomarkers for ICB therapy effectiveness. We also summarize advances in the therapies that adjust Tregs to optimize ICB therapy, which may be crucial for devising innovative cancer treatment strategies.
Collapse
Affiliation(s)
- An Zhang
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yixiao Liu
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Guanhua Yu
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zheng Jiang
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
35
|
Wang Y, Wang X, Liu Y, Xu J, Zhu J, Zheng Y, Qi Q. A novel hypoxia- and lactate metabolism-related prognostic signature to characterize the immune landscape and predict immunotherapy response in osteosarcoma. Front Immunol 2024; 15:1467052. [PMID: 39569192 PMCID: PMC11576178 DOI: 10.3389/fimmu.2024.1467052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Abstract
Background Immunotherapy has shown considerable promise in cancer treatment, yet only a minority of osteosarcoma patients derive benefits from this approach. Hypoxia and lactate metabolism are two predominant characteristics of the tumor microenvironment. These features are crucial for molding the immune landscape and thus have the potential to act as predictive indicators for immunotherapy response. Methods Prognostic modeled genes were identified through univariate and multivariate Cox regression as well as LASSO regression analyses. The tumor microenvironment was evaluated using ESTIMATE, CIBERSORT, and ImmuCellAI analyses. Tide prediction and expression of immune checkpoints, MHC molecules, chemokines, interleukins, interferons, receptors, and other cytokines were utilized to estimate immunotherapy efficacy. Single-cell analysis was performed to demonstrate the expression of modeled genes among various immune cell types. Experimental validation was carried out to verify the expression and functions of SFXN4 and SQOR. Results A potent signature was constructed with 8 genes related to hypoxia and lactate metabolism, including MAFF, COL5A2, FAM162A, SQOR, UQCRB, SFXN4, PFKFB2 and COX6A2. A nomogram incorporating risk scores and other clinical features demonstrated excellent predictive capacity. Osteosarcoma patients with high-risk scores exhibited poor prognosis and more "cold" tumor characteristics. According to the ESTIMATE algorithm, these patients displayed lower immune, stromal, and ESTIMATE scores, partially attributed to inadequate infiltration of key immunocytes. The Ciborsort analysis similarly indicated that high-risk individuals had diminished infiltration of critical anti-tumor immune cells such as Cytotoxic T cells, CD4+ T cells, and NK cells. The low expression levels of certain immune checkpoints, MHC molecules, chemokines, interleukins, interferons, receptors, and other cytokines in high-risk cases suggested their unsatisfactory responses to immune treatment. Tide prediction further demonstrated that fewer individuals classified as high risk may exhibit sensitivity to immune checkpoint inhibitor therapy. Notably, SFXN4 was found to be highly expressed in osteosarcoma tissues and cells; it promoted the growth, migration, and invasion of osteosarcoma cells, while SQOR had the opposite effect. Conclusion Our research has developed a robust hypoxia- and lactate metabolism-related gene signature, providing a solid theoretical foundation for prognosis prediction, classification of "cold" and "hot" tumors, accessing immunotherapy response, and directing personalized treatment for osteosarcoma.
Collapse
Affiliation(s)
- Yizhuo Wang
- The Second Department of Orthopedic Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Wang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yang Liu
- The Second Department of Orthopedic Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiayuan Xu
- The Second Department of Orthopedic Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiyuan Zhu
- Department of pathology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yufu Zheng
- The Second Department of Orthopedic Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Quan Qi
- The Second Department of Orthopedic Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
36
|
Ma J, Hua L, Zhu Y, Mao G, Fu C, Qin S. Photo-Thermally Controllable Tumor Metabolic Modulation to Assist T Cell Activation for Boosting Immunotherapy. Int J Nanomedicine 2024; 19:11181-11194. [PMID: 39513087 PMCID: PMC11542477 DOI: 10.2147/ijn.s483815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Background Glycolysis is crucial for tumor cell proliferation, supporting their energy needs and influencing the tumor microenvironment (TME). On one hand, increased lactate levels produced by glycolysis acidifies the TME, inhibiting T cell activity. On the other hand, glycolysis promotes the expression of PD-L1 through various mechanisms, facilitating immune evasion. Therefore, controlled modulation of glycolysis in tumor cells to subsequently improve the immune tumor microenvironment holds significant implications for clinical cancer treatment and immune regulation. Methods To reverse the immunosuppressive microenvironment caused by tumor glycolysis and reduce tumor immune escape, we developed a photo-thermal-controlled precision drug delivery platform to regulate tumor metabolism and aid in the activation of T cells, thereby enhancing immunotherapy. First, hollow mesoporous Prussian blue (HPB) was prepared, and the glycolysis inhibitor 3-bromopyruvate (3-BrPA) was encapsulated within HPB using the phase-change material 1-tetradecanol, resulting in B/T-H. This product was then modified with tumor cell membranes to obtain a photo-thermal controllable regulator (B/T-H@Membrane, B/T-HM). Results Due to the excellent drug loading and photo-thermal properties of HPB, upon reaching the tumor, B/T-HM can rapidly heat under 808 nm irradiation, causing the 1-tetradecanol to transition to a liquid phase and release 3-BrPA, which effectively inhibits tumor glycolysis through the HK2 pathway, thereby reducing tumor cell proliferation, decreasing lactate production, and downregulating tumor PD-L1 expression. In synergy with photo-thermal and αPD-1, this photo-thermally controllable metabolic-immune therapy effectively activates T cells to eliminate tumor. Conclusion In response to the changes in immune microenvironment caused by tumor metabolism, a photo-thermal precision-controlled drug delivery platform was successfully developed. This platform reshapes the tumor immunosuppressive microenvironment, providing a new approach for T cell-based tumor immunotherapy. It also opens new avenues for photo-thermal controllable metabolic-immune therapy.
Collapse
Affiliation(s)
- Jun Ma
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, People’s Republic of China
| | - Lixin Hua
- Department of General Surgery, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People’s Hospital, Wuxi, People’s Republic of China
| | - Yinxing Zhu
- Department of Traditional Chinese Medicines, Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Taizhou, 225300, People’s Republic of China
| | - Guangyao Mao
- Institute of Clinical Medicine, the Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, People’s Republic of China
| | - Chunsheng Fu
- Institute of Clinical Medicine, the Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, People’s Republic of China
| | - Shiyue Qin
- Department of Ophthalmology, the Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, People’s Republic of China
| |
Collapse
|
37
|
Ke M, Xu J, Ouyang Y, Chen J, Yuan D, Guo T. SUGT1 regulates the progression of ovarian cancer through the AKT/PI3K/mTOR signaling pathway. Transl Oncol 2024; 49:102088. [PMID: 39167956 PMCID: PMC11379980 DOI: 10.1016/j.tranon.2024.102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/01/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024] Open
Abstract
This study investigates the expression and functional roles of SUGT1 in ovarian cancer, utilizing data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) projects. Our analyses reveal that SUGT1 is significantly upregulated in ovarian cancer tissues compared to normal controls. We further explore the prognostic value of SUGT1, where elevated expression correlates with poorer patient outcomes, particularly in ovarian cancer. The functional implications of SUGT1 in cancer biology were assessed through in vitro and in vivo experiments. Gene Set Enrichment Analysis (GSEA) indicates a significant association between high SUGT1 expression and the activation of glycolytic pathways, suggesting a potential role in metabolic reprogramming. Inhibition of SUGT1 via siRNA in ovarian cancer cell lines results in decreased proliferation and increased apoptosis, along with reduced migration and invasion capabilities. Additionally, our study identifies the transcription factor ELF1 as a significant regulator of SUGT1 expression. Through promoter analysis and chromatin immunoprecipitation, we demonstrate that ELF1 directly binds to the SUGT1 promoter, enhancing its transcription. This regulatory mechanism underscores the importance of transcriptional control in cancer metabolism, providing insights into potential therapeutic targets. Our findings establish SUGT1 as a crucial player in the oncogenic processes of ovarian cancer, influencing both metabolic pathways and transcriptional regulation. This highlights its potential as a biomarker and therapeutic target in managing ovarian cancer.
Collapse
Affiliation(s)
- Miao Ke
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jie Xu
- Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Ye Ouyang
- Graduate Management Department, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Junyu Chen
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Donglan Yuan
- Department of Gynecology and Obstetrics, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
| | - Ting Guo
- Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
| |
Collapse
|
38
|
Xue HY, Wei F. TGF-β: an active participant in the immune and metabolic microenvironment of multiple myeloma : TGF-β in the microenvironment of multiple myeloma. Ann Hematol 2024; 103:4351-4362. [PMID: 38900304 PMCID: PMC11534828 DOI: 10.1007/s00277-024-05843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Although substantial quantities of potent therapies for multiple myeloma (MM) have been established, MM remains an incurable disease. In recent years, our understanding of the initiation, development, and metastasis of cancers has made a qualitative leap. Cancers attain the abilities to maintain proliferation signals, escape growth inhibitors, resist cell death, induce angiogenesis, and more importantly, escape anti-tumor immunity and reprogram metabolism, which are the hallmarks of cancers. Besides, different cancers have different tumor microenvironments (TME), thus, we pay more attention to the TME in the pathogenesis of MM. Many researchers have identified that myeloma cells interact with the components of TME, which is beneficial for their survival, ultimately causing the formation of immunosuppressive and high-metabolism TME. In the process, transforming growth factor-β (TGF-β), as a pivotal cytokine in the TME, controls various cells' fates and influences numerous metabolic pathways, including inhibiting immune cells to infiltrate the tumors, suppressing the activation of anti-tumor immune cells, facilitating more immunosuppressive cells, enhancing glucose and glutamine metabolism, dysregulating bone metabolism and so on. Thus, we consider TGF-β as the tumor promoter. However, in healthy cells and the early stage of tumors, it functions as a tumor suppressor. Due to the effect of context dependence, TGF-β has dual roles in TME, which attracts us to further explore whether targeting it can overcome obstacles in the treatment of MM by regulating the progression of myeloma, molecular mechanisms of drug resistance, and various signaling pathways in the immune and metabolic microenvironment. In this review, we predominantly discuss that TGF-β promotes the development of MM by influencing immunity and metabolism.
Collapse
Affiliation(s)
- Han-Yue Xue
- The First Clinical Medical College of Shanxi Medical University, 56 Xinjian South Road, Yingze District, Taiyuan, Shanxi, People's Republic of China
| | - Fang Wei
- Department of Hematology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Yingze District, Taiyuan, Shanxi, People's Republic of China.
| |
Collapse
|
39
|
Bai Z, Cheng X, Ma T, Li G, Wang X, Wang Z, Yi L, Liu Z. CD8+ T cells infiltrating into tumors were controlled by immune status of pulmonary lymph nodes and correlated with non-small cell lung cancer (NSCLC) patients' prognosis treated with chemoimmunotherapy. Lung Cancer 2024; 197:107991. [PMID: 39454350 DOI: 10.1016/j.lungcan.2024.107991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
PURPOSE Neoadjuvant chemoimmunotherapy has the potential to reduce tumor burden, improve the pathological complete response (pCR) rate, and significantly prolong patients' disease-free survival (DFS). However, the treatment's effectiveness varies among NSCLC patients. The immunological mechanisms contributing to tumor regression still require further exploration and elucidation. METHODS The immune status of patients' local tumor microenvironment (TME) before and after neoadjuvant chemoimmunotherapy, their paired pulmonary lymph nodes (11th LNs) after therapy, including infiltrating immune cell densities and their correlations, were analyzed using multiplex immunofluorescence. RESULTS Fifty-six NSCLC patients undergoing neoadjuvant chemoimmunotherapy were enrolled and subsequently underwent surgical resection and pathological evaluation. Among these, 19 patients achieved a pCR, 6 patients exhibited a major pathological response (MPR), and 31 patients did not achieve MPR. There were no significant difference in the densities of CD8+ T cell, Treg and Dendritic cell (DC) in patients' TME before neoadjuvant therapy (n = 26, P = 0.091, P = 0.753, P = 0.905, respectively), but after treament, these immune cells' dynamics were significantly different between different response group. CD8+ T cell densities were increased in pCR gourp (P = 0.006), but not in non-pCR group (P = 0.389); the densities of Treg were increased in non-pCR gourp (P = 0.0004), but DC were significantly decreased in non-pCR gourp (P = 0.005). After surgery, the TME were also significantly different: patients achieving pCR typically demonstrated high densities of CD8+ T cell, DC and low densities of Tregs (P = 0.0001, P < 0.0001 and P = 0.0004). The immune status of 11th LNs also exhibited significant differences. DC densities were much higher in pCR patients, whereas Treg in the pCR group were significantly lower than those in the non-pCR group (P = 0.0008 and P = 0.003). Furthermore, the densities of DC in the TME showed a moderate positive correlation with DC in 11th LNs (P = 0.0002), while the densities of Tregs in the TME exhibited a moderate negative correlation with DC densities in 11th LNs (P = 0.03). Patients who had high densities of CD8+ T cell in the resection tissues and DC in the LNs, experienced longer DFS (P = 0.048 and P = 0.024). CONCLUSION Immune cells in both pulmonary LNs and the TME collectively influence the remodeling of the NSCLC patient's TME, thus impacting treatment response and prognosis.
Collapse
Affiliation(s)
- Zhexin Bai
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xu Cheng
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Tianyu Ma
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Gege Li
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xiaojue Wang
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Ziyu Wang
- Department of Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Ling Yi
- Department of Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China.
| | - Zhidong Liu
- No. 2 Department of Thoracic Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute Beijing Chest Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
40
|
Yao J, Ji L, Wang G, Ding J. Effect of neutrophils on tumor immunity and immunotherapy resistance with underlying mechanisms. Cancer Commun (Lond) 2024. [PMID: 39485719 DOI: 10.1002/cac2.12613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024] Open
Abstract
Neutrophils are key mediators of the immune response and play essential roles in the development of tumors and immune evasion. Emerging studies indicate that neutrophils also play a critical role in the immunotherapy resistance in cancer. In this review, firstly, we summarize the novel classification and phenotypes of neutrophils and describe the regulatory relationships between neutrophils and tumor metabolism, flora microecology, neuroendocrine and tumor therapy from a new perspective. Secondly, we review the mechanisms by which neutrophils affect drug resistance in tumor immunotherapy from the aspects of the immune microenvironment, tumor antigens, and epigenetics. Finally, we propose several promising strategies for overcoming tumor immunotherapy resistance by targeting neutrophils and provide new research ideas in this area.
Collapse
Affiliation(s)
- Jiali Yao
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Linlin Ji
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Guang Wang
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Jin Ding
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
41
|
Taranto D, Kloosterman DJ, Akkari L. Macrophages and T cells in metabolic disorder-associated cancers. Nat Rev Cancer 2024; 24:744-767. [PMID: 39354070 DOI: 10.1038/s41568-024-00743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 10/03/2024]
Abstract
Cancer and metabolic disorders have emerged as major global health challenges, reaching epidemic levels in recent decades. Often viewed as separate issues, metabolic disorders are shown by mounting evidence to heighten cancer risk and incidence. The intricacies underlying this connection are still being unraveled and encompass a complex interplay between metabolites, cancer cells and immune cells within the tumour microenvironment (TME). Here, we outline the interplay between metabolic and immune cell dysfunction in the context of three highly prevalent metabolic disorders, namely obesity; two associated liver diseases, metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH); and type 2 diabetes. We focus primarily on macrophages and T cells, the critical roles of which in dictating inflammatory response and immune surveillance in metabolic disorder-associated cancers are widely reported. Moreover, considering the ever-increasing number of patients prescribed with metabolism disorder-altering drugs and diets in recent years, we discuss how these therapies modulate systemic and local immune phenotypes, consequently impacting cancer malignancy. Collectively, unraveling the determinants of metabolic disorder-associated immune landscape and their role in fuelling cancer malignancy will provide a framework essential to therapeutically address these highly prevalent diseases.
Collapse
Affiliation(s)
- Daniel Taranto
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daan J Kloosterman
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Leila Akkari
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
42
|
Wang Y, Xue L. Decoding the role of FOXP3 in esophageal cancer: Underlying mechanisms and therapeutic implications. Biochim Biophys Acta Rev Cancer 2024; 1879:189211. [PMID: 39532205 DOI: 10.1016/j.bbcan.2024.189211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/05/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Esophageal cancer is a significant contributor to cancer-related mortality, and its poor prognosis is primarily attributed to the aggressive nature of the tumor and challenges in early detection. Currently, there are no ideal drugs developed for treatment, making it crucial to explore potential biomarkers and molecular targets for esophageal cancer. FOXP3, as a transcription factor and major regulator of regulatory T cells, not only plays a role in promoting or inhibiting tumor development in various types of cancer cells including esophageal cancer cells but also influences the function of Treg cells by regulating the expression of multiple genes. This paper provides an in-depth discussion on the functional properties, regulatory mechanisms, key signaling pathways, as well as the role and potential application of FOXP3 in treating esophageal cancer. Furthermore, it comprehensively analyzes the complex role of this transcription factor within the tumor immune microenvironment with an aim to aid in developing new potential targets for esophageal cancer treatment.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Thoracic Surgery, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Military Medical University, 200003 Shanghai, China.
| | - Lei Xue
- Department of Thoracic Surgery, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Military Medical University, 200003 Shanghai, China.
| |
Collapse
|
43
|
Huang ZM, Wei J, Pan XW, Chen XB, Lu ZY. A novel risk score model of lactate metabolism for predicting outcomes and immune signatures in acute myeloid leukemia. Sci Rep 2024; 14:25742. [PMID: 39468216 PMCID: PMC11519446 DOI: 10.1038/s41598-024-76919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
Acute myeloid leukemia (AML) is a malignant tumor with high recurrence and refractory rates and low survival rates. Increased glycolysis is characteristic of metabolism in AML blast cells and is also associated with chemotherapy resistance. The purpose of this study was to use gene expression and clinical information from The Cancer Genome Atlas (TCGA) database to identify subtypes of AML associated with lactate metabolism. Two different subtypes linked to lactate metabolism, each with specific immunological features and consequences for prognosis, were identified in this study. Using the TCGA and International Cancer Genome Consortium (GEO) cohorts, a prognostic model composed of genes (LMNA, RETN and HK1) for the prognostic value of the lactate metabolism-related risk score prognostic model was created and validated, suggesting possible therapeutic uses. Additionally, the diagnostic value of the prognostic model genes was explored. LMNA and HK1 were ultimately identified as hub genes, and their roles in AML were determined through immune infiltration, GeneMANIA, GSEA, methylation analysis and single-cell analysis. LMNA was upregulated in AML associating with a poor prognosis while HK1 was downregulated in AML associating with a favorable prognosis. The findings underscore the noteworthy impact of genes linked to lactate metabolism in AML and illustrate the possible therapeutic usefulness of the lactate metabolism-related risk score and the hub lactate metabolism-related genes in guiding AML patients' treatment choices.
Collapse
Affiliation(s)
- Ze-Min Huang
- Department of Hematology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jing Wei
- Department of Hematology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Wen Pan
- Department of Hematology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xing-Biao Chen
- Department of Hematology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zi-Yuan Lu
- Department of Hematology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
44
|
Cappellesso F, Mazzone M, Virga F. Acid affairs in anti-tumour immunity. Cancer Cell Int 2024; 24:354. [PMID: 39465367 PMCID: PMC11514911 DOI: 10.1186/s12935-024-03520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
Metabolic rewiring of cancer cells is one of the hallmarks of cancer. As a consequence, the metabolic landscape of the tumour microenvironment (TME) differs compared to correspondent healthy tissues. Indeed, due to the accumulation of acid metabolites, such as lactate, the pH of the TME is generally acidic with a pH drop that can be as low as 5.6. Disruptions in the acid-base balance and elevated lactate levels can drive malignant progression not only through cell-intrinsic mechanisms but also by impacting the immune response. Generally, acidity and lactate dampen the anti-tumour response of both innate and adaptive immune cells favouring tumour progression and reducing the response to immunotherapy. In this review, we summarize the current knowledge on the functional, metabolic and epigenetic effects of acidity and lactate on the cells of the immune system. In particular, we focus on the role of monocarboxylate transporters (MCTs) and other solute carrier transporters (SLCs) that, by mediating the exchange of lactate (among other metabolites) and bicarbonate, participate in pH regulation and lactate transport in the cancer context. Finally, we discuss advanced approaches to target pH or lactate in the TME to enhance the anti-tumour immune response.
Collapse
Affiliation(s)
- Federica Cappellesso
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium.
- Lab of Dendritic Cell Biology and Cancer Immunotherapy, Inflammation Research Center, VIB, Brussels, Belgium.
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Federico Virga
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, 28029, Spain.
| |
Collapse
|
45
|
Zheng Y, Xu R, Chen X, Lu Y, Zheng J, Lin Y, Lin P, Zhao X, Cui L. Metabolic gatekeepers: harnessing tumor-derived metabolites to optimize T cell-based immunotherapy efficacy in the tumor microenvironment. Cell Death Dis 2024; 15:775. [PMID: 39461979 PMCID: PMC11513100 DOI: 10.1038/s41419-024-07122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
The tumor microenvironment (TME) orchestrates a complex interplay between tumor cells and immune cells, crucially modulating the immune response. This review delves into the pivotal role of metabolic reprogramming in the TME, highlighting how tumor-derived metabolites influence T lymphocyte functionality and the efficacy of cancer immunotherapies. Focusing on the diverse roles of these metabolites, we examine how lactate, lipids, amino acids, and other biochemical signals act not only as metabolic byproducts but as regulatory agents that can suppress or potentiate T cell-mediated immunity. By integrating recent findings, we underscore the dual impact of these metabolites on enhancing tumor progression and inhibiting immune surveillance. Furthermore, we propose innovative therapeutic strategies that target metabolic pathways to restore immune function within the TME. The insights provided in this review pave the way for the development of metabolic interventions aimed at enhancing the success of immunotherapies in oncology, offering new hope for precision medicine in the treatment of cancer.
Collapse
Affiliation(s)
- Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
46
|
Shi K, Fu W, Farhadi Sabet Z, Ye J, Liang S, Liu T, Liu Q, Guo M, You M, Wu J, Bai R, Liu Y, Hu B, Cui X, Li J, Chen C. Hydrogel-Mediated Jamming of Exosome Communications That Counter Tumor Adaption in the Tumor Immune Microenvironment. ACS NANO 2024. [PMID: 39441690 DOI: 10.1021/acsnano.4c07603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Hypoxia, a common occurrence within solid tumors, can stimulate the dissemination of deceptive tumor exosomes, which function as communicative bridges and orchestrate the recruitment of various supportive cell types for enhanced tumor adaptability in a tumor immune microenvironment. Current nanotechnology provides us intelligent strategies to combat the hypoxic tumor microenvironment. However, once exposed to external stimuli, such as chemotherapy, tumor cells simultaneously release malignant signals to develop tumor migration and immunosuppression, posing challenges to clinical practice. Taking advantage of the membrane-targeting therapeutic strategy, the application of a self-assembled short peptide (PepABS-py), affording hydrogels on tumor cell surfaces, can block exosome dissemination with fiber-like nanostructures and effectively limit the systemic adverse effects of traditional therapeutics. Moreover, PepABS-py can attenuate the hypoxic tumor microenvironment in vivo by carrying an inhibitor of the hypoxic tumor-overexpressed CA IX enzyme, where hypoxia is also a crucial regulator to induce tumor exosomes and mediate intercellular communications within the immune system. Herein, its application on jamming exosome communications can target the T cell-related signaling pathway by regulating microRNAs in exosome cargoes and ultimately enhances CD8+ T cell infiltration and alleviates inflammatory monocytes at metastasis sites. Collectively, with the capability of blocking exosome dissemination, PepABS-py can be applied as a promising tumor membrane-targeting therapeutic tool to counter tumor adaption within an immune microenvironment and further advance traditional chemotherapy.
Collapse
Affiliation(s)
- Kejian Shi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Wenjiao Fu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zeinab Farhadi Sabet
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Jinmin Ye
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Shijian Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Qiaolin Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Mengyu Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Min You
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Junguang Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Ru Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Bin Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Jiayang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100021, People's Republic of China
| |
Collapse
|
47
|
Fang Y, Liu Y, Dong Z, Zhao X, Zhang M, Zheng Y, Yang C, Wang Y, Liu N, Yan P, Ma Y, Yang F, Zheng Y, Zhang W, Yang J, Sun M. JAML overexpressed in colorectal cancer promotes tumour proliferation by activating the PI3K-AKT-mTOR signalling pathway. Sci Rep 2024; 14:24514. [PMID: 39424882 PMCID: PMC11489459 DOI: 10.1038/s41598-024-75180-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
The expression and biological function of junctional adhesion molecule-like protein (JAML) in colorectal cancer (CRC) remain unclear. Paraffin tissue samples from 50 cases of CRC were collected to determine the expression of JAML. JAML was overexpressed or knock-down in CRC cells to evaluated the proliferation, migration and invasion in vitro and in vivo. Western-blot and others were applied to explore the mechanisms. The study showed that JAML was highly expressed within cancer tissues in 50% (25/50) of patients with CRC, and was correlated with higher TNM stage (p < 0.05). Patients of JAML-high group had poorer overall survival compared to JAML-low group (p = 0.0362, HR = 0.4295, 95% CI of 0.1908-0.9667). The tumour infiltrating lymphocytes (TILs) was lower in the JAML-high group than in the JAML-low group (p < 0.05). Overexpression of JAML promoted the proliferation, migration, and invasion of CRC by activating the PI3K-AKT-mTOR signalling pathway both in vitro and in vivo. TILs were reduced in JAML-high tumour tissues by decreasing chemokines such as CCL20 and CXCL9/10/11. Our study identified JAML, a potentially ideal target that is specifically highly expressed in CRC tissues, which promoted tumour proliferation, impaired T-lymphocytes infiltration, provided a promising therapeutic strategy for patients with CRC.
Collapse
Affiliation(s)
- Yuying Fang
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, People's Republic of China
- Research Center of Translational Medicine, Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Yanan Liu
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, People's Republic of China
- Research Center of Translational Medicine, Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Zhilin Dong
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
- Department of Clinical Medicine, Shandong First Medical University, Jinan, 271016, Shandong, People's Republic of China
| | - Xinchao Zhao
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
- Department of Clinical Medicine, Shandong First Medical University, Jinan, 271016, Shandong, People's Republic of China
| | - Mingyan Zhang
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
- Research Center of Translational Medicine, Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Yawen Zheng
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Chunsheng Yang
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Yufeng Wang
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, People's Republic of China
- Research Center of Translational Medicine, Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Ning Liu
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Peng Yan
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Yuan Ma
- Department of Pathology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Fei Yang
- Department of Pathology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Wencheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Jianmin Yang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Meili Sun
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China.
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, People's Republic of China.
| |
Collapse
|
48
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
49
|
Zhou Y, Lou J, Tian Y, Ding J, Wang X, Tang B. How lactate affects immune strategies in lymphoma. Front Mol Biosci 2024; 11:1480884. [PMID: 39464313 PMCID: PMC11502318 DOI: 10.3389/fmolb.2024.1480884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
Tumor cells undergo metabolic reprogramming through shared pathways, resulting in a hypoxic, acidic, and highly permeable internal tumor microenvironment (TME). Lactate, once only regarded as a waste product of glycolysis, has an inseparable dual role with tumor immunity. It can not only provide a carbon source for immune cells to enhance immunity but also help the immune escape through a variety of ways. Lymphoma also depends on the proliferation signal of TME. This review focuses on the dynamic process of lactate metabolism and immune function changes in lymphoma and aims to comprehensively summarize and explore which genes, transcription factors, and pathways affect the biological changes and functions of immune cells. To deeply understand the complex and multifaceted role of lactate metabolism and immunity in lymphoma, the combination of lactate targeted therapy and classical immunotherapy will be a promising development direction in the future.
Collapse
Affiliation(s)
- Yuehan Zhou
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinzhan Lou
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuqin Tian
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinlei Ding
- Department of Thoracic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaobo Wang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bo Tang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
50
|
Huang J, Xiong L, Tang S, Zhao J, Zuo L. Balancing Tumor Immunotherapy and Immune-Related Adverse Events: Unveiling the Key Regulators. Int J Mol Sci 2024; 25:10919. [PMID: 39456702 PMCID: PMC11507008 DOI: 10.3390/ijms252010919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Tumor immunotherapy has emerged as a promising approach in cancer treatment in recent years, offering vast potential. This method primarily involves targeting and inhibiting the suppressive checkpoints present in different immune cells to enhance their activation, ultimately leading to tumor regression. However, tumor cells exploit the surrounding immune cells and tissues to establish a tumor microenvironment (TME) that supports their survival and growth. Within the TME, the efficacy of effector immune cells is compromised, as tumor cells exploit inhibitory immune cells to suppress their function. Furthermore, certain immune cells can be co-opted by tumor cells to facilitate tumor growth. While significantly enhancing the body's tumor immunity can lead to tumor regression, it can also result in severe toxic side effects and an inflammatory factor storm. As a consequence, patients often discontinue treatment due to immune-related adverse events (irAEs) or, in extreme cases, succumb to toxic side effects before experiencing tumor regression. In this analysis, we examined several remission regimens for irAEs, each with its own drawbacks, including toxic side effects or suppression of tumor immunotherapy, which is undesirable. A recent research study, specifically aimed at downregulating intestinal epithelial barrier permeability, has shown promising results in reducing the severity of inflammatory bowel disease (IBD) while preserving immune function. This approach effectively reduces the severity of IBD without compromising the levels of TNF-α and IFN-γ, which are crucial for maintaining the efficacy of tumor immunotherapy. Based on the substantial similarities between IBD and ICI colitis (combo immune checkpoint inhibitors-induced colitis), this review proposes that targeting epithelial cells represents a crucial research direction for mitigating irAEs in the future.
Collapse
Affiliation(s)
- Jianshang Huang
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China; (J.H.)
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China
| | - Lei Xiong
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China; (J.H.)
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China
| | - Sainan Tang
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China; (J.H.)
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China
| | - Junhao Zhao
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China; (J.H.)
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China
| | - Li Zuo
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Sciences, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China; (J.H.)
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, No.81, Meishan Rd., Hefei 230032, China
| |
Collapse
|