1
|
Hatakenaka R, Urabe K, Ueno S, Yamauchi M, Mizuhata Y, Yamada H, Mikata Y, Kamijo S, Tani F, Murafuji T. Doubly Linked Azulene Dimer: A Novel Non-benzenoid Isomer of Perylene. Chemistry 2025:e202404679. [PMID: 39786327 DOI: 10.1002/chem.202404679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
We report herein the synthesis of an unprecedented isomer of perylene, dicyclohepta[cd,fg]-as-indacene bearing two phenyl groups (1-Ph) by the nickel-mediated intramolecular homocoupling of a 4,4'-biazulene derivative (2). The X-ray crystallographic analysis and theoretical calculations revealed that 1-Ph adopts a unique helically twisted geometry although the local aromaticity of azulene moieties was preserved. The double covalent linkage of the two azulene skeletons imparts significant orbital interaction, which affords near-infrared (NIR) absorption (up to 1720 nm) and remarkable redox behaviors despite its closed-shell electronic structure. The optical band gap of 1-Ph is calculated to be 0.72 eV from its absorption onset, which is one of the narrowest values among the hitherto reported air-stable non-benzenoid PAHs. Furthermore, the thin-film of 1-Ph serves as a p-type semiconductor. Our study offers fundamental insights into not only the aromaticity with the nonalternant topologies of 1-Ph but also its potential application in novel organic electronics.
Collapse
Affiliation(s)
- Ryoji Hatakenaka
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512, Japan
| | - Kazuma Urabe
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512, Japan
| | - So Ueno
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Mitsuaki Yamauchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yoshiyuki Mizuhata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Hiroko Yamada
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yuji Mikata
- Laboratory for Molecular & Functional Design, Department of Engineering, Nara Women's University, Nara, 630-8506, Japan
| | - Shin Kamijo
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512, Japan
| | - Fumito Tani
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Toshihiro Murafuji
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512, Japan
| |
Collapse
|
2
|
Hanganu A, Maxim C, Dogaru A, Ion AE, Bleotu C, Madalan AM, Bala D, Nica S. Synthesis, Physicochemical Properties, and Ion Recognition Ability of Azulene-Based Bis-(Thio)Semicarbazone. Molecules 2024; 30:83. [PMID: 39795140 PMCID: PMC11721881 DOI: 10.3390/molecules30010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Azulene-1,3-bis(semicarbazone), 1, and azulene-1,3-bis(thiosemicarbazone), 2, were synthesized by the acid-catalyzed condensation reactions of semicarbazide and thiosemicarbazide, respectively, with azulene-1,3-dicarboxaldehyde in stoichiometric amounts. Compounds 1 and 2 were identified by high-resolution mass spectrometry and characterized by IR, 1H-NMR, 13C-NMR, and UV-vis spectroscopic techniques. Crystal structure determination of azulene-1,3-bis(thiosemicarbazone) shows that the thiosemicarbazone units exhibit a syn-closed conformation, with both arms oriented in the same direction and adopting an E configuration with respect to the imine linkages. Both hydrazones are redox active and showed fluorescence emission at 450 nm upon excitation at 350 nm. The bis-semicarbazone showed no affinity for anions nor for mercury(II) metal cation. Instead, the bis-thiosemicarbazone showed a lower affinity for chloride anions, but enhanced affinity for binding/poisoning Hg2+ ions. Both compounds were tested against osteosarcoma MG63 cell lines, exhibiting low antiproliferative activity with comparable IC50 values of 473.08 μM and 472.40 μM for compounds 1 and 2, respectively. Despite this limited antiproliferative effect, further analysis using propidium iodide staining revealed a concentration-dependent decrease in cell viability, with high concentrations inducing a marked reduction in cell number, accompanied by morphological changes characteristic of apoptosis and necrosis.
Collapse
Affiliation(s)
- Anamaria Hanganu
- “C. D. Nenitzescu” Institute of Organic and Supramolecular Chemistry, Splaiul Independentei 202B, 060023 Bucharest, Romania; (A.H.); (C.M.); (A.D.); (A.E.I.)
- Faculty of Chemistry, University of Bucharest, 4-12 Bvd. Regina Elisabeta, 030018 Bucharest, Romania; (A.M.M.); (D.B.)
| | - Catalin Maxim
- “C. D. Nenitzescu” Institute of Organic and Supramolecular Chemistry, Splaiul Independentei 202B, 060023 Bucharest, Romania; (A.H.); (C.M.); (A.D.); (A.E.I.)
- Faculty of Chemistry, University of Bucharest, 4-12 Bvd. Regina Elisabeta, 030018 Bucharest, Romania; (A.M.M.); (D.B.)
| | - Andreea Dogaru
- “C. D. Nenitzescu” Institute of Organic and Supramolecular Chemistry, Splaiul Independentei 202B, 060023 Bucharest, Romania; (A.H.); (C.M.); (A.D.); (A.E.I.)
| | - Adrian E. Ion
- “C. D. Nenitzescu” Institute of Organic and Supramolecular Chemistry, Splaiul Independentei 202B, 060023 Bucharest, Romania; (A.H.); (C.M.); (A.D.); (A.E.I.)
| | - Coralia Bleotu
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Avenue, 030317 Bucharest, Romania;
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania
| | - Augustin M. Madalan
- Faculty of Chemistry, University of Bucharest, 4-12 Bvd. Regina Elisabeta, 030018 Bucharest, Romania; (A.M.M.); (D.B.)
| | - Daniela Bala
- Faculty of Chemistry, University of Bucharest, 4-12 Bvd. Regina Elisabeta, 030018 Bucharest, Romania; (A.M.M.); (D.B.)
| | - Simona Nica
- “C. D. Nenitzescu” Institute of Organic and Supramolecular Chemistry, Splaiul Independentei 202B, 060023 Bucharest, Romania; (A.H.); (C.M.); (A.D.); (A.E.I.)
| |
Collapse
|
3
|
Merkhatuly N, Iskanderov A, Abeuova S, Iskanderov A, Zhokizhanova S. Conjugated Diphenylaniline-Azulene Co-Oligomers with Intense Absorption and Emission in the Visible Region. Molecules 2024; 29:5041. [PMID: 39519682 PMCID: PMC11547525 DOI: 10.3390/molecules29215041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
New conjugated 2,6-diphenylaniline-azulene co-oligomers of linear and branched structure were synthesized by the interaction of borylazulenes with diphenylaniline bromides under Suzuki-Miyaura cross-coupling conditions. The obtained diphenylaniline-azulene co-oligomers intensively absorb and emit visible light (410-700 nm region); in particular, they exhibit strong emissions in the green, as well as orange, range, with maxima of 510/590 nm. It is shown that such properties appear as a result of the positive resonance exposure to aniline fragments significantly rearranging the electronic structure of azulene, in particular, the levels and energy gaps of frontal HOMO-LUMO orbitals.
Collapse
Affiliation(s)
- Nurlan Merkhatuly
- Laboratory of Organic Semiconductor Chemistry, Karaganda Buketov University, Karaganda 100028, Kazakhstan
| | - Amantay Iskanderov
- Laboratory of Organic Semiconductor Chemistry, Karaganda Buketov University, Karaganda 100028, Kazakhstan
| | - Saltanat Abeuova
- The Higher School of Natural Sciences, Astana International University, Astana 020000, Kazakhstan;
| | - Ablaykhan Iskanderov
- Laboratory of Organic Semiconductor Chemistry, Karaganda Buketov University, Karaganda 100028, Kazakhstan
| | - Saltanat Zhokizhanova
- Department of Physics and Chemistry, Saken Seifullin Kazakh Agro Technical Research University, Astana 010011, Kazakhstan;
| |
Collapse
|
4
|
Tian PJ, Han XH, Qi QY, Zhao X. An Azulene-Based Crystalline Porous Covalent Organic Framework for Efficient Photothermal Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307635. [PMID: 38105336 DOI: 10.1002/smll.202307635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/21/2023] [Indexed: 12/19/2023]
Abstract
The designed synthesis of a crystalline azulene-based covalent organic framework (COF-Azu-TP) is presented and its photothermal property is investigated. Azulene, a distinctive 5-7 fused ring non-benzenoid aromatic compound with a large intramolecular dipole moment and unique photophysical characteristics, is introduced as the key feature in COF-Azu-TP. The incorporation of azulene moiety imparts COF-Azu-TP with broad-spectrum light absorption capability and interlayer dipole interactions, which makes COF-Azu-TP a highly efficient photothermal conversion material. Its polyurethane (PU) composite exhibits a solar-to-vapor conversion efficiency (97.2%) and displays a water evaporation rate (1.43 kg m-2 h-1) under one sun irradiation, even at a very low dosage of COF-Azu-TP (2.2 wt%). Furthermore, COF-Azu-TP is utilized as a filler in a polylactic acid (PLA)/polycaprolactone (PCL) composited shape memory material, enabling rapid shape recovery under laser stimulation. A comparison study with a naphthalene-based COF isomer further emphasizes the crucial role of azulene in enhancing photothermal conversion efficiency. This study demonstrates the significance of incorporating specific building blocks into COFs for the development of functional porous materials with enhanced properties, paving the way for future applications in diverse fields.
Collapse
Affiliation(s)
- Peng-Ju Tian
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiang-Hao Han
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qiao-Yan Qi
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xin Zhao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
5
|
Hatakenaka R, Nishikawa N, Mikata Y, Aoyama H, Yamashita K, Shiota Y, Yoshizawa K, Kawasaki Y, Tomooka K, Kamijo S, Tani F, Murafuji T. Efficient Synthesis and Structural Analysis of Chiral 4,4'-Biazulene. Chemistry 2024; 30:e202400098. [PMID: 38376431 DOI: 10.1002/chem.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/21/2024]
Abstract
4,4'-Biazulene is a potentially attractive key component of an axially chiral biaryl compound, however, its structure and properties have not been clarified owing to the lack of its efficient synthesis. We report a breakthrough in the reliable synthesis of 4,4'-biazulene, which is achieved by the access to azulen-4-ylboronic acid pinacol ester and 4-iodoazulene as novel key synthetic intermediates for the Suzuki-Miyaura cross-coupling reaction. The X-ray crystallographic analysis of 4,4'-biazulene confirmed its axial chirality. The enantiomers of 4,4'-biazulene were successfully resolved by HPLC on the chiral stationary phase column. The kinetic experiments and DFT calculations indicate that the racemization energy barrier of 4,4'-biazulene is comparable to that of 1,1'-binaphthyl.
Collapse
Affiliation(s)
- Ryoji Hatakenaka
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512, Japan
| | - Nanami Nishikawa
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512, Japan
| | - Yuji Mikata
- Laboratory for Molecular & Functional Design, Department of Engineering, Nara Women's University, Nara, 630-8506, Japan
| | - Hiroki Aoyama
- Graduate School of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Kohsuke Yamashita
- Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuuya Kawasaki
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka, 816-8580, Japan
| | - Katsuhiko Tomooka
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka, 816-8580, Japan
| | - Shin Kamijo
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512, Japan
| | - Fumito Tani
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Toshihiro Murafuji
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512, Japan
| |
Collapse
|
6
|
Nigam A, Pollice R, Friederich P, Aspuru-Guzik A. Artificial design of organic emitters via a genetic algorithm enhanced by a deep neural network. Chem Sci 2024; 15:2618-2639. [PMID: 38362419 PMCID: PMC10866360 DOI: 10.1039/d3sc05306g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
The design of molecules requires multi-objective optimizations in high-dimensional chemical space with often conflicting target properties. To navigate this space, classical workflows rely on the domain knowledge and creativity of human experts, which can be the bottleneck in high-throughput approaches. Herein, we present an artificial molecular design workflow relying on a genetic algorithm and a deep neural network to find a new family of organic emitters with inverted singlet-triplet gaps and appreciable fluorescence rates. We combine high-throughput virtual screening and inverse design infused with domain knowledge and artificial intelligence to accelerate molecular generation significantly. This enabled us to explore more than 800 000 potential emitter molecules and find more than 10 000 candidates estimated to have inverted singlet-triplet gaps (INVEST) and appreciable fluorescence rates, many of which likely emit blue light. This class of molecules has the potential to realize a new generation of organic light-emitting diodes.
Collapse
Affiliation(s)
- AkshatKumar Nigam
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto 80 St. George St Toronto Ontario M5S 3H6 Canada
- Department of Computer Science, University of Toronto 40 St. George St Toronto Ontario M5S 2E4 Canada
| | - Robert Pollice
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto 80 St. George St Toronto Ontario M5S 3H6 Canada
- Department of Computer Science, University of Toronto 40 St. George St Toronto Ontario M5S 2E4 Canada
| | - Pascal Friederich
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto 80 St. George St Toronto Ontario M5S 3H6 Canada
- Department of Computer Science, University of Toronto 40 St. George St Toronto Ontario M5S 2E4 Canada
- Institute of Nanotechnology, Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute of Theoretical Informatics, Karlsruhe Institute of Technology Am Fasanengarten 5 76131 Karlsruhe Germany
| | - Alán Aspuru-Guzik
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto 80 St. George St Toronto Ontario M5S 3H6 Canada
- Department of Computer Science, University of Toronto 40 St. George St Toronto Ontario M5S 2E4 Canada
- Vector Institute for Artificial Intelligence 661 University Ave Suite 710 Toronto Ontario M5G 1M1 Canada
- Department of Chemical Engineering & Applied Chemistry, University of Toronto 200 College St. Ontario M5S 3E5 Canada
- Department of Materials Science & Engineering, University of Toronto, 184 College St. Ontario M5S 3E4 Canada
- Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR) 661 University Ave Toronto Ontario M5G Canada
- Acceleration Consortium Toronto Ontario M5G 3H6 Canada
| |
Collapse
|
7
|
Zhang YQ, Yang CC, Ma JY, Tian WQ. The enhancement of nonlinear optical properties of azulene-based nanographene by N atoms: a finishing touch. Chem Sci 2024; 15:2100-2111. [PMID: 38332838 PMCID: PMC10848778 DOI: 10.1039/d3sc04443b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024] Open
Abstract
Nonlinear optical (NLO) materials play an increasingly important role in optoelectronic devices, biomedicine, micro-nano processing, and other fields. The development of organic materials with strong second or (and) third NLO properties and a high stability is still challenging due to the unknown strategies for obtaining enhanced high order NLO properties. In the present work, π-conjugated systems are constructed by doping boron or (and) nitrogen atoms in the azulene moiety of azulene-based nanographenes (formed with an azulene chain with two bridging HCCHs at the two sides of the connecting CC bonds between azulenes, A1A2A3), and the NLO properties are predicted with time-dependent density functional theory based methods and a sum-over-states model. The doping of heteroatoms induces charge redistribution, tunes the frontier molecular orbital energy gap, changes the composition of some frontier molecular orbitals, and affects the NLO properties of those nanographenes. Among the designed nanographenes, the azulene-based nanographene with two nitrogen atoms at the two ends has the largest static first hyperpolarizability (91.30 × 10-30 esu per heavy atom), and the further introduction of two N atoms at the two ends of the central azulene moiety of this nanographene results in a large static second hyperpolarizability while keeping the large static first hyperpolarizability.
Collapse
Affiliation(s)
- Ya Qing Zhang
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Chongqing University Huxi Campus Chongqing 401331 P. R. China
| | - Cui-Cui Yang
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Chongqing University Huxi Campus Chongqing 401331 P. R. China
- College of Science, Chongqing University of Technology Huaxi Campus Chongqing 400054 P. R. China
| | - Jia-Ying Ma
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Chongqing University Huxi Campus Chongqing 401331 P. R. China
| | - Wei Quan Tian
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Chongqing University Huxi Campus Chongqing 401331 P. R. China
| |
Collapse
|
8
|
Parambil SRV, Rahimi FA, Ghosh R, Nath S, Maji TK. Pore-Confined π-Chromophoric Tetracene as a Visible Light Harvester toward MOF-Based Photocatalytic CO 2 Reduction in Water. Inorg Chem 2023; 62:19312-19322. [PMID: 37963226 DOI: 10.1021/acs.inorgchem.3c02926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Integrating photoactive π-chromophoric guest molecules inside the MOF nanopore can result in the emergence of light-responsive features, which in turn can be utilized for developing photoactive materials with inherent properties of MOF. Herein, we report the confining of π-chromophoric tetracene (TET) molecules inside the nanospace of postmodified Zr-MOF-808 (Zr-MOF) with MBA molecules (MBA = 2-(5'-methyl-[2,2'-bipyridine]-5-yl)acetic acid) for effectively utilizing its light-harvesting properties toward photocatalytic CO2 reduction. The confinement of the TET molecules as a photosensitizer and the covalent grafting of a catalytically active [Re(MBA)(CO)3Cl] complex, postsynthetically, result in a single integrated catalytic system named Zr-MBA-TET-Re-MOF. Photoreduction of CO2 over Zr-MBA-TET-Re-MOF showed the evolution of 805 μmol g-1 CO with 99.9% selectivity after 10 h of continuous visible light irradiation in water without any additional sacrificial electron donor and having the apparent quantum efficiency of 1.3%. In addition, the catalyst demonstrated an appreciable activity even under direct sunlight irradiation in aqueous medium with a maximum production of 362.7 μmol g-1 CO, thereby mimicking artificial photosynthesis. Moreover, electron transfer from TET to the catalytic center was supported by the formation of photoinduced TET radical cation, as inferred from in situ UV-vis spectra, electron paramagnetic resonance (EPR) analysis, and transient absorption (TA) studies. Additionally, the in situ diffuse reflectance infrared Fourier transform (DRIFT) measurements support that the photoreduction of CO2 to CO proceeds via *COOH intermediate formation. The close proximity of the light-harvesting molecule and catalytic center facilitated facile electron transfer from the photosensitizer to the catalyst during the CO2 reduction.
Collapse
Affiliation(s)
- Sneha Raj V Parambil
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post, Bangalore 560064, India
| | - Faruk Ahamed Rahimi
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post, Bangalore 560064, India
| | - Rajib Ghosh
- Radiation and Photochemistry Division, Bhabha Atomic Research Center, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Sukhendu Nath
- Radiation and Photochemistry Division, Bhabha Atomic Research Center, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post, Bangalore 560064, India
| |
Collapse
|
9
|
Qin L, Huang YY, Wu B, Pan J, Yang J, Zhang J, Han G, Yang S, Chen L, Yin Z, Shu Y, Jiang L, Yi Y, Peng Q, Zhou X, Li C, Zhang G, Zhang XS, Wu K, Zhang D. Diazulenorubicene as a Non-benzenoid Isomer of peri-Tetracene with Two Sets of 5/7/5 Membered Rings Showing Good Semiconducting Properties. Angew Chem Int Ed Engl 2023; 62:e202304632. [PMID: 37338996 DOI: 10.1002/anie.202304632] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023]
Abstract
Non-benzenoid polycyclic aromatic hydrocarbons (PAHs) have received a lot of attention because of their unique optical, electronic, and magnetic properties, but their synthesis remains challenging. Herein, we report a non-benzenoid isomer of peri-tetracene, diazulenorubicene (DAR), with two sets of 5/7/5 membered rings synthesized by a (3+2) annulation reaction. Compared with the precursor containing only 5/7 membered rings, the newly formed five membered rings switch the aromaticity of the original heptagon/pentagon from antiaromatic/aromatic to non-aromatic/antiaromatic respectively, modify the intermolecular packing modes, and lower the LUMO levels. Notably, compound 2 b (DAR-TMS) shows p-type semiconducting properties with a hole mobility up to 1.27 cm2 V-1 s-1 . Moreover, further extension to larger non-benzenoid PAHs with 19 rings was achieved through on-surface chemistry from the DAR derivative with one alkynyl group.
Collapse
Affiliation(s)
- Liyuan Qin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yan-Ying Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Botao Wu
- College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Jinliang Pan
- College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Junfang Yang
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Guangchao Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Suyu Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Liangliang Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Zheng Yin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yilin Shu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiong Zhou
- College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Xi-Sha Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 730000, Lanzhou, China
| | - Kai Wu
- College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
10
|
Ramsden CA, Oziminski WP. DFT Study of 1,4-Diazonium-3,6-diolates: Monocyclic Representatives of Unexplored Semi-Conjugated Heterocyclic Mesomeric Betaines. J Org Chem 2023. [PMID: 37224442 DOI: 10.1021/acs.joc.3c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Compared to the well-known conjugated (1,3-dipolar) and cross-conjugated (1,4-dipolar) heterocyclic mesomeric betaines (HMBs), semi-conjugated HMBs are unexplored and almost unknown. The three discrete classes of HMB are defined by the connectivity between their ring 2π heteroatoms and the odd-conjugated fragments that complete the ring. A single example of a stable, fully-characterized semi-conjugate HMB has been reported. This study employs the density functional theory (DFT) methodology to investigate the properties of a series of six-membered semi-conjugated HMBs. The electronic character of ring substituents is found to significantly influence the structure and electronic properties of the ring. The aromaticity measured by HOMA and NICS(1)zz indices is increased by π-electron-donating substituents whereas π-electron-withdrawing substituents decrease the calculated aromatic character and ultimately lead to non-planar boat or chair structures. A notable property of all derivatives is the small energy gap between their frontier orbitals.
Collapse
Affiliation(s)
- Christopher A Ramsden
- Lennard-Jones Laboratories, School of Physical and Geographical Sciences, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, U.K
| | - Wojciech P Oziminski
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland
| |
Collapse
|
11
|
Mathey P, Lirette F, Fernández I, Renn L, Weitz RT, Morin JF. Annulated Azuleno[2,1,8-ija]azulenes: Synthesis and Properties. Angew Chem Int Ed Engl 2023; 62:e202216281. [PMID: 36645326 DOI: 10.1002/anie.202216281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/17/2023]
Abstract
Non-alternant non-benzenoid hydrocarbons exhibit very different optical and electronic properties than their well-studied benzenoid analogues. However, preparing such structures with extended conjugation length, remains challenging. Herein, we report the synthesis and properties of azuleno[2,1,8-ija]azulene derivatives using a two-step sequence involving a four-fold aldol condensation between aromatic dialdehydes and readily available tetrahydropentalene-2,5-(1H,3H)-dione. Molecules with band gap values ranging from 1.69 to 2.14 eV and molar extinction coefficients (ϵ) of nearly 3×105 M-1 cm-1 have been prepared. These annulene-like structures exhibit significant diatropic ring currents (aromatic), as supported by 1 H NMR spectroscopy and DFT calculations. Field-effect transistors (OFETs) using azuleno[2,1,8-ija]azulene derivatives as semiconductors exhibit charge mobility values of up to 0.05 cm2 V-1 s-1 .
Collapse
Affiliation(s)
- Pierre Mathey
- Department of Chemistry and Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, 1045 Ave de la Medecine, Québec, QC, G1V0A6, Canada
| | - Frédéric Lirette
- Department of Chemistry and Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, 1045 Ave de la Medecine, Québec, QC, G1V0A6, Canada
| | - Israel Fernández
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Lukas Renn
- 1st Institute of Physics, Faculty of Physics, Georg-August-University, Göttingen, Germany
- International Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, Göttingen, Germany
| | - R Thomas Weitz
- 1st Institute of Physics, Faculty of Physics, Georg-August-University, Göttingen, Germany
- International Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, Göttingen, Germany
| | - Jean-François Morin
- Department of Chemistry and Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, 1045 Ave de la Medecine, Québec, QC, G1V0A6, Canada
| |
Collapse
|
12
|
Yewale R, Damlin P, Kvarnström C. Effect of Oxidants on Properties of Electroactive Ultrathin Polyazulene Films Synthesized by Vapor Phase Polymerization at Atmospheric Pressure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15165-15177. [PMID: 36446086 PMCID: PMC9753747 DOI: 10.1021/acs.langmuir.2c02215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/15/2022] [Indexed: 06/16/2023]
Abstract
A non-benzenoid aromatic hydrocarbon azulene, naturally found in plants and mushrooms, is known for its derivatives applications in medicines. However, the processability of its chemically synthesized high-capacitance polymer is constrained by the sparingly soluble nature of its polymeric form. Oxidative chemical synthesis on a desirable substrate overcomes this difficulty. In this report, polyazulene (PAz) thin films are synthesized by vapor phase polymerization at atmospheric pressure using oxidants, such as CuCl2, CuBr2, FeCl3, and FeTOS. The effect of oxidants on morphologies of PAz films is studied using atomic force microscopy and microscope imaging. Each oxidant produced distinct microstructures in the films. The films synthesized using Cu(II) salts showed organized and knitted structures, whereas Fe(III) salts formed casted sheet-like disordered arrangements. The films synthesized using CuCl2 created uniform porous film assemblies. The pre-peak formations and their splitting observed in the cyclic voltammograms revealed phase segregations in the films. Oxidant-dependent structural and chemical differences such as charge carrier formation, doping levels, and polymer chain length in the PAz films are studied by using UV-Vis and FTIR spectroscopy. The results indicated that 240 and 180 mM are the optimum concentration of CuCl2 to produce high capacitance and well-organized single- and triple-layered PAz films, respectively.
Collapse
|
13
|
Maruoka K, Kamishima T, Koseki Y, Suzuki R, Dao ATN, Murafuji T, Kasai H. Versatile Conversions of Substituents in Guaiazulene: Synthesis of Carboxylic Acid Derivatives with Controlled Regiospecific Reactivities. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kiyotaka Maruoka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Takaaki Kamishima
- East Tokyo Laboratory, Genesis Research Institute, Inc., 717-86 Futamata, Ichikawa, Chiba 272-0001, Japan
| | - Yoshitaka Koseki
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Ryuju Suzuki
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Anh Thi Ngoc Dao
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Toshihiro Murafuji
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Hitoshi Kasai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
14
|
Hou B, Li J, Yang X, Zhang J, Xin H, Ge C, Gao X. Azulenoisoindigo: A building block for π-functional materials with reversible redox behavior and proton responsiveness. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Bala D, Jinga LI, Popa M, Hanganu A, Voicescu M, Bleotu C, Tarko L, Nica S. Design, Synthesis, and Biological Evaluation of New Azulene-Containing Chalcones. MATERIALS 2022; 15:ma15051629. [PMID: 35268860 PMCID: PMC8911025 DOI: 10.3390/ma15051629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/18/2022] [Accepted: 02/18/2022] [Indexed: 01/07/2023]
Abstract
Azulene-containing chalcones have been synthesized via Claisen-Schmidt condensation reaction. Their chemical structure has been established by spectroscopic methods where the 1H-NMR spectra suggested that the title chalcones were geometrically pure and configured trans (J = 15 Hz). The influence of functional groups from azulene-containing chalcones on the biological activity of the 2-propen-1-one unit was investigated for the first time. This study presents optical and fluorescent investigations, QSAR studies, and biological activity of 10 novel compounds. These chalcones were evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria. The results revealed that most of the synthesized compounds showed inhibition against Gram-negative microorganisms, independent of the substitution of azulene scaffold. Instead, all azulene-containing chalcones exhibited good antifungal activity against Candida parapsilosis, with MIC values ranging between 0.156 and 0.312 mg/mL. The most active compound was chalcone containing azulene moieties on both sides of the 2-propene-1-one bond, exhibiting good activity against both bacteria-type strains and good antifungal activity. This antifungal activity combined with low toxicity makes azulene-containing chalcones a new class of bioorganic compounds.
Collapse
Affiliation(s)
- Daniela Bala
- Faculty of Chemistry, Department of Physical-Chemistry, University of Bucharest, 4-12 Bvd. Regina Elisabeta, 030018 Bucharest, Romania;
| | - Luiza-Izabela Jinga
- “C. D. Nenitzescu” Institute of Organic Chemistry, Romanian Academy, 202B Spl. Independentei, 060023 Bucharest, Romania; (L.-I.J.); (A.H.); (L.T.)
| | - Marcela Popa
- Research Institute of the University of Bucharest (ICUB), 36-46 Bvd. M. Kogalniceanu, 50107 Bucharest, Romania; (M.P.); (C.B.)
- Faculty of Biology, Department of Botany and Microbiology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania
| | - Anamaria Hanganu
- “C. D. Nenitzescu” Institute of Organic Chemistry, Romanian Academy, 202B Spl. Independentei, 060023 Bucharest, Romania; (L.-I.J.); (A.H.); (L.T.)
- Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre of Applied Organic Chemistry, University of Bucharest, 90-92 Panduri Street, 050663 Bucharest, Romania
| | - Mariana Voicescu
- Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania;
| | - Coralia Bleotu
- Research Institute of the University of Bucharest (ICUB), 36-46 Bvd. M. Kogalniceanu, 50107 Bucharest, Romania; (M.P.); (C.B.)
- Faculty of Biology, Department of Botany and Microbiology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Avenue, 030317 Bucharest, Romania
| | - Laszlo Tarko
- “C. D. Nenitzescu” Institute of Organic Chemistry, Romanian Academy, 202B Spl. Independentei, 060023 Bucharest, Romania; (L.-I.J.); (A.H.); (L.T.)
| | - Simona Nica
- “C. D. Nenitzescu” Institute of Organic Chemistry, Romanian Academy, 202B Spl. Independentei, 060023 Bucharest, Romania; (L.-I.J.); (A.H.); (L.T.)
- Correspondence:
| |
Collapse
|
16
|
Chen L, Wu B, Qin L, Huang YY, Meng W, Kong R, Yu X, ChenChai K, Li C, Zhang G, Zhang X, Zhang D. Perylene Five-membered Ring Diimide for Organic Semiconductors and π-Expanded Conjugated Molecules. Chem Commun (Camb) 2022; 58:5100-5103. [DOI: 10.1039/d2cc01061e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A perylene five-membered ring diimide PDI39 was developed as a new electron-deficient building block for n-type semiconductors. The π-expanded conjugated molecules entailing azulenes were synthesized from PDI39. These conjuagted molecules...
Collapse
|
17
|
liu Y, Cao M, Zhang S, Wang Z, Dai X, Jiang X, Dong Y, Fu J. Synthesis of C3-functionalized indole derivatives via Brønsted acid-catalyzed regioselective arylation of 2-indolylmethanols with guaiazulene. Org Biomol Chem 2022; 20:1510-1517. [DOI: 10.1039/d1ob02384e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first Brønsted acid catalyzed method for the construction of guaiazulenyl C3-functionalized indole derivatives was established. The reactions proceeded smoothly at ambient temperature by used (±)-10-camphorsulfonic acid (CSA) as catalyst,...
Collapse
|
18
|
Elwahy AHM, Abdelhamid IA, Shaaban MR. Recent Advances in the Functionalization of Azulene Through Pd‐Catalyzed Cross‐Coupling Reactions. ChemistrySelect 2021. [DOI: 10.1002/slct.202103357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Mohamed R. Shaaban
- Chemistry Department Faculty of Science Cairo University Giza Egypt
- Chemistry Department Faculty of Applied Science Umm Al-Qura University Makkah Almukkarramah Saudi Arabia
| |
Collapse
|
19
|
Eppel D, Oberhof N, Dietl MC, Cieslik P, Rudolph M, Eberle L, Krämer P, Stuck F, Rominger F, Dreuw A, Hashmi ASK. Gold(III) Meets Azulene: A Class of [( tBuC ∧N ∧C)Au III(azulenyl)] Pincer Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel Eppel
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Nils Oberhof
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Heidelberg University, Mathematikon, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Martin C. Dietl
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Patrick Cieslik
- Anorganisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg (Germany)
| | - Matthias Rudolph
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Lukas Eberle
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Petra Krämer
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Fabian Stuck
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Andreas Dreuw
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Heidelberg University, Mathematikon, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Heidelberg Center for the Environment (HCE), Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Wajid S, Kosar N, Ullah F, Gilani MA, Ayub K, Muhammad S, Mahmood T. Demonstrating the Potential of Alkali Metal-Doped Cyclic C 6O 6Li 6 Organometallics as Electrides and High-Performance NLO Materials. ACS OMEGA 2021; 6:29852-29861. [PMID: 34778658 PMCID: PMC8582031 DOI: 10.1021/acsomega.1c04349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
In this report, the geometric and electronic properties and static and dynamic hyperpolarizabilities of alkali metal-doped C6O6Li6 organometallics are analyzed via density functional theory methods. The thermal stability of the considered complexes is examined through interaction energy (E int) calculations. Doping of alkali metal derives diffuse excess electrons, which generate the electride characteristics in the respective systems (electrons@complexant, e-@M@C6O6Li6, M = Li, Na, and K). The electronic density shifting is also supported by natural bond orbital charge analysis. These electrides are further investigated for their nonlinear optical (NLO) responses through static and dynamic hyperpolarizability analyses. The potassium-doped C6O6Li6 (K@C6O6Li6) complex has high values of second- (βtot = 2.9 × 105 au) and third-order NLO responses (γtot = 1.6 × 108 au) along with a high refractive index at 1064 nm, indicating that the NLO response of the corresponding complex increases at a higher wavelength. UV-vis absorption analysis is used to confirm the electronic excitations, which occur from the metal toward C6O6Li6. We assume that these newly designed organometallic electrides can be used in optical and optoelectronic fields for achieving better second-harmonic-generation-based NLO materials.
Collapse
Affiliation(s)
- Sunaina Wajid
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Naveen Kosar
- Department
of Chemistry, University of Management and
Technology (UMT), C11,
Johar Town Lahore 54770, Pakistan
| | - Faizan Ullah
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Mazhar Amjad Gilani
- Department
of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Khurshid Ayub
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Shabbir Muhammad
- Department
of Physics, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Tariq Mahmood
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| |
Collapse
|
21
|
Raheem AA, Murugan P, Shanmugam R, Praveen C. Azulene Bridged π-Distorted Chromophores: The Influence of Structural Symmetry on Optoelectrochemical and Photovoltaic Parameters. Chempluschem 2021; 86:1451-1460. [PMID: 34648248 DOI: 10.1002/cplu.202100392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/29/2021] [Indexed: 11/09/2022]
Abstract
Conjugated chromophores possessing π-twisted functionality such as tetracyanobutadiene (TCBD) have emerged as promising active layer materials for organic photovoltaics (OPVs). In this study, we disclose the synthesis of two azulenyl chromophores containing one and two TCBD groups. The symmetrical and unsymmetrical structural characteristics of these molecules inflict dissimilar optoelectronic and electrochemical properties. Based on molar absorptivity, aggregation behavior, HOMO-LUMO energies and other quantum chemical parameters, the symmetrical molecule (TATC2) appears to be a better non-fullerene acceptor (NFA) compared to its unsymmetrical counterpart (TATC1). For instance, higher absorptivity and deeper HOMO-LUMO levels for TATC2 (23950 M-1 cm-1 ; -6.01 eV/-3.86 eV) over TATC1 (12200 M1 cm-1 ; -5.46 eV/-3.64 eV) was observed. Validating this structure-property relationship on solar cell prototypes exhibited higher photovoltaic parameters (VOC =0.54 V, FF=0.48, JSC =6.42 mA/cm2 ) for TATC2 than TATC1 (VOC =0.47 V, FF=0.38, JSC =5.77 mA/cm2 ). Though the device parameters are not high, this work uncovers the intrinsic properties of azulene-tethered twisted chromophores as potential π-semiconductor choice for NFA solar cells. In particular, this report explores the utility of azulene-based π-twisted semiconductors as acceptor material for OPVs with cell efficiencies of 1.70 and 1.04 % for TATC2 and TATC1 respectively.
Collapse
Affiliation(s)
- Abbasriyaludeen Abdul Raheem
- Electrochemical Power Sources Division, Central Electrochemical Research Institute (CSIR Laboratory), Karaikudi-630003, Sivagangai District, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Ghaziabad District, Uttar Pradesh, India
| | - Palanichamy Murugan
- Electrochemical Power Sources Division, Central Electrochemical Research Institute (CSIR Laboratory), Karaikudi-630003, Sivagangai District, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Ghaziabad District, Uttar Pradesh, India
| | - Ramasamy Shanmugam
- Department of Chemistry, Thiagarajar College, Madurai-625009, Madurai District, Tamil Nadu, India
| | - Chandrasekar Praveen
- Electrochemical Power Sources Division, Central Electrochemical Research Institute (CSIR Laboratory), Karaikudi-630003, Sivagangai District, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Ghaziabad District, Uttar Pradesh, India
| |
Collapse
|
22
|
Shetti VS. Chemical syntheses and salient features of azulene-containing homo- and copolymers. Beilstein J Org Chem 2021; 17:2164-2185. [PMID: 34497670 PMCID: PMC8404217 DOI: 10.3762/bjoc.17.139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/16/2021] [Indexed: 11/28/2022] Open
Abstract
Azulene is a non-alternant, aromatic hydrocarbon with many exciting characteristics such as having a dipole moment, bright color, stimuli responsiveness, anti-Kasha photophysics, and a small HOMO-LUMO gap when compared to its isomer, naphthalene. These properties make azulene-containing polymers an intriguing entity in the field of functional polymers, especially for organic electronic applications like organic field-effect transistors (OFET) and photovoltaic (PV) cells. Since azulene has a fused five and seven-membered ring structure, it can be incorporated onto the polymer backbone through either of these rings or by involving both the rings. These azulene-connection patterns can influence the properties of the resulting polymers and the chemical synthesis in comparison to the electrochemical synthesis can be advantageous in obtaining desired patterns of substitution. Hence, this review article presents a comprehensive overview of the developments that have taken place in the last three decades in the field of chemical syntheses of azulene-containing homo- and copolymers, including brief descriptions of their key properties.
Collapse
Affiliation(s)
- Vijayendra S Shetti
- Department of Chemistry, National Institute of Technology Karnataka, Surathkal 575025, India
| |
Collapse
|
23
|
Klein BP, Ruppenthal L, Hall SJ, Sattler LE, Weber SM, Herritsch J, Jaegermann A, Maurer RJ, Hilt G, Gottfried JM. Topology Effects in Molecular Organic Electronic Materials: Pyrene and Azupyrene*. Chemphyschem 2021; 22:1065-1073. [PMID: 33768634 PMCID: PMC8251946 DOI: 10.1002/cphc.202100222] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 12/02/2022]
Abstract
Pyrene derivatives play a prominent role in organic electronic devices, including field effect transistors, light emitting diodes, and solar cells. The flexibility in the desired properties has previously been achieved by variation of substituents at the periphery of the pyrene backbone. In contrast, the influence of the topology of the central π‐electron system on the relevant properties such as the band gap or the fluorescence behavior has not yet been addressed. In this work, pyrene is compared with its structural isomer azupyrene, which has a π‐electron system with non‐alternant topology. Using photoelectron spectroscopy, near edge X‐ray absorption fine structure spectroscopy, and other methods, it is shown that the electronic band gap of azupyrene is by 0.72 eV smaller than that of pyrene. The difference of the optical band gaps is even larger with 1.09 eV, as determined by ultraviolet–visible absorption spectroscopy. The non‐alternant nature of azupyrene is also associated with a more localized charge distribution. Further insight is provided by density functional theory (DFT) calculations of the molecular properties and ab initio coupled cluster calculations of the optical transitions. The concept of aromaticity is used to interpret the major topology‐related differences.
Collapse
Affiliation(s)
- Benedikt P Klein
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße. 4, 35032, Marburg, Germany.,Department of Chemistry and Centre for Scientific Computing, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Lukas Ruppenthal
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße. 4, 35032, Marburg, Germany
| | - Samuel J Hall
- MAS Centre for Doctoral Training, Senate House, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom.,Department of Chemistry and Centre for Scientific Computing, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Lars E Sattler
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111, Oldenburg, Germany
| | - Sebastian M Weber
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111, Oldenburg, Germany
| | - Jan Herritsch
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße. 4, 35032, Marburg, Germany
| | - Andrea Jaegermann
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße. 4, 35032, Marburg, Germany
| | - Reinhard J Maurer
- Department of Chemistry and Centre for Scientific Computing, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Gerhard Hilt
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111, Oldenburg, Germany
| | - J Michael Gottfried
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße. 4, 35032, Marburg, Germany
| |
Collapse
|
24
|
Xin H, Hou B, Gao X. Azulene-Based π-Functional Materials: Design, Synthesis, and Applications. Acc Chem Res 2021; 54:1737-1753. [PMID: 33691401 DOI: 10.1021/acs.accounts.0c00893] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ConspectusAzulene, an isomer of naphthalene, is a molecule of historical interest for its unusual photophysical properties, including a beautiful blue color derived from the narrow HOMO-LUMO energy gap and anti-Kasha fluorescence from S2 to S0. More recently, it has attracted increasing attention for its novel electronic structure, including an electron-rich five-membered ring and an electron-deficient seven-membered ring with a dipole moment of 1.08 D resulting from resonance delocalization, its different reactivities at odd and even positions, and its stimuli-responsive behavior. As a key building block, azulene has been used in various fields because of its unique physicochemical properties. Recent studies have demonstrated the great potential of azulene for constructing advanced organic materials. However, exploring azulene-based materials has long been hindered by challenges in molecular design and synthesis. Most of the reported azulene-based materials have the azulene unit incorporated through the five-membered ring or seven-membered ring. Creating azulene-based novel building blocks for optoelectronics and using 2,6-connected azulene units to construct conjugated polymers that can adequately utilize the "donor-acceptor" structure of azulene remained underexplored before our contributions. Besides, for most azulene-fused polycyclic aromatic hydrocarbons (PAHs) and heteroaromatics, the azulene substructures were created during later synthesis stages, and the use of azulene derivatives as starting materials to design and synthesize PAHs and heteroaromatics intelligently is still limited.In this Account, we summarize our efforts on the design, synthesis, and applications of azulene-based π-functional materials. Our studies start with the creation of novel π-conjugated structures based on azulene. The design strategy, synthesis, and optoelectronic performance of the first class of azulene-based aromatic diimides, 2,2'-biazulene-1,1',3,3'-tetracarboxylic diimide (BAzDI) and its π-extended and π-bridged derivatives, are presented. Notably, antiparallel stacking between adjacent azulene units derived from azulene's dipole was observed in single crystals of BAzDI and its derivatives. Besides, we developed an azulene-fused isoindigo analogue, azulenoisoindigo, which combines the merits of both isoindigo and azulene, including reversible redox behavior and reversible proton responsiveness. Then we discuss our contributions to the design and synthesis of 2,6-azulene-based conjugated polymers. By incorporation of 2,6-connected azulene units into the polymeric backbone, two conjugated polymers with high organic field-effect transistor (OFET) performance were developed. Two 2,6-azulene-based polymers with proton responsiveness and high electrical conductivity upon protonation were also provided. We also discuss our recent studies on azulene-based heteroaromatics. Two azulene-fused BN-heteroaromatics were designed and synthesized, and they exhibited a selective response to fluoride ion and unexpected deboronization upon the addition of trifluoroacetic acid. An unexpected synthesis of azulene-pyridine-fused heteroaromatics (Az-Py) by reductive cyclization of 1-nitroazulenes and the OFET performance of Az-Py-1 are included. Afterward, we discuss several examples of azulene-capped organic conjugated molecules. The molecules capped with the five-membered ring of azulene favor hole transport, whereas the ones capped with the seven-membered ring favor electron transport.
Collapse
Affiliation(s)
- Hanshen Xin
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Bin Hou
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xike Gao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
25
|
Electrochemical Comparison on New (Z)-5-(Azulen-1-Ylmethylene)-2-Thioxo-Thiazolidin-4-Ones. Symmetry (Basel) 2021. [DOI: 10.3390/sym13040588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Three (Z)-5-(azulen-1-ylmethylene)-2-thioxo-thiazolidin-4-ones are electrochemically characterized by cyclic voltammetry, differential pulse voltammetry, and rotating disk electrode voltammetry. The electrochemical investigations revealed that the redox potential is influenced by the number and position of the alkyl groups, and the possible oxidation mechanism is proposed. These compounds, after their immobilization on glassy carbon electrodes during oxidative electropolymerization, were examined as complexing ligands for heavy metal ions from aqueous solutions through adsorptive stripping voltammetry.
Collapse
|
26
|
Bakun P, Czarczynska-Goslinska B, Goslinski T, Lijewski S. In vitro and in vivo biological activities of azulene derivatives with potential applications in medicine. Med Chem Res 2021; 30:834-846. [PMID: 33551629 PMCID: PMC7847300 DOI: 10.1007/s00044-021-02701-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/05/2021] [Indexed: 11/30/2022]
Abstract
Azulene is an aromatic hydrocarbon that possesses a unique chemical structure and interesting biological properties. Azulene derivatives, including guaiazulene or chamazulene, occur in nature as components of many plants and mushrooms, such as Matricaria chamomilla, Artemisia absinthium, Achillea millefolium, and Lactarius indigo. Due to physicochemical properties, azulene and its derivatives have found many potential applications in technology, especially in optoelectronic devices. In medicine, the ingredients of these plants have been widely used for hundreds of years in antiallergic, antibacterial, and anti-inflammatory therapies. Herein, the applications of azulene, its derivatives and their conjugates with biologically active compounds are presented. The potential use of these compounds concerns various areas of medicine, including anti-inflammatory with peptic ulcers, antineoplastic with leukemia, antidiabetes, antiretroviral with HIV-1, antimicrobial, including antimicrobial photodynamic therapy, and antifungal. ![]()
Collapse
Affiliation(s)
- Paweł Bakun
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Sebastian Lijewski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| |
Collapse
|
27
|
Wang DL, Zhang SQ, Guo ST, Xu J, Zhang XL, Xiong XS, Zhang L. A Simple Route for Synthesis and Evaluation of Antioxidant Activity of (Guaiazulen-1-yl)furans. HETEROCYCLES 2021. [DOI: 10.3987/com-20-14362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Wang DL, Yang S, Xiong XS. An Efficient Synthesis of 2-Amino-4-(guaiazulen-1-yl)-4H-chromenes via Cycloaddition of 1-Hydroxy-2-(3-guaiazulenylium)benzenes with Malononitrile/Ethyl Cyanoacetate. HETEROCYCLES 2021. [DOI: 10.3987/com-21-14518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Wang ML, Zhang GP, Fu XX, Wang CK. Low-bias conductance mechanism of diarylethene isomers: A first-principle study. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp1911204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ming-lang Wang
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Guang-ping Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Xiao-xiao Fu
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Chuan-kui Wang
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
30
|
Development of Heterocycle-Substituted and Fused Azulenes in the Last Decade (2010-2020). Int J Mol Sci 2020; 21:ijms21197087. [PMID: 32992955 PMCID: PMC7582284 DOI: 10.3390/ijms21197087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Azulene derivatives with heterocyclic moieties in the molecule have been synthesized for applications in materials science by taking advantage of their unique properties. These derivatives have been prepared by various methods, involving electrophilic substitution, condensation, cyclization, and transition metal-catalyzed cross-coupling reactions. Herein, we present the development of the synthetic methods, reactivities, and physical properties for the heterocycle-substituted and heterocycle-fused azulenes reported in the last decade.
Collapse
|
31
|
Hattori Y, Maejima T, Sawae Y, Kitai JI, Morimoto M, Toyoda R, Nishihara H, Yokojima S, Nakamura S, Uchida K. Cyclization from Higher Excited States of Diarylethenes Having a Substituted Azulene Ring. Chemistry 2020; 26:11441-11450. [PMID: 32432373 DOI: 10.1002/chem.202001671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/18/2020] [Indexed: 02/06/2023]
Abstract
The cyclization reaction of diarylethenes having an azulene ring occurs only via higher excited states. Novel diarylethenes having an azulene ring with a strong donor or acceptor were synthesized and examined in these reactions. A derivative having an electron-donating 1,3-benzodithiol-2-ylidenemethyl group at the 1-position of the azulene ring showed photochromism, whereas neither a derivative having a π-conjugated electron-donating group at the 3-position of the azulene ring nor derivatives having a π-conjugated electron-withdrawing group at the 1- or 3-position of the azulene ring showed any photochromism. The photoreactivities of these compounds were explained by calculating forces and bond orders on the excited states using density functional theory (DFT) and time-dependent (TD)-DFT.
Collapse
Affiliation(s)
- Yohei Hattori
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan
| | - Tatsuya Maejima
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan
| | - Yumi Sawae
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan
| | - Jun-Ichiro Kitai
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan
| | - Masakazu Morimoto
- Department of Chemistry and Research Center for Smart Molecules, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Ryojun Toyoda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroshi Nishihara
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Satoshi Yokojima
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Shinichiro Nakamura
- Nakamura Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kingo Uchida
- Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan
| |
Collapse
|
32
|
Modulating the Properties of Azulene‐containing Polymers Through Functionalization at the 2‐Position of Azulene. Chem Asian J 2020; 15:2505-2512. [DOI: 10.1002/asia.202000627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/22/2020] [Indexed: 11/07/2022]
|
33
|
Borges ID, Danielli JAV, Silva VEG, Sallum LO, Queiroz JE, Dias LD, Iermak I, Aquino GLB, Camargo AJ, Valverde C, Osório FAP, Baseia B, Napolitano HB. Synthesis and structural studies on ( E)-3-(2,6-difluorophenyl)-1-(4-fluorophenyl)prop-2-en-1-one: a promising nonlinear optical material. RSC Adv 2020; 10:22542-22555. [PMID: 35514582 PMCID: PMC9054580 DOI: 10.1039/d0ra03634j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/28/2020] [Indexed: 11/25/2022] Open
Abstract
A new fluorinated chalcone (E)-3-(2,6-difluorophenyl)-1-(4-fluorophenyl)prop-2-en-1-one was synthesized in 90% yield and crystallized by a slow evaporation technique. Its full structural characterization and purity were determined by scanning electron microscopy, infrared spectroscopy, gas chromatography-mass spectrometry, 1H, 13C and 19F nuclear magnetic resonance, thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), Raman microspectroscopy, UV-Vis absorption spectroscopy, single crystal X-ray diffraction (XRD) and Hirshfeld surface (HS) analysis. The fluorinated chalcone crystallized in centrosymmetric space group P21/c stabilized by the C-H⋯O and C-H⋯F interactions and the π⋯π contact. The crystalline environment was simulated through the supermolecule approach where a bulk with 378 000 atoms was built. The electric parameters were calculated at the DFT/CAM-B3LYP/6-311++G(d,p) level as function of the electric field frequency. The macroscopic parameters such as linear refractive index and third-order nonlinear susceptibility (χ (3)) were calculated, and the results were compared with experimental data obtained from the literature. The χ (3)-value for the chalcone crystal is 369.294 × 10-22 m2 V-2, higher than those obtained from a few similar types of molecule, showing that the chalcone crystal can be considered as a nonlinear optical material. Also, molecular theoretical calculations such as infrared spectrum assignments, frontier molecular orbital analysis and MEP were implemented, revealing that the most positive region is around the hydrogen atoms of the aromatic rings, and electrophilic attack occurs on the carbonyl group.
Collapse
Affiliation(s)
- I D Borges
- Laboratório de Novos Materiais, Centro Universitário de Anápolis 75083-515 Anápolis GO Brazil
| | - J A V Danielli
- Laboratório de Novos Materiais, Centro Universitário de Anápolis 75083-515 Anápolis GO Brazil
| | - V E G Silva
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás 75001-970 Anápolis GO Brazil
| | - L O Sallum
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás 75001-970 Anápolis GO Brazil
| | - J E Queiroz
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás 75001-970 Anápolis GO Brazil
| | - L D Dias
- São Carlos Institute of Physics, University of São Paulo 13566-590 São Carlos SP Brazil
| | - I Iermak
- São Carlos Institute of Physics, University of São Paulo 13566-590 São Carlos SP Brazil
| | - G L B Aquino
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás 75001-970 Anápolis GO Brazil
| | - A J Camargo
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás 75001-970 Anápolis GO Brazil
| | - C Valverde
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás 75001-970 Anápolis GO Brazil
- Laboratório de Modelagem Molecular Aplicada e Simulação, Universidade Paulista 74845-090 Goiânia GO Brazil
| | - F A P Osório
- Instituto de Física, Universidade Federal de Goiás 74.690-900 Goiânia GO Brazil
- Pontifícia Universidade Católica de Goiás 13566-590 Goiania GO Brazil
| | - B Baseia
- Instituto de Física, Universidade Federal de Goiás 74.690-900 Goiânia GO Brazil
- Departamento de Física, Universidade Federal da Paraíba 58051-970 João Pessoa PB Brazil
| | - H B Napolitano
- Laboratório de Novos Materiais, Centro Universitário de Anápolis 75083-515 Anápolis GO Brazil
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás 75001-970 Anápolis GO Brazil
| |
Collapse
|
34
|
Zhou H, Yang K, Liu Y, Tang Y, Wei W, Shu Q, Zhao J, Tan Y. In situ [2 + 3] cycloaddition synthesis, crystal structures, strong SHG responses and fluorescence properties of three novel Zn coordination polymers. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Shoji T, Sugiyama S, Kobayashi Y, Yamazaki A, Ariga Y, Katoh R, Wakui H, Yasunami M, Ito S. Direct synthesis of 2-arylazulenes by [8+2] cycloaddition of 2H-cyclohepta[b]furan-2-ones with silyl enol ethers. Chem Commun (Camb) 2020; 56:1485-1488. [PMID: 31912824 DOI: 10.1039/c9cc09376a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We developed a procedure for the direct synthesis of 2-arylazulenes, which were obtained in moderate to excellent yields, by [8+2] cycloaddition of 2H-cyclohepta[b]furan-2-ones with aryl-substituted silyl enol ethers. The structures of some 2-arylazulenes were clarified by single-crystal X-ray analysis. The 2-phenylazulene derivatives obtained by this study showed noticeable fluorescence in acidic media.
Collapse
Affiliation(s)
- Taku Shoji
- Department of Material Science, Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Nagano, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhang X, Huang Y, Zhang J, Meng W, Peng Q, Kong R, Xiao Z, Liu J, Huang M, Yi Y, Chen L, Fan Q, Lin G, Liu Z, Zhang G, Jiang L, Zhang D. Dicyclohepta[
ijkl
,
uvwx
]rubicene with Two Pentagons and Two Heptagons as a Stable and Planar Non‐benzenoid Nanographene. Angew Chem Int Ed Engl 2020; 59:3529-3533. [DOI: 10.1002/anie.201914416] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Xi‐Sha Zhang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Yan‐Ying Huang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Jing Zhang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Wei Meng
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Qian Peng
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Ruirui Kong
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Zhenwei Xiao
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Jie Liu
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Miaofei Huang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Liangliang Chen
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Qingrui Fan
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Gaobo Lin
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Zitong Liu
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Lang Jiang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
37
|
Zhang X, Huang Y, Zhang J, Meng W, Peng Q, Kong R, Xiao Z, Liu J, Huang M, Yi Y, Chen L, Fan Q, Lin G, Liu Z, Zhang G, Jiang L, Zhang D. Dicyclohepta[
ijkl
,
uvwx
]rubicene with Two Pentagons and Two Heptagons as a Stable and Planar Non‐benzenoid Nanographene. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914416] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xi‐Sha Zhang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Yan‐Ying Huang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Jing Zhang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Wei Meng
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Qian Peng
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Ruirui Kong
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Zhenwei Xiao
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Jie Liu
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Miaofei Huang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Liangliang Chen
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Qingrui Fan
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Gaobo Lin
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Zitong Liu
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Lang Jiang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular SciencesOrganic Solids LaboratoryInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
38
|
Zhou NN, Ning SS, Li LQ, Zhang JY, Fan MJ, Yang DS, Zhu HT. Brønsted-acid-catalyzed one-pot tandem annulation/[5 + 2]-cycloaddition of o-propargyl alcohol benzaldehydes with alkynes: regioselective and stereoselective synthesis of dibenzo[a,f]azulen-12-ones. Org Chem Front 2020. [DOI: 10.1039/d0qo00522c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The one-pot synthesis of dibenzo[a,f]azulen-12-ones has been established starting from o-propargyl alcohol benzaldehydes and alkynes.
Collapse
Affiliation(s)
- Ni-Ni Zhou
- Shannxi Key Laboratory of Phytochemistry
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji 721013
- China
| | - Si-Si Ning
- Shannxi Key Laboratory of Phytochemistry
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji 721013
- China
| | - Lin-Qiang Li
- Shannxi Key Laboratory of Phytochemistry
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji 721013
- China
| | - Jie-Yun Zhang
- Shannxi Key Laboratory of Phytochemistry
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji 721013
- China
| | - Ming-Jin Fan
- Shannxi Key Laboratory of Phytochemistry
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji 721013
- China
| | - De-Suo Yang
- Shannxi Key Laboratory of Phytochemistry
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji 721013
- China
| | - Hai-Tao Zhu
- Shannxi Key Laboratory of Phytochemistry
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji 721013
- China
| |
Collapse
|
39
|
Gong J, Peshkov AA, Yu J, Amandykova S, Gimnkhan A, Huang J, Kashtanov S, Pereshivko OP, Peshkov VA. Three-component reaction of azulene, aryl glyoxal and 1,3-dicarbonyl compound for the synthesis of various azulene derivatives. RSC Adv 2020; 10:10113-10117. [PMID: 35498572 PMCID: PMC9050217 DOI: 10.1039/d0ra00356e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/27/2020] [Indexed: 01/18/2023] Open
Abstract
A three-component reaction of an azulene, an aryl glyoxal and a 1,3-dicarbonyl compound has been elaborated to access a series of azulene derivatives. Some of these azulene-containing adducts were further subjected to post-MCR transformations to assemble azulene–heterocycle conjugates. Three-component reaction of azulene, aryl glyoxal and 1,3-dicarbonyl compound and subsequent post-transformations provide access to three distinct types of azulene derivatives.![]()
Collapse
Affiliation(s)
- Jing Gong
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- P. R. China
| | - Anatoly A. Peshkov
- Department of Chemistry
- School of Sciences and Humanities
- Nazarbayev University
- Nur-Sultan 010000
- Republic of Kazakhstan
| | - Jiafeng Yu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- P. R. China
| | - Sagadat Amandykova
- Department of Chemistry
- School of Sciences and Humanities
- Nazarbayev University
- Nur-Sultan 010000
- Republic of Kazakhstan
| | - Aidana Gimnkhan
- Department of Chemistry
- School of Sciences and Humanities
- Nazarbayev University
- Nur-Sultan 010000
- Republic of Kazakhstan
| | - Jianjun Huang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- P. R. China
| | - Stepan Kashtanov
- Department of Chemistry
- Xi'an Jiaotong-Liverpool University
- Suzhou
- P. R. China
| | - Olga P. Pereshivko
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- P. R. China
| | - Vsevolod A. Peshkov
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- P. R. China
| |
Collapse
|
40
|
Ohtsu K, Hayami R, Sagawa T, Tsukada S, Yamamoto K, Gunji T. Syntheses and properties of linear π-conjugated molecules composed of 1-azaazulene and azulene. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Ou L, Zhou Y, Wu B, Zhu L. The unusual physicochemical properties of azulene and azulene-based compounds. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Sun Q, Hou ICY, Eimre K, Pignedoli CA, Ruffieux P, Narita A, Fasel R. On-surface synthesis of polyazulene with 2,6-connectivity. Chem Commun (Camb) 2019; 55:13466-13469. [PMID: 31647065 DOI: 10.1039/c9cc07168g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Azulene, the smallest neutral nonalternant aromatic hydrocarbon, serves not only as a prototype for fundamental studies but also as a versatile building block for functional materials because of its unique opto(electronic) properties. Here, we report the on-surface synthesis and characterization of the homopolymer of azulene connected exclusively at the 2,6-positions using 2,6-diiodoazulene as the monomer precursor. As an intermediate to the formation of polyazulene, a gold-(2,6-azulenylene) chain is observed.
Collapse
Affiliation(s)
- Qiang Sun
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland.
| | - Ian Cheng-Yi Hou
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
| | - Kristjan Eimre
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland.
| | - Carlo A Pignedoli
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland.
| | - Pascal Ruffieux
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland.
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany. and Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495, Japan
| | - Roman Fasel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland. and Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
43
|
Gao H, Ge C, Hou B, Xin H, Gao X. Incorporation of 1,3-Free-2,6-Connected Azulene Units into the Backbone of Conjugated Polymers: Improving Proton Responsiveness and Electrical Conductivity. ACS Macro Lett 2019; 8:1360-1364. [PMID: 35651149 DOI: 10.1021/acsmacrolett.9b00657] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Azulene as a potential building block for constructing organic/polymeric conjugated materials has attracted more and more attention due to its unique chemical structure and physicochemical properties. However, up to now, most reported azulene-based conjugated polymers have been dominated by the connection of the five-membered ring of azulene through 1,3-positions. Herein, by incorporating 1,3-free-2,6-connected azulene units into the polymeric backbone, two azulene-based all-carbon conjugated polymers P1 and P2 with different connection ways of 2,6-azulene and 2,7-fluorene units were presented. Protonation of these two polymers with trifluoroacetic acid leads to rapid and reversible color changes in both the solution and thin-film state. Moreover, these 1,3-free-2,6-connected azulene-based conjugated polymers exhibit high electrical conductivity (2.94 and 0.32 S/cm for P1 and P2, respectively) in thin film when doped by trifluoromethanesulfonic acid.
Collapse
Affiliation(s)
- Honglei Gao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Congwu Ge
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Bin Hou
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hanshen Xin
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xike Gao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Centre for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
44
|
Abstract
Azulene, a nonalternant bicyclic aromatic hydrocarbon, has unique chemical and physical properties and is considered to be a promising building block for constructing novel polycyclic aromatic hydrocarbons (PAHs) and heteroaromatics. We present here the first two azulene-based BN-heteroaromatics Az-BN-1 and Az-BN-2. The chemical structures and optical and electrochemical properties of both compounds have been investigated, as well as their sensing behavior in response to fluoride ion. Az-BN-1 and Az-BN-2 show different photophysical properties from other reported BN-embedded PAHs, such as lower band gaps and unusual fluorescence. In addition, Az-BN-1 and Az-BN-2 exhibit unexpected deboronization upon addition of trifluoroacetic acid, which distinguishes them from other reported BN-heteroaromatics and can be ascribed to the unique property of the azulene unit.
Collapse
Affiliation(s)
- Hanshen Xin
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Jing Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Xiaodi Yang
- Innovation Research Institute of Traditional Chinese Medicine , Shanghai University of Traditional Chinese Medicine , 1200 Cailun Road , Shanghai 201203 , China
| | - Xike Gao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| |
Collapse
|
45
|
Steer RP. Photophysics of molecules containing multiples of the azulene carbon framework. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
46
|
Webster SJ, López-Alled CM, Liang X, McMullin CL, Kociok-Köhn G, Lyall CL, James TD, Wenk J, Cameron PJ, Lewis SE. Azulenes with aryl substituents bearing pentafluorosulfanyl groups: synthesis, spectroscopic and halochromic properties. NEW J CHEM 2019. [DOI: 10.1039/c8nj05520c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Azulenes with SF5-containing substituents gave significantly different spectroscopic responses to protonation depending on the regioisomer in question.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tony D. James
- Department of Chemistry
- University of Bath
- Bath
- UK
- Centre for Sustainable Chemical Technologies
| | - Jannis Wenk
- Centre for Sustainable Chemical Technologies
- University of Bath
- Bath
- UK
- Department of Chemical Engineering & Water Innovation & Research Centre: WIRC @ Bath, University of Bath
| | - Petra J. Cameron
- Department of Chemistry
- University of Bath
- Bath
- UK
- Centre for Sustainable Chemical Technologies
| | - Simon E. Lewis
- Department of Chemistry
- University of Bath
- Bath
- UK
- Centre for Sustainable Chemical Technologies
| |
Collapse
|
47
|
Danzmann S, Liebing P, Engelhardt F, Hilfert L, Edelmann FT. Azulene‑1‑carboxylate - A new azulene-based building block for coordination polymers. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2018.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Bhandari S, Cheung MS, Geva E, Kronik L, Dunietz BD. Fundamental Gaps of Condensed-Phase Organic Semiconductors from Single-Molecule Calculations using Polarization-Consistent Optimally Tuned Screened Range-Separated Hybrid Functionals. J Chem Theory Comput 2018; 14:6287-6294. [DOI: 10.1021/acs.jctc.8b00876] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Srijana Bhandari
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Margaret S. Cheung
- Department of Physics, University of Houston, Houston, Texas 77204, United States
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Leeor Kronik
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Barry D. Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
49
|
Maity R, Mandal D, Misra A. Effect of donor acceptor substitution position on the electrical responsive properties of azulene system: a computational study. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1543902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Rakesh Maity
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, W.B, India
| | - Debkumar Mandal
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, W.B, India
| | - Ajay Misra
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, W.B, India
| |
Collapse
|
50
|
High performance organic transistors and phototransistors based on diketopyrrolopyrrole-quaterthiophene copolymer thin films fabricated via low-concentration solution processing. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.03.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|