1
|
Fernandez Botana I, Gonder S, Klapp V, Moussay E, Paggetti J. Eμ-TCL1 adoptive transfer mouse model of chronic lymphocytic leukemia. Methods Cell Biol 2024; 188:109-129. [PMID: 38880520 DOI: 10.1016/bs.mcb.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Despite being the most common adult leukemia in the western world, Chronic Lymphocytic Leukemia (CLL) remains a life-threatening and incurable disease. Efforts to develop new treatments are highly dependent on the availability of appropriate mouse models for pre-clinical testing. The Eμ-TCL1 mouse model is the most established pre-clinical approach to study CLL pathobiology and response to treatment, backed by numerous studies highlighting its resemblance to the most aggressive form of this malignancy. In contrast to the transgenic Eμ-TCL1 model, employing the adoptive transfer of Eμ-TCL1-derived splenocytes in immunocompetent C57BL/6 mice results in a comparably rapid (e.g., leukemic development within weeks compared to months in the transgenic model) and reliable model mimicking CLL. In this chapter, we would like to provide readers with a thoroughly optimized, detailed, and comprehensive protocol to use the adoptive transfer Eμ-TCL1 model in their research.
Collapse
Affiliation(s)
- Iria Fernandez Botana
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Susanne Gonder
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Vanessa Klapp
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Etienne Moussay
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
| | - Jerome Paggetti
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
| |
Collapse
|
2
|
Ullah MA, Garcillán B, Whitlock E, Figgett WA, Infantino S, Eslami M, Yang S, Rahman MA, Sheng YH, Weber N, Schneider P, Tam CS, Mackay F. An unappreciated cell survival-independent role for BAFF initiating chronic lymphocytic leukemia. Front Immunol 2024; 15:1345515. [PMID: 38469292 PMCID: PMC10927009 DOI: 10.3389/fimmu.2024.1345515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024] Open
Abstract
Background Chronic Lymphocytic Leukemia (CLL) is characterized by the expansion of CD19+ CD5+ B cells but its origin remains debated. Mutated CLL may originate from post-germinal center B cells and unmutated CLL from CD5+ mature B cell precursors. Irrespective of precursor types, events initiating CLL remain unknown. The cytokines BAFF and APRIL each play a significant role in CLL cell survival and accumulation, but their involvement in disease initiation remains unclear. Methods We generated novel CLL models lacking BAFF or APRIL. In vivo experiments were conducted to explore the impact of BAFF or APRIL loss on leukemia initiation, progression, and dissemination. Additionally, RNA-seq and quantitative real-time PCR were performed to unveil the transcriptomic signature influenced by BAFF in CLL. The direct role of BAFF in controlling the expression of tumor-promoting genes was further assessed in patient-derived primary CLL cells ex-vivo. Results Our findings demonstrate a crucial role for BAFF, but not APRIL, in the initiation and dissemination of CLL cells. In the absence of BAFF or its receptor BAFF-R, the TCL1 transgene only increases CLL cell numbers in the peritoneal cavity, without dissemination into the periphery. While BAFF binding to BAFF-R is dispensable for peritoneal CLL cell survival, it is necessary to activate a tumor-promoting gene program, potentially linked to CLL initiation and progression. This direct role of BAFF in controlling the expression of tumor-promoting genes was confirmed in patient-derived primary CLL cells ex-vivo. Conclusions Our study, involving both mouse and human CLL cells, suggests that BAFF might initiate CLL through mechanisms independent of cell survival. Combining current CLL therapies with BAFF inhibition could offer a dual benefit by reducing peripheral tumor burden and suppressing transformed CLL cell output.
Collapse
Affiliation(s)
- Md Ashik Ullah
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Cancer Program, Herston, QLD, Australia
| | - Beatriz Garcillán
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Eden Whitlock
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Cancer Program, Herston, QLD, Australia
| | - William A. Figgett
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Garvan Institute of Medical Research, Kinghorn Centre for Clinical Genomics, Darlinghurst, NSW, Australia
| | - Simona Infantino
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Mahya Eslami
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- Department of Oncology and Children’s Research Centre, University Children’s Hospital Zürich, Zürich, Switzerland
| | - SiLing Yang
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Cancer Program, Herston, QLD, Australia
| | - M. Arifur Rahman
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Cancer Program, Herston, QLD, Australia
| | - Yong H. Sheng
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Cancer Program, Herston, QLD, Australia
| | - Nicholas Weber
- Cancer Care Services, Royal Brisbane and Women’s Hospital, Herston, QLD, Australia
| | - Pascal Schneider
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Constantine S. Tam
- Department of Haematology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Haematology, Monash University, Melbourne, VIC, Australia
| | - Fabienne Mackay
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Cancer Program, Herston, QLD, Australia
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Department of Immunology and Pathology, Monash University, VIC, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Zhou C, Ma H, Yu W, Zhou Y, Zhang X, Meng Y, Chen C, Zhang J, Shi G. ANP32B inhibition suppresses the growth of prostate cancer cells by regulating c-Myc signaling. Biochem Biophys Res Commun 2024; 698:149543. [PMID: 38266312 DOI: 10.1016/j.bbrc.2024.149543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
ANP32B is a histone chaperone that interacts with various transcription factors that regulate cancer cell proliferation, immigration, and apoptosis. c-Myc, a well-known oncogenic protein, is a principal player in the initiation and progression of prostate cancer (PC). The means by which ANP32B and c-Myc act remain unknown. We downloaded clinical data from the GEO, TCGA, and other databases to explore ANP32B expression and its effects on the survival of PC and normal tissues. ANP32B-knockdown cell lines were used to evaluate how ANP32B affected cell proliferation in vitro and in vivo. Gene set enrichment analysis and RNAseq were employed to define how ANP32B regulated PC pathways. Immunohistochemical measures were used to detect the expression levels of relevant proteins in xenografts and PC tissues. ANP32B expression increased in PC tissues; ANP32B knockdown inhibited cell growth but this was rescued by c-Myc signaling. ANP32B is thus a PC oncogene and may serve as a valuable therapeutic target when seeking to treat PC.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, PR China.
| | - Hangbin Ma
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, PR China.
| | - Wandong Yu
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, PR China
| | - Yinghao Zhou
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, PR China
| | - Xuehu Zhang
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, PR China
| | - Yibo Meng
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, PR China
| | - Chenchen Chen
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, PR China
| | - Jun Zhang
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, PR China.
| | - Guowei Shi
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, PR China.
| |
Collapse
|
4
|
Cao J, Xu H, Yu Y, Xu Z. Regulatory roles of cytokines in T and B lymphocytes-mediated immunity in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 144:104621. [PMID: 36801469 DOI: 10.1016/j.dci.2022.104621] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 06/05/2023]
Abstract
T and B lymphocytes (T and B cells) are immune effector cells that play critical roles in adaptive immunity and defend against external pathogens in most vertebrates, including teleost fish. In mammals, the development and immune response of T and B cells is associated with cytokines including chemokines, interferons, interleukins, lymphokines, and tumor necrosis factors during pathogenic invasion or immunization. Given that teleost fish have evolved a similar adaptive immune system to mammals with T and B cells bearing unique receptors (B-cell receptors (BCRs) and T-cell receptors (TCRs)) and that cytokines in general have been identified, whether the regulatory roles of cytokines in T and B cell-mediated immunity are evolutionarily conserved between mammalians and teleost fish is a fascinating question. Thus, the purpose of this review is to summarize the current knowledge of teleost cytokines and T and B cells as well as the regulatory roles of cytokines on these two types of lymphocytes. This may provide important information on the parallelisms and dissimilarities of the functions of cytokines in bony fish versus higher vertebrates, which may aid in the evaluation and development of adaptive immunity-based vaccines or immunostimulants.
Collapse
Affiliation(s)
- Jiafeng Cao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Haoyue Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
5
|
Coyne V, Mead HL, Mongini PKA, Barker BM. B Cell Chronic Lymphocytic Leukemia Development in Mice with Chronic Lung Exposure to Coccidioides Fungal Arthroconidia. Immunohorizons 2023; 7:333-352. [PMID: 37195872 PMCID: PMC10579974 DOI: 10.4049/immunohorizons.2300013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Links between repeated microbial infections and B cell chronic lymphocytic leukemia (B-CLL) have been proposed but not tested directly. This study examines how prolonged exposure to a human fungal pathogen impacts B-CLL development in Eµ-hTCL1-transgenic mice. Monthly lung exposure to inactivated Coccidioides arthroconidia, agents of Valley fever, altered leukemia development in a species-specific manner, with Coccidioides posadasii hastening B-CLL diagnosis/progression in a fraction of mice and Coccidioides immitis delaying aggressive B-CLL development, despite fostering more rapid monoclonal B cell lymphocytosis. Overall survival did not differ significantly between control and C. posadasii-treated cohorts but was significantly extended in C. immitis-exposed mice. In vivo doubling time analyses of pooled B-CLL showed no difference in growth rates of early and late leukemias. However, within C. immitis-treated mice, B-CLL manifests longer doubling times, as compared with B-CLL in control or C. posadasii-treated mice, and/or evidence of clonal contraction over time. Through linear regression, positive relationships were noted between circulating levels of CD5+/B220low B cells and hematopoietic cells previously linked to B-CLL growth, albeit in a cohort-specific manner. Neutrophils were positively linked to accelerated growth in mice exposed to either Coccidioides species, but not in control mice. Conversely, only C. posadasii-exposed and control cohorts displayed positive links between CD5+/B220low B cell frequency and abundance of M2 anti-inflammatory monocytes and T cells. The current study provides evidence that chronic lung exposure to fungal arthroconidia affects B-CLL development in a manner dependent on fungal genotype. Correlative studies suggest that fungal species differences in the modulation of nonleukemic hematopoietic cells are involved.
Collapse
Affiliation(s)
- Vanessa Coyne
- Pathogen Microbiome Institute, Northern Arizona University, Flagstaff, AZ
| | - Heather L. Mead
- Pathogen Microbiome Institute, Northern Arizona University, Flagstaff, AZ
| | | | - Bridget M. Barker
- Pathogen Microbiome Institute, Northern Arizona University, Flagstaff, AZ
| |
Collapse
|
6
|
The BAFF-APRIL System in Cancer. Cancers (Basel) 2023; 15:cancers15061791. [PMID: 36980677 PMCID: PMC10046288 DOI: 10.3390/cancers15061791] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
B cell-activating factor (BAFF; also known as CD257, TNFSF13B, BLyS) and a proliferation-inducing ligand (APRIL; also known as CD256, TNFSF13) belong to the tumor necrosis factor (TNF) family. BAFF was initially discovered as a B-cell survival factor, whereas APRIL was first identified as a protein highly expressed in various cancers. These discoveries were followed by over two decades of extensive research effort, which identified overlapping signaling cascades between BAFF and APRIL, controlling immune homeostasis in health and driving pathogenesis in autoimmunity and cancer, the latter being the focus of this review. High levels of BAFF, APRIL, and their receptors have been detected in different cancers and found to be associated with disease severity and treatment response. Here, we have summarized the role of the BAFF-APRIL system in immune cell differentiation and immune tolerance and detailed its pathogenic functions in hematological and solid cancers. We also highlight the emerging therapeutics targeting the BAFF-APRIL system in different cancer types.
Collapse
|
7
|
Yang Y, Liu L, Tucker HO. Induction of chronic lymphocytic leukemia-like disease in STYK1/NOK transgenic mice. Biochem Biophys Res Commun 2022; 626:51-57. [PMID: 35970044 DOI: 10.1016/j.bbrc.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/02/2022]
Abstract
STYK1/NOK functions in a ligand independent and constitutive fashion to provoke tumor formation and to be up-regulated in many types of cancer cells. However, how STYK1/NOK functions at the whole animal level is completely unknown. Here, we found that STYK1/NOK-transgenic (tg) mice spontaneously developed immunosuppressive B-CLL-like disease with generally shorter life spans. The phenotype of STYK1/NOK-induced B-CLL was typically heterogeneous, and most often, presented lymphadenectasis accompanied with hepatomegaly and/or splenomegaly. STYK1/NOK-tg mice also suffered reduced immune responses. The expanded CD5+CD19+ (B1) lymphocyte pool was detected within peripheral lymphoid organs. Analysis on GEO profile revealed that expression of STYK1/NOK were significantly up-regulated in primary human B-CLL. Inoculation of blood cells from sick STYK1/NOK-tg mice into immune-deficient recipients recaptured the B1 malignant phenotype. Our study demonstrated that STYK1/NOK transgenic mouse may serve as a useful model system for the developments of novel diagnosis and treatment of B-CLL.
Collapse
Affiliation(s)
- Yin Yang
- Department of Pathogen Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Li Liu
- Department of Pathogen Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Haley O Tucker
- Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station A5000, Austin TX, 78712, USA.
| |
Collapse
|
8
|
Playa-Albinyana H, Arenas F, Colomer D. Advantages and disadvantages of mouse models of chronic lymphocytic leukemia in drug discovery. Expert Opin Drug Discov 2021; 16:1085-1090. [PMID: 34074187 DOI: 10.1080/17460441.2021.1935860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Heribert Playa-Albinyana
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) Barcelona, Spain.,Centro De Investigación Biomédica En Red De Cáncer (CIBERONC, Barcelona, Spain
| | - Fabian Arenas
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) Barcelona, Spain.,Centro De Investigación Biomédica En Red De Cáncer (CIBERONC, Barcelona, Spain
| | - Dolors Colomer
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) Barcelona, Spain.,Centro De Investigación Biomédica En Red De Cáncer (CIBERONC, Barcelona, Spain.,Hematopathology Unit, Department of Pathology, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, Aguillón JC, Aravena O. Immunosuppressive Mechanisms of Regulatory B Cells. Front Immunol 2021; 12:611795. [PMID: 33995344 PMCID: PMC8118522 DOI: 10.3389/fimmu.2021.611795] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.
Collapse
Affiliation(s)
- Diego Catalán
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Miguel Andrés Mansilla
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Ashley Ferrier
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Hospital Clínico, Universidad de Chile (HCUCH), Santiago, Chile
| | | | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Octavio Aravena
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
10
|
ESATOĞLU SN, KESKİN D, EŞKAZAN AE, ELVERDİ T, SALİHOĞLU A, AR MC, ÖNGÖREN Ş, BAŞLAR Z, AYDIN Y, UZUN H, SOYSAL T. The prognostic value of serum levels of a proliferation-inducing ligand (APRIL) in treatment-naïve patients with chronic lymphocytic leukemia. Turk J Med Sci 2021; 51:348-354. [PMID: 32950049 PMCID: PMC7991891 DOI: 10.3906/sag-2004-282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/17/2020] [Indexed: 11/03/2022] Open
Abstract
Background/aim A proliferation-inducing ligand (APRIL) has been investigated as a prognostic marker in chronic lymphocytic leukemia (CLL) patients. However, there is no cut-off level for serum APRIL (sAPRIL) levels that predict time to treatment in CLL patients. Materials and methods Between May and December 2012, 94 consecutive CLL patients and 25 healthy controls were assessed. sAPRIL levels were measured by ELISA. Demographic data and prognostic markers were obtained from the patients’ files. Treatment-naïve patients were followed up for 6.5 years for any treatment need. Results Patients were divided into 3 groups: Treatment-naïve (n = 47), chemotherapy receiving (n = 25), and those who had received chemotherapy previously (n = 22). There was no difference in median sAPRIL levels of patients who were receiving chemotherapy at the sampling time and the healthy controls, which indicates that sAPRIL levels might be influenced by treatment. For treatment-naïve patients, the best cut-off in predicting time to treatment was found at the sAPRIL level of 2.04 ng/mL, with 78% sensitivity and 63% specificity. Time to treatment was significantly earlier in the APRIL high group (n = 27) than in the APRIL low group (n = 20) (P = 0.010, log-rank test). Conclusion sAPRIL, a simple, promising blood test which can be measured by ELISA, will likely obtain a place in the wide range of prognostic markers in CLL. Prospective large-scale studies are required to validate and confirm the feasibility of the proposed cut-off level of 2.04 ng/mL as a predictor of time to treatment in treatment-naïve CLL patients.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Biomarkers, Tumor/blood
- Drug Monitoring/methods
- Female
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Ligands
- Male
- Medication Therapy Management
- Middle Aged
- Patient Selection
- Predictive Value of Tests
- Prognosis
- Sensitivity and Specificity
- Tumor Necrosis Factor Ligand Superfamily Member 13/blood
Collapse
Affiliation(s)
- Sinem Nihal ESATOĞLU
- Department of Internal Medicine, Section of Rheumatology, Cerrahpaşa Medical Faculty, İstanbul University-Cerrahpaşa, İstanbulTurkey
| | - Dilek KESKİN
- Department of Internal Medicine, Section of Hematology, Cerrahpaşa Medical Faculty, İstanbul University-Cerrahpaşa, İstanbulTurkey
| | - Ahmet Emre EŞKAZAN
- Department of Internal Medicine, Section of Hematology, Cerrahpaşa Medical Faculty, İstanbul University-Cerrahpaşa, İstanbulTurkey
| | - Tuğrul ELVERDİ
- Department of Internal Medicine, Section of Hematology, Cerrahpaşa Medical Faculty, İstanbul University-Cerrahpaşa, İstanbulTurkey
| | - Ayşe SALİHOĞLU
- Department of Internal Medicine, Section of Hematology, Cerrahpaşa Medical Faculty, İstanbul University-Cerrahpaşa, İstanbulTurkey
| | - Muhlis Cem AR
- Department of Internal Medicine, Section of Hematology, Cerrahpaşa Medical Faculty, İstanbul University-Cerrahpaşa, İstanbulTurkey
| | - Şeniz ÖNGÖREN
- Department of Internal Medicine, Section of Hematology, Cerrahpaşa Medical Faculty, İstanbul University-Cerrahpaşa, İstanbulTurkey
| | - Zafer BAŞLAR
- Department of Internal Medicine, Section of Hematology, Cerrahpaşa Medical Faculty, İstanbul University-Cerrahpaşa, İstanbulTurkey
| | - Yıldız AYDIN
- Department of Internal Medicine, Section of Hematology, Cerrahpaşa Medical Faculty, İstanbul University-Cerrahpaşa, İstanbulTurkey
| | - Hafize UZUN
- Department of Biochemistry, Cerrahpaşa Medical Faculty, İstanbul University-Cerrahpaşa, İstanbulTurkey
| | - Teoman SOYSAL
- Department of Internal Medicine, Section of Hematology, Cerrahpaşa Medical Faculty, İstanbul University-Cerrahpaşa, İstanbulTurkey
| |
Collapse
|
11
|
A novel transgenic mouse strain expressing PKCβII demonstrates expansion of B1 and marginal zone B cell populations. Sci Rep 2020; 10:13156. [PMID: 32753714 PMCID: PMC7403146 DOI: 10.1038/s41598-020-70191-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/21/2020] [Indexed: 01/08/2023] Open
Abstract
Protein kinase Cβ (PKCβ) expressed in mammalian cells as two splice variants, PKCβI and PKCβII, functions in the B cell receptor (BCR) signaling pathway and contributes to B cell development. We investigated the relative role of PKCβII in B cells by generating transgenic mice where expression of the transgene is directed to these cells using the Eµ promoter (Eµ-PKCβIItg). Our findings demonstrate that homozygous Eµ-PKCβIItg mice displayed a shift from IgD+IgMdim toward IgDdimIgM+ B cell populations in spleen, peritoneum and peripheral blood. Closer examination of these tissues revealed respective expansion of marginal zone (MZ)-like B cells (IgD+IgM+CD43negCD21+CD24+), increased populations of B-1 cells (B220+IgDdimIgM+CD43+CD24+CD5+), and higher numbers of immature B cells (IgDdimIgMdimCD21neg) at the expense of mature B cells (IgD+IgM+CD21+). Therefore, the overexpression of PKCβII, which is a phenotypic feature of chronic lymphocytic leukaemia cells, can skew B cell development in mice, most likely as a result of a regulatory influence on BCR signaling.
Collapse
|
12
|
Mohd Jaya FN, Garcia SG, Borràs FE, Chan GC, Franquesa M. Paradoxical role of Breg-inducing cytokines in autoimmune diseases. J Transl Autoimmun 2019; 2:100011. [PMID: 32743499 PMCID: PMC7388338 DOI: 10.1016/j.jtauto.2019.100011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 07/30/2019] [Accepted: 08/08/2019] [Indexed: 12/17/2022] Open
Abstract
Regulatory B cells (Breg) are crucial immunoregulators that maintain peripheral tolerance and suppress inflammatory autoimmune responses. In recent years, our understanding on the nature and mechanism of action of Bregs has revealed the important role of cytokines in promoting the regulatory properties of this unique B cell subset, both in animal and human models. In this review, we compiled the cytokines that have been reported by multiple studies to induce the expansion of Breg. The Breg-inducing cytokines which are currently known include IL-21, IL-6, IL1β, IFNα, IL-33, IL-35, BAFF and APRIL. As cytokines are also known to play a pivotal role in the pathogenesis of autoimmune diseases, in parallel we reviewed the pattern of expression of the Breg-inducing cytokines in Systemic Lupus Erythematosus (SLE), Rheumatoid Arthritis (RA), Inflammatory Bowel Diseases (IBD) and Multiple Sclerosis (MS). We show here that Breg-inducing cytokines are commonly implicated in these inflammatory diseases where they typically have a higher expression than in healthy individuals, suggesting their paradoxical nature. Interestingly, despite the general overexpression of Breg-inducing cytokines, it is known that Breg cells are often numerically or functionally impaired in various autoimmune conditions. Considering these alterations, we explored the possible parameters that may influence the function of Breg-inducing cytokines in exhibiting either their regulatory or pro-inflammatory properties in the context of autoimmune conditions.
Collapse
Affiliation(s)
- Fatin N. Mohd Jaya
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong
- Corresponding author.
| | - Sergio G. Garcia
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias I Pujol, Can Ruti Campus, 08916, Badalona, Spain
| | - Francesc E. Borràs
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias I Pujol, Can Ruti Campus, 08916, Badalona, Spain
| | - Godfrey C.F. Chan
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong
| | - Marcella Franquesa
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias I Pujol, Can Ruti Campus, 08916, Badalona, Spain
| |
Collapse
|
13
|
Fouladseresht H, Ziaee SM, Erfani N, Doroudchi M. Serum Levels of APRIL Increase in Patients with Glioma, Meningioma and Schwannoma. Asian Pac J Cancer Prev 2019; 20:751-756. [PMID: 30909681 PMCID: PMC6825795 DOI: 10.31557/apjcp.2019.20.3.751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Objective: Brain tumors are of high mortality and morbidity for which there is still no cure. The TNF family cytokine, A Proliferation Inducing Ligand (APRIL), is shown to help proliferation and development of tumor cells. We assessed serum levels of APRIL in patients with glioma, meningioma and schwannoma in comparison to healthy individuals. Methods: Peripheral blood samples of 68 patients with brain tumors, divided into three groups of gliomas (n=25), meningiomas (n=30) and schwannomas (n=13), as well as 45 healthy individuals were obtained. Serum samples were prepared and stored in -40°C until usage. Using a commercial ELISA method, APRIL concentration was measured in each serum sample. The obtained data were then analyzed using SPSS software. Results: APRIL serum levels were higher in all patients compared to the controls (P<0.001). Moreover, APRIL serum levels were higher in each of the tumor bearing groups (gliomas, meningiomas and schwannomas) in comparison to the controls (P<0.001, <0.001 and =0.001, respectively). Comparing APRIL between the patients groups showed no significant difference. Age and gender showed no significant correlation with serum APRIL levels, although the age of patients in glioma group was significantly lower than controls (P=0.017). The serum APRIL levels in gliomas with histological grade showed no difference, but in meningiomas, it was lower in tumors with higher grades (P= 0.011). Conclusion: Increased serum levels of APRIL in patients with meningioma and schwannoma as well as glioma may indicate a common role of this cytokine in brain tumors.
Collapse
Affiliation(s)
- Hamed Fouladseresht
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Seyyed Mohyeddin Ziaee
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Nasrollah Erfani
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. ,Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. ,Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Tai YT, Lin L, Xing L, Cho SF, Yu T, Acharya C, Wen K, Hsieh PA, Dulos J, van Elsas A, Munshi N, Richardson P, Anderson KC. APRIL signaling via TACI mediates immunosuppression by T regulatory cells in multiple myeloma: therapeutic implications. Leukemia 2018; 33:426-438. [PMID: 30135465 PMCID: PMC6367000 DOI: 10.1038/s41375-018-0242-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/16/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023]
Abstract
We here investigate how APRIL impacts immune regulatory T cells and directly contributes to the immunosuppressive multiple myeloma (MM) bone marrow (BM) microenvironment. First, APRIL receptor TACI expression is significantly higher in regulatory T cells (Tregs) than conventional T cells (Tcons) from the same patient, confirmed by upregulated Treg markers, i.e., Foxp3, CTLA-4. APRIL significantly stimulates proliferation and survival of Tregs, whereas neutralizing anti-APRIL monoclonal antibodies (mAbs) inhibit theses effects. Besides TACI-dependent induction of cell cycle progression and anti-apoptosis genes, APRIL specifically augments Foxp3, IL-10, TGFβ1, and PD-L1 in Tregs to further enhance Treg-inhibited Tcon proliferation. APRIL further increases MM cell-driven Treg (iTreg) via TACI-dependent proliferation associated with upregulated IL-10, TGFβ1, and CD15s in iTreg, which further inhibits Tcons. Osteoclasts producing APRIL and PD-L1 significantly block Tcon expansion by iTreg generation, which is overcome by combined treatment with anti-APRIL and -PD1/PD-L1 mAbs. Finally, APRIL increases IL-10-producing B regulatory cells (Bregs) via TACI on BM Bregs of MM patients. Taken together, these results define novel APRIL actions via TACI on Tregs and Bregs to promote MM cell survival, providing the rationale for targeting APRIL/TACI system to alleviate the immunosuppressive BM milieu and improve patient outcome in MM.
Collapse
Affiliation(s)
- Yu-Tzu Tai
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Liang Lin
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Lijie Xing
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Hematology, Shandong Provincial Hospital affiliated to Shandong University, No. 324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Shih-Feng Cho
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tengteng Yu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Chirag Acharya
- Department of Internal Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kenneth Wen
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Phillip A Hsieh
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - John Dulos
- Aduro Biotech Europe, Oss, The Netherlands
| | | | - Nikhil Munshi
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Paul Richardson
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Hayakawa K, Formica AM, Nakao Y, Ichikawa D, Shinton SA, Brill-Dashoff J, Smith MR, Morse HC, Hardy RR. Early Generated B-1-Derived B Cells Have the Capacity To Progress To Become Mantle Cell Lymphoma-like Neoplasia in Aged Mice. THE JOURNAL OF IMMUNOLOGY 2018; 201:804-813. [PMID: 29898964 DOI: 10.4049/jimmunol.1800400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/16/2018] [Indexed: 11/19/2022]
Abstract
In mice, fetal/neonatal B-1 cell development generates murine CD5+ B cells (B1a) with autoreactivity. We analyzed B1a cells at the neonatal stage in a VH11/D/JH knock-in mouse line (VH11t) that generates an autoreactive antiphosphatidylcholine BCR. Our study revealed that antiphosphatidylcholine B1a cells develop in liver, mature in spleen, and distribute in intestine/colon, mesenteric lymph node (mLN), and body cavity as the outcome of B-1 cell development before B-2 cell development. Throughout life, self-renewing B-1 B1a cells circulate through intestine, mesenteric vessel, and blood. The body cavity-deposited B1a cells also remigrate. In old age, some B1a cells proceed to monoclonal B cell lymphocytosis. When neonatal B-1 B1a cells express an antithymocyte/Thy-1 autoreactivity (ATA) BCR transgene in the C.B17 mouse background, ATA B cells increase in PBL and strongly develop lymphomas in aging mice that feature splenomegaly and mLN hyperplasia with heightened expression of CD11b, IL-10, and activated Stat3. At the adult stage, ATA B cells were normally present in the mantle zone area, including in intestine. Furthermore, frequent association with mLN hyperplasia suggests the influence by intestinal microenvironment on lymphoma development. When cyclin D1 was overexpressed by the Eμ-cyclin D1 transgene, ATA B cells progressed to further diffused lymphoma in aged mice, including in various lymph nodes with accumulation of IgMhiIgDloCD5+CD23-CD43+ cells, resembling aggressive human mantle cell lymphoma. Thus, our findings reveal that early generated B cells, as an outcome of B-1 cell development, can progress to become lymphocytosis, lymphoma, and mantle cell lymphoma-like neoplasia in aged mice.
Collapse
Affiliation(s)
| | | | - Yuka Nakao
- Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Daiju Ichikawa
- Fox Chase Cancer Center, Philadelphia, PA 19111.,Division of Clinical Physiology and Therapeutics, Keio University Faculty of Pharmacy, Tokyo 105-8512, Japan
| | | | | | - Mitchell R Smith
- Fox Chase Cancer Center, Philadelphia, PA 19111.,George Washington University Cancer Center, Washington, DC 20052; and
| | - Herbert C Morse
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | | |
Collapse
|
16
|
Dou H, Yan Z, Zhang M, Xu X. APRIL promotes non-small cell lung cancer growth and metastasis by targeting ERK1/2 signaling. Oncotarget 2017; 8:109289-109300. [PMID: 29312608 PMCID: PMC5752521 DOI: 10.18632/oncotarget.22672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the major subtype of lung cancer, which is the most common cause of cancer-related mortality in the world. It is a complex disease involving multiple genetic alterations. As a cytokine belonging to the Tumor Necrosis Factor-α (TNF- α) family, the - a proliferation-inducing ligand (APRIL) expression and its signaling have been studied in many human solid tumor types, but the data on APRIL signaling in NSCLC are lacking. The aim of this study was to evaluate the APRIL expression and investigate its signaling in NSCLC. The expression of APRIL and its receptors, B cell maturation antigen (BCMA) and transmembrane activator and calcium-modulatorand cyclophilin ligand interactor (TACI), was analyzed by using immunohistochemistry in NSCLC samples. Quantitative RT-PCR was performed to evaluate mRNA expression of APRIL, BCMA and TACI in human lung adenocarcinoma cell lines A549, H1299, and H1650. Cell proliferation was measured by using the cell proliferation and cytotoxicity assay kit 8 (CCK8) assay, cell migration by using wound healing assay, and cell invasion by using transwall assay. The protein level of APRIL, BCMA and TAC, and the activation of extracellular regulated protein kinases 1/2 (ERK1/2) signaling, were determined by western blot. Our results indicated, APRIL and its receptors BCMA and TACI, were overexpressed in most of human NSCLC samples and cell lines; APRIL promoted tumor proliferation, migration and metastasis in A549 and H1299 cells via BCMA and TACI. Furthermore, ERK1/2 activation was involved in APRIL signaling through TACI but not BCMA in A549 and H1299 cells. APRIL might serve as a potential prognostic biomarker for NSCLC, and APRIL related signaling pathway could be a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Hengli Dou
- Department of Neurosurgery, The Fourth Hospital of Jinan, Jinan 250013, Shandong, China
| | - Zhaohua Yan
- Department of Neurosurgery, The Fourth Hospital of Jinan, Jinan 250013, Shandong, China
| | - Meng Zhang
- Department of Neurosurgery, The Fourth Hospital of Jinan, Jinan 250013, Shandong, China
| | - Xiaoxin Xu
- Department of Neurosurgery, The Fourth Hospital of Jinan, Jinan 250013, Shandong, China
| |
Collapse
|
17
|
Borhis G, Trovato M, Chaoul N, Ibrahim HM, Richard Y. B-Cell-Activating Factor and the B-Cell Compartment in HIV/SIV Infection. Front Immunol 2017; 8:1338. [PMID: 29163465 PMCID: PMC5663724 DOI: 10.3389/fimmu.2017.01338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/03/2017] [Indexed: 12/12/2022] Open
Abstract
With the goal to design effective HIV vaccines, intensive studies focused on broadly neutralizing antibodies, which arise in a fraction of HIV-infected people. Apart from identifying new vulnerability sites in the viral envelope proteins, these studies have shown that a fraction of these antibodies are produced by self/poly-reactive B-cells. These findings prompted us to revisit the B-cell differentiation and selection process during HIV/SIV infection and to consider B-cells as active players possibly shaping the helper T-cell program within germinal centers (GCs). In this context, we paid a particular attention to B-cell-activating factor (BAFF), a key cytokine in B-cell development and immune response that is overproduced during HIV/SIV infection. As it does in autoimmune diseases, BAFF excess might contribute to the abnormal rescue of self-reactive B-cells at several checkpoints of the B-cell development and impair memory B-cell generation and functions. In this review, we first point out what is known about the functions of BAFF/a proliferation-inducing ligand and their receptors [B-cell maturation, transmembrane activator and CAML interactor (TACI), and BAFF-R], in physiological and pathophysiological settings, in mice and humans. In particular, we highlight recent results on the previously underappreciated regulatory functions of TACI and on the highly regulated production of soluble TACI and BAFF-R that act as decoy receptors. In light of recent data on BAFF, TACI, and BAFF-R, we then revisit the altered phenotypes and functions of B-cell subsets during the acute and chronic phase of HIV/SIV infection. Given the atypical phenotype and reduced functions of memory B-cells in HIV/SIV infection, we particularly discuss the GC reaction, a key checkpoint where self-reactive B-cells are eliminated and pathogen-specific memory B-cells and plasmablasts/cells are generated in physiological settings. Through its capacity to differentially bind and process BAFF-R and TACI on GC B-cells and possibly on follicular helper T-cells, BAFF appears as a key regulator of the physiological GC reaction. Its local excess during HIV/SIV infection could play a key role in B-cell dysregulations.
Collapse
Affiliation(s)
- Gwenoline Borhis
- INSERM u1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris-Descartes, Paris, France
| | - Maria Trovato
- INSERM u1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris-Descartes, Paris, France
| | - Nada Chaoul
- Commissariat à l’Energie Atomique, Institut des maladies Emergentes et Thérapies innovantes, Service d’Immuno-Virologie, Fontenay-aux Roses, France
| | - Hany M. Ibrahim
- INSERM u1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris-Descartes, Paris, France
| | - Yolande Richard
- INSERM u1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris-Descartes, Paris, France
| |
Collapse
|
18
|
Hahn M, Bürckert JP, Luttenberger CA, Klebow S, Hess M, Al-Maarri M, Vogt M, Reißig S, Hallek M, Wienecke-Baldacchino A, Buch T, Muller CP, Pallasch CP, Wunderlich FT, Waisman A, Hövelmeyer N. Aberrant splicing of the tumor suppressor CYLD promotes the development of chronic lymphocytic leukemia via sustained NF-κB signaling. Leukemia 2017; 32:72-82. [DOI: 10.1038/leu.2017.168] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/24/2017] [Accepted: 05/22/2017] [Indexed: 11/10/2022]
|
19
|
Manfroi B, McKee T, Mayol JF, Tabruyn S, Moret S, Villiers C, Righini C, Dyer M, Callanan M, Schneider P, Tzankov A, Matthes T, Sturm N, Huard B. CXCL-8/IL8 Produced by Diffuse Large B-cell Lymphomas Recruits Neutrophils Expressing a Proliferation-Inducing Ligand APRIL. Cancer Res 2016; 77:1097-1107. [PMID: 27923834 DOI: 10.1158/0008-5472.can-16-0786] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/04/2016] [Accepted: 11/09/2016] [Indexed: 11/16/2022]
Abstract
Tumor-infiltrating neutrophils have been implicated in malignant development and progression, but mechanisms are ill defined. Neutrophils produce a proliferation-inducing ligand APRIL/TNFSF13, a factor that promotes development of tumors from diverse origins, including diffuse large B-cell lymphoma (DLBCL). High APRIL expression in DLBCL correlates with reduced patient survival, but the pathway(s) dictating APRIL expression are not known. Here, we show that all blood neutrophils constitutively secrete APRIL, and inflammation-associated stimuli, such as TNF, further upregulate APRIL. In a significant fraction of DLBCL patients, tumor cells constitutively produced the ELC-CXC chemokine CXCL-8 (IL8), enabling them to recruit APRIL-producing blood neutrophils. CXCL-8 production in DLBCL was unrelated to the cell of origin, as APRIL-producing neutrophils infiltrated CXCL-8+ DLBCL from both germinal center (GC) and non-GC subtypes. Rather, CXCL-8 production implied events affecting DNA methylation and acetylation. Overall, our results showed that chemokine-mediated recruitment of neutrophils secreting the tumor-promoting factor APRIL mediates DLBCL progression. Cancer Res; 77(5); 1097-107. ©2016 AACR.
Collapse
Affiliation(s)
- Benoit Manfroi
- Albert Bonniot Institute, INSERM U1209/University Grenoble-Alpes, La Tronche, France
| | - Thomas McKee
- Clinical Pathology, University Hospital of Geneva, Geneva, Switzerland
| | | | | | - Sebastien Moret
- Department of Pathology-Immunology, Geneva University Medical Centre, Geneva, Switzerland
| | - Christian Villiers
- Albert Bonniot Institute, INSERM U1209/University Grenoble-Alpes, La Tronche, France
| | - Christian Righini
- Head and Neck Department, Grenoble University Hospital, La Tronche, France
| | - Martin Dyer
- Ernest and Helen Scott Hematological Research Institute, University of Leicester, Leicester, United Kingdom
| | - Mary Callanan
- Albert Bonniot Institute, INSERM U1209/University Grenoble-Alpes, La Tronche, France
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Alexandar Tzankov
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Thomas Matthes
- Hematology, University Hospital of Geneva, Geneva, Switzerland
| | - Nathalie Sturm
- Albert Bonniot Institute, INSERM U1209/University Grenoble-Alpes, La Tronche, France.,Department of Anatomy and Cytopathology, University Hospital of Grenoble, La Tronche, France
| | - Bertrand Huard
- Albert Bonniot Institute, INSERM U1209/University Grenoble-Alpes, La Tronche, France.
| |
Collapse
|
20
|
Hayakawa K, Formica AM, Brill-Dashoff J, Shinton SA, Ichikawa D, Zhou Y, Morse HC, Hardy RR. Early generated B1 B cells with restricted BCRs become chronic lymphocytic leukemia with continued c-Myc and low Bmf expression. J Exp Med 2016; 213:3007-3024. [PMID: 27899442 PMCID: PMC5154941 DOI: 10.1084/jem.20160712] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/01/2016] [Accepted: 10/21/2016] [Indexed: 01/22/2023] Open
Abstract
Hayakawa et al. show that distinctive B-lineage progression from B-1 development allows for generation of B1a cells with restricted BCRs and self-renewal capacity, both contributing to potential for CLL progression. In mice, generation of autoreactive CD5+ B cells occurs as a consequence of BCR signaling induced by (self)-ligand exposure from fetal/neonatal B-1 B cell development. A fraction of these cells self-renew and persist as a minor B1 B cell subset throughout life. Here, we show that transfer of early generated B1 B cells from Eμ-TCL1 transgenic mice resulted in chronic lymphocytic leukemia (CLL) with a biased repertoire, including stereotyped BCRs. Thus, B1 B cells bearing restricted BCRs can become CLL during aging. Increased anti-thymocyte/Thy-1 autoreactive (ATA) BCR cells in the B1 B cell subset by transgenic expression yielded spontaneous ATA B-CLL/lymphoma incidence, enhanced by TCL1 transgenesis. In contrast, ATA B-CLL did not develop from other B cell subsets, even when the identical ATA BCR was expressed on a Thy-1 low/null background. Thus, both a specific BCR and B1 B cell context were important for CLL progression. Neonatal B1 B cells and their CLL progeny in aged mice continued to express moderately up-regulated c-Myc and down-regulated proapoptotic Bmf, unlike most mature B cells in the adult. Thus, there is a genetic predisposition inherent in B-1 development generating restricted BCRs and self-renewal capacity, with both features contributing to potential for progression to CLL.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Zhou
- Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Herbert C Morse
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | | |
Collapse
|
21
|
Bernelot Moens SJ, van Leuven SI, Zheng KH, Havik SR, Versloot MV, van Duivenvoorde LM, Hahne M, Stroes ESG, Baeten DL, Hamers AAJ. Impact of the B Cell Growth Factor APRIL on the Qualitative and Immunological Characteristics of Atherosclerotic Plaques. PLoS One 2016; 11:e0164690. [PMID: 27820817 PMCID: PMC5098816 DOI: 10.1371/journal.pone.0164690] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/29/2016] [Indexed: 11/18/2022] Open
Abstract
Studies on the role of B lymphocytes in atherosclerosis development, have yielded contradictory results. Whereas B lymphocyte-deficiency aggravates atherosclerosis in mice; depletion of mature B lymphocytes reduces atherosclerosis. These observations led to the notion that distinct B lymphocyte subsets have different roles. B1a lymphocytes exert an atheroprotective effect, which has been attributed to secretion of IgM, which can be deposited in atherosclerotic lesions thereby reducing necrotic core formation. Tumor necrosis factor (TNF)-family member 'A Proliferation-Inducing Ligand' (APRIL, also known as TNFSF13) was previously shown to increase serum IgM levels in a murine model. In this study, we investigated the effect of APRIL overexpression on advanced lesion formation and composition, IgM production and B cell phenotype. We crossed APRIL transgenic (APRIL-Tg) mice with ApoE knockout (ApoE-/-) mice. After a 12-week Western Type Diet, ApoE-/-APRIL-Tg mice and ApoE-/- littermates showed similar increases in body weight and lipid levels. Histologic evaluation showed no differences in lesion size, stage or necrotic area. However, smooth muscle cell (α-actin stain) content was increased in ApoE-/-APRIL-Tg mice, implying more stable lesions. In addition, increases in both plaque IgM deposition and plasma IgM levels were found in ApoE-/-APRIL-Tg mice compared with ApoE-/- mice. Flow cytometry revealed a concomitant increase in peritoneal B1a lymphocytes in ApoE-/-APRIL-Tg mice. This study shows that ApoE-/-APRIL-Tg mice have increased oxLDL-specific serum IgM levels, potentially mediated via an increase in B1a lymphocytes. Although no differences in lesion size were found, transgenic ApoE-/-APRIL-Tg mice do show potential plaque stabilizing features in advanced atherosclerotic lesions.
Collapse
Affiliation(s)
| | - Sander I. van Leuven
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Academic Medical Center, Amsterdam, The Netherlands
| | - Kang H. Zheng
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Stefan R. Havik
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Miranda V. Versloot
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Leonie M. van Duivenvoorde
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Academic Medical Center, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - Michael Hahne
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Erik S. G. Stroes
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Dominique L. Baeten
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Academic Medical Center, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - Anouk A. J. Hamers
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Mansouri L, Papakonstantinou N, Ntoufa S, Stamatopoulos K, Rosenquist R. NF-κB activation in chronic lymphocytic leukemia: A point of convergence of external triggers and intrinsic lesions. Semin Cancer Biol 2016; 39:40-8. [PMID: 27491692 DOI: 10.1016/j.semcancer.2016.07.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 07/30/2016] [Indexed: 02/08/2023]
Abstract
The nuclear factor-κB (NF-κB) pathway is constitutively activated in chronic lymphocytic leukemia (CLL) patients, and hence plays a major role in disease development and evolution. In contrast to many other mature B-cell lymphomas, only a few recurrently mutated genes involved in canonical or non-canonical NF-κB activation have been identified in CLL (i.e. BIRC3, MYD88 and NFKBIE mutations) and often at a low frequency. On the other hand, CLL B cells seem 'addicted' to the tumor microenvironment for their survival and proliferation, which is primarily mediated by interaction through a number of cell surface receptors, e.g. the B-cell receptor (BcR), Toll-like receptors and CD40, that in turn activate downstream NF-κB. The importance of cell-extrinsic triggering for CLL pathophysiology was recently also highlighted by the clinical efficacy of novel drugs targeting microenvironmental interactions through the inhibition of BcR signaling. In other words, CLL can be considered a prototype disease for studying the intricate interplay between external triggers and intrinsic aberrations and their combined impact on disease evolution. In this review, we will discuss the current understanding of mechanisms underlying NF-κB deregulation in CLL, including micro-environmental, genetic and epigenetic events, and summarize data generated in murine models resembling human CLL. Finally, we will also discuss different strategies undertaken to intervene with the NF-κB pathway and its upstream mediators.
Collapse
Affiliation(s)
- Larry Mansouri
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nikos Papakonstantinou
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; Institute of Applied Biosciences, CERTH, Thessaloniki, Greece
| | - Stavroula Ntoufa
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; Institute of Applied Biosciences, CERTH, Thessaloniki, Greece
| | - Kostas Stamatopoulos
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; Institute of Applied Biosciences, CERTH, Thessaloniki, Greece
| | - Richard Rosenquist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
23
|
Hua C, Audo R, Yeremenko N, Baeten D, Hahne M, Combe B, Morel J, Daïen C. A proliferation inducing ligand (APRIL) promotes IL-10 production and regulatory functions of human B cells. J Autoimmun 2016; 73:64-72. [PMID: 27372914 DOI: 10.1016/j.jaut.2016.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 06/08/2016] [Accepted: 06/08/2016] [Indexed: 12/22/2022]
Abstract
B cells may have a negative regulatory role, mainly mediated by interleukin 10 (IL-10). We recently showed that regulatory B-cell functions are impaired in patients with rheumatoid arthritis (RA) and that mice transgenic for a proliferation-inducing ligand (APRIL) are protected against collagen-induced arthritis. We aimed to explore the effect of APRIL on human B-cell IL-10 production, in healthy subjects and in patients with RA. The IL-10 production of B-cell was greater with APRIL than with BLyS or control medium, in a dose dependent manner. TACI expression was greater in IL-10 producing B cells (B10) than non-IL-10-producing B cells whereas BAFF-R expression was lower. TNF-α and IFN-γ secretion of T-cells were decreased by APRIL-stimulated B cells. APRIL stimulated STAT3 and STAT3 inhibition decreased B10 cells. APRIL also promoted B10 cells in RA patients. In conclusion, APRIL but not BLyS promotes IL-10 production by CpG-activated B cells and enhances the regulatory role of B cells on T cells. B10 cells in RA patients are responsive to APRIL, which suggests a possible therapeutic application of APRIL to expand B10 cells. This could also explain the difference of clinical efficacy observed between belimumab and atacicept in RA.
Collapse
MESH Headings
- Adult
- Aged
- Antibodies, Monoclonal, Humanized/therapeutic use
- Arthritis, Rheumatoid/blood
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Autoimmunity/immunology
- B-Cell Activating Factor/antagonists & inhibitors
- B-Cell Activating Factor/metabolism
- B-Cell Activation Factor Receptor/metabolism
- B-Lymphocytes, Regulatory/drug effects
- B-Lymphocytes, Regulatory/immunology
- B-Lymphocytes, Regulatory/metabolism
- Cells, Cultured
- Female
- Humans
- Interferon-gamma/metabolism
- Interleukin-10/immunology
- Interleukin-10/metabolism
- Leukocytes, Mononuclear
- Lymphocyte Activation/drug effects
- Male
- Middle Aged
- Oligodeoxyribonucleotides/pharmacology
- Recombinant Fusion Proteins/therapeutic use
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- T-Lymphocytes/immunology
- Tumor Necrosis Factor Ligand Superfamily Member 13/antagonists & inhibitors
- Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Charlotte Hua
- Department of Rheumatology, Lapeyronie Hospital and Montpellier University, Montpellier, France; UMR5535, IGMM, CNRS, Montpellier, France
| | - Rachel Audo
- Department of Rheumatology, Lapeyronie Hospital and Montpellier University, Montpellier, France; UMR5535, IGMM, CNRS, Montpellier, France
| | - Nataliya Yeremenko
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dominique Baeten
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael Hahne
- UMR5535, IGMM, CNRS, Montpellier, France; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bernard Combe
- Department of Rheumatology, Lapeyronie Hospital and Montpellier University, Montpellier, France; UMR5535, IGMM, CNRS, Montpellier, France
| | - Jacques Morel
- Department of Rheumatology, Lapeyronie Hospital and Montpellier University, Montpellier, France; UMR5535, IGMM, CNRS, Montpellier, France
| | - Claire Daïen
- Department of Rheumatology, Lapeyronie Hospital and Montpellier University, Montpellier, France; UMR5535, IGMM, CNRS, Montpellier, France.
| |
Collapse
|
24
|
van Attekum M, Terpstra S, Reinen E, Kater AP, Eldering E. Macrophage-mediated chronic lymphocytic leukemia cell survival is independent of APRIL signaling. Cell Death Discov 2016; 2:16020. [PMID: 27551513 PMCID: PMC4979474 DOI: 10.1038/cddiscovery.2016.20] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/03/2016] [Indexed: 12/27/2022] Open
Abstract
Survival of chronic lymphocytic leukemia (CLL) cells is mainly driven by interactions within the lymph node (LN) microenvironment with bystander cells such as T cells or cells from the monocytic lineage. Although the survival effect by T cells is largely governed by the TNFR ligand family member CD40L, the exact mechanism of monocyte-derived cell-induced survival is not known. An important role has been attributed to the TNFR ligand, a proliferation-inducing ligand (APRIL), although the exact mechanism remained unclear. Since we detected that APRIL was expressed by CD68+ cells in CLL LN, we addressed its relevance in various aspects of CLL biology, using a novel APRIL overexpressing co-culture system, recombinant APRIL, and APRIL reporter cells. Unexpectedly, we found, that in these various systems, APRIL had no effect on survival of CLL cells, and activation of NF-κB was not enhanced on APRIL stimulation. Moreover, APRIL stity mulation did not affect CLL proliferation, neither as single stimulus nor in combination with known CLL proliferation stimuli. Furthermore, the survival effect conveyed by macrophages to CLL cells was not affected by transmembrane activator and CAML interactor-Fc, an APRIL decoy receptor. We conclude that the direct role ascribed to APRIL in CLL cell survival might be overestimated due to application of supraphysiological levels of recombinant APRIL.
Collapse
Affiliation(s)
- Mha van Attekum
- Academic Medical Center, Department of Hematology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Academic Medical Center, Department of Experimental Immunology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - S Terpstra
- Academic Medical Center, Department of Hematology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Academic Medical Center, Department of Experimental Immunology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - E Reinen
- Academic Medical Center, Department of Hematology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Academic Medical Center, Department of Experimental Immunology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - A P Kater
- Academic Medical Center, Department of Hematology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - E Eldering
- Academic Medical Center, Department of Experimental Immunology, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Pedersen GK, Ádori M, Karlsson Hedestam GB. NF-κB signaling in B-1 cell development. Ann N Y Acad Sci 2015; 1362:39-47. [PMID: 26096766 DOI: 10.1111/nyas.12800] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
NF-κB transcription factors play essential roles in hematopoiesis. In this review, we summarize the requirements of different components of the NF-κB pathway for B-1 cell development and maintenance. The B-1 cell developmental steps are also reviewed, with particular emphasis on stages where NF-κB signaling may be critical.
Collapse
Affiliation(s)
- Gabriel K Pedersen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Monika Ádori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
26
|
Dickinson GS, Akkoyunlu M, Bram RJ, Alugupalli KR. BAFF receptor and TACI in B-1b cell maintenance and antibacterial responses. Ann N Y Acad Sci 2015; 1362:57-67. [PMID: 25962322 DOI: 10.1111/nyas.12772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although evidence of the protective immunity conferred by B-1b cells (CD19(+) B220(+) IgM(hi) Mac1(+) CD5(-)) has been established, the mechanisms governing the maintenance and activation of B-1b cells following pathogen encounter remain unclear. B cell-activating factor (BAFF) and a proliferation-inducing ligand (APRIL) mediate their function in mature B cells through the BAFF receptor (BAFFR) and transmembrane activator and CAML interactor (TACI). BAFFR-deficient mice have lower numbers of B-1b cells, and this reduction is directly proportional to BAFFR levels. The generation of B-1b cells is also dependent on the strength of B cell receptor (BCR) signaling. Mice with impaired BCR signaling, such as X-linked immunodeficient (xid) mice, have B-1b cell deficiency, indicating that both BCR- and BAFFR-mediated signaling are critical for B-1b cell homeostasis. Borrelia hermsii induces expansion and persistence of B-1b cells in xid mice, and these B-1b cells provide a heightened protective response. Toll-like receptor (TLR)-mediated stimulation of xid B cells results in a significant increase in TACI expression and restoration of TACI-mediated functions. The activation of TLR signaling by B. hermsii and BCR/TLR costimulation-mediated upregulation of BAFFR and TACI on B-1b cells suggests that B-1b cell maintenance and function following bacterial exposure may depend on BAFFR- and TACI-mediated signaling. In fact, the loss of both BAFFR and TACI results in a greater impairment in anti-B. hermsii responses compared to deficiency of BAFFR or TACI alone.
Collapse
Affiliation(s)
- Gregory S Dickinson
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mustafa Akkoyunlu
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Richard J Bram
- Department of Pediatrics and Adolescent Medicine, College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Kishore R Alugupalli
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
27
|
Naradikian MS, Perate AR, Cancro MP. BAFF receptors and ligands create independent homeostatic niches for B cell subsets. Curr Opin Immunol 2015; 34:126-9. [PMID: 25836418 DOI: 10.1016/j.coi.2015.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 12/26/2022]
Abstract
The BAFF family of receptors and ligands controls B cell homeostasis and selection. Recent studies reveal distinct sources and roles for systemic versus locally produced BAFF. Moreover, the notion that differential BAFF receptor expression patterns establish independent homeostatic and selective niches has been strengthened. Finally, unique roles for BAFF family members in the regulation of antigen experienced and innate B cell subsets have been revealed. Herein, we overview current knowledge in these areas, emphasizing recent findings that inform these ideas.
Collapse
Affiliation(s)
- Martin S Naradikian
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States.
| | - Alison R Perate
- Department of Anesthesiology and Critical Care, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
28
|
García-Castro A, Zonca M, Florindo-Pinheiro D, Carvalho-Pinto CE, Cordero A, Gutiérrez del Burgo B, García-Grande A, Mañes S, Hahne M, González-Suárez E, Planelles L. APRIL promotes breast tumor growth and metastasis and is associated with aggressive basal breast cancer. Carcinogenesis 2015; 36:574-84. [DOI: 10.1093/carcin/bgv020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
29
|
Cogollo E, Cogollo E, Silva MA, Isenberg D. Profile of atacicept and its potential in the treatment of systemic lupus erythematosus. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:1331-9. [PMID: 25834391 PMCID: PMC4357613 DOI: 10.2147/dddt.s71276] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The importance of B cell activating factors in the generation of autoantibodies in patients with systemic lupus erythematosus (SLE) is now recognized. The two key factors, known as BAFF and APRIL, produced by a variety of cells including monocytes, dendritic cells and T cells, also help to regulate B cell maturation, function and survival. Biologic agents that block these factors have now been developed and tried out in large scale clinical trials in SLE patients. Benlysta which blocks BAFF has met some of its end points in clinical trials and is approved for use in patients with skin and joint disease who have failed conventional drugs. In contrast, clinical trials using atacicept which blocks both BAFF and APRIL have been more challenging to interpret. An early study in lupus nephritis was, mistakenly, abandoned due to serious infections thought to be linked to the biologic when in fact the dramatic fall in the immunoglobulin levels took place when the patients were given mycophenolate, prior to the introduction of the atacicept. Likewise the higher dose arm (150 mgm) of a flare prevention study was terminated prematurely when 2 deaths occurred. However, the mortality rate in this study was identical to that seen in the Benlysta studies and a post hoc analysis found a highly significant benefit for the 150mgm arm compared to the lower dose (75 mgm) and placebo arms. Other trials with both Benlysta and atacicept are on-going.
Collapse
Affiliation(s)
| | - Estafania Cogollo
- Department of Internal Medicine, Hospital Principe de Asturias, Alcala de Henares, Madrid, Spain
| | - Marta Amaral Silva
- Department of Internal Medicine, Hospital Distrital da Figueira da Foz, Coimbra, Portugal
| | - David Isenberg
- Centre for Rheumatology, Department of Medicine, University College London, London, UK
| |
Collapse
|
30
|
Abstract
Mouse models that recapitulate human malignancy are valuable tools for the elucidation of the underlying pathogenetic mechanisms and for preclinical studies. Several genetically engineered mouse models have been generated, either mimicking genetic aberrations or deregulated gene expression in chronic lymphocytic leukemia (CLL). The usefulness of such models in the study of the human disease may potentially be hampered by species-specific biological differences in the target cell of the oncogenic transformation. Specifically, do the genetic lesions or the deregulated expression of leukemia-associated genes faithfully recapitulate the spectrum of lymphoproliferations in humans? Do the CLL-like lymphoproliferations in the mouse have the phenotypic, histological, genetic, and clinical features of the human disease? Here we compare the various CLL mouse models with regard to disease phenotype, penetrance, and severity. We discuss similarities and differences of the murine lymphoproliferations compared with human CLL. We propose that the Eμ-TCL1 transgenic and 13q14-deletion models that have been comprehensively studied at the levels of leukemia phenotype, antigen-receptor repertoire, and disease course show close resemblance to the human disease. We conclude that modeling CLL-associated genetic dysregulations in mice can provide important insights into the molecular mechanisms of disease pathogenesis and generate valuable tools for the development of novel therapies.
Collapse
|
31
|
Figgett WA, Vincent FB, Saulep-Easton D, Mackay F. Roles of ligands from the TNF superfamily in B cell development, function, and regulation. Semin Immunol 2014; 26:191-202. [PMID: 24996229 DOI: 10.1016/j.smim.2014.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/09/2014] [Indexed: 01/01/2023]
Abstract
Most ligands from the tumour necrosis factor (TNF) superfamily play very important roles in the immune system, and particularly so in B lymphocyte biology. TNF ligands are essential to many aspects of normal B cell biology from development in the bone marrow to maturation in the periphery as well as for activation and differentiation into germinal centre, memory or plasma cells. TNF ligands also influence other aspects of B cell biology such as their ability to present antigens or regulate immune responses. Importantly, inadequate regulation of many TNF ligands is associated with B cell disorders including autoimmunity and cancers. As a result, inhibitors of a number of TNF ligands have been tested in the clinic, with some becoming very successful approved treatments alleviating B cell-mediated pathologies.
Collapse
Affiliation(s)
- William A Figgett
- Department of Immunology, Monash University, Central Clinical School, Alfred Medical Research and Education Precinct (AMREP), Commercial Road, Melbourne, Victoria 3004, Australia
| | - Fabien B Vincent
- Department of Immunology, Monash University, Central Clinical School, Alfred Medical Research and Education Precinct (AMREP), Commercial Road, Melbourne, Victoria 3004, Australia
| | - Damien Saulep-Easton
- Department of Immunology, Monash University, Central Clinical School, Alfred Medical Research and Education Precinct (AMREP), Commercial Road, Melbourne, Victoria 3004, Australia
| | - Fabienne Mackay
- Department of Immunology, Monash University, Central Clinical School, Alfred Medical Research and Education Precinct (AMREP), Commercial Road, Melbourne, Victoria 3004, Australia.
| |
Collapse
|
32
|
Liu XG, Hou M. Immune thrombocytopenia and B-cell-activating factor/a proliferation-inducing ligand. Semin Hematol 2014; 50 Suppl 1:S89-99. [PMID: 23664525 DOI: 10.1053/j.seminhematol.2013.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Primary immune thrombocytopenia (ITP) is an organ-specific autoimmune disorder characterized by autoantibody-mediated enhanced platelet destruction and dysmegakaryocytopoiesis. B cells have been demonstrated to play critical roles in the pathophysiology of ITP. B-cell-activating factor (BAFF) and a proliferation-inducing ligand (APRIL) are crucial cytokines supporting survival and differentiation of B cells, and dysregulation of BAFF/APRIL is involved in the pathogenesis of B-cell related autoimmune diseases including ITP. Currently ongoing clinical trials using BAFF and/or APRIL-blocking agents have yielded positive results in human systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), further confirming the pathological role of BAFF/APRIL in autoimmunity. This review will describe the function of BAFF/APRIL and address the feasibility of BAFF/APRIL inhibition in the management of ITP.
Collapse
Affiliation(s)
- Xin-guang Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, PR China
| | | |
Collapse
|
33
|
Chen SS, Chiorazzi N. Murine genetically engineered and human xenograft models of chronic lymphocytic leukemia. Semin Hematol 2014; 51:188-205. [PMID: 25048783 DOI: 10.1053/j.seminhematol.2014.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a genetically complex disease, with multiple factors having an impact on onset, progression, and response to therapy. Genetic differences/abnormalities have been found in hematopoietic stem cells from patients, as well as in B lymphocytes of individuals with monoclonal B-cell lymphocytosis who may develop the disease. Furthermore, after the onset of CLL, additional genetic alterations occur over time, often causing disease worsening and altering patient outcomes. Therefore, being able to genetically engineer mouse models that mimic CLL or at least certain aspects of the disease will help us understand disease mechanisms and improve treatments. This notwithstanding, because neither the genetic aberrations responsible for leukemogenesis and progression nor the promoting factors that support these are likely identical in character or influences for all patients, genetically engineered mouse models will only completely mimic CLL when all of these factors are precisely defined. In addition, multiple genetically engineered models may be required because of the heterogeneity in susceptibility genes among patients that can have an effect on genetic and environmental characteristics influencing disease development and outcome. For these reasons, we review the major murine genetically engineered and human xenograft models in use at the present time, aiming to report the advantages and disadvantages of each.
Collapse
Affiliation(s)
- Shih-Shih Chen
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York.
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York; Departments of Medicine and Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York.
| |
Collapse
|
34
|
Park KI, Park HS, Kim MK, Hong GE, Nagappan A, Lee HJ, Yumnam S, Lee WS, Won CK, Shin SC, Kim GS. Flavonoids identified from Korean Citrus aurantium L. inhibit Non-Small Cell Lung Cancer growth in vivo and in vitro. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.01.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
35
|
Sindhava VJ, Scholz JL, Stohl W, Cancro MP. APRIL mediates peritoneal B-1 cell homeostasis. Immunol Lett 2014; 160:120-7. [PMID: 24512739 DOI: 10.1016/j.imlet.2014.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 01/31/2014] [Indexed: 01/13/2023]
Abstract
BLyS (B lymphocyte stimulator) family cytokines and receptors play key roles in B-2 cell maturation and survival, but their importance for B-1 cells remains less clear. Here we use knockout mice to show that APRIL (A proliferation-inducing ligand), but not BLyS, plays a role in peritoneal B-1 cell maintenance. APRIL likely exerts its effects on peritoneal B-1 cells through binding to HSPG (heparan sulfate proteoglycans) rather than to the TACI (transmembrane activator and cyclophilin ligand interactor) receptor. Finally, we show that peritoneal macrophages express high levels of APRIL message, and are a likely local source of the cytokine in this anatomic locale.
Collapse
Affiliation(s)
- Vishal J Sindhava
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082, United States
| | - Jean L Scholz
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082, United States
| | - William Stohl
- Division of Rheumatology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, United States
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082, United States.
| |
Collapse
|
36
|
Qian Z, Qingshan C, Chun J, Huijun Z, Feng L, Qiang W, Qiang X, Min Z. High expression of TNFSF13 in tumor cells and fibroblasts is associated with poor prognosis in non-small cell lung cancer. Am J Clin Pathol 2014; 141:226-33. [PMID: 24436270 DOI: 10.1309/ajcp4jp8bzomheaw] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES To examine high expression of tumor necrosis factor ligand superfamily member 13 (TNFSF13), which is correlated with several malignancies. METHODS TNFSF13 messenger RNA expression in tumor cells and fibroblasts in a cohort of patients with non-small cell lung cancer (NSCLC) was analyzed by quantitative real-time polymerase chain reaction and immunohistochemistry using a tissue microarray. RESULTS TNFSF13 expression was significantly higher in lung adenocarcinomas compared with squamous cell carcinomas (P = .022). High TNFSF13 expression in NSCLC stroma was related with low differentiation (P = .045) and sex (male > female, P = .005). Cox proportional hazards regression univariate and multivariable analysis revealed TNFSF13 expression in NSCLC tumor cells (P = .007) or fibroblasts (P = .027) as an independent prognostic factor in the 5-year overall survival rate. CONCLUSIONS Our findings indicate TNFSF13 is a prognostic factor in NSCLC and suggest TNFSF13 may be a novel therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Zhao Qian
- Hospital of Integrated Traditional Chinese and Western Medicine of Zhejiang Province, Tuberculosis Diagnosis and Treatment Center of Zhejiang Province, China
| | - Cai Qingshan
- Hospital of Integrated Traditional Chinese and Western Medicine of Zhejiang Province, Tuberculosis Diagnosis and Treatment Center of Zhejiang Province, China
| | - Jin Chun
- Hospital of Integrated Traditional Chinese and Western Medicine of Zhejiang Province, Tuberculosis Diagnosis and Treatment Center of Zhejiang Province, China
| | - Zhu Huijun
- Department of Pathology, Nantong University Affiliated Hospital, Nantong, Jiangsu Province, China
| | - Li Feng
- Hospital of Integrated Traditional Chinese and Western Medicine of Zhejiang Province, Tuberculosis Diagnosis and Treatment Center of Zhejiang Province, China
| | - Wei Qiang
- Hospital of Integrated Traditional Chinese and Western Medicine of Zhejiang Province, Tuberculosis Diagnosis and Treatment Center of Zhejiang Province, China
| | - Xia Qiang
- Hospital of Integrated Traditional Chinese and Western Medicine of Zhejiang Province, Tuberculosis Diagnosis and Treatment Center of Zhejiang Province, China
| | - Zhu Min
- Hospital of Integrated Traditional Chinese and Western Medicine of Zhejiang Province, Tuberculosis Diagnosis and Treatment Center of Zhejiang Province, China
| |
Collapse
|
37
|
Liu X, Ji XM, Du XN, Zong XC, Liang DF, Ma L, Wu HT, Zhang SQ. Molecular cloning, expression, bioinformatics analysis, and bioactivity of TNFSF13 (APRIL) in the South African clawed frog (Xenopus laevi): a new model to study immunological diseases. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 17:384-92. [PMID: 23829578 DOI: 10.1089/omi.2013.0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
TNFSF13 is one of the tumor necrosis factor (TNF) superfamily members that plays important roles in immune homeostasis and proliferation or apoptosis of certain tumor cell lines. This report describes the development of Xenopus laevis TNFSF13 as a model to study its important role in relation to immunological diseases. In brief, TNFSF13 from Xenopus laevis (designated XlTNFSF13) was first amplified by RT-PCR and rapid amplification of cDNA end (RACE) techniques. Bioinformatics analyses revealed the gene structure, three-dimensional structure, and evolutionary relationships. Real-time quantitative PCR (QPCR) analysis identified the tissue distribution of XlTNFSF13 in the major visceral organs. The recombinant plasmid SUMO-XsTNFSF13 was expressed in E. coli Rosseta (DE3). Subsequently, the recombinant protein purified through Ni-NTA affinity chromatography was analyzed by SDS-PAGE and confirmed by Western blot analysis. Laser scanning confocal microscopy analysis revealed the binding activity of pSUMO-XsTNFSF13 to the surface of B cells. WST-8 assays further indicated that purified XsTNFSF13 could cause the survival/proliferation of B cells. In conclusion, we underscore that as a model organism for human disease, Xenopus laevis has been widely used in molecular biology research. Yet while TNFSF13 research in mammalian, fish (e.g., zebrafish), mouse, and human is widely available, studies in the amphibian species are limited. The latter area of OMICS and integrative biology scholarship is directly informed with the present study, with a view to implications for the future study of human immunological diseases.
Collapse
Affiliation(s)
- Xia Liu
- Molecular and Medical Biotechnology and Aquatic Crustacean Diseases, Jiangsu Province Key Laboratory for Life Sciences College, Nanjing Normal University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Lian M, Fang J, Han D, Ma H, Wang R, Yang F. The up-regulation expression of APRIL is a marker of glottic malignant disease. Eur Arch Otorhinolaryngol 2013; 271:2781-7. [PMID: 24276470 DOI: 10.1007/s00405-013-2826-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 11/13/2013] [Indexed: 12/11/2022]
Abstract
A proliferation-inducing ligand (APRIL) is a member of the tumor necrosis factor (TNF) family. Recent studies have implied that APRIL is closely related to solid tumors and hematological tumors, indicating that APRIL could be a potential marker to diagnose glottic malignant disease. The purpose of this study was to investigate the difference of the APRIL mRNA and protein expression in glottic malignant disease, corresponding adjacent non-neoplastic tissues and glottic benign lesion, and detect the influence of different clinical parameter in glottic carcinoma. The APRIL mRNA expression in the glottic carcinoma, corresponding adjacent non-neoplastic tissues and glottic polypus tissue samples from patients was detected by qRT-PCR. Moreover, we studied the APRIL protein expression in pathological sections of other patients with glottic carcinoma or glottic polypus using immunohistochemistry. All the patients with different clinical parameter underwent surgery. Using qRT-PCR, we revealed an up-regulation of APRIL mRNA expression in glottic carcinoma as compared to glottic polypus and corresponding adjacent non-neoplastic tissues, but no significant difference with T stages, histopathological differentiation grade or lymph node metastasis in glottic carcinoma. The result of the immunohistochemistry was the same, with no influence of different clinical parameter in glottic carcinoma. These results strongly suggest that APRIL could be a potential diagnosed marker to distinguish glottic malignant disease from glottic benign lesion, and it may play an important role in the development of glottic malignant disease.
Collapse
Affiliation(s)
- Meng Lian
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China,
| | | | | | | | | | | |
Collapse
|
39
|
Chronic lymphocytic leukemia disease progression is accelerated by APRIL-TACI interaction in the TCL1 transgenic mouse model. Blood 2013; 122:3960-3. [PMID: 24100449 DOI: 10.1182/blood-2013-04-497693] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although in vitro studies pointed to the tumor necrosis factor family member APRIL (a proliferation-inducing ligand) in mediating survival of chronic lymphocytic leukemia (CLL) cells, clear evidence for a role in leukemogenesis and progression in CLL is lacking. APRIL significantly prolonged in vitro survival of CD5(+)B220(dull) leukemic cells derived from the murine Eμ-TCL1-Tg (TCL1-Tg [transgenic]) model for CLL. APRIL-TCL1 double-Tg mice showed a significantly earlier onset of leukemia and disruption of splenic architecture, and survival was significantly reduced. Interestingly, clonal evolution of CD5(+)B220(dull) cells (judged by BCR clonality) did not seem to be accelerated by APRIL; both mouse strains were oligoclonal at 4 months. Although APRIL binds different receptors, APRIL-mediated leukemic cell survival depended on tumor necrosis factor receptor superfamily member 13B (TACI) ligation. These findings indicate that APRIL has an important role in CLL and that the APRIL-TACI interaction might be a selective novel therapeutic target for human CLL.
Collapse
|
40
|
Evaluation of TNF superfamily molecules in multiple myeloma patients: Correlation with biological and clinical features. Leuk Res 2013; 37:1089-93. [DOI: 10.1016/j.leukres.2013.05.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 04/13/2013] [Accepted: 05/18/2013] [Indexed: 01/14/2023]
|
41
|
Hu K, Luo S, Tong L, Huang X, Jin W, Huang W, Du T, Yan Y, He S, Griffin GE, Shattock RJ, Hu Q. CCL19 and CCL28 Augment Mucosal and Systemic Immune Responses to HIV-1 gp140 by Mobilizing Responsive Immunocytes into Secondary Lymph Nodes and Mucosal Tissue. THE JOURNAL OF IMMUNOLOGY 2013; 191:1935-47. [DOI: 10.4049/jimmunol.1300120] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Kil LP, Hendriks RW. Aberrant B cell selection and activation in systemic lupus erythematosus. Int Rev Immunol 2013; 32:445-70. [PMID: 23768157 DOI: 10.3109/08830185.2013.786712] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The detrimental role of B lymphocytes in systemic lupus erythematosus (SLE) is evident from the high levels of pathogenic antinuclear autoantibodies (ANAs) found in SLE patients. Affirming this causative role, additional antibody-independent roles of B cells in SLE were appreciated. In recent years, many defects in B cell selection and activation have been identified in murine lupus models and SLE patients that explain the increased emergence and persistence of autoreactive B cells and their lowered activation threshold. Therefore, clinical trials with B cell depletion regimens in SLE patients were initiated but disappointingly the efficacy of B cell depleting agents proved to be limited. Remarkably however, a major breakthrough in SLE therapy was accomplished by blocking B cell survival factors rather then eliminating B cells. This surprising finding indicates that although SLE is a B cell-driven disease, the amplifying crosstalk between B cells and other cells of the immune system likely evokes the observed tolerance breakdown in B cells. Moreover, this implies that intelligent interception of pro-inflammatory loops rather then selectively silencing B cells will be key to the development of new SLE therapies. In this review, we will not only highlight the intrinsic B cell defects that facilitate the persistence of autoreactive B cells and their activation, but in addition we will focus on B cell extrinsic signals derived from T cells and innate immune cells that lower the activation threshold for B cells.
Collapse
Affiliation(s)
- Laurens P Kil
- Department of Pulmonary Medicine, Erasmus MC, NL 3000 CA Rotterdam, The Netherlands
| | | |
Collapse
|
43
|
Liu J, Chen G, Feng L, Zhang W, Pelicano H, Wang F, Ogasawara MA, Lu W, Amin HM, Croce CM, Keating MJ, Huang P. Loss of p53 and altered miR15-a/16-1MCL-1 pathway in CLL: insights from TCL1-Tg:p53(-/-) mouse model and primary human leukemia cells. Leukemia 2013; 28:118-28. [PMID: 23608884 DOI: 10.1038/leu.2013.125] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 03/28/2013] [Accepted: 04/02/2013] [Indexed: 01/13/2023]
Abstract
Chronic lymphocytic leukemia (CLL) patients with deletion of chromosome 17p, where the p53 gene is located, often develop more aggressive disease with poor clinical outcomes. To investigate the underlying mechanisms for the highly malignant phenotype of 17p- CLL and to facilitate in vivo evaluation of potential drugs against CLL with p53 deletion, we have generated a mouse model with TCL1-Tg:p53(-/-) genotype. These mice develop B-cell leukemia at an early age with an early appearance of CD5+ / IgM+ B cells in the peritoneal cavity and spleen, and exhibit an aggressive path of disease development and drug resistance phenotype similar to human CLL with 17p deletion. The TCL1-Tg:p53(-/-) leukemia cells exhibit higher survival capacity and are more drug resistant than the leukemia cells from TCL1-Tg:p53wt mice. Analysis of microRNA expression reveals that p53 deletion resulted in a decrease of miR-15a and miR-16-1, leading to an elevated expression of Mcl-1. Primary leukemia cells from CLL patients with 17p deletion also show a decrease in miR-15a/miR-16-1 and an increase in Mcl-1. Our study suggests that the p53/miR15a/16-1/Mcl-1 axis may be an important pathway that regulates Mcl-1 expression and contributes to drug resistance and aggressive phenotype in CLL cells with loss of p53.
Collapse
Affiliation(s)
- J Liu
- 1] Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA [2] The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - G Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Feng
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W Zhang
- 1] Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA [2] The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - H Pelicano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - F Wang
- 1] Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA [2] State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - M A Ogasawara
- 1] Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA [2] The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - W Lu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H M Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - C M Croce
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, Columbus, OH, USA
| | - M J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Huang
- 1] Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA [2] The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA [3] State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
44
|
Molecular structure, expression pattern and functional characterisation of APRIL in an aquatic mammal. Int Immunopharmacol 2013; 16:171-7. [PMID: 23597427 DOI: 10.1016/j.intimp.2013.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/25/2013] [Accepted: 03/25/2013] [Indexed: 11/22/2022]
Abstract
The Yangtze finless porpoise (Neophocaena phocaenoides asiaorientalis) is listed on the First Order of Protected Animals in China and was identified as an endangered species by the International Union for Conservation of Nature and Natural Resources (IUCN) in 2011. A proliferation inducing ligand (APRIL), belonging to the tumour necrosis factor (TNF) family, is critical for immune regulation. In this study, we identified a finless porpoise APRIL cDNA (fAPRIL) by RACE (rapid amplification of cDNA ends) strategies, from the Yangtze finless porpoise (fAPRIL). This gene encodes 247 amino acids containing a predicted transmembrane domain and a TNF domain, and phylogenetic analysis of the APRIL sequence indicated that finless porpoises are closely related to Artiodactyla. In vitro, soluble fAPRIL (fsAPRIL) not only promoted the survival/proliferation of the mouse spleen lymphocytes, but also bound specifically to the surface of the B cells. The results of this study contribute to our understanding of the immune mechanisms in the finless porpoise and other aquatic mammals.
Collapse
|
45
|
Sindhava VJ, Scholz JL, Cancro MP. Roles for BLyS family members in meeting the distinct homeostatic demands of innate and adaptive B cells. Front Immunol 2013; 4:37. [PMID: 23443938 PMCID: PMC3580333 DOI: 10.3389/fimmu.2013.00037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/31/2013] [Indexed: 11/13/2022] Open
Abstract
B-1 and B-2 B cell populations have different progenitors, receptor diversity, anatomic location, and functions – suggesting vastly differing requisites for homeostatic regulation. There is evidence that the B lymphocyte stimulator (BLyS) family of cytokines and receptors, key factors in the homeostatic regulation of B-2 B cell subsets, is also a major player in the B-1 compartment. Here we review the development and differentiation of these two primary B cell lineages and their immune functions. We discuss evidence that BLyS or a proliferation-inducing ligand (APRIL) availability in different anatomic sites, coupled with signature BLyS receptor expression patterns on different B cell subsets, may be important for homeostatic regulation of B-1 as well as B-2 populations. Finally, we extend our working model of B cell homeostasis to integrate B-1s.
Collapse
Affiliation(s)
- Vishal J Sindhava
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | | | | |
Collapse
|
46
|
Tecchio C, Scapini P, Pizzolo G, Cassatella MA. On the cytokines produced by human neutrophils in tumors. Semin Cancer Biol 2013; 23:159-70. [PMID: 23410636 DOI: 10.1016/j.semcancer.2013.02.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/21/2013] [Accepted: 02/01/2013] [Indexed: 12/23/2022]
Abstract
Although traditionally viewed as short-lived innate immunity cells, only playing a crucial role in host defense toward infections, neutrophils have recently become subject of a new wave of research in diverse areas including in tumors. Indeed, increasing experimental evidence indicate that neutrophils may directly or indirectly influence the tumor fate through the release of a wide array of molecules able to exert either pro-tumor or anti-tumor functions depending on the microenvironment milieu, including cytokines. This review therefore attempts to uncover the role that neutrophils play during the different steps of tumor development (from promotion to progression), as well as in anti-tumor responses, via cytokine production.
Collapse
Affiliation(s)
- Cristina Tecchio
- Department of Medicine, Section of Hematology, School of Medicine, University of Verona, Verona, Italy.
| | | | | | | |
Collapse
|
47
|
López De Padilla CM, McNallan KT, Crowson CS, Bilgic H, Bram RJ, Hein MS, Ytterberg SR, Amin S, Peterson EJ, Baechler EC, Reed AM. BAFF expression correlates with idiopathic inflammatory myopathy disease activity measures and autoantibodies. J Rheumatol 2013; 40:294-302. [PMID: 23322463 DOI: 10.3899/jrheum.120555] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To investigate B cell survival cytokine messenger RNA (mRNA) levels as biomarkers of idiopathic inflammatory myopathies (IIM). METHODS We measured and compared mRNA levels of B cell survival cytokines by quantitative real-time polymerase chain reaction in 98 patients with IIM, 38 patients with systemic lupus erythematosus, and 21 healthy controls. The cytokines were B cell-activating factor belonging to the tumor necrosis factor family (BAFF); ΔBAFF; and a proliferation-inducing ligand (APRIL); and their receptors BAFF-R, transmembrane activator and calcium modulator and cyclophilin ligand interactor, and B cell maturation antigen (BCMA). We also identified autoantibodies, including anti-Sm, anti-RNP, anti-SSA/Ro, anti-SSB/La, anti-topoisomerase 1, anti-hystidyl-tRNA synthetase, anti-ribosomal P, and anti-chromatin. Clinical disease activity was assessed by the International Myositis Assessment and Clinical Studies core set tool. We examined correlation of mRNA with disease activity, medication use, and autoantibodies. RESULTS We found a positive correlation of BAFF and ΔBAFF expression with 3 disease activity measures, with ΔBAFF having a stronger correlation. Similarly, anti-SSA/Ro-52 and/or anti-SSA/Ro-60 had a strong positive correlation with mRNA levels of BAFF and ΔBAFF, and with relative ratios of BAFF/APRIL and BCMA/BAFF-R. CONCLUSION These findings highlight the potential importance of BAFF, ΔBAFF, and BAFF-R in the pathogenesis of IIM, and suggest an important role in the assessment of disease activity.
Collapse
|
48
|
Balatti V, Pekarky Y, Rizzotto L, Croce CM. miR deregulation in CLL. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 792:309-25. [PMID: 24014303 DOI: 10.1007/978-1-4614-8051-8_14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
B-cell chronic lymphocytic leukemia (CLL) is the most frequent human leukemia and it occurs in two forms, indolent and aggressive. Although clinical features and genetic abnormalities in CLL are well documented, molecular details underlying the disease are still under investigation.MicroRNAs are small noncoding RNAs involved in a variety of cellular processes and expressed in a tissue-specific manner. MicroRNAs have the ability to regulate gene expression. In physiological conditions, microRNAs act as gene expression controllers by targeting the mRNA or inhibiting its translation. Their deregulation can lead to an alteration of the expression level of many genes which can induce the development or promote the progression of tumors.In CLL, microRNAs can function as oncogenes, tumor suppressor genes, and/or can be used as markers for disease onset/progression. For example, in indolent CLL, 13q14 deletions targeting miR-15/16 initiate the disease, while in aggressive CLL miR-181 targets the critical TCL1 oncogene and can also be used as a progression marker.Here we discuss the foremost findings about the role of microRNAs in CLL pathogenesis, and how this knowledge can be used to identify new approaches to treat CLL.
Collapse
Affiliation(s)
- Veronica Balatti
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center and the Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | | | | | | |
Collapse
|
49
|
Fernandez L, Salinas GF, Rocha C, Carvalho-Pinto CE, Yeremenko N, Papon L, Medema JP, Combe B, Morel J, Baeten D, Hahne M. The TNF family member APRIL dampens collagen-induced arthritis. Ann Rheum Dis 2012. [DOI: 10.1136/annrheumdis-2012-202382] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Cui JW, Li Y, Wang C, Yao C, Li W. Knockdown of a proliferation-inducing ligand (PRIL) suppresses the proliferation of gastric cancer cells. Asian Pac J Cancer Prev 2012; 13:633-6. [PMID: 22524837 DOI: 10.7314/apjcp.2012.13.2.633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE PRIL (proliferation-inducing ligand) is a newly identified member of the tumor necrosis factor (TNF) family and modulates death ligand-induced apoptosis. Here, we investigated the effect of PRIL on cellular characteristics relating to tumor progression in human gastric cancer. METHOD Recombinant lentivirus containing APRIL siRNA was constructed and then infected MGC803 and SGC7901 gastric cancer cells. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] colony formation and cell cycle analysis were used to study the effect of APRIL knockdown on gastric cancer cell proliferation. RESULTS PRIL expression in lentivirus infected cells was significantly reduced as evidenced by quantitative real-time PCR. Cell viability and colony formation of MGC803 and SGC7901 cells were significantly hampered in PRIL knock-down cells. Moreover, the cell cycle was arrested at G2/M phase, elucidating the mechanism underlying the inhibitory effect of siRNA on cell proliferation. CONCLUSIONS Our study indicated that PRIL functions in promoting cell growth, and lentivirus-mediated PRIL gene knockdown might be a promising strategy in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Jiu-Wei Cui
- Cancer Center of the First Hospital of Jilin University, Changchun, China
| | | | | | | | | |
Collapse
|