1
|
Liu W, Zhou F, Yang H, Shi Y, Qin Y, Sun H, Zhang L. CuS enabled efficient Fenton-like oxidation of phenylarsonic acid and inorganic arsenic immobilization. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136171. [PMID: 39413521 DOI: 10.1016/j.jhazmat.2024.136171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/18/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Herein, copper sulfide (CuS) was introduced to the Fenton-like (Fe(III)/H2O2) system for the efficient removal of phenylarsonic acid (PAA). Results of reactive oxygen and Fe/Cu species showed that CuS preferentially reacted with Fe(III) and H2O2 to generate Cu(I) and superoxide anion (•O2-). These reductive species could efficiently promote the Fe(III)/Fe(II) and Cu(II)/Cu(I) cycles, and are beneficial to the sequential Fenton reaction to generate •OH. The organoic/inorganic arsenic species detected in the CuS/Fe(III)/H2O2 system confirmed that PAA was oxidized by •OH to hydroxylated organoarsenic and phenolic intermediates, which were further mineralized to oxalate and formic acid. Meanwhile, the inorganic As(III)/As(V) released during PAA degradation were efficiently immobilized by CuS. The PAA removal efficiency remained as high as 92.9 % after 5 cycles of the CuS-mediated Fenton-like process. These results demonstrate an innovative method for the treatment of organoarsenic-contaminated water, and provide new insights into the enhanced Fenton-like process utilizing sulfide minerals.
Collapse
Affiliation(s)
- Wei Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Fengfeng Zhou
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Huan Yang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yunxiao Shi
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yaxin Qin
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Hongwei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
2
|
Wang A, Shi Y, Liu Y, Li W, Zhang H, Dai X, Luo L, Yao G, Lai B. Enhanced Fenton-like oxidation (Vis/Fe(III)/Peroxydisulfate): The role of iron species and the Fe(III)-LVF complex in levofloxacin degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132755. [PMID: 37839379 DOI: 10.1016/j.jhazmat.2023.132755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Traditional Fenton and Fenton-like processes are affected by the sluggish kinetics of Fe(II) regeneration and Fe(III) accumulation. This research revealed that the degradation efficiency of pollutants was significantly increased by adding Fe(III) to the Vis/PS system. A mechanism is proposed in which photosensitivity pollutants can boost Fe(III) to produce Fe(II) under visible light irradiation. Intriguingly, Fe(III) rapidly combines with LVF in aqueous environments to form Fe(III)-LVF complexes. This research confirms that Fe(III)-pollutant complexes are generated. The proportion of complexes are calculated using mathematical models. Furthermore, the production of Fe(IV) is verified in the Vis/PS/Fe(III) system, which also plays a vital role in boosting LVF degradation. Overall, this study provides comprehensive insights into the degradation mechanism of micropollutants, involving hydroxyl radical (OH∙), Fe(IV), and Fe(III)-LVF complexes, providing an efficient and green strategy for contaminant removal during wastewater treatment.
Collapse
Affiliation(s)
- Afang Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Shi
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Water Safety and Water Pollution Control Engineering Technology Research Center in Sichuan Province, Haitian Water Group, Chengdu 610041, China.
| | - Wei Li
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; China MCC5 Group Corp., Ltd, Chengdu 610063
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | | | - Li Luo
- China MCC5 Group Corp., Ltd, Chengdu 610063
| | - Gang Yao
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Water Safety and Water Pollution Control Engineering Technology Research Center in Sichuan Province, Haitian Water Group, Chengdu 610041, China
| |
Collapse
|
3
|
Huang B, Ren X, Zhao J, Wu Z, Wang X, Song X, Li X, Liu B, Xiong Z, Lai B. Modulating Electronic Structure Engineering of Atomically Dispersed Cobalt Catalyst in Fenton-like Reaction for Efficient Degradation of Organic Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14071-14081. [PMID: 37681682 DOI: 10.1021/acs.est.3c04712] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Currently, the lack of model catalysts limits the understanding of the catalytic essence. Herein, we report the functional group modification of model single atom catalysts (SACs) with an accurately regulated electronic structure for accelerating the sluggish kinetics of the Fenton-like reaction. The amino-modified cobalt phthalocyanine anchored on graphene (CoPc/G-NH2) shows superior catalytic performance in the peroxymonosulfate (PMS) based Fenton-like reaction with Co mass-normalized pseudo-first-order reaction rate constants (kobs, 0.2935 min-1), which is increased by 4 and 163 times compared to those of CoPc/G (0.0737 min-1) and Co3O4/G (0.0018 min-1). Density functional theory (DFT) calculations demonstrate that the modification of the -NH2 group narrows the gap between the d-band center and the Fermi level of a single Co atom, which strengthens the charge transfer rate at the reaction interface and reduces the free energy barrier for the activation of PMS. Moreover, the scale-up experiment realizes 100% phenol removal at 7200-bed volumes during 240 h continuous operation without obvious decline in catalytic performance. This work provides in-depth insight into the catalytic mechanism of Fenton-like reactions and demonstrates the electronic engineering of SACs as an effective strategy for improving the Fenton-like activity to achieve the goal of practical application.
Collapse
Affiliation(s)
- Bingkun Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, P.R. China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, P.R. China
| | - Xinyi Ren
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jian Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Zelin Wu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, P.R. China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, P.R. China
| | - Xinhao Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, P.R. China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, P.R. China
| | - Xinyu Song
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, P.R. China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, P.R. China
| | - Xuning Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, P.R. China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, P.R. China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, P.R. China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, P.R. China
| |
Collapse
|
4
|
Wu Z, Huang B, Wang X, He CS, Liu Y, Du Y, Liu W, Xiong Z, Lai B. Facilely Tuning the First-Shell Coordination Microenvironment in Iron Single-Atom for Fenton-like Chemistry toward Highly Efficient Wastewater Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14046-14057. [PMID: 37658810 DOI: 10.1021/acs.est.3c04343] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Precisely identifying the atomic structures in single-atom sites and establishing authentic structure-activity relationships for single-atom catalyst (SAC) coordination are significant challenges. Here, theoretical calculations first predicted the underlying catalytic activity of Fe-NxC4-x sites with diverse first-shell coordination environments. Substituting N with C to coordinate with the central Fe atom induces an inferior Fenton-like catalytic efficiency. Then, Fe-SACs carrying three configurations (Fe-N2C2, Fe-N3C1, and Fe-N4) fabricate facilely and demonstrate that optimized coordination environments of Fe-NxC4-x significantly promote the Fenton-like catalytic activity. Specifically, the reaction rate constant increases from 0.064 to 0.318 min-1 as the coordination number of Fe-N increases from 2 to 4, slightly influencing the nonradical reaction mechanism dominated by 1O2. In-depth theoretical calculations unveil that the modulated coordination environments of Fe-SACs from Fe-N2C2 to Fe-N4 optimize the d-band electronic structures and regulate the binding strength of peroxymonosulfate on Fe-NxC4-x sites, resulting in a reduced energy barrier and enhanced Fenton-like catalytic activity. The catalytic stability and the actual hospital sewage treatment capacity also showed strong coordination dependency. This strategy of local coordination engineering offers a vivid example of modulating SACs with well-regulated coordination environments, ultimately maximizing their catalytic efficiency.
Collapse
Affiliation(s)
- Zelin Wu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bingkun Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Xinhao Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuan-Shu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Ye Du
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Wen Liu
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Peng X, Zhou C, Li X, Qi K, Gao L. Degradation of tetracycline by peroxymonosulfate activated with Mn 0.85Fe 2.15O 4-CNTs: Key role of singlet oxygen. ENVIRONMENTAL RESEARCH 2023; 227:115750. [PMID: 37003552 DOI: 10.1016/j.envres.2023.115750] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 05/08/2023]
Abstract
Tetracycline (TC) is a kind of electron-rich organic, and singlet oxygen (1O2) oxidative pathway-based advanced oxidation processes (AOPs) have represented outstanding selective degradation to such pollutants. In this paper, an excellent prepared strategy for 1O2 dominated catalyst was adopted. A catalyst composed of non-stoichiometric doping Mn-Fe bimetallic oxide supported on CNTs (0.3-Mn0.85Fe2.15O4-CNTs) was synthesized and optimized by regulating the non-stoichiometric doping ratio of Mn & Fe and the loading amount of CNTs. Through optimization and control experiments, the optimized catalyst represented 94.9% of TC removal efficiency within 60 min in neutral condition under relatively low concentrations of Mn0.85Fe2.15O4-CNTs (0.4 g/L) and PMS (0.8 mM). Through SEM and XRD characterization, Mn0.85Fe2.15O4-CNTs was a hybrid of cubic Mn0.85Fe2.15O4 uniformly dispersing on CNTs. By the characterization of XPS and FT-IR, more CO bonds and low-valent Mn (II) & Fe (II) appeared in Mn0.85Fe2.15O4-CNTs. Reactive oxygen species (ROS) was determined by radical quenching experiments and electron spin resonance (EPR) spectroscopy, and 1O2 was verified to be the dominated ROS. The mechanism for PMS' activation was speculated, and more low-valent Mn (II) and Fe (II) contributed to the production of free-radical (•OH & SO4•-), while the reaction between PMS and the enhanced CO bond on Mn0.85Fe2.15O4-CNTs played a crucial part in the generation of 1O2. In addition, through the comparative degradation of four different organics with distinct charge densities, the excellent selectivity of 1O2-based oxidative pathway to electron-rich pollutants was found. This paper supplied a good strategy to prepare catalyst for PMS activation to form a 1O2-dominated oxidative pathway.
Collapse
Affiliation(s)
- Xueer Peng
- College of Environmental Engineering, University of Science & Technology of Taiyuan, Jinzhong, 030600, China
| | - Chenyang Zhou
- College of Environmental Engineering, University of Science & Technology of Taiyuan, Jinzhong, 030600, China
| | - Xuelian Li
- College of Environmental Engineering, University of Science & Technology of Taiyuan, Jinzhong, 030600, China
| | - Kai Qi
- College of Environmental Engineering, University of Science & Technology of Taiyuan, Jinzhong, 030600, China
| | - Lili Gao
- College of Environmental Engineering, University of Science & Technology of Taiyuan, Jinzhong, 030600, China.
| |
Collapse
|
6
|
Rao Y, Zhou C, Wu P, Fan J, Zhang Y, Yang H, Pu S. Molecular structure-dependent contribution of reactive species to organic pollutant degradation using nanosheet Bi 2Fe 4O 9 activated peroxymonosulfate. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131240. [PMID: 37030220 DOI: 10.1016/j.jhazmat.2023.131240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Iron-based catalysts have attracted increasing attention in heterogeneous activation of peroxymonosulfate (PMS). However, the activity of most iron-based heterogenous catalysts is not satisfactory for practical application and the proposed activation mechanisms of PMS by iron-based heterogenous catalyst vary case by case. This study prepared Bi2Fe4O9 (BFO) nanosheet with super high activity toward PMS, which was comparable to its homogeneous counterpart at pH 3.0 and superior to its homogeneous counterpart at pH 7.0. Fe sites, lattice oxygen and oxygen vacancies on BFO surface were believed to be involved in the activation of PMS. By using electron paramagnetic resonance (EPR), radical scavenging tests, 57Fe Mössbauer and 18O isotope-labeling technique, the generation of reactive species including sulfate radicals, hydroxyl radicals, superoxide and Fe (IV) were confirmed in BFO/PMS system. However, the contribution of reactive species to the elimination of organic pollutants very much depends on their molecular structure. The effect of water matrices on the elimination of organic pollutants also hinges on their molecular structure. This study implies that the molecular structure of organic pollutants governs their oxidation mechanism and their fate in iron-based heterogeneous Fenton-like system and further broadens our knowledge on the activation mechanism of PMS by iron-based heterogeneous catalyst.
Collapse
Affiliation(s)
- Yongfang Rao
- Department of Environmental Science and Engineering, Xi' an Jiaotong University, Xi'an 710049, China.
| | - Chuanyi Zhou
- Department of Environmental Science and Engineering, Xi' an Jiaotong University, Xi'an 710049, China
| | - Puqiu Wu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Jiahui Fan
- Department of Environmental Science and Engineering, Xi' an Jiaotong University, Xi'an 710049, China
| | - Yuanyuan Zhang
- Department of Environmental Science and Engineering, Xi' an Jiaotong University, Xi'an 710049, China
| | - Honghui Yang
- Department of Applied Chemistry, Xi' an Jiaotong University, Xi'an 710049, China
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China.
| |
Collapse
|
7
|
Luo K, Shi Y, Huang R, Wei X, Wu Z, Zhou P, Zhang H, Wang Y, Xiong Z, Lai B. Activation of periodate by N-doped iron-based porous carbon for degradation of sulfisoxazole: Significance of catalyst-mediated electron transfer mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131790. [PMID: 37295335 DOI: 10.1016/j.jhazmat.2023.131790] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Periodate (PI) has recently been studied as an excellent oxidant in advanced oxidation processes, and its reported mechanism is mainly the formation of reactive oxygen species (ROS). This work presents an efficient approach using N-doped iron-based porous carbon (Fe@N-C) to activate periodate for the degradation of sulfisoxazole (SIZ). Characterization results indicated the catalyst has high catalytic activity, stable structure, and high electron transfer activity. In terms of degradation mechanism, it is pointed out that the non-radical pathway is the dominant mechanism. In order to prove this mechanism, we have carried out scavenging experiments, electron paramagnetic resonance (EPR) analysis, salt bridge experiments and electrochemical experiments, which demonstrate the occurrence of mediated electron transfer mechanism. Fe@N-C could mediate the electron transfer from organic contaminant molecules to PI, thus improving the efficiency of PI utilization, rather than simply inducing the activation of PI through Fe@N-C. The overall results of this study provided a new understanding into the application of Fe@N-C activated PI in wastewater treatment.
Collapse
Affiliation(s)
- Kaiyuan Luo
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Shi
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Rongfu Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Xipeng Wei
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zelin Wu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yin Wang
- Southwest Municipal Engineering Design&Research Institute of China, Chengdu 610081, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Wang Y, Sun Y, Wang R, Gao M, Xin Y, Zhang G, Xu P, Ma D. Activation of peroxymonosulfate with cobalt embedded in layered δ-MnO 2 for degradation of dimethyl phthalate: Mechanisms, degradation pathway, and DFT calculation. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:130901. [PMID: 36881985 DOI: 10.1016/j.jhazmat.2023.130901] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/02/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The sulfate radical-based advanced oxidation processes (SR-AOPs) offer huge potential for the removal of organic pollutants. In this study, Co(II)-intercalated δ-MnO2 (Co-δ-MnO2) catalyst was successfully prepared by a simple cation exchange reaction. The obtained Co-δ-MnO2 exhibited high catalytic performance for the removal of dimethyl phthalate (DMP) under the activation of peroxymonosulfate (PMS), with the degradation efficiency reaching 100% within 6 h. Experiments and theoretical calculations revealed that interlayer Co(II) provided unique active sites in Co-δ-MnO2. In addition, radical and non-radical pathways were confirmed to play a role in Co-δ-MnO2/PMS system. •OH, SO4• ̶, and 1O2 were identified to be the dominating reactive species in Co-δ-MnO2/PMS system. This study provided new insights into the design of catalysts and laid a foundation for developing modifiable layered heterogeneous catalysts.
Collapse
Affiliation(s)
- Yanhao Wang
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China; Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yunlong Sun
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Ruyun Wang
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Yanjun Xin
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Guangshan Zhang
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Peng Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dong Ma
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
9
|
Liu X, Wang L, Dou J, Qian F, Qing Z, Xie X, Song Y. Nitrogen-doped carbon materials prepared using different organic precursors as catalysts of peroxymonosulfate to degrade sulfamethoxazole: First-time performance leading to the incorrect selection of the best catalyst. CHEMOSPHERE 2023; 326:138442. [PMID: 36963571 DOI: 10.1016/j.chemosphere.2023.138442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Nitrogen-doped carbon materials are effective catalysts for peroxymonosulfate (PMS) activation to eliminate organic contaminants. In this research, the activity of nitrogen-doped carbon materials was significantly improved by optimizing the carbon source, and the reusability of the catalyst is used to select the best catalyst instead of depending on the performance in the first use, for avoiding the "short-life" catalyst with great initial activity. Fixing ferric nitrate nonahydrate and melamine as the metal and nitrogen sources, four catalysts were prepared using glucose, glucosamine hydrochloride, dopamine, and trimesic acid as the carbon sources, respectively. Based on the performance in PMS activation for sulfamethoxazole (SMX) removal, in the first use, the activity was Fe-DA-CN (carbon source: dopamine) > Fe-BTC-CN (carbon source: trimesic acid) > Fe-GLU-CN (carbon source: glucosamine) > Fe-DGLU-CN (carbon source: glucose). With no washing for the second time use, the activity was Fe-BTC-CN (0.135 min-1) ≫ Fe-DA-CN (0.037 min-1) > Fe-GLU-CN (0.032 min-1) > Fe-DGLU-CN (0.017 min-1). The large specific surface area, superior graphitization, and high CO/C-N group content endow Fe-BTC-CN with high ability in PMS activity. Surface-bound radicals are responsible for SMX elimination, and most of the SMX degradation intermediates have lower ecotoxicity than SMX.
Collapse
Affiliation(s)
- Xinyao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Liangjie Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Junfeng Dou
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Feng Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Zhuolin Qing
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaolin Xie
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yonghui Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
10
|
Li Q, Wang M, Chen JQ, Liu X, Wang J, Mu Y. Vivianite-induced peroxymonosulfate activation for containment removal under dark conditions: Performance, mechanism and regeneration. WATER RESEARCH 2023; 233:119729. [PMID: 36801576 DOI: 10.1016/j.watres.2023.119729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The performance and intrinsic mechanism of vivianite, a natural mineral containing structural Fe(II), for peroxymonosulfate (PMS) activation and pollutant degradation under dark conditions were comprehensively explored in this study. It was found that vivianite was able to efficiently activate PMS to degrade various pharmaceutical pollutants under dark conditions, in which the corresponding reaction rate constant of ciprofloxacin (CIP) degradation was 47- and 32-fold higher than that of magnetite and siderite, respectively. SO4·-, ·OH, Fe(IV) and electron-transfer processes were found in the vivianite-PMS system, while SO4·- was the main contributor to CIP degradation. Moreover, mechanistic explorations revealed that the Fe site on the surface of vivianite could bind PMS in the form of a bridge position, and thus vivianite could rapidly activate absorbed PMS due to its strong electron-donating ability. Additionally, it was illustrated that the used vivianite could be efficiently regenerated by either chemical or biological reduction. This study may provide an alternative application of vivianite in addition to phosphorus recovery from wastewater.
Collapse
Affiliation(s)
- Qi Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Mingzhou Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Jia-Qi Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Xiaomeng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
| | - Jing Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
11
|
Long X, Shi H, Huang R, Gu L, Liu Y, He CS, Du Y, Xiong Z, Liu W, Lai B. Identifying the evolution of primary oxidation mechanisms and pollutant degradation routes in the electro-cocatalytic Fenton-like systems. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130577. [PMID: 37055982 DOI: 10.1016/j.jhazmat.2022.130577] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 06/19/2023]
Abstract
Herein, electro-catalysis (EC) as the electron donor to accelerate the continuable Fe(III)/Fe(II) cycles in different inorganic peroxides (i.e., peroxymonosulfate (PMS), peroxydisulfate (PDS) and hydrogen peroxide (HP)) activation systems were established. These electro-cocatalytic Fenton-like systems exhibited an excellent degradation efficiency of sulfamethoxazole (SMX). A series of analytical and characterization methods including quenching experiments, probe experiments, and electron paramagnetic resonance spectrometry (EPR) were implemented to systematically sort out the source and yield of reactive oxygen species (ROS). A wide kind of ROS including hydroxyl radical (•OH), singlet oxygen (1O2), and sulfate radical (SO4•-), which contributed 38%, 37%, and 24% were produced in EC/Fe(III)/PMS system, respectively. •OH was the dominant ROS in both EC/Fe(III)/PDS and EC/Fe(III)/HP processes. According to the analysis of SMX degradation routes and biotoxicity, abundant degradation pathways were identified in EC/Fe(III)/PMS process and lower environmental impact was achieved in EC/Fe(III)/HP process. The diversiform ROS of EC/Fe(III)/PMS system makes it exhibit greater environmental adaptability in complex water matrixes and excellent low-energy consumption performance in many organic pollutants degradation. Continuous flow treatment experiments proved that the three systems have great sustainability and practical application prospect. This work provides a strong basis for constructing suitable systems to achieve different treatment requirements.
Collapse
Affiliation(s)
- Xianhu Long
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Hongle Shi
- Sichuan Academy of Eco-Environmental Sciences, Chengdu 610041, China
| | - Rongfu Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Lingyun Gu
- Sichuan Academy of Eco-Environmental Sciences, Chengdu 610041, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuan-Shu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Ye Du
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
12
|
Liu Q, Qie H, Sun Z, Zhen Y, Wu L, Zhao Y, Ma J. Elevated degradation of di-n-butyl phthalate by activating peroxymonosulfate over GO-CoFe2O4 composites: Synergistic effects and mechanisms. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
13
|
Thermal effect on sulfamethoxazole degradation in a trivalent copper involved peroxymonosulfate system. J Colloid Interface Sci 2023; 640:121-131. [PMID: 36842418 DOI: 10.1016/j.jcis.2023.02.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
Persulfate (PS) activated by thermal or homogeneous metals can generate reactive oxygen species (ROS) and high-valence-state metals for contaminants degradation, showing great potential for applications. However, thermal effect in peroxymonosulfate (PMS) system with high-valence-state metal is still ambiguous. In this study, divalent copper (Cu(II)) catalysis was taken to explore thermal effect on PMS performance. Results showed that the Sulfamethoxazole (SMX) removal efficiency in the Cu(II)/PMS system at 60 min increased by only 5.9% with temperature increase from 30 °C to 60 °C. Moreover, SMX removal efficiency was excellent at neutral or basic pH, best with PMS concentration of 2.4 mM, and slightly affected by Cu(II) concentration. The singlet oxygen (1O2) was identified as main active species at low temperature while sulfate radicals (SO4-) was more effective at high temperature with Cu(II) co-activation. Also, trivalent copper (Cu(III)) was an important active species. The higher Cu(III) content, the better SMX removal efficiency, but the stronger intermediates toxicity. In combination with removal efficiency and intermediates toxicity at different temperatures, 30 °C was the optimal reaction temperature. Overall, this study provides new perspective on utilization of waste heat and high-valence-state metal for organic wastewater treatment in PMS systems.
Collapse
|
14
|
A new catalyst for the activation of peroxydisulfate: Carbonized manganese oxides nanoparticles derived from green tea extracts. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Zhang W, Li Z, Luo R, Guo Q, Xu F, Yang F, Zhang M, Jia L, Yuan S. Design of tandem CuO/CNTs composites for enhanced tetracycline degradation and antibacterial activity. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Wei J, Xiong Z, Ao M, Guo Z, Zhang J, Lai B, Song Y. Selective degradation of sulfamethoxazole by N-doped iron-based carbon activated peroxymonosulfate: Collaboration of singlet oxygen and high-valent iron-oxo species. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Heterogeneous Activation of Peroxymonosulfate by a Spinel CoAl2O4 Catalyst for the Degradation of Organic Pollutants. Catalysts 2022. [DOI: 10.3390/catal12080847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Bimetallic catalysts have significantly contributed to the chemical community, especially in environmental science. In this work, a CoAl2O4 spinel bimetal oxide was synthesized by a facile co-precipitation method and used for the degradation of organic pollutants through peroxymonosulfate (PMS) activation. Compared with Co3O4, the as-prepared CoAl2O4 possesses a higher specific surface area and a larger pore volume, which contributes to its becoming increasingly conducive to the degradation of organic pollutants. Under optimal conditions (calcination temperature: 500 °C, catalyst: 0.1 g/L, and PMS: 0.1 g/L), the as-prepared CoAl2O4 catalyst could degrade over 99% of rhodamine B (RhB) at a degradation rate of 0.048 min−1, which is 2.18 times faster than Co3O4 (0.022 min−1). The presence of Cl− could enhance RhB degradation in the CoAl2O4/PMS system, while HCO3− and CO32− inhibit RhB degradation. Furthermore, the considerable reusability and universality of CoAl2O4 were testified. Through quenching tests, 1O2 and SO4•− were identified as the primary reactive species in RhB degradation. The toxicity evaluation verified that the degraded solution exhibited lower biological toxicity than the initial RhB solution. This study provides new prospects in the design of cost-effective and stable cobalt-based catalysts and promotes the application of PMS-based advanced oxidation processes for refractory wastewater treatment.
Collapse
|
18
|
Zhong Q, Liu J, Wang J, Li Y, Li J, Zhang G. Efficient degradation of organic pollutants by activated peroxymonosulfate over TiO 2@C decorated Mg-Fe layered double oxides: Degradation pathways and mechanism. CHEMOSPHERE 2022; 300:134564. [PMID: 35413370 DOI: 10.1016/j.chemosphere.2022.134564] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
To activate peroxymonosulfate (PMS) is an efficient way for decomposition of non-biodegradable organic pollutants. Herein, Mg-Fe layered double oxides decorated with Ti3C2 MXene-derived TiO2@C (T/LDOs) were fabricated to efficiently activate PMS for the degradation of Rhodamine B (RhB), acid red 1 (AR1), methylene blue (MB), and tetracycline hydrochloride (TC). The T/LDOs catalyst could decompose 95.8% of RhB, 94.8% of AR1, 84.9% of MB within 10 min, and 82.4% of TC within 60 min. The degradation rate constant of RhB in the optimal T/LDOs/PMS system was approximately 2.5 and 15.7 times higher than that in the Mg-Fe LDOs/PMS system and Mg-Fe LDH/PMS system, respectively. Importantly, the T/LDOs exhibited a wide working pH range (3.1-11.0) and high stability with low metal ions leaching, indicating its potential practical applications. Quenching experiments and electronic spin resonance results confirmed that both •O2- and 1O2 were the dominant active species in the T/LDOs/PMS system. In addition, the possible degradation pathway of RhB in the 5%-T/LDOs/PMS system was proposed. Finally, the catalytic mechanism study revealed that the T/LDOs with abundant surface hydroxyl groups and a certain amount of TiO2@C facilitated the electron transfer between ≡Fe(Ⅲ)‒OH complex and HSO5-, boosting the generation of •O2- and 1O2. This study provides an insight into exploiting highly efficient catalysts for PMS activation towards the degradation of organic pollutants.
Collapse
Affiliation(s)
- Qian Zhong
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Jin Liu
- Henan Key Laboratory of Rare Earth Functional Materials, Zhoukou Normal University, Zhoukou, 466001, China.
| | - Junting Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Yuan Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Jun Li
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
| | - Gaoke Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
19
|
Gao Y, Han Y, Liu B, Gou J, Feng D, Cheng X. CoFe2O4 nanoparticles anchored on waste eggshell for catalytic oxidation of florfenicol via activating peroxymonosulfate. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Bromate formation during oxidation of bromide-containing water by the CuO catalyzed peroxymonosulfate process. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|