1
|
Hua X, Fan X, Ye Y, Wang X, Zhang C, Jiang Y, Zhang Y, Wang C. Signal Amplification via Nonlinear Femtosecond Laser Filamentation for Trace Metal Ion Detection Using Metal-Organic Framework-Polymer Adsorbents. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39701821 DOI: 10.1021/acsami.4c20725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Signal amplification strategies are essential for enhancing the sensitivity and accuracy of analytical methods. This study introduces an innovative approach that utilizes the nonlinear process of femtosecond laser filamentation as a signal amplifier in combination with metal-organic framework (MOF)-polymer adsorbents. In this method, metal ions adsorbed in the MOF-polymer composite alter the intensity and temporal characteristics of an 800 nm femtosecond laser pulse. These changes significantly impact the spectra produced after filamentation, thus serving as an effective signal amplifier. Using MOF single crystals as metal ion enrichment platforms, we enhance spectral signals and achieve detection limits as low as 0.1 ppb for trace metal ions. The integration of the MOF adsorbent with the extensive spectral modifications induced by femtosecond laser filamentation represents a significant advancement in signal amplification techniques for analytical chemistry and environmental monitoring.
Collapse
Affiliation(s)
- Xin Hua
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaolin Fan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ying Ye
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiangyang Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Cankun Zhang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Yibin Jiang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yusheng Zhang
- Suzhou Institute for Advanced Research, University of Science and Technology of China (USTC), Suzhou 215123, China
| | - Cheng Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
2
|
Rabiee N, Rabiee M. Wearable Aptasensors. Anal Chem 2024; 96:19160-19182. [PMID: 39604058 DOI: 10.1021/acs.analchem.4c05004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
This Perspective explores the revolutionary advances in wearable aptasensor (WA) technology, which combines wearable devices and aptamer-based detection systems for personalized, real-time health monitoring. The devices leverage the specificity and sensitivity of aptamers to target specific molecules, offering broad applications from continuous glucose tracking to early diagnosis of diseases. The integration of data analytics and artificial intelligence (AI) allows early risk prediction and guides preventive health measures. While challenges in miniaturization, power efficiency, and data security persist, these devices hold significant potential to democratize healthcare and reshape patient-doctor interactions.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 165543, Iran
| |
Collapse
|
3
|
Shahid Z, Veenuttranon K, Lu X, Chen J. Recent Advances in the Fabrication and Application of Electrochemical Paper-Based Analytical Devices. BIOSENSORS 2024; 14:561. [PMID: 39590020 PMCID: PMC11592294 DOI: 10.3390/bios14110561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
In response to growing environmental concerns, the scientific community is increasingly incorporating green chemistry principles into modern analytical techniques. Electrochemical paper-based analytical devices (ePADs) have emerged as a sustainable and efficient alternative to conventional analytical devices, offering robust applications in point-of-care testing, personalized healthcare, environmental monitoring, and food safety. ePADs align with green chemistry by minimizing reagent use, reducing energy consumption, and being disposable, making them ideal for eco-friendly and cost-effective analyses. Their user-friendly interface, alongside sensitive and selective detection capabilities, has driven their popularity in recent years. This review traces the evolution of ePADs from simple designs to complex multilayered structures that optimize analyte flow and improve detection. It also delves into innovative electrode fabrication methods, assessing key advantages, limitations, and modification strategies for enhanced sensitivity. Application-focused sections explore recent advancements in using ePADs for detecting diseases, monitoring environmental hazards like heavy metals and bacterial contamination, and screening contaminants in food. The integration of cutting-edge technologies, such as wearable wireless devices and the Internet of Things (IoT), further positions ePADs at the forefront of point-of-care testing (POCT). Finally, the review identifies key research gaps and proposes future directions for the field.
Collapse
Affiliation(s)
- Zarfashan Shahid
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.S.); (K.V.); (J.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kornautchaya Veenuttranon
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.S.); (K.V.); (J.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianbo Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.S.); (K.V.); (J.C.)
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (Z.S.); (K.V.); (J.C.)
| |
Collapse
|
4
|
Zhao L, Yin Y, Xiao S, Qiu Y, Wang S, Dong Y. A dual-mode aptasensor based on rolling circle amplification enriched G-quadruplex for highly sensitive IFN-γ detection. Anal Chim Acta 2024; 1329:343254. [PMID: 39396313 DOI: 10.1016/j.aca.2024.343254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Aptasensors have been extensively utilized in target detection due to their advantages of high sensitivity and fast response. However, the reliability of the detection results of the single-mode aptasensor cannot be verified in time. Developing efficient detection methods with cross-validation capability is beneficial to achieving highly reliable detection. This study aims to design a colorimetric and fluorescent dual-mode aptasensor by skillfully engineering G-quadruplex assembly and rolling circle amplification for highly reliable IFN-γ detection. RESULTS The complexes of anti-IFN-γ aptamers and complement sequences (cDNA) were modified on the magnetic beads. In the presence of IFN-γ, the preferential combination of aptamers with IFN-γ resulted in the release of cDNAs. The cDNAs were collected by magnetic separation and then used as primers to trigger rolling circle amplification reaction to generate enriched G-quadruplexes. The G-quadruplex could be utilized to combine with hemin to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine for colormetric mode or to couple with the fluorogenic dye Thioflavin T for fluorescent mode. The developed dual-mode aptasensor displayed a linear range of 1-10000 pM with a detection limit of 0.406 pM for the colormetric mode and a range of 0.1-10000 pM with a detection limit of 0.037 pM for the fluorescent mode. Further, the designed aptasensor was applied to IFN-γ detection in serum samples and achieved satisfactory recoveries. SIGNIFICANCE This innovative dual-mode detection strategy skillfully leverages the effective target-binding ability of aptamer, dual-function of the G-quadruplex and the signal amplifying ability of rolling circle amplification. This approach not only provides a reliable testing tool for the detection of IFN-γ, but also promotes the development of multimode sensing platforms.
Collapse
Affiliation(s)
- Lianhui Zhao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yingai Yin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuqi Xiao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yinghua Qiu
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, 19102, USA
| | - Sai Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, China
| | - Yiyang Dong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
5
|
Zhang W, Xu J, Wang T, Lin X, Wang F. Graphdiyne as an emerging sensor platform: Principles, synthesis and application. J Adv Res 2024:S2090-1232(24)00468-5. [PMID: 39414227 DOI: 10.1016/j.jare.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/20/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Graphdiyne (GDY) is a kind of carbon material, which has highly delocalized π-conjugated system and feasible green synthesis. Nowadays, the use of GDY substrate as a sensing platform has become a new research hotspot and is rapidly developing. However, its application as a sensor is still relatively overlook compared to other fields. AIM OF REVIEW This study is for the purpose of making researchers have a complete comprehensive understanding of GDY and its associated sensing platforms. KEY SCIENTIFIC CONCEPTS OF REVIEW This study introduces the structure, unique characteristics, and synthesis progress of GDY material. Moreover, the article systematically summarizes the improvement of GDY-based sensors in life, health and environmental detection. It also discusses the opportunities and challenges of designing high-performance GDY-based sensing platforms with the assistance of machine learning and theoretical calculate. It has essential scientific and practical meaning for accelerating the development of sensing platforms which base on GDY, triggering unknown phenomena and knowledge of material research, and initiating unlimited space for scientific innovation.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Jing Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; College of Life Science, Xinyang Normal University, Xinyang 464000, China.
| | - Tian Wang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Xi Lin
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China.
| | - Fu Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China; Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi University of International Trade & Commerce, Xianyang 712046, China.
| |
Collapse
|
6
|
Gao R, Liu X, Xiong Z, Wang G, Ai L. Research progress on detection of foodborne pathogens: The more rapid and accurate answer to food safety. Food Res Int 2024; 193:114767. [PMID: 39160035 DOI: 10.1016/j.foodres.2024.114767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/21/2024]
Abstract
In recent years, foodborne diseases have posed a serious threat to human health, and rapid detection of foodborne pathogens is particularly crucial for the prevention and control of such diseases. This article offers a detailed overview of the development of detection techniques for foodborne pathogens, transitioning from traditional microbiological culture methods to the current array of techniques, including immunological, molecular biological, and biosensor-based methods. It summarizes the technical principles, advantages, disadvantages, and research progress of these diverse methods. Furthermore, the article demonstrates that the combination of different methods enhances the efficiency and accuracy of pathogens detection. Specifically, the article focuses on the application and advantages of combining CRISPR/Cas systems with other detection methods in the detection of foodborne pathogens. CRISPR/Cas systems, with their high specificity, sensitivity, and ease of operation, show great potential in the field of foodborne pathogens detection. When integrated with other detection techniques such as immunological detection techniques, molecular biology detection techniques, and biosensors, the accuracy and efficiency of detection can be further improved. By fully utilizing these tools, early detection and control of foodborne diseases can be achieved, enhancing public health and preventing disease outbreaks. This article serves as a valuable reference for exploring more convenient, accurate, and sensitive field detection methods for foodborne pathogens, promoting the application of rapid detection techniques, and ensuring food safety and human health.
Collapse
Affiliation(s)
- Ruoxuan Gao
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xinxin Liu
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
7
|
Lopez Carrasco I, Cuniberti G, Opitz J, Beshchasna N. Evaluation of Transducer Elements Based on Different Material Configurations for Aptamer-Based Electrochemical Biosensors. BIOSENSORS 2024; 14:341. [PMID: 39056617 PMCID: PMC11274616 DOI: 10.3390/bios14070341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
The selection of an appropriate transducer is a key element in biosensor development. Currently, a wide variety of substrates and working electrode materials utilizing different fabrication techniques are used in the field of biosensors. In the frame of this study, the following three specific material configurations with gold-finish layers were investigated regarding their efficacy to be used as electrochemical (EC) biosensors: (I) a silicone-based sensor substrate with a layer configuration of 50 nm SiO/50 nm SiN/100 nm Au/30-50 nm WTi/140 nm SiO/bulk Si); (II) polyethylene naphthalate (PEN) with a gold inkjet-printed layer; and (III) polyethylene terephthalate (PET) with a screen-printed gold layer. Electrodes were characterized using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) to evaluate their performance as electrochemical transducers in an aptamer-based biosensor for the detection of cardiac troponin I using the redox molecule hexacyanoferrade/hexacyaniferrade (K3[Fe (CN)6]/K4[Fe (CN)6]. Baseline signals were obtained from clean electrodes after a specific cleaning procedure and after functionalization with the thiolate cardiac troponin I aptamers "Tro4" and "Tro6". With the goal of improving the PEN-based and PET-based performance, sintered PEN-based samples and PET-based samples with a carbon or silver layer under the gold were studied. The effect of a high number of immobilized aptamers will be tested in further work using the PEN-based sample. In this study, the charge-transfer resistance (Rct), anodic peak height (Ipa), cathodic peak height (Ipc) and peak separation (∆E) were determined. The PEN-based electrodes demonstrated better biosensor properties such as lower initial Rct values, a greater change in Rct after the immobilization of the Tro4 aptamer on its surface, higher Ipc and Ipa values and lower ∆E, which correlated with a higher number of immobilized aptamers compared with the other two types of samples functionalized using the same procedure.
Collapse
Affiliation(s)
- Ivan Lopez Carrasco
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Strasse 2, 01109 Dresden, Germany; (I.L.C.); (J.O.)
| | - Gianaurelio Cuniberti
- Faculty of Mechanical Science and Engineering, Institute of Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062 Dresden, Germany;
| | - Jörg Opitz
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Strasse 2, 01109 Dresden, Germany; (I.L.C.); (J.O.)
| | - Natalia Beshchasna
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Strasse 2, 01109 Dresden, Germany; (I.L.C.); (J.O.)
| |
Collapse
|
8
|
Dong Y, Wang J, Chen L, Chen H, Dang S, Li F. Aptamer-based assembly systems for SARS-CoV-2 detection and therapeutics. Chem Soc Rev 2024; 53:6830-6859. [PMID: 38829187 DOI: 10.1039/d3cs00774j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Nucleic acid aptamers are oligonucleotide chains with molecular recognition properties. Compared with antibodies, aptamers show advantages given that they are readily produced via chemical synthesis and elicit minimal immunogenicity in biomedicine applications. Notably, aptamer-encoded nucleic acid assemblies further improve the binding affinity of aptamers with the targets due to their multivalent synergistic interactions. Specially, aptamers can be engineered with special topological arrangements in nucleic acid assemblies, which demonstrate spatial and valence matching towards antigens on viruses, thus showing potential in the detection and therapeutic applications of viruses. This review presents the recent progress on the aptamers explored for SARS-CoV-2 detection and infection treatment, wherein applications of aptamer-based assembly systems are introduced in detail. Screening methods and chemical modification strategies for aptamers are comprehensively summarized, and the types of aptamers employed against different target domains of SARS-CoV-2 are illustrated. The evolution of aptamer-based assembly systems for the detection and neutralization of SARS-CoV-2, as well as the construction principle and characteristics of aptamer-based DNA assemblies are demonstrated. The typically representative works are presented to demonstrate how to assemble aptamers rationally and elaborately for specific applications in SARS-CoV-2 diagnosis and neutralization. Finally, we provide deep insights into the current challenges and future perspectives towards aptamer-based nucleic acid assemblies for virus detection and neutralization in nanomedicine.
Collapse
Affiliation(s)
- Yuhang Dong
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Jingping Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Ling Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Haonan Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Shuangbo Dang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| |
Collapse
|
9
|
Xue J, Jia Y, Qi L, Yang H, Wang Y, Guo L. Highly sensitive electrochemical quantification of carbendazim via synergistic enhancement of ring-opening metathesis polymerization and polyethyleneimine modified graphene oxide. Mikrochim Acta 2024; 191:348. [PMID: 38805077 DOI: 10.1007/s00604-024-06412-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/04/2024] [Indexed: 05/29/2024]
Abstract
A novel aptamer-based sensor was developed using the signal amplification strategy of ring-opening metathesis polymerization (ROMP) and polyethyleneimine modified graphene oxide to achieve trace detection of carbendazim (CBZ). The dual identification of aptamer and antibody was used to avoid false positive results and improve the selectivity. Polyethyleneimine modified graphene oxide (GO-PEI), as a substrate material with excellent conductivity, was modified on the surface of a glassy carbon electrode (GCE) to increase the grafting amount of aptamer on the electrode surface. Moreover, a large number of cyclopentenyl ferrocene (CFc) was aggregated to form long polymer chains through ring-opening metathesis polymerization (ROMP), so as to significantly improve the detection sensitivity of the biosensor. The linear range of this sensor was 1 pg/mL-100 ng/mL with a detection limit as low as 7.80 fg/mL. The sensor exhibited excellent reproducibility and stability, and also achieved satisfactory results in actual sample detection. The design principle of such a sensor could provide innovative ideas for sensors in the detection of other types of targets.
Collapse
Affiliation(s)
- Jinyan Xue
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Yuzhen Jia
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Linying Qi
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
| | - Yanzhi Wang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
| | - Liang Guo
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
10
|
Zhao X, Bhat A, O’Connor C, Curtin J, Singh B, Tian F. Review of Detection Limits for Various Techniques for Bacterial Detection in Food Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:855. [PMID: 38786811 PMCID: PMC11124167 DOI: 10.3390/nano14100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Foodborne illnesses can be infectious and dangerous, and most of them are caused by bacteria. Some common food-related bacteria species exist widely in nature and pose a serious threat to both humans and animals; they can cause poisoning, diseases, disabilities and even death. Rapid, reliable and cost-effective methods for bacterial detection are of paramount importance in food safety and environmental monitoring. Polymerase chain reaction (PCR), lateral flow immunochromatographic assay (LFIA) and electrochemical methods have been widely used in food safety and environmental monitoring. In this paper, the recent developments (2013-2023) covering PCR, LFIA and electrochemical methods for various bacterial species (Salmonella, Listeria, Campylobacter, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli)), considering different food sample types, analytical performances and the reported limit of detection (LOD), are discussed. It was found that the bacteria species and food sample type contributed significantly to the analytical performance and LOD. Detection via LFIA has a higher average LOD (24 CFU/mL) than detection via electrochemical methods (12 CFU/mL) and PCR (6 CFU/mL). Salmonella and E. coli in the Pseudomonadota domain usually have low LODs. LODs are usually lower for detection in fish and eggs. Gold and iron nanoparticles were the most studied in the reported articles for LFIA, and average LODs were 26 CFU/mL and 12 CFU/mL, respectively. The electrochemical method revealed that the average LOD was highest for cyclic voltammetry (CV) at 18 CFU/mL, followed by electrochemical impedance spectroscopy (EIS) at 12 CFU/mL and differential pulse voltammetry (DPV) at 8 CFU/mL. LOD usually decreases when the sample number increases until it remains unchanged. Exponential relations (R2 > 0.95) between LODs of Listeria in milk via LFIA and via the electrochemical method with sample numbers have been obtained. Finally, the review discusses challenges and future perspectives (including the role of nanomaterials/advanced materials) to improve analytical performance for bacterial detection.
Collapse
Affiliation(s)
- Xinyi Zhao
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| | - Abhijnan Bhat
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- MiCRA Biodiagnostics Technology Gateway and Health, Engineering & Materials Sciences (HEMS) Research Hub, Technological University Dublin, D24 FKT9 Dublin, Ireland
| | - Christine O’Connor
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
| | - James Curtin
- Faculty of Engineering and Built Environment, Technological University Dublin, Bolton Street, D01 K822 Dublin, Ireland;
| | - Baljit Singh
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- MiCRA Biodiagnostics Technology Gateway and Health, Engineering & Materials Sciences (HEMS) Research Hub, Technological University Dublin, D24 FKT9 Dublin, Ireland
| | - Furong Tian
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| |
Collapse
|
11
|
Yang Z, Guo J, Wang L, Zhang J, Ding L, Liu H, Yu X. Nanozyme-Enhanced Electrochemical Biosensors: Mechanisms and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307815. [PMID: 37985947 DOI: 10.1002/smll.202307815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/22/2023] [Indexed: 11/22/2023]
Abstract
Nanozymes, as innovative materials, have demonstrated remarkable potential in the field of electrochemical biosensors. This article provides an overview of the mechanisms and extensive practical applications of nanozymes in electrochemical biosensors. First, the definition and characteristics of nanozymes are introduced, emphasizing their significant role in constructing efficient sensors. Subsequently, several common categories of nanozyme materials are delved into, including metal-based, carbon-based, metal-organic framework, and layered double hydroxide nanostructures, discussing their applications in electrochemical biosensors. Regarding their mechanisms, two key roles of nanozymes are particularly focused in electrochemical biosensors: selective enhancement and signal amplification, which crucially support the enhancement of sensor performance. In terms of practical applications, the widespread use of nanozyme-based electrochemical biosensors are showcased in various domains. From detecting biomolecules, pollutants, nucleic acids, proteins, to cells, providing robust means for high-sensitivity detection. Furthermore, insights into the future development of nanozyme-based electrochemical biosensors is provided, encompassing improvements and optimizations of nanozyme materials, innovative sensor design and integration, and the expansion of application fields through interdisciplinary collaboration. In conclusion, this article systematically presents the mechanisms and applications of nanozymes in electrochemical biosensors, offering valuable references and prospects for research and development in this field.
Collapse
Affiliation(s)
- Zhongwei Yang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Jiawei Guo
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Longwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Jian Zhang
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Longhua Ding
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xin Yu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
12
|
Hamdi F, Roushani M, Nasibipour M, Hoseini SJ. Aptasensor based on high surface area covalent organic framework for simple and ultrasensitive detection of sarcosine in the diagnosis of prostate cancer. Anal Chim Acta 2024; 1291:342235. [PMID: 38280784 DOI: 10.1016/j.aca.2024.342235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/29/2024]
Abstract
In this study, an electrochemical aptasensor was developed for the specific detection of sarcosine using a covalent organic framework (COF). The imine-based two-dimensional COF was synthesized through a solvothermal process using terephthaldehyde and melamine. This resulted in the formation of a structure that is highly porous and has a unique surface area of 908 m2/g. The produced biosensor demonstrated a significant linear relationship between charge transfer resistance (Rct) and various concentrations of sarcosine in blood serum samples. The aptasensor had two linear ranges, spanning from 0.5 fM to 700 fM and 10 pM to 0.12 nM, respectively, with a detection limit of 0.15 fM. The incorporation of high surface area COFs in the aptasensor design offers a promising combination of sensitivity, stability, and specificity. This combination creates a valuable device for diagnosing and monitoring of prostate cancer and potentially other diseases.
Collapse
Affiliation(s)
- Fatemeh Hamdi
- Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, 6939177111, Iran
| | - Mahmoud Roushani
- Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, 6939177111, Iran.
| | - Mina Nasibipour
- Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 7194684795, Iran
| | - S Jafar Hoseini
- Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 7194684795, Iran.
| |
Collapse
|
13
|
Liu L, Du K. A perspective on computer vision in biosensing. BIOMICROFLUIDICS 2024; 18:011301. [PMID: 38223547 PMCID: PMC10787640 DOI: 10.1063/5.0185732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024]
Abstract
Computer vision has become a powerful tool in the field of biosensing, aiding in the development of innovative and precise systems for the analysis and interpretation of biological data. This interdisciplinary approach harnesses the capabilities of computer vision algorithms and techniques to extract valuable information from various biosensing applications, including medical diagnostics, environmental monitoring, and food health. Despite years of development, there is still significant room for improvement in this area. In this perspective, we outline how computer vision is applied to raw sensor data in biosensors and its advantages to biosensing applications. We then discuss ongoing research and developments in the field and subsequently explore the challenges and opportunities that computer vision faces in biosensor applications. We also suggest directions for future work, ultimately underscoring the significant impact of computer vision on advancing biosensing technologies and their applications.
Collapse
Affiliation(s)
- Li Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| |
Collapse
|
14
|
Huang H, Chen Y, Zuo J, Deng C, Fan J, Bai L, Guo S. MXene-incorporated C 60NPs and Au@Pt with dual-electric signal outputs for accurate detection of Mycobacterium tuberculosis ESAT-6 antigen. Biosens Bioelectron 2023; 242:115734. [PMID: 37832350 DOI: 10.1016/j.bios.2023.115734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
Rapid and effective detection of Mycobacterium tuberculosis (MTB) is the crux of minimizing tuberculosis (TB) spread. Consequently, a new electrochemical aptasensor based on dual-signal output for ultrasensitive detection of MTB early secreted antigenic target 6 (ESAT-6) antigen was developed. Especially, a new nanocomposite MXene/C60NPs/Au@Pt was synthesized for signal generation and amplification. In this biosensing architecture, dual independent signal outputs were achieved by coupling the electrochemical redox activity of fullerene nanoparticles (C60NPs) with the effective electrocatalytic activity of Au@Pt nanoparticles. MXene possesses a large specific surface area, allowing densely loaded of these two electroactive materials, further improved sensing capability. In addition, specific ESAT-6 antigen binding aptamers were attached to Au@Pt to create the tracer label. With a typical sandwich format along with the introduction of the gold nanoparticle-loaded molybdenum disulfide (MoS2-Au) as the sensing interface, the limit of detection (LOD) of the proposed aptasensor was 2.88 fg mL-1 (DPV measurement) and 13.50 fg mL-1 (IT measurement), respectively, with a broad linear range of 100 fg mL-1 to 50 ng mL-1. Significantly, it exhibited better specificity and accuracy with a sensitivity of 97.5% and a specificity of 96.7% to distinguish healthy donors, other lung diseases and TB patients compared to commercial ELISA assay, holding a promising prospect in clinical diagnosis.
Collapse
Affiliation(s)
- He Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Yuhan Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Jianli Zuo
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Can Deng
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Junling Fan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Lijuan Bai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Shuliang Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
15
|
Li T, Xing S, Liu Y. Simultaneous Proximity DNAzyme-Activated Duplexed Protein-Specific Glycosylation Imaging on Cell Surface via Bioorthogonal Chemistry. Anal Chem 2023; 95:17790-17797. [PMID: 37994926 DOI: 10.1021/acs.analchem.3c03869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Due to the scarcity of strategies to evaluate the multiple subtype monosaccharides in one specific protein simultaneously within a single assay, understanding the glycosylation mechanisms and revealing their roles in disease development become extremely challenging. Herein, a strategy of proximity DNAzyme-activated fluorescence imaging of multiplex saccharides in a protein on the cell surface via bio-orthogonal chemistry is reported. The multichannel proximity DNAzyme-activated fluorescence recovery enabled the highly selective and effective imaging analysis of multiplexed protein-specific glycosylation in situ and has been demonstrated. This strategy is successfully applied to visualize the sialylation and fucosylation in four specific proteins on different cell lines and evaluate the variations of protein-specific glycosylation in response to the alterations of the cellular physiological status. More importantly, the quantitative tracking of the terminal sialyation and fucosylation changes at the single-protein level is realized by assigning the target protein as the native reference, which has the potential to be a versatile platform for glycobiology research and clinical diagnosis.
Collapse
Affiliation(s)
- Ting Li
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, P. R. China
| | - Simin Xing
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, P. R. China
| | - Yang Liu
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
16
|
Lafi Z, Gharaibeh L, Nsairat H, Asha N, Alshaer W. Aptasensors: employing molecular probes for precise medical diagnostics and drug monitoring. Bioanalysis 2023; 15:1439-1460. [PMID: 37847048 DOI: 10.4155/bio-2023-0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Accurate detection and monitoring of therapeutic drug levels are vital for effective patient care and treatment management. Aptamers, composed of single-stranded DNA or RNA molecules, are integral components of biosensors designed for both qualitative and quantitative detection of biological samples. Aptasensors play crucial roles in target identification, validation, detection of drug-target interactions and screening potential of drug candidates. This review focuses on the pivotal role of aptasensors in early disease detection, particularly in identifying biomarkers associated with various diseases such as cancer, infectious diseases and cardiovascular disorders. Aptasensors have demonstrated exceptional potential in enhancing disease diagnostics and monitoring therapeutic drug levels. Aptamer-based biosensors represent a transformative technology in the field of healthcare, enabling precise diagnostics, drug monitoring and disease detection.
Collapse
Affiliation(s)
- Zainab Lafi
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Lobna Gharaibeh
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Hamdi Nsairat
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Nisreen Asha
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
17
|
Luo L, Jiang C, Li H, Ning D, Lao S, Liang Z, Tang L, Chen W, Ya Y. An electrochemical aptasensor for detection of carbofuran using gold nanoparticles decorated hierarchical porous carbon as an effective sensing platform. CHEMOSPHERE 2023; 341:140033. [PMID: 37659518 DOI: 10.1016/j.chemosphere.2023.140033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/23/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
In this study, a novel electrochemical aptasensor for carbofuran (CBF) detection is prepared by gold nanoparticles decorated hierarchical porous carbon (Au@HPC). The prepared carbon materials show a three-dimensional hierarchical structure with a large specific surface area and a highly developed porous structure. Aptamers loading significantly improves when gold nanoparticles are embedded into the hierarchical porous carbon skeleton. Besides, Au@HPC modified electrode exhibits a large electroactive area and excellent electrochemical conductivity, serving as a promising platform for highly sensitive and selective electrochemical detection of CBF. The developed CBF electrochemical aptasensor shows a wide linear from 1.0 to 100000 pg/L with a detection limit of 0.5 pg/L, demonstrating an extraordinary sensitivity compared to other sensors for CBF detection. Additionally, the designed aptasensor was used to monitor the CBF in vegetable samples, with a recovery range from 98.4% to 104.8%. The results coincide with the standard test method, revealing its practicability in the food safety analysis.
Collapse
Affiliation(s)
- Lihong Luo
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Cuiwen Jiang
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Hu Li
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, China
| | - Dejiao Ning
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Shuibing Lao
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhongdan Liang
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Li Tang
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Weiwei Chen
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, China
| | - Yu Ya
- Institute for Agricultural Product Quality Safety and Testing Technology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| |
Collapse
|
18
|
Xiao Y, Zhang T, Zhang H. Recent advances in the peptide-based biosensor designs. Colloids Surf B Biointerfaces 2023; 231:113559. [PMID: 37738870 DOI: 10.1016/j.colsurfb.2023.113559] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/09/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Biosensors have rapidly emerged as a high-sensitivity and convenient detection method. Among various types of biosensors, optical and electrochemical are the most commonly used. Conventionally, antibodies have been employed to ensure specific interaction between the transmission material and analytes. However, there has been increasing recognition of peptides as a promising recognition element for biosensor development in recent years. The use of peptides as recognition elements provides high level of specificity, sensitivity, and stability for the detection process. The combination of peptide designs and optical or electrochemical detection methods has significantly improved biosensor efficacy. These advancements present opportunities for developing biosensors with diverse functions that can be used to lay a strong scientific foundation for the development of personalized medicine and various other fields. This paper reviews the recent advancements in the development and application of peptide-based optical and electrochemical biosensors, as well as their prospects as a sensor type.
Collapse
Affiliation(s)
- Yue Xiao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Ting Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China.
| |
Collapse
|
19
|
Yao L, Lu F, Koc S, Zheng Z, Wang B, Zhang S, Skutella T, Lu G. LRRK2 Gly2019Ser Mutation Promotes ER Stress via Interacting with THBS1/TGF-β1 in Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303711. [PMID: 37672887 PMCID: PMC10602550 DOI: 10.1002/advs.202303711] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/29/2023] [Indexed: 09/08/2023]
Abstract
The gene mutations of LRRK2, which encodes leucine-rich repeat kinase 2 (LRRK2), are associated with one of the most prevalent monogenic forms of Parkinson's disease (PD). However, the potential effectors of the Gly2019Ser (G2019S) mutation remain unknown. In this study, the authors investigate the effects of LRRK2 G2019S on endoplasmic reticulum (ER) stress in induced pluripotent stem cell (iPSC)-induced dopamine neurons and explore potential therapeutic targets in mice model. These findings demonstrate that LRRK2 G2019S significantly promotes ER stress in neurons and mice. Interestingly, inhibiting LRRK2 activity can ameliorate ER stress induced by the mutation. Moreover, LRRK2 mutation can induce ER stress by directly interacting with thrombospondin-1/transforming growth factor beta1 (THBS1/TGF-β1). Inhibition of LRRK2 kinase activity can effectively suppress ER stress and the expression of THBS1/TGF-β1. Knocking down THBS1 can rescue ER stress by interacting with TGF-β1 and behavior burden caused by the LRRK2 mutation, while suppression of TGF-β1 has a similar effect. Overall, it is demonstrated that the LRRK2 mutation promotes ER stress by directly interacting with THBS1/TGF-β1, leading to neural death in PD. These findings provide valuable insights into the pathogenesis of PD, highlighting potential diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Longping Yao
- Department of NeurosurgeryFirst Affiliated Hospital of Nanchang UniversityNanchang330209P. R. China
- Department of NeurosurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510282P. R. China
- Institute for Anatomy and Cell BiologyMedical FacultyHeidelberg University69120HeidelbergGermany
| | - Fengfei Lu
- Department of NeurosurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510282P. R. China
| | - Sumeyye Koc
- Department of NeuroscienceInstitute of Health SciencesOndokuz Mayıs UniversitySamsun55139Turkey
| | - Zijian Zheng
- Department of NeurosurgeryFirst Affiliated Hospital of Nanchang UniversityNanchang330209P. R. China
| | - Baoyan Wang
- Department of NeurosurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510282P. R. China
| | - Shizhong Zhang
- Department of NeurosurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510282P. R. China
| | - Thomas Skutella
- Institute for Anatomy and Cell BiologyMedical FacultyHeidelberg University69120HeidelbergGermany
| | - Guohui Lu
- Department of NeurosurgeryFirst Affiliated Hospital of Nanchang UniversityNanchang330209P. R. China
| |
Collapse
|
20
|
Li Y, Liu S, Wang Y, Wang Y, Li S, He N, Deng Y, Chen Z. Research on a Magnetic Separation-Based Rapid Nucleic Acid Extraction System and Its Detection Applications. BIOSENSORS 2023; 13:903. [PMID: 37887096 PMCID: PMC10605191 DOI: 10.3390/bios13100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
Nucleic acid extraction represents the "first step" in molecular diagnostic experiments. The quality of this extraction serves as a fundamental prerequisite for ensuring the accuracy of nucleic acid detection. This article presents a comprehensive design scheme for a rapid automated nucleic acid extraction system based on magnetic separation. The design and implementation of the system are analyzed and investigated in-depth, focusing on the core methods, hardware control, and software control of the automated nucleic acid extraction system. Additionally, a study and evaluation were carried out concerning the nucleic acid extraction and detection aspects encompassed by the system. The results demonstrate that the temperature deviation in the lysis and elution fluids is approximately ±1 °C, the positioning accuracy of the system's movement is ±0.005 mm, the average magnetic bead recovery rate is 94.98%, and the average nucleic acid recovery rate is 91.83%. The developed automated system and manual methods are employed for sample extraction, enabling the isolation of highly pure nucleic acids from bacteria, blood, and animal tissues for RT-PCR detection. The instrument employs lysis temperatures ranging from 70-80 °C, elution temperature of 80 °C, and drying time of 5-10 min, with a total extraction time of less than 35 min for different sample types. Overall, the system yields high nucleic acid concentration and purity, exhibits stable instrument operation, good repeatability, high efficiency, and low cost. It meets the requirements of genetic-level research and is worthy of clinical promotion and usage.
Collapse
Affiliation(s)
- Yao Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Y.L.); (S.L.); (Y.W.); (Y.W.); (S.L.); (N.H.); (Y.D.)
| | - Sha Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Y.L.); (S.L.); (Y.W.); (Y.W.); (S.L.); (N.H.); (Y.D.)
| | - Yuanyuan Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Y.L.); (S.L.); (Y.W.); (Y.W.); (S.L.); (N.H.); (Y.D.)
| | - Yue Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Y.L.); (S.L.); (Y.W.); (Y.W.); (S.L.); (N.H.); (Y.D.)
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Y.L.); (S.L.); (Y.W.); (Y.W.); (S.L.); (N.H.); (Y.D.)
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Y.L.); (S.L.); (Y.W.); (Y.W.); (S.L.); (N.H.); (Y.D.)
- State Key Laboratory of Digital Medical Engineering, School of Biological and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Y.L.); (S.L.); (Y.W.); (Y.W.); (S.L.); (N.H.); (Y.D.)
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (Y.L.); (S.L.); (Y.W.); (Y.W.); (S.L.); (N.H.); (Y.D.)
| |
Collapse
|
21
|
Shelash Al-Hawary SI, Malviya J, Althomali RH, Almalki SG, Kim K, Romero-Parra RM, Fahad Ahmad A, Sanaan Jabbar H, Vaseem Akram S, Hussien Radie A. Emerging Insights into the Use of Advanced Nanomaterials for the Electrochemiluminescence Biosensor of Pesticide Residues in Plant-Derived Foodstuff. Crit Rev Anal Chem 2023; 54:3614-3631. [PMID: 37728973 DOI: 10.1080/10408347.2023.2258971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Pesticides have an important role in rising the overall productivity and yield of agricultural foods by eliminating and controlling insects, pests, fungi, and various plant-related illnesses. However, the overuse of pesticides has caused pesticide pollution of water bodies and food products, along with disruption of environmental and ecological systems. In this regard, developing low-cost, simple, and rapid-detecting approaches for the accurate, rapid, efficient, and on-site screening of pesticide residues is an ongoing challenge. Electrochemiluminescence (ECL) possesses the benefits of great sensitivity, the capability to resolve several analytes using different emission wavelengths or redox potentials, and excellent control over the light radiation in time and space, making it a powerful strategy for sensing various pesticides. Cost-effective and simple ECL systems allow sensitive, selective, and accurate quantification of pesticides in agricultural fields. Particularly, the development and progress of nanomaterials, aptamer/antibody recognition, electric/photo-sensing, and their integration with electrochemiluminescence sensing technology has presented the hopeful potential in reporting the residual amounts of pesticides. Current trends in the application of nanoparticles are debated, with an emphasis on sensor substrates using aptamer, antibodies, enzymes, and molecularly imprinted polymers (MIPs). Different strategies are enclosed in labeled and label-free sensing along with luminescence determination approaches (signal-off, signal-on, and signal-switch modes). Finally, the recent challenges and upcoming prospects in this ground are also put forward.
Collapse
Affiliation(s)
| | - Jitendra Malviya
- Department of Life Sciences & Biological Sciences, IES University, Bhopal, India
| | - Raed H Althomali
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Kibum Kim
- Department of Human-Computer Interaction, Hanyang University, Seoul, South Korea
| | | | - Ahmad Fahad Ahmad
- Department of Radiology, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Hijran Sanaan Jabbar
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Shaik Vaseem Akram
- Division of Research & Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, India
| | | |
Collapse
|
22
|
Binder P, Oberhaus FV. Straightforward fabrication of electrochemical aptasensors with outstanding antifouling performance. Anal Chim Acta 2023; 1274:341575. [PMID: 37455085 DOI: 10.1016/j.aca.2023.341575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/28/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
Self-assembled monolayers (SAMs) are popular tools for many different applications - SAMs of commercially available chemicals that convincingly inhibit unspecific binding for electrochemical sensors, however, have yet to be developed. While adsorption of foulants prohibits the reliable analysis of biological samples, unspecific binding of the analyte similarly impedes the investigation of binding characteristics from buffer solutions. In this communication, diglycolamine is introduced for the modification of electrodes with outstanding antifouling performance. The presented sensor design, solely consisting of diglycolamine and an aptamer of choice, convinces with its ease of preparation, low cost, and, most importantly, an exceptional specificity. The latter was found to rely on a gentle but potent cleaning of the electrodes, as only our optimized cleaning procedure granted the diglycolamine layer its excellent fouling minimization performance, while literature standard protocols failed to do so. Each step of the sensor fabrication protocol was optimized by electrochemical impedance spectroscopy, while square-wave voltammetry, surface-enhanced Raman spectroscopy, and zeta potential measurement were performed for further characterization. The presented approach of surface modification with diglycolamine is a versatile method applicable not just to electrochemical measurements, but to a variety of other detection techniques, too, and has the potential to change the way we investigate binding characteristics and fabricate sensors for the analysis of complex biological samples.
Collapse
Affiliation(s)
- Pia Binder
- Institute for Bioprocessing and Analytical Measurement Techniques, Rosenhof, 37308, Heilbad, Heiligenstadt, Germany
| | - Franziska V Oberhaus
- Institute for Bioprocessing and Analytical Measurement Techniques, Rosenhof, 37308, Heilbad, Heiligenstadt, Germany.
| |
Collapse
|
23
|
Dai C, Wang K, Tan M, Hua Z, Xia L, Qin L. A LoC-SERS platform based on triple signal amplification for highly sensitive detection of colorectal cancer miRNAs. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4194-4203. [PMID: 37584160 DOI: 10.1039/d3ay01006f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
In this work, based on a dual signal amplification strategy of enzyme-assisted signal amplification (EASA) and catalytic hairpin assembly (CHA), combined with the magnetic attraction effect, a capillary pump-driven surface-enhanced Raman scattering (SERS) microfluidic chip (LoC-SERS) platform was developed for the sensitive detection of colorectal cancer-associated (CRC) microRNA (miRNA). During the detection process, the miRNA first undergoes an EASA reaction with hairpin DNA1 (hpDNA1) under the action of endonuclease, which generates a large amount of DNA2 cyclically. After that, DNA2 triggers the CHA reaction to proceed, which leads to the ligation of the SERS nanoprobes and the capture nanoprobes (hpDNA2-hpDNA3 complexes). Finally, as the reactant solution flows through the collection zone, the end products are magnetically attracted by the micro-magnets, generating many "hot spots" and leading to a triple amplification of the SERS signal. By quantitative analysis, the platform achieved ultra-low detection limits of miR-122 (4.26 aM) and miR-192 (4.71 aM) within a linear range of 10 aM-10 pM. In addition, the platform's results for clinical samples are highly consistent with those measured by qRT-PCR methods. Overall, the proposed LoC-SERS platform is expected to be an important tool for the early screening of CRC.
Collapse
Affiliation(s)
- Chun Dai
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
- Department of General Surgery, The People's Hospital of Yangzhong City, Yangzhong, Jiangsu, China
| | - Kun Wang
- Department of General Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ming Tan
- Department of General Surgery, The People's Hospital of Yangzhong City, Yangzhong, Jiangsu, China
| | - Zhaolai Hua
- Department of General Surgery, The People's Hospital of Yangzhong City, Yangzhong, Jiangsu, China
| | - Lin Xia
- Department of General Surgery, The People's Hospital of Yangzhong City, Yangzhong, Jiangsu, China
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
24
|
Zhao Y, Li AZ, Liu J. Capture-SELEX for Chloramphenicol Binding Aptamers for Labeled and Label-Free Fluorescence Sensing. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2023; 1:102-109. [PMID: 37614296 PMCID: PMC10442912 DOI: 10.1021/envhealth.3c00017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 08/25/2023]
Abstract
Chloramphenicol (CAP) is a potent antibiotic. Due to its side effects, CAP is currently banned in most countries, but it is still found in many food products and in the environment. Developing aptamer-based biosensors for the detection of CAP has interested many researchers. While both RNA and DNA aptamers were previously reported for CAP, they were all obtained by immobilization of the CAP base, which omitted the two chlorine atoms. In this work, DNA aptamers were selected using the library-immobilized method and free unmodified CAP. Three families of aptamers were obtained, and the best one named CAP1 showed a dissociation constant (Kd) of 9.8 μM using isothermal titration calorimetry (ITC). A fluorescent strand-displacement sensor showed a limit of detection (LOD) of 14 μM CAP. Thioflavin T (ThT) staining allowed label-free detection of CAP with a LOD of 1 μM in buffer, 1.8 μM in Lake Ontario water, and 3.6 μM in a wastewater sample. Comparisons were made with previously reported aptamers, and ITC failed to show binding of a previously reported 80-mer aptamer. Due to the small size and well-defined secondary structures of CAP1, this aptamer will find analytical applications for environmental and food monitoring.
Collapse
Affiliation(s)
- Yichen Zhao
- Department of Chemistry,
Waterloo Institute for Nanotechnology, Water Institute, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Albert Zehan Li
- Department of Chemistry,
Waterloo Institute for Nanotechnology, Water Institute, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry,
Waterloo Institute for Nanotechnology, Water Institute, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
25
|
Saeidi M, Chenani H, Orouji M, Adel Rastkhiz M, Bolghanabadi N, Vakili S, Mohamadnia Z, Hatamie A, Simchi A(A. Electrochemical Wearable Biosensors and Bioelectronic Devices Based on Hydrogels: Mechanical Properties and Electrochemical Behavior. BIOSENSORS 2023; 13:823. [PMID: 37622909 PMCID: PMC10452289 DOI: 10.3390/bios13080823] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Hydrogel-based wearable electrochemical biosensors (HWEBs) are emerging biomedical devices that have recently received immense interest. The exceptional properties of HWEBs include excellent biocompatibility with hydrophilic nature, high porosity, tailorable permeability, the capability of reliable and accurate detection of disease biomarkers, suitable device-human interface, facile adjustability, and stimuli responsive to the nanofiller materials. Although the biomimetic three-dimensional hydrogels can immobilize bioreceptors, such as enzymes and aptamers, without any loss in their activities. However, most HWEBs suffer from low mechanical strength and electrical conductivity. Many studies have been performed on emerging electroactive nanofillers, including biomacromolecules, carbon-based materials, and inorganic and organic nanomaterials, to tackle these issues. Non-conductive hydrogels and even conductive hydrogels may be modified by nanofillers, as well as redox species. All these modifications have led to the design and development of efficient nanocomposites as electrochemical biosensors. In this review, both conductive-based and non-conductive-based hydrogels derived from natural and synthetic polymers are systematically reviewed. The main synthesis methods and characterization techniques are addressed. The mechanical properties and electrochemical behavior of HWEBs are discussed in detail. Finally, the prospects and potential applications of HWEBs in biosensing, healthcare monitoring, and clinical diagnostics are highlighted.
Collapse
Affiliation(s)
- Mohsen Saeidi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Hossein Chenani
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Mina Orouji
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - MahsaSadat Adel Rastkhiz
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Nafiseh Bolghanabadi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Shaghayegh Vakili
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran;
| | - Amir Hatamie
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran;
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Abdolreza (Arash) Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 14588-89694, Iran
| |
Collapse
|
26
|
Ma T, Zhou J, Wei D, Peng H, Liu X, Guo W, Zhang C, Liu X, Li S, Deng Y. Ultrasensitive Electrochemical Aptasensing of Malathion Based on Hydroxylated Black Phosphorus/Poly-L-Lysine Composite. BIOSENSORS 2023; 13:735. [PMID: 37504133 PMCID: PMC10377050 DOI: 10.3390/bios13070735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/25/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023]
Abstract
A highly sensitive unlabeled electrochemical aptasensor based on hydroxylated black phosphorus/poly-L-lysine (hBP/PLL) composite is introduced herein for the detection of malathion. Poly-L-lysine (PLL) with adhesion and coating properties adhere to the surface of the nanosheets by noncovalent interactions with underlying hydroxylated black phosphorus nanosheets (hBP) to produce the hBP/PLL composite. The as-synthesized hBP/PLL composite bonded to Au nanoparticles (Au NPs) firmly by assembling and using them as a substrate for the aptamer with high specificity as a probe to fabricate the sensor. Under optimal conditions, the linear range of the electrochemical aptasensor was 0.1 pM~1 μM, and the detection limit was 2.805 fM. The electrochemical aptasensor has great selectivity, a low detection limit, and anti-interference, which has potential application prospects in the field of rapid trace detection of pesticide residues.
Collapse
Affiliation(s)
- Tingting Ma
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Jie Zhou
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
- Institute for Future Sciences, University of South, Changsha 410000, China
- Hengyang Medical School, University of South, Hengyang 421001, China
| | - Dan Wei
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Hongquan Peng
- Department of Nephrology, Kiang Wu Hospital, Macau SAR, China
| | - Xun Liu
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Wenfei Guo
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Chuanxiang Zhang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Xueying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
- Institute for Future Sciences, University of South, Changsha 410000, China
- Hengyang Medical School, University of South, Hengyang 421001, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
- Institute for Future Sciences, University of South, Changsha 410000, China
- Hengyang Medical School, University of South, Hengyang 421001, China
| |
Collapse
|
27
|
Wang Y, Wang C, Zhou Z, Si J, Li S, Zeng Y, Deng Y, Chen Z. Advances in Simple, Rapid, and Contamination-Free Instantaneous Nucleic Acid Devices for Pathogen Detection. BIOSENSORS 2023; 13:732. [PMID: 37504131 PMCID: PMC10377012 DOI: 10.3390/bios13070732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
Pathogenic pathogens invade the human body through various pathways, causing damage to host cells, tissues, and their functions, ultimately leading to the development of diseases and posing a threat to human health. The rapid and accurate detection of pathogenic pathogens in humans is crucial and pressing. Nucleic acid detection offers advantages such as higher sensitivity, accuracy, and specificity compared to antibody and antigen detection methods. However, conventional nucleic acid testing is time-consuming, labor-intensive, and requires sophisticated equipment and specialized medical personnel. Therefore, this review focuses on advanced nucleic acid testing systems that aim to address the issues of testing time, portability, degree of automation, and cross-contamination. These systems include extraction-free rapid nucleic acid testing, fully automated extraction, amplification, and detection, as well as fully enclosed testing and commercial nucleic acid testing equipment. Additionally, the biochemical methods used for extraction, amplification, and detection in nucleic acid testing are briefly described. We hope that this review will inspire further research and the development of more suitable extraction-free reagents and fully automated testing devices for rapid, point-of-care diagnostics.
Collapse
Affiliation(s)
- Yue Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Chengming Wang
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou 412000, China
| | - Zepeng Zhou
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Jiajia Si
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Yezhan Zeng
- School of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
28
|
Li Y, Gao X, Fang Y, Cui B, Shen Y. Nanomaterials-driven innovative electrochemiluminescence aptasensors in reporting food pollutants. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
29
|
Nguyen TTQ, Gu MB. An ultrasensitive electrochemical aptasensor using Tyramide-assisted enzyme multiplication for the detection of Staphylococcus aureus. Biosens Bioelectron 2023; 228:115199. [PMID: 36906992 DOI: 10.1016/j.bios.2023.115199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/25/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023]
Abstract
In this study, we aimed to introduce a new electrochemical aptasensor based on the tyramide signal amplification (TSA) technology for a highly-sensitive detection of the pathogenic bacterium, Staphylococcus aureus, as a model of foodborne pathogens. In this aptasensor, the primary aptamer, SA37, was used to specifically capture bacterial cells; the secondary aptamer, SA81@HRP, was used as the catalytic probe; and a TSA-based signal enhancement system comprising of biotinyl-tyramide and streptavidin-HRP as electrocatalytic signal tags was adopted to fabricate the sensor and improve the detection sensitivity. S. aureus cells were selected as the pathogenic bacteria to verify the analytical performance of this TSA-based signal-enhancement electrochemical aptasensor platform. After the simultaneous binding of SA37-S. aureus-SA81@HRP formed on the gold electrode, thousands of @HRP molecules could be bound onto the biotynyl tyramide (TB) displayed on the bacterial cell surface through a catalytic reaction between HRP and H2O2, resulting in the generation of the highly amplified signals mediated by HRP reactions. This developed aptasensor could detect S. aureus bacterial cells at an ultra-low concentration, with a limit of detection (LOD) of 3 CFU/mL in buffer. Furthermore, this chronoamperometry aptasensor successfully detected target cells in both tap water and beef broth with LOD to be 8 CFU/mL, which are very high sensitivity and specificity. Overall, this electrochemical aptasensor using TSA-based signal-enhancement could be a very useful tool for the ultrasensitive detection of foodborne pathogens in food and water safety and environmental monitoring.
Collapse
Affiliation(s)
- Thi Thanh-Qui Nguyen
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Man Bock Gu
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Zhang M, Xia L, Mei W, Zou Q, Liu H, Wang H, Zou L, Wang Q, Yang X, Wang K. One-step multiplex analysis of breast cancer exosomes using an electrochemical strategy assisted by gold nanoparticles. Anal Chim Acta 2023; 1254:341130. [PMID: 37005015 DOI: 10.1016/j.aca.2023.341130] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Exosomes, as a non-invasive biomarker, perform an important role in breast cancer screening and prognosis monitoring. However, establishing a simple, sensitive, and reliable exosome analysis technique remains challenging. Herein, a one-step multiplex analysis electrochemical aptasensor based on a multi-probe recognition strategy was constructed to analyze breast cancer exosomes. HER2-positive breast cancer cell (SK-BR-3) exosomes were selected as the model targets and three aptamers including CD63, HER2 and EpCAM aptamers were used as the capture units. Methylene blue (MB) functionalized HER2 aptamer and ferrocene (Fc) functionalized EpCAM aptamer, which were modified on gold nanoparticles (Au NPs), i.e. MB-HER2-Au NPs and Fc-EpCAM-Au NPs, were used as signal units. When the mixture of target exosomes, MB-HER2-Au NPs and Fc-EpCAM-Au NPs were added on the CD63 aptamer modified gold electrode, two Au NPs modified by MB and Fc could be specifically captured on the electrode by the recognition of three aptamers with target exosomes. Then one-step multiplex analysis of exosomes was achieved by detecting two independent electrochemical signals. This strategy can not only distinguish breast cancer exosomes from other exosomes (including normal exosomes and other tumor exosomes) but also HER2-positive breast cancer exosomes and HER2-negative breast cancer exosomes. Besides, it had high sensitivity and can detect SK-BR-3 exosomes with a concentration as low as 3.4 × 103 particles mL-1. Crucially, this method can be applicable to the examination of exosomes in complicated samples, which is anticipated to afford assistance for the screening and prognosis of breast cancer.
Collapse
|
31
|
Si Q, Li Y, Huang Z, Liu C, Chen X, Wei J, Wang F. Construction of a simple dual-mode ATP-sensing system for reliable fish freshness evaluation. Anal Chim Acta 2023; 1252:341048. [PMID: 36935152 DOI: 10.1016/j.aca.2023.341048] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/06/2023]
Abstract
Adenosine triphosphate (ATP), the main carrier of chemical energy, plays a key role in various biochemical reactions such as cellular metabolism. Currently, ATP levels are considered important indicators of microbial content in food safety, and food freshness can be determined by detecting ATP content. Some ATP sensing strategies have been applied to evaluate food freshness. However, cumbersome nanomaterial preparation, low sensitivity, and low reliability hamper their widespread application. Herein, a simple, high-performance, and reliable dual-mode sensing system based on hemin-G-quadruplex (G4) DNAzyme was established to detect ATP and assess fish freshness. Two nucleic acid probes, including subunits of the hemin-G4 DNAzyme in inactive structures and anti-ATP aptamer, self-assemble upon the input of ATP into the active hemin-G4 DNAzyme unit. The generated DNAzyme acts as a biocatalyst for colorimetric or fluorescent readout of the sensing process. The colorimetric and fluorescent dual-mode sensing system enables highly sensitive and reliable analysis of target ATP with detection limits of 71 nM and 73 nM, respectively. Moreover, the biosensor exhibited good selectivity for differentiating ATP from other interfering analytes. The proposed system was used to detect ATP in perch samples, and a linear correlation between ATP level and microbial content was confirmed. The established ATP-sensing system reliably evaluated fish freshness. Notably, in comparison with microbiological counts, the proposed DNAzyme-based dual-mode strategy for freshness evaluation is facile, highly efficient, and cost-effective, thus providing a promising method for food safety and quality monitoring.
Collapse
Affiliation(s)
- Qingyang Si
- College of Ocean Food and Biological Engineering, Jimei University, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, 361021, Xiamen, PR China
| | - Yumeng Li
- College of Ocean Food and Biological Engineering, Jimei University, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, 361021, Xiamen, PR China
| | - Ziling Huang
- College of Ocean Food and Biological Engineering, Jimei University, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, 361021, Xiamen, PR China
| | - Chuanyi Liu
- College of Ocean Food and Biological Engineering, Jimei University, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, 361021, Xiamen, PR China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, 361021, Xiamen, PR China
| | - Jie Wei
- College of Ocean Food and Biological Engineering, Jimei University, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, 361021, Xiamen, PR China; College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, PR China.
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, PR China.
| |
Collapse
|
32
|
Khan S, Cho WC, Sepahvand A, Haji Hosseinali S, Hussain A, Nejadi Babadaei MM, Sharifi M, Falahati M, Jaragh-Alhadad LA, Ten Hagen TLM, Li X. Electrochemical aptasensor based on the engineered core-shell MOF nanostructures for the detection of tumor antigens. J Nanobiotechnology 2023; 21:136. [PMID: 37101280 PMCID: PMC10131368 DOI: 10.1186/s12951-023-01884-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
It is essential to develop ultrasensitive biosensors for cancer detection and treatment monitoring. In the development of sensing platforms, metal-organic frameworks (MOFs) have received considerable attention as potential porous crystalline nanostructures. Core-shell MOF nanoparticles (NPs) have shown different diversities, complexities, and biological functionalities, as well as significant electrochemical (EC) properties and potential bio-affinity to aptamers. As a result, the developed core-shell MOF-based aptasensors serve as highly sensitive platforms for sensing cancer biomarkers with an extremely low limit of detection (LOD). This paper aimed to provide an overview of different strategies for improving selectivity, sensitivity, and signal strength of MOF nanostructures. Then, aptamers and aptamers-modified core-shell MOFs were reviewed to address their functionalization and application in biosensing platforms. Additionally, the application of core-shell MOF-assisted EC aptasensors for detection of several tumor antigens such as prostate-specific antigen (PSA), carbohydrate antigen 15-3 (CA15-3), carcinoembryonic antigen (CEA), human epidermal growth factor receptor-2 (HER2), cancer antigen 125 (CA-125), cytokeratin 19 fragment (CYFRA21-1), and other tumor markers were discussed. In conclusion, the present article reviews the advancement of potential biosensing platforms toward the detection of specific cancer biomarkers through the development of core-shell MOFs-based EC aptasensors.
Collapse
Affiliation(s)
- Suliman Khan
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| | - Afrooz Sepahvand
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Haji Hosseinali
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Molecular Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Depatment of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands.
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, The Netherlands.
| | | | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands.
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, The Netherlands.
| | - Xin Li
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
33
|
Zhou Y, Liu J. Graphene Oxide-Assisted Aptamer-Based Fluorescent Detection of Tetracycline Antibiotics. CHEMISTRY 2023. [DOI: 10.3390/chemistry5020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Tetracyclines are a group of common antibiotics, but owing to their toxicity, most of them are only used in animal husbandry and veterinary medicine. A DNA aptamer for tetracyclines has recently been reported. Upon aptamer binding, the fluorescence of tetracyclines was enhanced. This unique fluorescence enhancement was used to selectively detect the tetracyclines. The purpose of this study was to use graphene oxide (GO) to suppress the background fluorescence for enhanced detection. First, the adsorption of doxycycline on GO was studied. At pH 8.0, 82.7% of doxycycline was adsorbed by GO, and adding 2 µM aptamer desorbed 55.4% of doxycycline. With GO, the signal increase was comparable from pH 6 to 8, whereas without GO, the increase was significantly lower at pH 8. Under optimized condition, a detection limit of 1.6 nM doxycycline was achieved at pH 8.0 in the presence of GO, whereas without GO, the detection limit was 18.9 nM. This is an interesting example of the use of nanomaterials to enhance the performance of aptamer-based biosensors.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
34
|
Zhang H, Li AZ, Liu J. Surfactant-Assisted Label-Free Fluorescent Aptamer Biosensors and Binding Assays. BIOSENSORS 2023; 13:bios13040434. [PMID: 37185509 PMCID: PMC10135756 DOI: 10.3390/bios13040434] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Using DNA staining dyes such as SYBR Green I (SGI) and thioflavin T (ThT) to perform label-free detection of aptamer binding has been performed for a long time for both binding assays and biosensor development. Since these dyes are cationic, they can also adsorb to the wall of reaction vessels leading to unstable signals and even false interpretations of the results. In this work, the stability of the signal was first evaluated using ThT and the classic adenosine aptamer. In a polystyrene microplate, a drop in fluorescence was observed even when non-binding targets or water were added, whereas a more stable signal was achieved in a quartz cuvette. Equilibrating the system can also improve signal stability. In addition, a few polymers and surfactants were also screened, and 0.01% Triton X-100 was found to have the best protection effect against fluorescence signal decrease due to dye adsorption. Three aptamers for Hg2+, adenosine, and cortisol were tested for their sensitivity and signal stability in the absence and presence of Triton X-100. In each case, the sensitivity was similar, whereas the signal stability was better for the surfactant. This study indicates that careful control experiments need to be designed to ensure reliable results and that the reliability can be improved by using Triton X-100 and a long equilibration time.
Collapse
Affiliation(s)
- Hanxiao Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Albert Zehan Li
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
35
|
Pan Z, Zhu H, Zhang Y, Liao Q, Sun Y, Wu E, Wang Y, Shi K, Zhang Y, Chen L, Ye M, Wu W. Development of Uveal Melanoma-Specific Aptamer for Potential Biomarker Discovery and Targeted Drug Delivery. Anal Chem 2023; 95:5095-5108. [PMID: 36812415 DOI: 10.1021/acs.analchem.3c00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. However, challenges in early diagnosis, high risk of liver metastasis, and lack of effective targeted therapy lead to poor prognosis and high mortality of UM. Therefore, generating an effective molecular tool for UM diagnosis and targeted treatment is of great significance. In this study, a UM-specific DNA aptamer, PZ-1, was successfully developed, which could specifically distinguish molecular differences between UM cells and noncancerous cells with nanomolar-range affinity and presented excellent recognition ability for UM in vivo and clinical UM tissues. Subsequently, the binding target of PZ-1 on UM cells was identified as JUP (junction plakoglobin) protein, which held great potential as a biomarker and therapeutic target for UM. Meanwhile, the strong stability and internalization capacity of PZ-1 were also determined, and a UM-specific aptamer-guided "nanoship" was engineered to load and selectively release doxorubicin (Dox) to targeted UM cells, with lower toxicity to nontumor cells. Taken together, the UM-specific aptamer PZ-1 could serve as a molecular tool to discover the potential biomarker for UM and to achieve the targeted therapy of UM.
Collapse
Affiliation(s)
- Zhaoqi Pan
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| | - Hui Zhu
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| | - Yibin Zhang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410082, China
| | - Qianling Liao
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yiping Sun
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ende Wu
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| | - Yanan Wang
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Kesi Shi
- The second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Yikui Zhang
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| | - Lu Chen
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Wencan Wu
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| |
Collapse
|
36
|
Algethami FK, Rabti A, Mastouri M, Ben Aoun S, Abdulkhair BY, Raouafi N. In silico selection of an aptamer for the design of aptamer-modified magnetic beads bearing ferrocene co-immobilized label for capacitive detection of acetamiprid. Talanta 2023; 258:124445. [PMID: 36924636 DOI: 10.1016/j.talanta.2023.124445] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023]
Abstract
In silico evaluation of aptamer/target interactions can facilitate the development of efficient biosensor with high specificity and affinity. In this work, we present in silico, i.e. structural similarity, molecular docking and molecular dynamics selection of the aptamer with sufficient binding properties for acetamiprid (ACE), a nicotine-like pesticide, and its use to design aptamer-modified magnetic beads bearing ferrocene co-immobilized label for capacitive detection of ACE. Taking advantages of the aptamer higher stability and binding affinity, the specific properties of magnetic beads and the redox properties of ferrocene moiety, the developed aptasensor showed promising analytical performances for ACE detection, using electrochemical capacitance spectroscopy, with a linear response ranging from 1 fM to 100 pM and a limit of detection of 0.94 fM (S/N = 3). Furthermore, it was successfully applied to detect ACE in fortified tomatoes samples, proving a promising approach for routine detection of pesticide in real agricultural samples.
Collapse
Affiliation(s)
- Faisal K Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, P.O. Box 90950, Riyadh, 11623, Saudi Arabia.
| | - Amal Rabti
- Sensors and Biosensors Group, Analytical Chemistry and Electrochemistry Lab (LR99ES15), University of Tunis El Manar, Tunis El Manar, 2092, Tunis, Tunisia
| | - Mohamed Mastouri
- Sensors and Biosensors Group, Analytical Chemistry and Electrochemistry Lab (LR99ES15), University of Tunis El Manar, Tunis El Manar, 2092, Tunis, Tunisia
| | - Sami Ben Aoun
- Department of Chemistry, Faculty of Science, Taibah University, P.O Box 30002, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Babiker Y Abdulkhair
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, P.O. Box 90950, Riyadh, 11623, Saudi Arabia
| | - Noureddine Raouafi
- Sensors and Biosensors Group, Analytical Chemistry and Electrochemistry Lab (LR99ES15), University of Tunis El Manar, Tunis El Manar, 2092, Tunis, Tunisia.
| |
Collapse
|
37
|
Zhao Y, Gao B, Chen Y, Liu J. An aptamer array for discriminating tetracycline antibiotics based on binding-enhanced intrinsic fluorescence. Analyst 2023; 148:1507-1513. [PMID: 36891736 DOI: 10.1039/d3an00154g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Tetracyclines are a class of antibiotics with a similar four-ringed structure. Due to this structural similarity, they are not easily differentiated from each other. We recently selected aptamers using oxytetracycline as a target and focused on an aptamer named OTC5, which has similar affinities for oxytetracycline (OTC), tetracycline (TC), and doxycycline (DOX). Tetracyclines exhibit an intrinsic fluorescence that is enhanced upon aptamer binding, allowing convenient binding assays and label-free detection. In this study, we analyzed the top 100 sequences from the previous selection library. Three other sequences were found to differentiate between different tetracyclines (OTC, DOX, and TC) by the selective enhancement of their intrinsic fluorescence. Among them, the OTC43 aptamer was more selective for OTC with a limit of detection (LOD) of 0.7 nM OTC, OTC22 was more selective for DOX (LOD 0.4 nM), and OTC2 was more selective for TC (0.3 nM). Using these three aptamers to form a sensor array, principal component analysis was able to discriminate between the three tetracyclines from each other and from the other molecules. This group of aptamers could be useful as probes for the detection of tetracycline antibiotics.
Collapse
Affiliation(s)
- Yichen Zhao
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Biwen Gao
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Yijing Chen
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
38
|
An electrochemical apta-assay based on hybridization chain reaction and aflatoxin B1-driven Ag-DNAzyme as amplification strategy. Bioelectrochemistry 2023; 149:108322. [DOI: 10.1016/j.bioelechem.2022.108322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
|
39
|
Pan J, Xu W, Li W, Chen S, Dai Y, Yu S, Zhou Q, Xia F. Electrochemical Aptamer-Based Sensors with Tunable Detection Range. Anal Chem 2023; 95:420-432. [PMID: 36625123 DOI: 10.1021/acs.analchem.2c04498] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jing Pan
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wenxia Xu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wanlu Li
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shuwen Chen
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yu Dai
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shanwu Yu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Qitao Zhou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
40
|
Liu J, Zhang L, Zeng W, Zhang L, He N, Lu Z. High-throughput quantitative detection of triple-negative breast cancer-associated expressed miRNAs by rolling circle amplification on fluorescence-encoded microspheres. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
41
|
Wu K, He X, Wang J, Pan T, He R, Kong F, Cao Z, Ju F, Huang Z, Nie L. Recent progress of microfluidic chips in immunoassay. Front Bioeng Biotechnol 2022; 10:1112327. [PMID: 36619380 PMCID: PMC9816574 DOI: 10.3389/fbioe.2022.1112327] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Microfluidic chip technology is a technology platform that integrates basic operation units such as processing, separation, reaction and detection into microchannel chip to realize low consumption, fast and efficient analysis of samples. It has the characteristics of small volume need of samples and reagents, fast analysis, low cost, automation, portability, high throughout, and good compatibility with other techniques. In this review, the concept, preparation materials and fabrication technology of microfluidic chip are described. The applications of microfluidic chip in immunoassay, including fluorescent, chemiluminescent, surface-enhanced Raman spectroscopy (SERS), and electrochemical immunoassay are reviewed. Look into the future, the development of microfluidic chips lies in point-of-care testing and high throughput equipment, and there are still some challenges in the design and the integration of microfluidic chips, as well as the analysis of actual sample by microfluidic chips.
Collapse
Affiliation(s)
- Kaimin Wu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Xuliang He
- Zhuzhou People's Hospital, Zhuzhou, China
| | - Jinglei Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Ting Pan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Ran He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Feizhi Kong
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Zhenmin Cao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Feiye Ju
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Zhao Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Libo Nie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
42
|
Jeon Y, Lee Y, Kim Y, Park C, Choi H, Jang G, Yoon Y. Development of novel Escherichia coli cell-based biosensors to monitor Mn(II) in environmental systems. Front Microbiol 2022; 13:1051926. [PMID: 36601404 PMCID: PMC9806134 DOI: 10.3389/fmicb.2022.1051926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Escherichia coli uses manganese [Mn(II)] as an essential trace element; thus, it has a genetic system that regulates cellular Mn(II) levels. Several genes in the mnt-operon of E. coli respond to intercellular Mn(II) levels, and transcription is regulated by a transcription factor (MntR) that interacts with Mn(II). This study aimed to develop Mn(II)-sensing biosensors based on mnt-operon genetic systems. Additionally, the properties of biosensors developed based on the promoter regions of mntS, mntH, and mntP were investigated. MntR represses the transcription of MntS and MntH after binding with Mn(II), while it induces MntP transcription. Thus, Mn(II) biosensors that decrease and increase signals could be obtained by fusing the promoter regions of mntS/mntH and mntP, with egfp encoding an enhanced green fluorescent protein. However, only the biosensor-based mntS:egfp responded to Mn(II) exposure. Further, E. coli harboring P mntS :egfp showed a concentration-dependent decrease in fluorescence signals. To enhance the sensitivity of the biosensor toward Mn(II), E. coli containing a deleted MntP gene that encodes Mn(II) exporter, was used as a host cell for biosensor development. The sensitivity toward Mn(II) increased by two times on using E. coli-mntP, and the biosensor could quantify 0.01-10 μM of Mn(II). Further, the applicability of Mn(II) in artificially contaminated water samples was quantified and showed >95% accuracy. The newly developed Mn(II) biosensors could detect and quantify the residual Mn(II) from mancozeb in soil samples, with the quantification accuracy being approximately 90%. To the best of our knowledge, this is the first Mn (II)-specific bacterial cell-based biosensor that serves as a valuable tool for monitoring and assessing the risks of Mn(II) in environmental systems.
Collapse
Affiliation(s)
- Yangwon Jeon
- Department of Environmental Health Science, Konkuk University, Seoul, Republic of Korea
| | - Yejin Lee
- Department of Environmental Health Science, Konkuk University, Seoul, Republic of Korea
| | - Yeonhong Kim
- Department of Environmental Health Science, Konkuk University, Seoul, Republic of Korea
| | - Chanhee Park
- Department of Environmental Health Science, Konkuk University, Seoul, Republic of Korea
| | - Hoon Choi
- Department of Life and Environmental Sciences, Wonkwang University, Iksan, Republic of Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
43
|
Xu J, Liu Y, Huang KJ, Hou YY, Sun X, Li J. Real-Time Biosensor Platform Based on Novel Sandwich Graphdiyne for Ultrasensitive Detection of Tumor Marker. Anal Chem 2022; 94:16980-16986. [PMID: 36445725 DOI: 10.1021/acs.analchem.2c04278] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Realization of a highly sensitive analysis and sensing platform is important for early-stage tumor diagnosis. In this work, a self-powered biosensor with a novel sandwich graphdiyne (SGDY) combined with an aptamer-specific recognition function was developed to sensitively and accurately detect tumor markers. Results indicated that the detection limits of microRNA (miRNA)-21 and miRNA-141 were 0.15 and 0.30 fM (S/N = 3) in the linear range of 0.05-10000 and 1-10000 fM, respectively. The newly designed platform has great promise for early-stage tumor diagnosis.
Collapse
Affiliation(s)
- Jing Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Yinbing Liu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Ke-Jing Huang
- Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530008, China
| | - Yang-Yang Hou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Xiaoxuan Sun
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Jiaqiang Li
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
44
|
Zhang J, Chen Z, Chen H, Deng Y, Li S, Jin L. Recent Advances in the Roles of MicroRNA and MicroRNA-Based Diagnosis in Neurodegenerative Diseases. BIOSENSORS 2022; 12:1074. [PMID: 36551041 PMCID: PMC9776063 DOI: 10.3390/bios12121074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Neurodegenerative diseases manifest as progressive loss of neuronal structures and their myelin sheaths and lead to substantial morbidity and mortality, especially in the elderly. Despite extensive research, there are few effective treatment options for the diseases. MicroRNAs have been shown to be involved in the developmental processes of the central nervous system. Mounting evidence suggest they play an important role in the development of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. However, there are few reviews regarding the roles of miRNAs in neurodegenerative diseases. This review summarizes the recent developments in the roles of microRNAs in neurodegenerative diseases and presents the application of microRNA-based methods in the early diagnosis of these diseases.
Collapse
|
45
|
Lu C, Lopez A, Zheng J, Liu J. Using the Intrinsic Fluorescence of DNA to Characterize Aptamer Binding. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227809. [PMID: 36431910 PMCID: PMC9692703 DOI: 10.3390/molecules27227809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
The reliable, readily accessible and label-free measurement of aptamer binding remains a challenge in the field. Recent reports have shown large changes in the intrinsic fluorescence of DNA upon the formation of G-quadruplex and i-motif structures. In this work, we examined whether DNA intrinsic fluorescence can be used for studying aptamer binding. First, DNA hybridization resulted in a drop in the fluorescence, which was observed for A30/T30 and a 24-mer random DNA sequence. Next, a series of DNA aptamers were studied. Cortisol and Hg2+ induced fluorescence increases for their respective aptamers. For the cortisol aptamer, the length of the terminal stem needs to be short to produce a fluorescence change. However, caffeine and adenosine failed to produce a fluorescence change, regardless of the stem length. Overall, using the intrinsic fluorescence of DNA may be a reliable and accessible method to study a limited number of aptamers that can produce fluorescence changes.
Collapse
Affiliation(s)
- Chang Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Anand Lopez
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Correspondence:
| |
Collapse
|
46
|
He Z, Liu C, Li Z, Chu Z, Chen X, Chen X, Guo Y. Advances in the use of nanomaterials for nucleic acid detection in point-of-care testing devices: A review. Front Bioeng Biotechnol 2022; 10:1020444. [DOI: 10.3389/fbioe.2022.1020444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/23/2022] [Indexed: 01/03/2023] Open
Abstract
The outbreak of the coronavirus (COVID-19) has heightened awareness of the importance of quick and easy testing. The convenience, speed, and timely results from point-of-care testing (POCT) in all vitro diagnostic devices has drawn the strong interest of researchers. However, there are still many challenges in the development of POCT devices, such as the pretreatment of samples, detection sensitivity, specificity, and so on. It is anticipated that the unique properties of nanomaterials, e.g., their magnetic, optical, thermal, and electrically conductive features, will address the deficiencies that currently exist in POCT devices. In this review, we mainly analyze the work processes of POCT devices, especially in nucleic acid detection, and summarize how novel nanomaterials used in various aspects of POCT products can improve performance, with the ultimate aims of offering new ideas for the application of nanomaterials and the overall development of POCT devices.
Collapse
|
47
|
Mou L, Mandal K, Mecwan MM, Hernandez AL, Maity S, Sharma S, Herculano RD, Kawakita S, Jucaud V, Dokmeci MR, Khademhosseini A. Integrated biosensors for monitoring microphysiological systems. LAB ON A CHIP 2022; 22:3801-3816. [PMID: 36074812 PMCID: PMC9635816 DOI: 10.1039/d2lc00262k] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microphysiological systems (MPSs), also known as organ-on-a-chip models, aim to recapitulate the functional components of human tissues or organs in vitro. Over the last decade, with the advances in biomaterials, 3D bioprinting, and microfluidics, numerous MPSs have emerged with applications to study diseased and healthy tissue models. Various organs have been modeled using MPS technology, such as the heart, liver, lung, and blood-brain barrier. An important aspect of in vitro modeling is the accurate phenotypical and functional characterization of the modeled organ. However, most conventional characterization methods are invasive and destructive and do not allow continuous monitoring of the cells in culture. On the other hand, microfluidic biosensors enable in-line, real-time sensing of target molecules with an excellent limit of detection and in a non-invasive manner, thereby effectively overcoming the limitation of the traditional techniques. Consequently, microfluidic biosensors have been increasingly integrated into MPSs and used for in-line target detection. This review discusses the state-of-the-art microfluidic biosensors by providing specific examples, detailing their main advantages in monitoring MPSs, and highlighting current developments in this field. Finally, we describe the remaining challenges and potential future developments to advance the current state-of-the-art in integrated microfluidic biosensors.
Collapse
Affiliation(s)
- Lei Mou
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong, P. R. China
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Marvin Magan Mecwan
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Ana Lopez Hernandez
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Surjendu Maity
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Saurabh Sharma
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Rondinelli Donizetti Herculano
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
- Department of Bioprocess and Biotechnology Engineering, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP 14801-902, Brazil
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| |
Collapse
|
48
|
A Highly Integrated and Diminutive Fluorescence Detector for Point-of-Care Testing: Dual Negative Feedback Light-Emitting Diode (LED) Drive and Photoelectric Processing Circuits Design and Implementation. BIOSENSORS 2022; 12:bios12090764. [PMID: 36140149 PMCID: PMC9496958 DOI: 10.3390/bios12090764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
As an important detection tool in biochemistry, fluorescence detection has wide applications. Quantitative detection can be achieved by detecting fluorescence signals excited by excitation light at a specific wavelength range. Therefore, the key to fluorescence detection is the stable control of the excitation light and the accurate acquisition of weak photoelectric signals. Moreover, to improve portability and instantaneity, devices are developing in miniaturization and integration. As the core of such devices, fluorescence detectors should also have these features. Under this circumstance, we designed a highly integrated and diminutive fluorescence detector and focused on its excitation light driving and photoelectric signal processing. A current–light dual negative feedback light-emitting diode (LED) driving circuit was proposed to obtain constant current and luminance. In addition, a silicon photodiode (PD) was used to receive and convert the fluorescence signal to an electric signal. Then, amplifying, filtering, and analog-to-digital (A/D) converting were applied to make the detection of weak fluorescence signals possible. The test results showed that the designed circuit has wonderful performance, and the detector shows good linearity (R2 = 0.9967) and sensitivity (LOD = 0.077 nM) in the detection of fluorescein sodium solution. Finally, a real-time fluorescence polymerase chain reaction (real-time PCR) of Legionella pneumophila was carried out on a homemade platform equipped with this detector, indicating that the detector met the requirements of real-time PCR detection.
Collapse
|
49
|
Liquid Crystal Droplet-Based Biosensors: Promising for Point-of-Care Testing. BIOSENSORS 2022; 12:bios12090758. [PMID: 36140143 PMCID: PMC9496589 DOI: 10.3390/bios12090758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023]
Abstract
The development of biosensing platforms has been impressively accelerated by advancements in liquid crystal (LC) technology. High response rate, easy operation, and good stability of the LC droplet-based biosensors are all benefits of the long-range order of LC molecules. Bioprobes emerged when LC droplets were combined with biotechnology, and these bioprobes are used extensively for disease diagnosis, food safety, and environmental monitoring. The LC droplet biosensors have high sensitivity and excellent selectivity, making them an attractive tool for the label-free, economical, and real-time detection of different targets. Portable devices work well as the accessory kits for LC droplet-based biosensors to make them easier to use by anyone for on-site monitoring of targets. Herein, we offer a review of the latest developments in the design of LC droplet-based biosensors for qualitative target monitoring and quantitative target analysis.
Collapse
|
50
|
Wang C, Zhang D, Yang H, Shi L, Li L, Yu C, Wei J, Ding Q. A light-activated magnetic bead strategy utilized in spatio-temporal controllable exosomes isolation. Front Bioeng Biotechnol 2022; 10:1006374. [PMID: 36147530 PMCID: PMC9486319 DOI: 10.3389/fbioe.2022.1006374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor-derived exosomes are considered as a key biomarker in the field of liquid biopsy. However, conventional separation techniques such as ultracentrifugation, co-precipitation and column chromatography cannot isolate samples with high throughput, while traditional immunomagnetic separation techniques, due to steric effect of magnetic beads, reducing sensitivity of exosomes optical detection. Herein, we provide a novel and simple nanoplatform for spatiotemporally controlling extraction and elution of exosomes via magnetic separation and light-activated cargo release. In this system, magnetic beads are co-modified by photoresponsive groups -nitrobenzyl group and aptamers that are compatible with CD63-a highly expressed exosomal surface-specific protein. Through exosomes extracted from cell model and nude mice xenograft tumor model morphological characterization and proteomic analysis, results showed that our novel magnetic bead system outperformed current ultracentrifugation in serum exosome extraction in terms of extraction time, yield, and proportion of populations with high CD63 expression. This strategy may be a powerful tool for exosome isolation in clinical liquid biopsies of cancer disease.
Collapse
Affiliation(s)
- Chenhan Wang
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Duoteng Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Haiyan Yang
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Liang Shi
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
- *Correspondence: Qiang Ding, ; Changmin Yu, ; Jifu Wei,
| | - Jifu Wei
- Department of Pharmacy, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Qiang Ding, ; Changmin Yu, ; Jifu Wei,
| | - Qiang Ding
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- *Correspondence: Qiang Ding, ; Changmin Yu, ; Jifu Wei,
| |
Collapse
|