1
|
Meng Q, Wei K, Shan Y. E3 ubiquitin ligase gene BIRC3 modulates TNF-induced cell death pathways and promotes aberrant proliferation in rheumatoid arthritis fibroblast-like synoviocytes. Front Immunol 2024; 15:1433898. [PMID: 39301019 PMCID: PMC11410595 DOI: 10.3389/fimmu.2024.1433898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by synovitis, degradation of articular cartilage, and bone destruction. Fibroblast-like synoviocytes (FLS) play a central role in RA, producing a significant amount of inflammatory mediators such as tumor necrosis factor(TNF)-α and IL-6, which promote inflammatory responses within the joints. Moreover, FLS exhibit tumor-like behavior, including aggressive proliferation and enhanced anti-apoptotic capabilities, which collectively drive chronic inflammation and joint damage in RA. TNF is a major pro-inflammatory cytokine that mediates a series of signaling pathways through its receptor TNFR1, including NF-κB and MAPK pathways, which are crucial for inflammation and cell survival in RA. The abnormal proliferation and anti-apoptotic characteristics of FLS in RA may result from dysregulation in TNF-mediated cell death pathways such as apoptosis and necroptosis. Ubiquitination is a critical post-translational modification regulating these signaling pathways. E3 ubiquitin ligases, such as cIAP1/2, promote the ubiquitination and degradation of target proteins within the TNF receptor complex, modulating the signaling proteins. The high expression of the BIRC3 gene and its encoded protein, cIAP2, in RA regulates various cellular processes, including apoptosis, inflammatory signaling, immune response, MAPK signaling, and cell proliferation, thereby promoting FLS survival and inflammatory responses. Inhibiting BIRC3 expression can reduce the secretion of inflammatory cytokines by RA-FLS under both basal and inflammatory conditions and inhibit their proliferation. Although BIRC3 inhibitors show potential in RA treatment, their possible side effects must be carefully considered. Further research into the specific mechanisms of BIRC3, including its roles in cell signaling, apoptosis regulation, and immune evasion, is crucial for identifying new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Qingliang Meng
- Department of Rheumatism, Henan Province Hospital of Traditional Chinese Medicine (TCM), Zhengzhou, Henan, China
| | - Kai Wei
- Department of Rheumatology and Immunology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shan
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Jetton D, Muendlein HI, Connolly WM, Magri Z, Smirnova I, Batorsky R, Mecsas J, Degterev A, Poltorak A. Non-canonical autophosphorylation of RIPK1 drives timely pyroptosis to control Yersinia infection. Cell Rep 2024; 43:114641. [PMID: 39154339 PMCID: PMC11465231 DOI: 10.1016/j.celrep.2024.114641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/17/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024] Open
Abstract
Caspase-8-dependent pyroptosis has been shown to mediate host protection from Yersinia infection. For this mode of cell death, the kinase activity of receptor-interacting protein kinase 1 (RIPK1) is required, but the autophosphorylation sites required to drive caspase-8 activation have not been determined. Here, we show that non-canonical autophosphorylation of RIPK1 at threonine 169 (T169) is necessary for caspase-8-mediated pyroptosis. Mice with alanine in the T169 position are highly susceptible to Yersinia dissemination. Mechanistically, the delayed formation of a complex containing RIPK1, ZBP1, Fas-associated protein with death domain (FADD), and caspase-8 abrogates caspase-8 maturation in T169A mice and leads to the eventual activation of RIPK3-dependent necroptosis in vivo; however, this is insufficient to protect the host, suggesting that timely pyroptosis during early response is specifically required to control infection. These results position RIPK1 T169 phosphorylation as a driver of pyroptotic cell death critical for host defense.
Collapse
Affiliation(s)
- David Jetton
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Hayley I Muendlein
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Wilson M Connolly
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Zoie Magri
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Irina Smirnova
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Rebecca Batorsky
- Data Intensive Studies Center, Tufts University, Medford, MA 02155, USA
| | - Joan Mecsas
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Alexei Degterev
- Department of Cell, Molecular & Developmental Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Alexander Poltorak
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA; Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
3
|
Guedes JP, Boyer JB, Elurbide J, Carte B, Redeker V, Sago L, Meinnel T, Côrte-Real M, Giglione C, Aldabe R. NatB Protects Procaspase-8 from UBR4-Mediated Degradation and Is Required for Full Induction of the Extrinsic Apoptosis Pathway. Mol Cell Biol 2024; 44:358-371. [PMID: 39099191 PMCID: PMC11376409 DOI: 10.1080/10985549.2024.2382453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/06/2024] Open
Abstract
N-terminal acetyltransferase B (NatB) is a major contributor to the N-terminal acetylome and is implicated in several key cellular processes including apoptosis and proteostasis. However, the molecular mechanisms linking NatB-mediated N-terminal acetylation to apoptosis and its relationship with protein homeostasis remain elusive. In this study, we generated mouse embryonic fibroblasts (MEFs) with an inactivated catalytic subunit of NatB (Naa20-/-) to investigate the impact of NatB deficiency on apoptosis regulation. Through quantitative N-terminomics, label-free quantification, and targeted proteomics, we demonstrated that NatB does not influence the proteostasis of all its substrates. Instead, our focus on putative NatB-dependent apoptotic factors revealed that NatB serves as a protective shield against UBR4 and UBR1 Arg/N-recognin-mediated degradation. Notably, Naa20-/- MEFs exhibited reduced responsiveness to an extrinsic pro-apoptotic stimulus, a phenotype that was partially reversible upon UBR4 Arg/N-recognin silencing and consequent inhibition of procaspase-8 degradation. Collectively, our results shed light on how the interplay between NatB-mediated acetylation and the Arg/N-degron pathway appears to impact apoptosis regulation, providing new perspectives in the field including in therapeutic interventions.
Collapse
Affiliation(s)
- Joana P Guedes
- CBMA/UM - Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
- CIMA/UNAV - Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Jean Baptiste Boyer
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Jasmine Elurbide
- CIMA/UNAV - Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Beatriz Carte
- CIMA/UNAV - Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Virginie Redeker
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Laila Sago
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Thierry Meinnel
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Manuela Côrte-Real
- CBMA/UM - Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Rafael Aldabe
- CIMA/UNAV - Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
4
|
Renz PF, Ghoshdastider U, Baghai Sain S, Valdivia-Francia F, Khandekar A, Ormiston M, Bernasconi M, Duré C, Kretz JA, Lee M, Hyams K, Forny M, Pohly M, Ficht X, Ellis SJ, Moor AE, Sendoel A. In vivo single-cell CRISPR uncovers distinct TNF programmes in tumour evolution. Nature 2024; 632:419-428. [PMID: 39020166 PMCID: PMC11306103 DOI: 10.1038/s41586-024-07663-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/04/2024] [Indexed: 07/19/2024]
Abstract
The tumour evolution model posits that malignant transformation is preceded by randomly distributed driver mutations in cancer genes, which cause clonal expansions in phenotypically normal tissues. Although clonal expansions can remodel entire tissues1-3, the mechanisms that result in only a small number of clones transforming into malignant tumours remain unknown. Here we develop an in vivo single-cell CRISPR strategy to systematically investigate tissue-wide clonal dynamics of the 150 most frequently mutated squamous cell carcinoma genes. We couple ultrasound-guided in utero lentiviral microinjections, single-cell RNA sequencing and guide capture to longitudinally monitor clonal expansions and document their underlying gene programmes at single-cell transcriptomic resolution. We uncover a tumour necrosis factor (TNF) signalling module, which is dependent on TNF receptor 1 and involving macrophages, that acts as a generalizable driver of clonal expansions in epithelial tissues. Conversely, during tumorigenesis, the TNF signalling module is downregulated. Instead, we identify a subpopulation of invasive cancer cells that switch to an autocrine TNF gene programme associated with epithelial-mesenchymal transition. Finally, we provide in vivo evidence that the autocrine TNF gene programme is sufficient to mediate invasive properties and show that the TNF signature correlates with shorter overall survival of patients with squamous cell carcinoma. Collectively, our study demonstrates the power of applying in vivo single-cell CRISPR screening to mammalian tissues, unveils distinct TNF programmes in tumour evolution and highlights the importance of understanding the relationship between clonal expansions in epithelia and tumorigenesis.
Collapse
Affiliation(s)
- Peter F Renz
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
| | - Umesh Ghoshdastider
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
| | - Simona Baghai Sain
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Fabiola Valdivia-Francia
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
- Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ameya Khandekar
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria
- Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Mark Ormiston
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
| | - Martino Bernasconi
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
| | - Clara Duré
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
- Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Jonas A Kretz
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Minkyoung Lee
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Katie Hyams
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
| | - Merima Forny
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
| | - Marcel Pohly
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Xenia Ficht
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Stephanie J Ellis
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria
- Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Ataman Sendoel
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland.
| |
Collapse
|
5
|
Rodriguez DA, Tummers B, Shaw JJP, Quarato G, Weinlich R, Cripps J, Fitzgerald P, Janke LJ, Pelletier S, Crawford JC, Green DR. The interaction between RIPK1 and FADD controls perinatal lethality and inflammation. Cell Rep 2024; 43:114335. [PMID: 38850531 PMCID: PMC11256114 DOI: 10.1016/j.celrep.2024.114335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 04/15/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024] Open
Abstract
Perturbation of the apoptosis and necroptosis pathways critically influences embryogenesis. Receptor-associated protein kinase-1 (RIPK1) interacts with Fas-associated via death domain (FADD)-caspase-8-cellular Flice-like inhibitory protein long (cFLIPL) to regulate both extrinsic apoptosis and necroptosis. Here, we describe Ripk1-mutant animals (Ripk1R588E [RE]) in which the interaction between FADD and RIPK1 is disrupted, leading to embryonic lethality. This lethality is not prevented by further removal of the kinase activity of Ripk1 (Ripk1R588E K45A [REKA]). Both Ripk1RE and Ripk1REKA animals survive to adulthood upon ablation of Ripk3. While embryonic lethality of Ripk1RE mice is prevented by ablation of the necroptosis effector mixed lineage kinase-like (MLKL), animals succumb to inflammation after birth. In contrast, Mlkl ablation does not prevent the death of Ripk1REKA embryos, but animals reach adulthood when both MLKL and caspase-8 are removed. Ablation of the nucleic acid sensor Zbp1 largely prevents lethality in both Ripk1RE and Ripk1REKA embryos. Thus, the RIPK1-FADD interaction prevents Z-DNA binding protein-1 (ZBP1)-induced, RIPK3-caspase-8-mediated embryonic lethality, affected by the kinase activity of RIPK1.
Collapse
Affiliation(s)
- Diego A Rodriguez
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Bart Tummers
- Centre for Inflammation Biology & Cancer Immunology (CIBCI), Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London SE1 1UL, UK.
| | - Jeremy J P Shaw
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Giovanni Quarato
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Treeline Biosciences, San Diego, CA 92121, USA
| | | | - James Cripps
- Center for Cancer Immunology and Immunotherapy, Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Patrick Fitzgerald
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Laura J Janke
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Stephane Pelletier
- Department of Medical and Molecular Genetics, Indiana University Genome Editing Center, Indiana University School of Medicine, Indiana University, Indianapolis, IA 46902, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
6
|
Meier P, Legrand AJ, Adam D, Silke J. Immunogenic cell death in cancer: targeting necroptosis to induce antitumour immunity. Nat Rev Cancer 2024; 24:299-315. [PMID: 38454135 DOI: 10.1038/s41568-024-00674-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 03/09/2024]
Abstract
Most metastatic cancers remain incurable due to the emergence of apoptosis-resistant clones, fuelled by intratumour heterogeneity and tumour evolution. To improve treatment, therapies should not only kill cancer cells but also activate the immune system against the tumour to eliminate any residual cancer cells that survive treatment. While current cancer therapies rely heavily on apoptosis - a largely immunologically silent form of cell death - there is growing interest in harnessing immunogenic forms of cell death such as necroptosis. Unlike apoptosis, necroptosis generates second messengers that act on immune cells in the tumour microenvironment, alerting them of danger. This lytic form of cell death optimizes the provision of antigens and adjuvanticity for immune cells, potentially boosting anticancer treatment approaches by combining cellular suicide and immune response approaches. In this Review, we discuss the mechanisms of necroptosis and how it activates antigen-presenting cells, drives cross-priming of CD8+ T cells and induces antitumour immune responses. We also examine the opportunities and potential drawbacks of such strategies for exposing cancer cells to immunological attacks.
Collapse
Affiliation(s)
- Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK.
| | - Arnaud J Legrand
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - John Silke
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
| |
Collapse
|
7
|
Hagi T, Vangveravong S, Takchi R, Gong Q, Goedegebuure SP, Tiriac H, Van Tine BA, Powell MA, Hawkins WG, Spitzer D. The novel drug candidate S2/IAPinh improves survival in models of pancreatic and ovarian cancer. Sci Rep 2024; 14:6373. [PMID: 38493257 PMCID: PMC10944456 DOI: 10.1038/s41598-024-56928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
Cancer selective apoptosis remains a therapeutic challenge and off-target toxicity has limited enthusiasm for this target clinically. Sigma-2 ligands (S2) have been shown to enhance the cancer selectivity of small molecule drug candidates by improving internalization. Here, we report the synthesis of a novel drug conjugate, which was created by linking a clinically underperforming SMAC mimetic (second mitochondria-derived activator of caspases; LCL161), an inhibitor (antagonist) of inhibitor of apoptosis proteins (IAPinh) with the sigma-2 ligand SW43, resulting in the new chemical entity S2/IAPinh. Drug potency was assessed via cell viability assays across several pancreatic and ovarian cancer cell lines in comparison with the individual components (S2 and IAPinh) as well as their equimolar mixtures (S2 + IAPinh) both in vitro and in preclinical models of pancreatic and ovarian cancer. Mechanistic studies of S2/IAPinh-mediated cell death were investigated in vitro and in vivo using syngeneic and xenograft mouse models of murine pancreatic and human ovarian cancer, respectively. S2/IAPinh demonstrated markedly improved pharmacological activity in cancer cell lines and primary organoid cultures when compared to the controls. In vivo testing demonstrated a marked reduction in tumor growth rates and increased survival rates when compared to the respective control groups. The predicted mechanism of action of S2/IAPinh was confirmed through assessment of apoptosis pathways and demonstrated strong target degradation (cellular inhibitor of apoptosis proteins-1 [cIAP-1]) and activation of caspases 3 and 8. Taken together, S2/IAPinh demonstrated efficacy in models of pancreatic and ovarian cancer, two challenging malignancies in need of novel treatment concepts. Our data support an in-depth investigation into utilizing S2/IAPinh for the treatment of cancer.
Collapse
Affiliation(s)
- Takaomi Hagi
- Department of Surgery, Washington University School of Medicine, S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Suwanna Vangveravong
- Department of Surgery, Washington University School of Medicine, S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Rony Takchi
- Department of Surgery, Washington University School of Medicine, S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Qingqing Gong
- Department of Surgery, Washington University School of Medicine, S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, S. Euclid Avenue, St. Louis, MO, 63110, USA
- Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital, and Washington University School of Medicine, St. Louis, MO, USA
| | - Herve Tiriac
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California San Diego, San Diego, CA, USA, San Diego, USA
| | - Brian A Van Tine
- Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital, and Washington University School of Medicine, St. Louis, MO, USA
- Division of Medical Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew A Powell
- Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital, and Washington University School of Medicine, St. Louis, MO, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - William G Hawkins
- Department of Surgery, Washington University School of Medicine, S. Euclid Avenue, St. Louis, MO, 63110, USA.
- Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital, and Washington University School of Medicine, St. Louis, MO, USA.
| | - Dirk Spitzer
- Department of Surgery, Washington University School of Medicine, S. Euclid Avenue, St. Louis, MO, 63110, USA.
- Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital, and Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
8
|
Mei M, Impagnatiello M, Jiao J, Reiser U, Tontsch-Grunt U, Zhang J, Nicklin P, Yu B, Wang Y, He Y, Tan X. An orally-available monovalent SMAC mimetic compound as a broad-spectrum antiviral. Protein Cell 2024; 15:69-75. [PMID: 37294910 PMCID: PMC10762662 DOI: 10.1093/procel/pwad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/15/2023] [Indexed: 06/11/2023] Open
Affiliation(s)
- Miao Mei
- Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Chinese Institutes for Medical Research, Beijing 100069, China
| | | | - Jun Jiao
- Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Chinese Institutes for Medical Research, Beijing 100069, China
| | - Ulrich Reiser
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | | | - Ju Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Paul Nicklin
- Research Beyond Borders, Boehringer Ingelheim, Biberach an der Riss, Germany
| | - Bingke Yu
- Research Beyond Borders, Boehringer Ingelheim, Shanghai 200120, China
| | - Yu Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yuan He
- Research Beyond Borders, Boehringer Ingelheim, Shanghai 200120, China
| | - Xu Tan
- Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Chinese Institutes for Medical Research, Beijing 100069, China
| |
Collapse
|
9
|
Deng X, Wang L, Zhai Y, Liu Q, Du F, Zhang Y, Zhao W, Wu T, Tao Y, Deng J, Cao Y, Hao P, Ren J, Shen Y, Yu Z, Zheng Y, Zhang H, Wang H. RIPK1 plays a crucial role in maintaining regulatory T-Cell homeostasis by inhibiting both RIPK3- and FADD-mediated cell death. Cell Mol Immunol 2024; 21:80-90. [PMID: 38082146 PMCID: PMC10757712 DOI: 10.1038/s41423-023-01113-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/13/2023] [Indexed: 01/01/2024] Open
Abstract
Regulatory T (Treg) cells play an essential role in maintaining immune balance across various physiological and pathological conditions. However, the mechanisms underlying Treg homeostasis remain incompletely understood. Here, we report that RIPK1 is crucial for Treg cell survival and homeostasis. We generated mice with Treg cell-specific ablation of Ripk1 and found that these mice developed fatal systemic autoimmunity due to a dramatic reduction in the Treg cell compartment caused by excessive cell death. Unlike conventional T cells, Treg cells with Ripk1 deficiency were only partially rescued from cell death by blocking FADD-dependent apoptosis. However, simultaneous removal of both Fadd and Ripk3 completely restored the homeostasis of Ripk1-deficient Treg cells by blocking two cell death pathways. Thus, our study highlights the critical role of RIPK1 in regulating Treg cell homeostasis by controlling both apoptosis and necroptosis, thereby providing novel insights into the mechanisms of Treg cell homeostasis.
Collapse
Affiliation(s)
- Xiaoxue Deng
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lingxia Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yunze Zhai
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qiuyue Liu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Fengxue Du
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yu Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenxing Zhao
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tingtao Wu
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yiwen Tao
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jie Deng
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200433, China
| | - Yongbing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200433, China
| | - Pei Hao
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jiazi Ren
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yunli Shen
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zuoren Yu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Haikun Wang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
10
|
Majumder A. Evolving CAR-T-Cell Therapy for Cancer Treatment: From Scientific Discovery to Cures. Cancers (Basel) 2023; 16:39. [PMID: 38201467 PMCID: PMC10777914 DOI: 10.3390/cancers16010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
In recent years, chimeric antigen receptor (CAR)-T-cell therapy has emerged as the most promising immunotherapy for cancer that typically uses patients' T cells and genetically engineered them to target cancer cells. Although recent improvements in CAR-T-cell therapy have shown remarkable success for treating hematological malignancies, the heterogeneity in tumor antigens and the immunosuppressive nature of the tumor microenvironment (TME) limits its efficacy in solid tumors. Despite the enormous efforts that have been made to make CAR-T-cell therapy more effective and have minimal side effects for treating hematological malignancies, more research needs to be conducted regarding its use in the clinic for treating various other types of cancer. The main concern for CAR-T-cell therapy is severe toxicities due to the cytokine release syndrome, whereas the other challenges are associated with complexity and immune-suppressing TME, tumor antigen heterogeneity, the difficulty of cell trafficking, CAR-T-cell exhaustion, and reduced cytotoxicity in the tumor site. This review discussed the latest discoveries in CAR-T-cell therapy strategies and combination therapies, as well as their effectiveness in different cancers. It also encompasses ongoing clinical trials; current challenges regarding the therapeutic use of CAR-T-cell therapy, especially for solid tumors; and evolving treatment strategies to improve the therapeutic application of CAR-T-cell therapy.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
11
|
Renaud CCN, Trillet K, Jardine J, Merlet L, Renoult O, Laurent-Blond M, Catinaud Z, Pecqueur C, Gavard J, Bidère N. The centrosomal protein 131 participates in the regulation of mitochondrial apoptosis. Commun Biol 2023; 6:1271. [PMID: 38102401 PMCID: PMC10724242 DOI: 10.1038/s42003-023-05676-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
Centriolar satellites are multiprotein aggregates that orbit the centrosome and govern centrosome homeostasis and primary cilia formation. In contrast to the scaffold PCM1, which nucleates centriolar satellites and has been linked to microtubule dynamics, autophagy, and intracellular trafficking, the functions of its interactant CEP131 beyond ciliogenesis remain unclear. Using a knockout strategy in a non-ciliary T-cell line, we report that, although dispensable for centriolar satellite assembly, CEP131 participates in optimal tubulin glycylation and polyglutamylation, and microtubule regrowth. Our unsupervised label-free proteomic analysis by quantitative mass spectrometry further uncovered mitochondrial and apoptotic signatures. CEP131-deficient cells showed an elongated mitochondrial network. Upon cell death inducers targeting mitochondria, knockout cells displayed delayed cytochrome c release from mitochondria, subsequent caspase activation, and apoptosis. This mitochondrial permeabilization defect was intrinsic, and replicable in vitro with isolated organelles. These findings extend CEP131 functions to life-and-death decisions and propose ways to interfere with mitochondrial apoptosis.
Collapse
Affiliation(s)
- Clotilde C N Renaud
- Team SOAP, CRCI2NA, Nantes University, INSERM, CNRS, Université d'Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France
| | - Kilian Trillet
- Team SOAP, CRCI2NA, Nantes University, INSERM, CNRS, Université d'Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France
| | - Jane Jardine
- Team SOAP, CRCI2NA, Nantes University, INSERM, CNRS, Université d'Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France
| | - Laura Merlet
- Team SOAP, CRCI2NA, Nantes University, INSERM, CNRS, Université d'Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France
| | - Ophélie Renoult
- Team PETRY, CRCI2NA, Nantes University, INSERM, CNRS, Université d'Angers, Nantes, France
| | - Mélanie Laurent-Blond
- Team PETRY, CRCI2NA, Nantes University, INSERM, CNRS, Université d'Angers, Nantes, France
| | - Zoé Catinaud
- Team SOAP, CRCI2NA, Nantes University, INSERM, CNRS, Université d'Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France
| | - Claire Pecqueur
- Team PETRY, CRCI2NA, Nantes University, INSERM, CNRS, Université d'Angers, Nantes, France
| | - Julie Gavard
- Team SOAP, CRCI2NA, Nantes University, INSERM, CNRS, Université d'Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France
- Institut de Cancérologie de l'Ouest (ICO), Saint-Herblain, France
| | - Nicolas Bidère
- Team SOAP, CRCI2NA, Nantes University, INSERM, CNRS, Université d'Angers, Nantes, France.
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France.
| |
Collapse
|
12
|
Antignani A, Bilotta MT, Roth JS, Urban DJ, Shen M, Hall MD, FitzGerald D. Birinapant selectively enhances immunotoxin-mediated killing of cancer cells conditional on the IAP protein levels within target cells. FASEB J 2023; 37:e23292. [PMID: 37971407 PMCID: PMC10659127 DOI: 10.1096/fj.202301052r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/29/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Immunotoxins (ITs) target cancer cells via antibody binding to surface antigens followed by internalization and toxin-mediated inhibition of protein synthesis. The fate of cells responding to IT treatment depends on the amount and stability of specific pro-apoptotic and pro-survival proteins. When treated with a pseudomonas exotoxin-based immunotoxin (HB21PE40), the triple-negative breast cancer (TNBC) cell line MDA-MB-468 displayed a notable resistance to toxin-mediated killing compared to the epidermoid carcinoma cell line, A431, despite succumbing to the same level of protein synthesis inhibition. In a combination screen of ~1912 clinically relevant and mechanistically annotated compounds, we identified several agents that greatly enhanced IT-mediated killing of MDA-MB-468 cells while exhibiting only a modest enhancement for A431 cells. Of interest, two Smac mimetics, birinapant and SM164, exhibited this kind of differential enhancement. To investigate the basis for this, we probed cells for the presence of inhibitor of apoptosis (IAP) proteins and monitored their stability after the addition of immunotoxin. We found that high levels of IAPs inhibited immunotoxin-mediated cell death. Further, TNFα levels were not relevant for the combination's efficacy. In tumor xenograft studies, combinations of immunotoxin and birinapant caused complete regressions in MDA-MB-468tumor-bearing mice but not in mice with A431 tumors. We propose that IAPs constitute a barrier to immunotoxin efficacy which can be overcome with combination treatments that include Smac mimetics.
Collapse
Affiliation(s)
- Antonella Antignani
- Biotherapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda MD 20892, USA
| | - Maria Teresa Bilotta
- Biotherapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda MD 20892, USA
| | - Jacob S. Roth
- Division of Preclinical Innovation, Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville MD 20850, USA
| | - Daniel J. Urban
- Division of Preclinical Innovation, Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville MD 20850, USA
| | - Min Shen
- Division of Preclinical Innovation, Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville MD 20850, USA
| | - Matthew D. Hall
- Division of Preclinical Innovation, Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville MD 20850, USA
| | - David FitzGerald
- Biotherapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda MD 20892, USA
| |
Collapse
|
13
|
Kim JK, Chang I, Jung Y, Kaplan Z, Hill EE, Taichman RS, Krebsbach PH. Mycoplasma hyorhinis infection promotes TNF-α signaling and SMAC mimetic-mediated apoptosis in human prostate cancer. Heliyon 2023; 9:e20655. [PMID: 37867861 PMCID: PMC10585237 DOI: 10.1016/j.heliyon.2023.e20655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023] Open
Abstract
Growing evidence suggests an association between Mycoplasma infections and the development and progression of prostate cancer (PCa). In this study, we report that chronic and persistent M. hyorhinis infection induced robust TNF-α secretion from PCa cells. TNF-α secreted from M. hyorhinis-infected PCa cells subsequently led to activation of the NF-κB pathway. Chronic M. hyorhinis infection induced gene expression of pro-inflammatory cytokines and chemokines in a NF-κB-dependent manner and promoted cell proliferation, migration, and invasion in PCa cells. The elimination of M. hyorhinis in PCa cells significantly blocked TNF-α secretion, gene expression of cytokines and chemokines, migration, and invasion in PCa cells, suggesting M. hyorhinis-induced TNF-α plays an important role to promote malignant transformation of PCa. Furthermore, second mitochondria-derived activator of caspases (SMAC) mimetics potentiated caspase activation and cell death in M. hyorhinis-infected PCa by antagonizing inhibitor of apoptosis proteins (IAPs) activity. Tissue microarray analysis indicated that TNF-α is co-expressed in M. hyorhinis-infected human patient tissues. Findings from this study advance our understanding of the mycoplasma-oncogenesis process and suggest the potential for new approaches for preventions, diagnosis, and therapeutic approaches against prostate cancers.
Collapse
Affiliation(s)
- Jin Koo Kim
- Division of Oral and Systemic Health Sciences, University of California, Los Angeles School of Dentistry, Los Angeles, CA, USA
| | - Insoon Chang
- Section of Endodontics, University of California, Los Angeles School of Dentistry, Los Angeles, CA, USA
| | - Younghun Jung
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Zach Kaplan
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Elliott E. Hill
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Russell S. Taichman
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Periodontics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Paul H. Krebsbach
- Division of Oral and Systemic Health Sciences, University of California, Los Angeles School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
14
|
Di Giorgio E, Ferino A, Huang W, Simonetti S, Xodo L, De Marco R. Dual-targeting peptides@PMO, a mimetic to the pro-apoptotic protein Smac/DIABLO for selective activation of apoptosis in cancer cells. Front Pharmacol 2023; 14:1237478. [PMID: 37711175 PMCID: PMC10497945 DOI: 10.3389/fphar.2023.1237478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023] Open
Abstract
The refractoriness of tumor cells to apoptosis represents the main mechanism of resistance to chemotherapy. Smac/DIABLO mimetics proved to be effective in overcoming cancer-acquired resistance to apoptosis as a consequence of overexpression of the anti-apoptotic proteins XIAP, cIAP1, and cIAP2. In this work, we describe a dual-targeting peptide capable of selectively activating apoptosis in cancer cells. The complex consists of a fluorescent periodic mesoporous organosilica nanoparticle that carries the short sequences of Smac/DIABLO bound to the αvβ3-integrin ligand. The dual-targeting peptide @PMO shows significantly higher toxicity in αvβ3-positive HeLa cells with respect to αvβ3-negative Ht29 cells. @PMO exhibited synergistic effects in combination with oxaliplatin in a panel of αvβ3-positive cancer cells, while its toxicity is overcome by XIAP overexpression or integrin β3 silencing. The successful uptake of the molecule by αvβ3-positive cells makes @PMO promising for the re-sensitization to apoptosis of many cancer types.
Collapse
Affiliation(s)
| | | | - Weizhe Huang
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, Udine, Italy
| | - Sigrid Simonetti
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, Udine, Italy
| | - Luigi Xodo
- Department of Medicine, University of Udine, Udine, Italy
| | - Rossella De Marco
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, Udine, Italy
| |
Collapse
|
15
|
Ng YL, Bricelj A, Jansen JA, Murgai A, Peter K, Donovan KA, Gütschow M, Krönke J, Steinebach C, Sosič I. Heterobifunctional Ligase Recruiters Enable pan-Degradation of Inhibitor of Apoptosis Proteins. J Med Chem 2023; 66:4703-4733. [PMID: 36996313 PMCID: PMC10108347 DOI: 10.1021/acs.jmedchem.2c01817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Indexed: 04/01/2023]
Abstract
Proteolysis targeting chimeras (PROTACs) represent a new pharmacological modality to inactivate disease-causing proteins. PROTACs operate via recruiting E3 ubiquitin ligases, which enable the transfer of ubiquitin tags onto their target proteins, leading to proteasomal degradation. However, several E3 ligases are validated pharmacological targets themselves, of which inhibitor of apoptosis (IAP) proteins are considered druggable in cancer. Here, we report three series of heterobifunctional PROTACs, which consist of an IAP antagonist linked to either von Hippel-Lindau- or cereblon-recruiting ligands. Hijacking E3 ligases against each other led to potent, rapid, and preferential depletion of cellular IAPs. In addition, these compounds caused complete X-chromosome-linked IAP knockdown, which was rarely observed for monovalent and homobivalent IAP antagonists. In cellular assays, hit degrader 9 outperformed antagonists and showed potent inhibition of cancer cell viability. The hetero-PROTACs disclosed herein are valuable tools to facilitate studies of the biological roles of IAPs and will stimulate further efforts toward E3-targeting therapies.
Collapse
Affiliation(s)
- Yuen Lam
Dora Ng
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
| | - Aleša Bricelj
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia
| | - Jacqueline A. Jansen
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
| | - Arunima Murgai
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
- German
Cancer Consortium (DKTK) Partner Site Berlin and German Cancer Research
Center (DKFZ), D-69120 Heidelberg, Germany
| | - Kirsten Peter
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
| | - Katherine A. Donovan
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Michael Gütschow
- Phamaceutical
Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Jan Krönke
- Department
of Hematology, Oncology and Cancer Immunology, Charité—Universitätsmedizin Berlin, Corporate
Member of Freie Universität Berlin and Humboldt-Universität
zu Berlin, D-12203 Berlin, Germany
- German
Cancer Consortium (DKTK) Partner Site Berlin and German Cancer Research
Center (DKFZ), D-69120 Heidelberg, Germany
| | - Christian Steinebach
- Phamaceutical
Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Izidor Sosič
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
Ventre KS, Roehle K, Bello E, Bhuiyan AM, Biary T, Crowley SJ, Bruck PT, Heckler M, Lenehan PJ, Ali LR, Stump CT, Lippert V, Clancy-Thompson E, Conce Alberto WD, Hoffman MT, Qiang L, Pelletier M, Akin JJ, Dougan M, Dougan SK. cIAP1/2 Antagonism Induces Antigen-Specific T Cell-Dependent Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:991-1003. [PMID: 36881882 PMCID: PMC10036868 DOI: 10.4049/jimmunol.2200646] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/24/2023] [Indexed: 03/09/2023]
Abstract
Checkpoint blockade immunotherapy has failed in pancreatic cancer and other poorly responsive tumor types in part due to inadequate T cell priming. Naive T cells can receive costimulation not only via CD28 but also through TNF superfamily receptors that signal via NF-κB. Antagonists of the ubiquitin ligases cellular inhibitor of apoptosis protein (cIAP)1/2, also called second mitochondria-derived activator of caspases (SMAC) mimetics, induce degradation of cIAP1/2 proteins, allowing for the accumulation of NIK and constitutive, ligand-independent activation of alternate NF-κB signaling that mimics costimulation in T cells. In tumor cells, cIAP1/2 antagonists can increase TNF production and TNF-mediated apoptosis; however, pancreatic cancer cells are resistant to cytokine-mediated apoptosis, even in the presence of cIAP1/2 antagonism. Dendritic cell activation is enhanced by cIAP1/2 antagonism in vitro, and intratumoral dendritic cells show higher expression of MHC class II in tumors from cIAP1/2 antagonism-treated mice. In this study, we use in vivo mouse models of syngeneic pancreatic cancer that generate endogenous T cell responses ranging from moderate to poor. Across multiple models, cIAP1/2 antagonism has pleiotropic beneficial effects on antitumor immunity, including direct effects on tumor-specific T cells leading to overall increased activation, increased control of tumor growth in vivo, synergy with multiple immunotherapy modalities, and immunologic memory. In contrast to checkpoint blockade, cIAP1/2 antagonism does not increase intratumoral T cell frequencies. Furthermore, we confirm our previous findings that even poorly immunogenic tumors with a paucity of T cells can experience T cell-dependent antitumor immunity, and we provide transcriptional clues into how these rare T cells coordinate downstream immune responses.
Collapse
Affiliation(s)
- Katherine S. Ventre
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
| | - Kevin Roehle
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
- Novartis Institute for Biomedical Research, Cambridge, MA
| | - Elisa Bello
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Aladdin M. Bhuiyan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Tamara Biary
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Stephanie J. Crowley
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
| | - Patrick T. Bruck
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
| | - Max Heckler
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
| | - Patrick J. Lenehan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
| | - Lestat R. Ali
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Courtney T. Stump
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Victoria Lippert
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
| | - Eleanor Clancy-Thompson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
| | - Winiffer D. Conce Alberto
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
| | - Megan T. Hoffman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
| | - Li Qiang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
| | - Marc Pelletier
- Novartis Institute for Biomedical Research, Cambridge, MA
| | - James J. Akin
- Novartis Institute for Biomedical Research, Cambridge, MA
| | - Michael Dougan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Stephanie K. Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
| |
Collapse
|
17
|
Ye K, Chen Z, Xu Y. The double-edged functions of necroptosis. Cell Death Dis 2023; 14:163. [PMID: 36849530 PMCID: PMC9969390 DOI: 10.1038/s41419-023-05691-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Necroptosis refers to a regulated form of cell death induced by a variety of stimuli. Although it has been implicated in the pathogenesis of many diseases, there is evidence to support that necroptosis is not purely a detrimental process. We propose that necroptosis is a "double-edged sword" in terms of physiology and pathology. On the one hand, necroptosis can trigger an uncontrolled inflammatory cascade response, resulting in severe tissue injury, disease chronicity, and even tumor progression. On the other hand, necroptosis functions as a host defense mechanism, exerting antipathogenic and antitumor effects through its powerful pro-inflammatory properties. Moreover, necroptosis plays an important role during both development and regeneration. Misestimation of the multifaceted features of necroptosis may influence the development of therapeutic approaches targeting necroptosis. In this review, we summarize current knowledge of the pathways involved in necroptosis as well as five important steps that determine its occurrence. The dual role of necroptosis in a variety of physiological and pathological conditions is also highlighted. Future studies and the development of therapeutic strategies targeting necroptosis should fully consider the complicated properties of this type of regulated cell death.
Collapse
Affiliation(s)
- Keng Ye
- grid.256112.30000 0004 1797 9307Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China
| | - Zhimin Chen
- grid.256112.30000 0004 1797 9307Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China ,grid.412683.a0000 0004 1758 0400Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005 China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China. .,Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China. .,Central Laboratory, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
18
|
Mitochondrial DNA in cell death and inflammation. Biochem Soc Trans 2023; 51:457-472. [PMID: 36815695 PMCID: PMC9988000 DOI: 10.1042/bst20221525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
Cytosolic DNA is recognized by the innate immune system as a potential threat. During apoptotic cell death, mitochondrial DNA (mtDNA) release activates the DNA sensor cyclic GMP-AMP synthase (cGAS) to promote a pro-inflammatory type I interferon response. Inflammation following mtDNA release during apoptotic cell death can be exploited to engage anti-tumor immunity and represents a potential avenue for cancer therapy. Additionally, various studies have described leakage of mtDNA, independent of cell death, with different underlying cues such as pathogenic infections, changes in mtDNA packaging, mtDNA stress or reduced mitochondrial clearance. The interferon response in these scenarios can be beneficial but also potentially disadvantageous, as suggested by a variety of disease phenotypes. In this review, we discuss mechanisms underlying mtDNA release governed by cell death pathways and summarize release mechanisms independent of cell death. We further highlight the similarities and differences in mtDNA release pathways, outlining gaps in our knowledge and questions for further research. Together, a deeper understanding of how and when mtDNA is released may enable the development of drugs to specifically target or inhibit mtDNA release in different disease settings.
Collapse
|
19
|
Shibuya Y, Kudo K, Zeligs KP, Anderson D, Hernandez L, Ning F, Cole CB, Fergusson M, Kedei N, Lyons J, Taylor J, Korrapati S, Annunziata CM. SMAC Mimetics Synergistically Cooperate with HDAC Inhibitors Enhancing TNF-α Autocrine Signaling. Cancers (Basel) 2023; 15:cancers15041315. [PMID: 36831656 PMCID: PMC9954505 DOI: 10.3390/cancers15041315] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
The overexpression of inhibitor of apoptosis (IAP) proteins is strongly related to poor survival of women with ovarian cancer. Recurrent ovarian cancers resist apoptosis due to the dysregulation of IAP proteins. Mechanistically, Second Mitochondrial Activator of Caspases (SMAC) mimetics suppress the functions of IAP proteins to restore apoptotic pathways resulting in tumor death. We previously conducted a phase 2 clinical trial of the single-agent SMAC mimetic birinapant and observed minimal drug response in women with recurrent ovarian cancer despite demonstrating on-target activity. Accordingly, we performed a high-throughput screening matrix to identify synergistic drug combinations with birinapant. SMAC mimetics in combination with an HDAC inhibitor showed remarkable synergy and was, therefore, selected for further evaluation. We show here that this synergy observed both in vitro and in vivo results from multiple convergent pathways to include increased caspase activation, HDAC inhibitor-mediated TNF-α upregulation, and alternative NF-kB signaling. These findings provide a rationale for the integration of SMAC mimetics and HDAC inhibitors in clinical trials for recurrent ovarian cancer where treatment options are still limited.
Collapse
Affiliation(s)
- Yusuke Shibuya
- Women’s Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Division of Gynecology Oncology, Tohoku University School of Medicine, Miyagi 980-8574, Japan
| | - Kei Kudo
- Women’s Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Obstetrics and Gynecology, Division of Gynecology Oncology, Tohoku University School of Medicine, Miyagi 980-8574, Japan
| | - Kristen P. Zeligs
- Women’s Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
- Department of Obstetrics, Gynecology and Reproductive Science, Division of Gynecologic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David Anderson
- Women’s Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Lidia Hernandez
- Women’s Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Franklin Ning
- Women’s Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher B. Cole
- Women’s Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria Fergusson
- Women’s Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Noemi Kedei
- Collaborative Protein Technology Resource, MD 20814, USA
| | | | - Jason Taylor
- Astex Pharmaceuticals, Pleasanton, CA 94588, USA
| | - Soumya Korrapati
- Women’s Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christina M. Annunziata
- Women’s Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Correspondence: ; Tel.: +1-240-760-6125
| |
Collapse
|
20
|
Wang X, Chai Y, Guo Z, Wang Z, Liao H, Wang Z, Wang Z. A new perspective on the potential application of RIPK1 in the treatment of sepsis. Immunotherapy 2023; 15:43-56. [PMID: 36597707 DOI: 10.2217/imt-2022-0219] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
RIPK1 is a global cellular sensor that can determine the survival of cells. Generally, RIPK1 can induce cell apoptosis and necroptosis through TNF, Fas and lipopolysaccharide stimulation, while its scaffold function can sense the fluctuation of cellular energy and promote cell survival. Sepsis is a nonspecific disease that seriously threatens human health. There is some dispute in the literature about the role of RIPK1 in sepsis. In this review, the authors attempt to comprehensively discuss the differential results for RIPK1 in sepsis by summarizing the underlying molecular mechanism and putting forward a tentative idea as to whether RIPK1 can serve as a biomarker for the monitoring of treatment and progression in sepsis.
Collapse
Affiliation(s)
- Xuesong Wang
- School of Clinical Medicine, Tsinghua University, Beijing, China, 30 Shuangqing Road, Haidian District Beijing, Beijing, 102218, China
| | - Yan Chai
- School of Clinical Medicine, Tsinghua University, Beijing, China, 30 Shuangqing Road, Haidian District Beijing, Beijing, 102218, China
| | - Zhe Guo
- School of Clinical Medicine, Tsinghua University, Beijing, China, 30 Shuangqing Road, Haidian District Beijing, Beijing, 102218, China
| | - Ziyi Wang
- School of Clinical Medicine, Tsinghua University, Beijing, China, 30 Shuangqing Road, Haidian District Beijing, Beijing, 102218, China
| | - Haiyan Liao
- School of Clinical Medicine, Tsinghua University, Beijing, China, 30 Shuangqing Road, Haidian District Beijing, Beijing, 102218, China
| | - Ziwen Wang
- School of Clinical Medicine, Tsinghua University, Beijing, China, 30 Shuangqing Road, Haidian District Beijing, Beijing, 102218, China
| | - Zhong Wang
- Beijing Tsinghua Changgung Hospital Affiliated to Tsinghua University, Beijing, China, 168 Litang Road, Changping District, Beijing, 102218, China
| |
Collapse
|
21
|
Afsahi A, Silvestri CM, Moore AE, Graham CF, Bacchiochi K, St-Jean M, Baker CL, Korneluk RG, Beug ST, LaCasse EC, Bramson JL. LCL161 enhances expansion and survival of engineered anti-tumor T cells but is restricted by death signaling. Front Immunol 2023; 14:1179827. [PMID: 37138866 PMCID: PMC10150108 DOI: 10.3389/fimmu.2023.1179827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Background The genesis of SMAC mimetic drugs is founded on the observation that many cancers amplify IAP proteins to facilitate their survival, and therefore removal of these pathways would re-sensitize the cells towards apoptosis. It has become increasingly clear that SMAC mimetics also interface with the immune system in a modulatory manner. Suppression of IAP function by SMAC mimetics activates the non-canonical NF-κB pathway which can augment T cell function, opening the possibility of using SMAC mimetics to enhance immunotherapeutics. Methods We have investigated the SMAC mimetic LCL161, which promotes degradation of cIAP-1 and cIAP-2, as an agent for delivering transient costimulation to engineered BMCA-specific human TAC T cells. In doing so we also sought to understand the cellular and molecular effects of LCL161 on T cell biology. Results LCL161 activated the non-canonical NF-κB pathway and enhanced antigen-driven TAC T cell proliferation and survival. Transcriptional profiling from TAC T cells treated with LCL161 revealed differential expression of costimulatory and apoptosis-related proteins, namely CD30 and FAIM3. We hypothesized that regulation of these genes by LCL161 may influence the drug's effects on T cells. We reversed the differential expression through genetic engineering and observed impaired costimulation by LCL161, particularly when CD30 was deleted. While LCL161 can provide a costimulatory signal to TAC T cells following exposure to isolated antigen, we did not observe a similar pattern when TAC T cells were stimulated with myeloma cells expressing the target antigen. We questioned whether FasL expression by myeloma cells may antagonize the costimulatory effects of LCL161. Fas-KO TAC T cells displayed superior expansion following antigen stimulation in the presence of LCL161, suggesting a role for Fas-related T cell death in limiting the magnitude of the T cell response to antigen in the presence of LCL161. Conclusions Our results demonstrate that LCL161 provides costimulation to TAC T cells exposed to antigen alone, however LCL161 did not enhance TAC T cell anti-tumor function when challenged with myeloma cells and may be limited due to sensitization of T cells towards Fas-mediated apoptosis.
Collapse
Affiliation(s)
- Arya Afsahi
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Christopher M. Silvestri
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Allyson E. Moore
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Carly F. Graham
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Kaylyn Bacchiochi
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Martine St-Jean
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Christopher L. Baker
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Robert G. Korneluk
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Shawn T. Beug
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - Eric C. LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Jonathan L. Bramson
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- *Correspondence: Jonathan L. Bramson,
| |
Collapse
|
22
|
Al-Haideri M, Tondok SB, Safa SH, maleki AH, Rostami S, Jalil AT, Al-Gazally ME, Alsaikhan F, Rizaev JA, Mohammad TAM, Tahmasebi S. CAR-T cell combination therapy: the next revolution in cancer treatment. Cancer Cell Int 2022; 22:365. [DOI: 10.1186/s12935-022-02778-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
AbstractIn recent decades, the advent of immune-based therapies, most notably Chimeric antigen receptor (CAR)-T cell therapy has revolutionized cancer treatment. The promising results of numerous studies indicate that CAR-T cell therapy has had a remarkable ability and successful performance in treating blood cancers. However, the heterogeneity and immunosuppressive tumor microenvironment (TME) of solid tumors have challenged the effectiveness of these anti-tumor fighters by creating various barriers. Despite the promising results of this therapeutic approach, including tumor degradation and patient improvement, there are some concerns about the efficacy and safety of the widespread use of this treatment in the clinic. Complex and suppressing tumor microenvironment, tumor antigen heterogeneity, the difficulty of cell trafficking, CAR-T cell exhaustion, and reduced cytotoxicity in the tumor site limit the applicability of CAR-T cell therapy and highlights the requiring to improve the performance of this treatment. With this in mind, in the last decade, many efforts have been made to use other treatments for cancer in combination with tuberculosis to increase the effectiveness of CAR-T cell therapy, especially in solid tumors. The combination therapy results have promising consequences for tumor regression and better cancer control compared to single therapies. Therefore, this study aimed to comprehensively discuss different cancer treatment methods in combination with CAR-T cell therapy and their therapeutic outcomes, which can be a helpful perspective for improving cancer treatment in the near future.
Collapse
|
23
|
Carlet M, Schmelz K, Vergalli J, Herold T, Senft D, Jurinovic V, Hoffmann T, Proba J, Weichert N, Junghanß C, Roth M, Eschenburg G, Barz M, Henze G, Eckert C, Eggert A, Zuber J, Hundsdoerfer P, Jeremias I. X-linked inhibitor of apoptosis protein represents a promising therapeutic target for relapsed/refractory ALL. EMBO Mol Med 2022; 15:e14557. [PMID: 36416169 PMCID: PMC9832863 DOI: 10.15252/emmm.202114557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 11/25/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) represents the most frequent malignancy in children, and relapse/refractory (r/r) disease is difficult to treat, both in children and adults. In search for novel treatment options against r/r ALL, we studied inhibitor of apoptosis proteins (IAP) and Smac mimetics (SM). SM-sensitized r/r ALL cells towards conventional chemotherapy, even upon resistance against SM alone. The combination of SM and chemotherapy-induced cell death via caspases and PARP, but independent from cIAP-1/2, RIPK1, TNFα or NF-κB. Instead, XIAP was identified to mediate SM effects. Molecular manipulation of XIAP in vivo using microRNA-30 flanked shRNA expression in cell lines and patient-derived xenograft (PDX) models of r/r ALL mimicked SM effects and intermediate XIAP knockdown-sensitized r/r ALL cells towards chemotherapy-induced apoptosis. Interestingly, upon strong XIAP knockdown, PDX r/r ALL cells were outcompeted in vivo, even in the absence of chemotherapy. Our results indicate a yet unknown essential function of XIAP in r/r ALL and reveal XIAP as a promising therapeutic target for r/r ALL.
Collapse
Affiliation(s)
- Michela Carlet
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum MünchenGerman Center for Environmental Health (HMGU)MunichGermany,Department of Biotechnology and Food EngineeringMCI, The Entrepreneur SchoolInnsbruckAustria
| | - Karin Schmelz
- Department of Pediatric Oncology/HematologyCharité‐UniversitätsmedizinBerlinGermany,German Cancer Consortium (DKTK)BerlinGermany
| | - Jenny Vergalli
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum MünchenGerman Center for Environmental Health (HMGU)MunichGermany
| | - Tobias Herold
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum MünchenGerman Center for Environmental Health (HMGU)MunichGermany,Laboratory for Leukemia Diagnostics, Department of Medicine IIIUniversity Hospital, LMU MunichMunichGermany,German Cancer Consortium (DKTK), Partnering Site MunichMunichGermany
| | - Daniela Senft
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum MünchenGerman Center for Environmental Health (HMGU)MunichGermany
| | - Vindi Jurinovic
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum MünchenGerman Center for Environmental Health (HMGU)MunichGermany,Laboratory for Leukemia Diagnostics, Department of Medicine IIIUniversity Hospital, LMU MunichMunichGermany,Department of Pediatrics, Dr. von Hauner Children's HospitalUniversity Hospital, LMUMunichGermany
| | - Thomas Hoffmann
- Research Institute of Molecular Pathology (IMP)ViennaAustria
| | - Jutta Proba
- Department of Pediatric Oncology/HematologyCharité‐UniversitätsmedizinBerlinGermany
| | - Nina Weichert
- Department of Pediatric Oncology/HematologyCharité‐UniversitätsmedizinBerlinGermany
| | - Christian Junghanß
- Department of Medicine, Clinic III – Hematology, Oncology, Palliative MedicineRostock University Medical CenterRostockGermany
| | - Mareike Roth
- Research Institute of Molecular Pathology (IMP)ViennaAustria
| | - Georg Eschenburg
- Department of Pediatric SurgeryUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Malwine Barz
- University Children's Hospital ZurichZurichSwitzerland
| | - Günter Henze
- Department of Pediatric Oncology/HematologyCharité‐UniversitätsmedizinBerlinGermany
| | - Cornelia Eckert
- Department of Pediatric Oncology/HematologyCharité‐UniversitätsmedizinBerlinGermany
| | - Angelika Eggert
- Department of Pediatric Oncology/HematologyCharité‐UniversitätsmedizinBerlinGermany
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP)ViennaAustria
| | - Patrick Hundsdoerfer
- Department of Pediatric Oncology/HematologyCharité‐UniversitätsmedizinBerlinGermany,Berlin Institute of HealthBerlinGermany,Department of PediatricsHelios Klinikum Berlin‐BuchBerlinGermany
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum MünchenGerman Center for Environmental Health (HMGU)MunichGermany,German Cancer Consortium (DKTK), Partnering Site MunichMunichGermany,Department of Pediatrics, Dr. von Hauner Children's HospitalUniversity Hospital, LMUMunichGermany
| |
Collapse
|
24
|
Holmgren C, Sunström Thörnberg E, Granqvist V, Larsson C. Induction of Breast Cancer Cell Apoptosis by TRAIL and Smac Mimetics: Involvement of RIP1 and cFLIP. Curr Issues Mol Biol 2022; 44:4803-4821. [PMID: 36286042 PMCID: PMC9600666 DOI: 10.3390/cimb44100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/26/2022] Open
Abstract
Smac mimetics are a group of compounds able to facilitate cell death in cancer cells. TNF-related apoptosis-inducing ligand (TRAIL) is a death receptor ligand currently explored in combination with Smac mimetics. The molecular mechanisms determining if the combination treatment results in apoptosis are however not fully understood. In this study, we aimed to shed light on these mechanisms in breast cancer cells. Three breast cancer cell lines, MDA-MB-468, CAMA-1 and MCF-7, were used to evaluate the effects of Smac mimetic LCL-161 and TRAIL using cell death assays and Western blot. The combination treatment induces apoptosis and caspase-8 cleavage in MDA-MB-468 and CAMA-1 but not in MCF-7 cells and downregulation of caspase-8 blocked apoptosis. Downregulation, but not kinase inhibition, of receptor-interacting protein 1 (RIP1) suppressed apoptosis in CAMA-1. Apoptosis is preceded by association of RIP1 with caspase-8. Downregulating cellular FLICE-like inhibitory protein (c-FLIP) resulted in increased caspase cleavage and some induction of apoptosis by TRAIL and LCL-161 in MCF-7. In CAMA-1, c-FLIP depletion potentiated TRAIL-induced caspase cleavage and LCL-161 did not increase it further. Our results lend further support to a model where LCL-161 enables the formation of a complex including RIP1 and caspase-8 and circumvents c-FLIP-mediated inhibition of caspase activation.
Collapse
|
25
|
Rambow AC, Aschenbach I, Hagelund S, Tawfik D, Gundlach JP, Weiße S, Maass N, Trauzold A. Endogenous TRAIL-R4 critically impacts apoptotic and non-apoptotic TRAIL-induced signaling in cancer cells. Front Cell Dev Biol 2022; 10:942718. [PMID: 36158196 PMCID: PMC9500463 DOI: 10.3389/fcell.2022.942718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Binding of TRAIL to its death domain-containing receptors TRAIL-R1 and TRAIL-R2 can induce cell death and/or pro-inflammatory signaling. The importance of TRAIL and TRAIL-R1/R2 in tumor immune surveillance and cancer biology has meanwhile been well documented. In addition, TRAIL has been shown to preferentially kill tumor cells, raising hope for the development of targeted anti-cancer therapies. Apart from death-inducing receptors, TRAIL also binds to TRAIL-R3 and TRAIL-R4. Whereas TRAIL-R3 is lacking an intracellular domain entirely, TRAIL-R4 contains a truncated death domain but still a signaling-competent intracellular part. It is assumed that these receptors have anti-apoptotic, yet still not well understood regulatory functions. To analyze the significance of the endogenous levels of TRAIL-R4 for TRAIL-induced signaling in cancer cells, we stably knocked down this receptor in Colo357 and MDA-MB-231 cells and analyzed the activation of apoptotic and non-apoptotic pathways in response to treatment with TRAIL. We found that TRAIL-R4 affects a plethora of signaling pathways, partly in an opposite way. While knockdown of TRAIL-R4 in Colo357 strongly increased apoptosis and reduced clonogenic survival, it inhibited cell death and improved clonogenic survival of MDA-MB-231 cells after TRAIL treatment. Furthermore, TRAIL-R4 turned out to be an important regulator of the expression of a variety of anti-apoptotic proteins in MDA-MB-231 cells since TRAIL-R4-KD reduced the cellular levels of FLIPs, XIAP and cIAP2 but upregulated the levels of Bcl-xL. By inhibiting Bcl-xL with Navitoclax, we could finally show that this protein mainly accounts for the acquired resistance of MDA-MB-231 TRAIL-R4-KD cells to TRAIL-induced apoptosis. Analyses of non-apoptotic signaling pathways revealed that in both cell lines TRAIL-R4-KD resulted in a constitutively increased activity of AKT and ERK, while it reduced AKT activity after TRAIL treatment. Furthermore, TRAIL-R4-KD potentiated TRAIL-induced activation of ERK and p38 in Colo357, and NF-κB in MDA-MB-231 cells. Importantly, in both cell lines the activity of AKT, ERK, p38 and NF-κB after TRAIL treatment was higher in TRAIL-R4-KD cells than in respective control cells. Thus, our data provide evidence for the important regulatory functions of endogenous TRAIL-R4 in cancer cells and improve our understanding of the very complex human TRAIL/TRAIL-R system.
Collapse
Affiliation(s)
- Anna-Christina Rambow
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany
- Institute for Experimental Cancer Research, University of Kiel, Kiel, Germany
| | - Insa Aschenbach
- Institute for Experimental Cancer Research, University of Kiel, Kiel, Germany
| | - Sofie Hagelund
- Institute for Experimental Cancer Research, University of Kiel, Kiel, Germany
| | - Doaa Tawfik
- Institute for Experimental Cancer Research, University of Kiel, Kiel, Germany
| | - Jan-Paul Gundlach
- Institute for Experimental Cancer Research, University of Kiel, Kiel, Germany
- Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric-Surgery, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany
| | - Sebastian Weiße
- Institute for Experimental Cancer Research, University of Kiel, Kiel, Germany
| | - Nicolai Maass
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany
| | - Anna Trauzold
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany
- Institute for Experimental Cancer Research, University of Kiel, Kiel, Germany
- *Correspondence: Anna Trauzold,
| |
Collapse
|
26
|
Kumarasamy V, Nambiar R, Wang J, Rosenheck H, Witkiewicz AK, Knudsen ES. RB loss determines selective resistance and novel vulnerabilities in ER-positive breast cancer models. Oncogene 2022; 41:3524-3538. [PMID: 35676324 PMCID: PMC10680093 DOI: 10.1038/s41388-022-02362-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 11/09/2022]
Abstract
The management of metastatic estrogen receptor (ER) positive HER2 negative breast cancer (ER+) has improved; however, therapeutic resistance and disease progression emerges in majority of cases. Using unbiased approaches, as expected PI3K and MTOR inhibitors emerge as potent inhibitors to delay proliferation of ER+ models harboring PIK3CA mutations. However, the cytostatic efficacy of these drugs is hindered due to marginal impact on the expression of cyclin D1. Different combination approaches involving the inhibition of ER pathway or cell cycle result in durable growth arrest via RB activation and subsequent inhibition of CDK2 activity. However, cell cycle alterations due to RB loss or ectopic CDK4/cyclin D1 activation yields resistance to these cytostatic combination treatments. To define means to counter resistance to targeted therapies imparted with RB loss; complementary drug screens were performed with RB-deleted isogenic cell lines. In this setting, RB loss renders ER+ breast cancer models more vulnerable to drugs that target DNA replication and mitosis. Pairwise combinations using these classes of drugs defines greater selectivity for RB deficiency. The combination of AURK and WEE1 inhibitors, yields synergistic cell death selectively in RB-deleted ER+ breast cancer cells via apoptosis and yields profound disease control in vivo. Through unbiased efforts the XIAP/CIAP inhibitor birinapant was identified as a novel RB-selective agent. Birinapant further enhances the cytotoxic effect of chemotherapies and targeted therapies used in the treatment of ER+ breast cancer models selectively in the RB-deficient setting. Using organoid culture and xenograft models, we demonstrate the highly selective use of birinapant based combinations for the treatment of RB-deficient tumors. Together, these data illustrate the critical role of RB-pathway in response to many agents used to treat ER+ breast cancer, whilst informing new therapeutic approaches that could be deployed against resistant disease.
Collapse
Affiliation(s)
- Vishnu Kumarasamy
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Ram Nambiar
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Jianxin Wang
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Hanna Rosenheck
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Agnieszka K Witkiewicz
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| | - Erik S Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| |
Collapse
|
27
|
Liu L, Sandow JJ, Leslie Pedrioli DM, Samson AL, Silke N, Kratina T, Ambrose RL, Doerflinger M, Hu Z, Morrish E, Chau D, Kueh AJ, Fitzibbon C, Pellegrini M, Pearson JS, Hottiger MO, Webb AI, Lalaoui N, Silke J. Tankyrase-mediated ADP-ribosylation is a regulator of TNF-induced death. SCIENCE ADVANCES 2022; 8:eabh2332. [PMID: 35544574 PMCID: PMC9094663 DOI: 10.1126/sciadv.abh2332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Tumor necrosis factor (TNF) is a key component of the innate immune response. Upon binding to its receptor, TNFR1, it promotes production of other cytokines via a membrane-bound complex 1 or induces cell death via a cytosolic complex 2. To understand how TNF-induced cell death is regulated, we performed mass spectrometry of complex 2 and identified tankyrase-1 as a native component that, upon a death stimulus, mediates complex 2 poly-ADP-ribosylation (PARylation). PARylation promotes recruitment of the E3 ligase RNF146, resulting in proteasomal degradation of complex 2, thereby limiting cell death. Expression of the ADP-ribose-binding/hydrolyzing severe acute respiratory syndrome coronavirus 2 macrodomain sensitizes cells to TNF-induced death via abolishing complex 2 PARylation. This suggests that disruption of ADP-ribosylation during an infection can prime a cell to retaliate with an inflammatory cell death.
Collapse
Affiliation(s)
- Lin Liu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jarrod J. Sandow
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Deena M. Leslie Pedrioli
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, 8057 Zürich, Switzerland
| | - Andre L. Samson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Natasha Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Tobias Kratina
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Rebecca L. Ambrose
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Research, Monash University, Clayton, VIC, Australia
| | - Marcel Doerflinger
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Zhaoqing Hu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Emma Morrish
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Diep Chau
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Andrew J. Kueh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Cheree Fitzibbon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jaclyn S. Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Research, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Michael O. Hottiger
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, 8057 Zürich, Switzerland
| | - Andrew I. Webb
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Najoua Lalaoui
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
- Corresponding author. (N.L.); (J.S.)
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
- Corresponding author. (N.L.); (J.S.)
| |
Collapse
|
28
|
Controlling Cancer Cell Death Types to Optimize Anti-Tumor Immunity. Biomedicines 2022; 10:biomedicines10050974. [PMID: 35625711 PMCID: PMC9138898 DOI: 10.3390/biomedicines10050974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 11/17/2022] Open
Abstract
Over several decades, cell biology research has characterized distinct forms of regulated cell death, identified master regulators such as nuclear factor kappa B (NFκB), and contributed to translating these findings in order to improve anti-cancer therapies. In the era of immunotherapy, however, the field warrants a new appraisal-the targeted induction of immunogenic cell death may offer personalized strategies to optimize anti-tumor immunity. Once again, the spotlight is on NFκB, which is not only a master regulator of cancer cell death, survival, and inflammation, but also of adaptive anti-tumor immune responses that are triggered by dying tumor cells.
Collapse
|
29
|
Qiu Y, Lin X, Chen Z, Li B, Zhang Y. 5-Hydroxymethylfurfural Exerts Negative Effects on Gastric Mucosal Epithelial Cells by Inducing Oxidative Stress, Apoptosis, and Tight Junction Disruption. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3852-3861. [PMID: 35311281 DOI: 10.1021/acs.jafc.2c00269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
5-Hydroxymethylfurfural (5-HMF) is a processing byproduct present in foods that are consumed daily by humans, and the diet is the principal route for human exposure to it. However, its adverse effects on gastric epithelial cells are not fully understood. Based on the half inhibitory concentration value, concentrations of HMF of 2, 4, 8, and 16 mM were selected for this study. After 5-HMF treatment for 24 h, the number of living cells decreased to 89.61 ± 0.48, 77.30 ± 0.57, 58.75 ± 0.36, and 19.61 ± 0.40% of the control, respectively. Apoptosis activated through both the death receptor and mitochondrial pathways was confirmed to be the primary mode of HMF-induced cell death. Further analysis revealed that the reactive oxygen species (ROS) levels in GES-1 cells increased 1.7-6.5 fold after exposure to 5-HMF. Moreover, the inhibition of ROS by N-acetylcysteine blocked HMF-induced apoptosis and cell proliferation suppression, indicating that oxidative stress was important in HMF-induced apoptosis. Besides, after 5-HMF treatment, the gene expressions of occludin and ZO-1 were reduced by 1.1-3.4 fold and 2.0-9.4 fold, respectively. The cell surface morphology and tight junction-related protein expression analysis also revealed the destructive effect of 5-HMF on tight junction integrity. Our research highlights a potential mechanism of HMF-induced toxicity in GES-1 cells and provides additional information on the health risks of 5-HMF exposure to the human gastric epithelium.
Collapse
Affiliation(s)
- Yanting Qiu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaorong Lin
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhongzheng Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Bin Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuanyuan Zhang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
30
|
Lactobacillus rhamnosus Ameliorates Multi-Drug-Resistant Bacillus cereus-Induced Cell Damage through Inhibition of NLRP3 Inflammasomes and Apoptosis in Bovine Endometritis. Microorganisms 2022; 10:microorganisms10010137. [PMID: 35056585 PMCID: PMC8777719 DOI: 10.3390/microorganisms10010137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 01/09/2023] Open
Abstract
Bacillus cereus, considered a worldwide human food-borne pathogen, has brought serious health risks to humans and animals and huge losses to animal husbandry. The plethora of diverse toxins and drug resistance are the focus for B. cereus. As an alternative treatment to antibiotics, probiotics can effectively alleviate the hazards of super bacteria, food safety, and antibiotic resistance. This study aimed to investigate the frequency and distribution of B. cereus in dairy cows and to evaluate the effects of Lactobacillus rhamnosus in a model of endometritis induced by multi-drug-resistant B. cereus. A strong poisonous strain with a variety of drug resistances was used to establish an endometrial epithelial cell infection model. B. cereus was shown to cause damage to the internal structure, impair the integrity of cells, and activate the inflammatory response, while L. rhamnosus could inhibit cell apoptosis and alleviate this damage. This study indicates that the B. cereus-induced activation of the NLRP3 signal pathway involves K+ efflux. We conclude that LGR-1 may relieve cell destruction by reducing K+ efflux to the extracellular caused by the perforation of the toxins secreted by B. cereus on the cell membrane surface.
Collapse
|
31
|
Cossu F, Camelliti S, Lecis D, Sorrentino L, Majorini MT, Milani M, Mastrangelo E. Structure-based identification of a new IAP-targeting compound that induces cancer cell death inducing NF-κB pathway. Comput Struct Biotechnol J 2021; 19:6366-6374. [PMID: 34938412 PMCID: PMC8649670 DOI: 10.1016/j.csbj.2021.11.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/03/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022] Open
Abstract
Virtual docking vs type I BIRs of IAPs identified FC2 as a modulator of NF-kB. FC2 is active as a single agent with no toxicity in normal cells. The cytotoxic activity of FC2 is enhanced by TNF and by the Smac-mimetic SM83. FC2 stabilizes XIAP/TAB1 interaction, prolonging the activation of NF-κB.
Inhibitors of apoptosis proteins (IAPs) are validated onco-targets, as their overexpression correlates with cancer onset, progression, diffusion and chemoresistance. IAPs regulate cell death survival pathways, inflammation, and immunity. Targeting IAPs, by impairing their protein–protein interaction surfaces, can affect events occurring at different stages of cancer development. To this purpose, we employed a rational virtual screening approach to identify compounds predicted to interfere with the assembly of pro-survival macromolecular complexes. One of the candidates, FC2, was shown to bind in vitro the BIR1 domains of both XIAP and cIAP2. Moreover, we demonstrated that FC2 can induce cancer cell death as a single agent and, more potently, in combination with the Smac-mimetic SM83 or with the cytokine TNF. FC2 determined a prolonged activation of the NF-κB pathway, accompanied to a stabilization of XIAP-TAB1 complex. This candidate molecule represents a valuable lead compound for the development of a new class of IAP-antagonists for cancer treatment.
Collapse
Affiliation(s)
- Federica Cossu
- CNR-IBF, Consiglio Nazionale delle Ricerche - Istituto di Biofisica, Via Celoria, 26, I-20133 Milan, Italy
| | - Simone Camelliti
- CNR-IBF, Consiglio Nazionale delle Ricerche - Istituto di Biofisica, Via Celoria, 26, I-20133 Milan, Italy.,Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo, 42, I-20133, Milano, Italy
| | - Daniele Lecis
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo, 42, I-20133, Milano, Italy
| | - Luca Sorrentino
- CNR-IBF, Consiglio Nazionale delle Ricerche - Istituto di Biofisica, Via Celoria, 26, I-20133 Milan, Italy.,Dipartimento di Chimica, Università di Milano, Via Venezian, 21, I-20133 Milano, Italy
| | - Maria Teresa Majorini
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo, 42, I-20133, Milano, Italy
| | - Mario Milani
- CNR-IBF, Consiglio Nazionale delle Ricerche - Istituto di Biofisica, Via Celoria, 26, I-20133 Milan, Italy
| | - Eloise Mastrangelo
- CNR-IBF, Consiglio Nazionale delle Ricerche - Istituto di Biofisica, Via Celoria, 26, I-20133 Milan, Italy
| |
Collapse
|
32
|
Ang RL, Chan M, Legarda D, Sundberg JP, Sun SC, Gillespie VL, Chun N, Heeger PS, Xiong H, Lira SA, Ting AT. Immune dysregulation in SHARPIN-deficient mice is dependent on CYLD-mediated cell death. Proc Natl Acad Sci U S A 2021; 118:e2001602118. [PMID: 34887354 PMCID: PMC8685717 DOI: 10.1073/pnas.2001602118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/31/2022] Open
Abstract
SHARPIN, together with RNF31/HOIP and RBCK1/HOIL1, form the linear ubiquitin chain assembly complex (LUBAC) E3 ligase that catalyzes M1-linked polyubiquitination. Mutations in RNF31/HOIP and RBCK/HOIL1 in humans and Sharpin in mice lead to autoinflammation and immunodeficiency, but the mechanism underlying the immune dysregulation remains unclear. We now show that the phenotype of the Sharpincpdm/cpdm mice is dependent on CYLD, a deubiquitinase previously shown to mediate removal of K63-linked polyubiquitin chains. Dermatitis, disrupted splenic architecture, and loss of Peyer's patches in the Sharpincpdm/cpdm mice were fully reversed in Sharpincpdm/cpdm Cyld-/- mice. We observed enhanced association of RIPK1 with the death-signaling Complex II following TNF stimulation in Sharpincpdm/cpdm cells, a finding dependent on CYLD since we observed reversal in Sharpincpdm/cpdm Cyld-/- cells. Enhanced RIPK1 recruitment to Complex II in Sharpincpdm/cpdm cells correlated with impaired phosphorylation of CYLD at serine 418, a modification reported to inhibit its enzymatic activity. The dermatitis in the Sharpincpdm/cpdm mice was also ameliorated by the conditional deletion of Cyld using LysM-cre or Cx3cr1-cre indicating that CYLD-dependent death of myeloid cells is inflammatory. Our studies reveal that under physiological conditions, TNF- and RIPK1-dependent cell death is suppressed by the linear ubiquitin-dependent inhibition of CYLD. The Sharpincpdm/cpdm phenotype illustrates the pathological consequences when CYLD inhibition fails.
Collapse
Affiliation(s)
- Rosalind L Ang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
| | - Mark Chan
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | - Diana Legarda
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | - Shao-Cong Sun
- Department of Immunology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030
| | - Virginia L Gillespie
- Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Nicholas Chun
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Translational Transplant Research Center, Recanati Miller Transplant Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Peter S Heeger
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Translational Transplant Research Center, Recanati Miller Transplant Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Huabao Xiong
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sergio A Lira
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Adrian T Ting
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
- Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
33
|
Molyer B, Kumar A, Angel JB. SMAC Mimetics as Therapeutic Agents in HIV Infection. Front Immunol 2021; 12:780400. [PMID: 34899741 PMCID: PMC8660680 DOI: 10.3389/fimmu.2021.780400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Although combination antiretroviral therapy is extremely effective in lowering HIV RNA to undetectable levels in the blood, HIV persists in latently infected CD4+ T-cells and persistently infected macrophages. In latently/persistently infected cells, HIV proteins have shown to affect the expression of proteins involved in the apoptosis pathway, notably the inhibitors of apoptosis proteins (IAPs), and thereby influence cell survival. IAPs, which are inhibited by endogenous second mitochondrial-derived activators of caspases (SMAC), can serve as targets for SMAC mimetics, synthetic compounds capable of inducing apoptosis. There is increasing evidence that SMAC mimetics can be used to reverse HIV latency and/or kill cells that are latently/persistently infected with HIV. Here, we review the current state of knowledge of SMAC mimetics as an approach to eliminate HIV infected cells and discuss the potential future use of SMAC mimetics as part of an HIV cure strategy.
Collapse
Affiliation(s)
- Bengisu Molyer
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Ashok Kumar
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Apoptosis Research Center of Children's Hospital of Eastern Ontario, Department of Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Jonathan B Angel
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Division of Infectious Diseases, Ottawa Hospital, Ottawa, ON, Canada
| |
Collapse
|
34
|
Killing by Degradation: Regulation of Apoptosis by the Ubiquitin-Proteasome-System. Cells 2021; 10:cells10123465. [PMID: 34943974 PMCID: PMC8700063 DOI: 10.3390/cells10123465] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is a cell suicide process that is essential for development, tissue homeostasis and human health. Impaired apoptosis is associated with a variety of human diseases, including neurodegenerative disorders, autoimmunity and cancer. As the levels of pro- and anti-apoptotic proteins can determine the life or death of cells, tight regulation of these proteins is critical. The ubiquitin proteasome system (UPS) is essential for maintaining protein turnover, which can either trigger or inhibit apoptosis. In this review, we will describe the E3 ligases that regulate the levels of pro- and anti-apoptotic proteins and assisting proteins that regulate the levels of these E3 ligases. We will provide examples of apoptotic cell death modulations using the UPS, determined by positive and negative feedback loop reactions. Specifically, we will review how the stability of p53, Bcl-2 family members and IAPs (Inhibitor of Apoptosis proteins) are regulated upon initiation of apoptosis. As increased levels of oncogenes and decreased levels of tumor suppressor proteins can promote tumorigenesis, targeting these pathways offers opportunities to develop novel anti-cancer therapies, which act by recruiting the UPS for the effective and selective killing of cancer cells.
Collapse
|
35
|
Leng Y, Zhang Y, Li X, Wang Z, Zhuang Q, Lu Y. Receptor Interacting Protein Kinases 1/3: The Potential Therapeutic Target for Cardiovascular Inflammatory Diseases. Front Pharmacol 2021; 12:762334. [PMID: 34867386 PMCID: PMC8637748 DOI: 10.3389/fphar.2021.762334] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
The receptor interacting protein kinases 1/3 (RIPK1/3) have emerged as the key mediators in cell death pathways and inflammatory signaling, whose ubiquitination, phosphorylation, and inhibition could regulate the necroptosis and apoptosis effectually. Recently, more and more studies show great interest in the mechanisms and the regulator of RIPK1/3-mediated inflammatory response and in the physiopathogenesis of cardiovascular diseases. The crosstalk of autophagy and necroptosis in cardiomyocyte death is a nonnegligible conversation of cell death. We elaborated on RIPK1/3-mediated necroptosis, pathways involved, the latest regulatory molecules and therapeutic targets in terms of ischemia reperfusion, myocardial remodeling, myocarditis, atherosclerosis, abdominal aortic aneurysm, and cardiovascular transplantation, etc.
Collapse
Affiliation(s)
- Yiming Leng
- Clinical Research Center of the 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Ying Zhang
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Xinyu Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zeyu Wang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Quan Zhuang
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| | - Yao Lu
- Clinical Research Center of the 3rd Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
36
|
Caballero RE, Dong SXM, Gajanayaka N, Ali H, Cassol E, Cameron WD, Korneluk R, Tremblay MJ, Angel JB, Kumar A. Role of RIPK1 in SMAC mimetics-induced apoptosis in primary human HIV-infected macrophages. Sci Rep 2021; 11:22901. [PMID: 34824340 PMCID: PMC8617210 DOI: 10.1038/s41598-021-02146-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/09/2021] [Indexed: 11/09/2022] Open
Abstract
Macrophages serve as viral reservoirs due to their resistance to apoptosis and HIV-cytopathic effects. We have previously shown that inhibitor of apoptosis proteins (IAPs) confer resistance to HIV-Vpr-induced apoptosis in normal macrophages. Herein, we show that second mitochondrial activator of caspases (SMAC) mimetics (SM) induce apoptosis of monocyte-derived macrophages (MDMs) infected in vitro with a R5-tropic laboratory strain expressing heat stable antigen, chronically infected U1 cells, and ex-vivo derived MDMs from HIV-infected individuals. To understand the mechanism governing SM-induced cell death, we show that SM-induced cell death of primary HIV-infected macrophages was independent of the acquisition of M1 phenotype following HIV infection of macrophages. Instead, SM-induced cell death was found to be mediated by IAPs as downregulation of IAPs by siRNAs induced cell death of HIV-infected macrophages. Moreover, HIV infection caused receptor interacting protein kinase-1 (RIPK1) degradation which in concert with IAP1/2 downregulation following SM treatment may result in apoptosis of macrophages. Altogether, our results show that SM selectively induce apoptosis in primary human macrophages infected in vitro with HIV possibly through RIPK1. Moreover, modulation of the IAP pathways may be a potential strategy for selective killing of HIV-infected macrophages in vivo.
Collapse
Affiliation(s)
- Ramon Edwin Caballero
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada. .,Division of Virology, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Research Building 2, University of Ottawa, Ottawa, ON, K1H 8L1, Canada.
| | - Simon Xin Min Dong
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Niranjala Gajanayaka
- Division of Virology, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Research Building 2, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Hamza Ali
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Division of Virology, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Research Building 2, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - William D Cameron
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Division of Infectious Diseases, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Robert Korneluk
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Division of Virology, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Research Building 2, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Michel J Tremblay
- Centre de recherche du CHU de Québec-Université Laval, Université Laval, Québec City, QC, Canada
| | - Jonathan B Angel
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Division of Infectious Diseases, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ashok Kumar
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada. .,Division of Virology, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Research Building 2, University of Ottawa, Ottawa, ON, K1H 8L1, Canada. .,Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
37
|
Freeman AJ, Kearney CJ, Silke J, Oliaro J. Unleashing TNF cytotoxicity to enhance cancer immunotherapy. Trends Immunol 2021; 42:1128-1142. [PMID: 34750058 DOI: 10.1016/j.it.2021.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 01/02/2023]
Abstract
Tumor necrosis factor (TNF) is a proinflammatory cytokine that is produced and secreted by cytotoxic lymphocytes upon tumor target recognition. Depending on the context, TNF can mediate either pro-survival or pro-death signals. The potential cytotoxicity of T cell-produced TNF, particularly in the context of T cell-directed immunotherapies, has been largely overlooked. However, a spate of recent studies investigating tumor immune evasion through the application of CRISPR-based gene-editing screens have highlighted TNF-mediated killing as an important component of the mammalian T cell antitumor repertoire. In the context of the current understanding of the role of TNF in antitumor immunity, we discuss these studies and touch on their therapeutic implications. Collectively, we provide an enticing prospect to augment immunotherapy responses through TNF cytotoxicity.
Collapse
Affiliation(s)
- Andrew J Freeman
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Conor J Kearney
- Translational Haematology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - John Silke
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Jane Oliaro
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
38
|
Ali H, Dong SXM, Gajanayaka N, Cassol E, Angel JB, Kumar A. Selective Induction of Cell Death in Human M1 Macrophages by Smac Mimetics Is Mediated by cIAP-2 and RIPK-1/3 through the Activation of mTORC. THE JOURNAL OF IMMUNOLOGY 2021; 207:2359-2373. [PMID: 34561230 DOI: 10.4049/jimmunol.2100108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/28/2021] [Indexed: 12/22/2022]
Abstract
Inflammatory macrophages have been implicated in many diseases, including rheumatoid arthritis and inflammatory bowel disease. Therefore, targeting macrophage function and activation may represent a potential strategy to treat macrophage-associated diseases. We have previously shown that IFN-γ-induced differentiation of human M0 macrophages toward proinflammatory M1 state rendered them highly susceptible to the cytocidal effects of second mitochondria-derived activator of caspases mimetics (SMs), antagonist of the inhibitors of apoptosis proteins (IAPs), whereas M0 and anti-inflammatory M2c macrophages were resistant. In this study, we investigated the mechanism governing SM-induced cell death during differentiation into M1 macrophages and in polarized M1 macrophages. IFN-γ stimulation conferred on M0 macrophages the sensitivity to SM-induced cell death through the Jak/STAT, IFN regulatory factor-1, and mammalian target of rapamycin complex-1 (mTORC-1)/ribosomal protein S6 kinase pathways. Interestingly, mTORC-1 regulated SM-induced cell death independent of M1 differentiation. In contrast, SM-induced cell death in polarized M1 macrophages is regulated by the mTORC-2 pathway. Moreover, SM-induced cell death is regulated by cellular IAP (cIAP)-2, receptor-interacting protein kinase (RIPK)-1, and RIPK-3 degradation through mTORC activation during differentiation into M1 macrophages and in polarized M1 macrophages. In contrast to cancer cell lines, SM-induced cell death in M1 macrophages is independent of endogenously produced TNF-α, as well as the NF-κB pathway. Collectively, selective induction of cell death in human M1 macrophages by SMs may be mediated by cIAP-2, RIPK-1, and RIPK-3 degradation through mTORC activation. Moreover, blocking cIAP-1/2, mTORC, or IFN regulatory factor-1 may represent a promising therapeutic strategy to control M1-associated diseases.
Collapse
Affiliation(s)
- Hamza Ali
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ontario, Canada; .,Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada.,Faculty of Applied Medical Sciences, Taibah University, Medina, Kingdom of Saudi Arabia
| | - Simon Xin Min Dong
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Niranjala Gajanayaka
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Jonathan B Angel
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ontario, Canada.,Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Medicine, Faculty of Medicine, University of Ottawa, Ontario, Canada; and
| | - Ashok Kumar
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ontario, Canada; .,Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada.,Department of Pathology and Laboratory Medicine, University of Ottawa, Ontario, Canada
| |
Collapse
|
39
|
Brandetti E, Focaccetti C, Pezzolo A, Ognibene M, Folgiero V, Cotugno N, Benvenuto M, Palma P, Manzari V, Rossi P, Fruci D, Bei R, Cifaldi L. Enhancement of Neuroblastoma NK-Cell-Mediated Lysis through NF-kB p65 Subunit-Induced Expression of FAS and PVR, the Loss of Which Is Associated with Poor Patient Outcome. Cancers (Basel) 2021; 13:cancers13174368. [PMID: 34503178 PMCID: PMC8430542 DOI: 10.3390/cancers13174368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Neuroblastoma (NB) cells adopt several molecular strategies to evade the Natural Killer (NK)-mediated response. Herein, we found that the overexpression of the NF-kB p65 subunit in NB cell lines upregulates the expression of both the death receptor FAS and the activating ligand PVR, thus rendering NB cells more susceptible to NK-cell-mediated apoptosis, recognition, and killing. These data could provide a clue for a novel NK-cell-based immunotherapy of NB. In addition, array CGH analysis performed in our cohort of NB patients showed that loss of both the FAS and PVR genes correlated with low survival, thus revealing a novel biomarker predicting the outcome of NB patients. Abstract High-risk neuroblastoma (NB) is a rare childhood cancer whose aggressiveness is due to a variety of chromosomal genetic aberrations, including those conferring immune evasion. Indeed, NB cells adopt several molecular strategies to evade recognition by the immune system, including the downregulation of ligands for NK-cell-activating receptors. To date, while molecular strategies aimed at enhancing the expression of ligands for NKG2D- and DNAM-1-activating receptors have been explored, no evidence has been reported on the immunomodulatory mechanisms acting on the expression of death receptors such as Fas in NB cells. Here, we demonstrated that transient overexpression of the NF-kB p65 subunit upregulates the surface expression of Fas and PVR, the ligand of DNAM-1, thus making NB cell lines significantly more susceptible to NK-cell-mediated apoptosis, recognition, and killing. In contrast, IFNγ and TNFα treatment, although it induced the upregulation of FAS in NB cells and consequently enhanced NK-cell-mediated apoptosis, triggered immune evasion processes, including the strong upregulation of MHC class I and IDO1, both of which are involved in mechanisms leading to the impairment of a proper NK-cell-mediated killing of NB. In addition, high-resolution array CGH analysis performed in our cohort of NB patients revealed that the loss of FAS and/or PVR genes correlated with low survival independently of the disease stage. Our data identify the status of the FAS and PVR genes as prognostic biomarkers of NB that may predict the efficacy of NK-cell-based immunotherapy of NB. Overall, restoration of surface expression of Fas and PVR, through transient upregulation of NF-kB, may be a clue to a novel NK-cell-based immunotherapy of NB.
Collapse
Affiliation(s)
- Elisa Brandetti
- Academic Department of Pediatrics (DPUO), Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (E.B.); (P.R.)
| | - Chiara Focaccetti
- Department of Human Science and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.B.); (V.M.); (R.B.)
| | | | - Marzia Ognibene
- U.O.C. Genetica Medica, IRCCS Giannina Gaslini, 16147 Genoa, Italy;
| | - Valentina Folgiero
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (V.F.); (D.F.)
| | - Nicola Cotugno
- Research Unit of Clinical Immunology and Vaccinology, DPUO, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (N.C.); (P.P.)
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.B.); (V.M.); (R.B.)
- Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, DPUO, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (N.C.); (P.P.)
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.B.); (V.M.); (R.B.)
| | - Paolo Rossi
- Academic Department of Pediatrics (DPUO), Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (E.B.); (P.R.)
| | - Doriana Fruci
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (V.F.); (D.F.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.B.); (V.M.); (R.B.)
| | - Loredana Cifaldi
- Academic Department of Pediatrics (DPUO), Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (E.B.); (P.R.)
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.B.); (V.M.); (R.B.)
- Correspondence: ; Tel.: +39-06-72596520
| |
Collapse
|
40
|
Spiesschaert B, Angerer K, Park J, Wollmann G. Combining Oncolytic Viruses and Small Molecule Therapeutics: Mutual Benefits. Cancers (Basel) 2021; 13:3386. [PMID: 34298601 PMCID: PMC8306439 DOI: 10.3390/cancers13143386] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
The focus of treating cancer with oncolytic viruses (OVs) has increasingly shifted towards achieving efficacy through the induction and augmentation of an antitumor immune response. However, innate antiviral responses can limit the activity of many OVs within the tumor and several immunosuppressive factors can hamper any subsequent antitumor immune responses. In recent decades, numerous small molecule compounds that either inhibit the immunosuppressive features of tumor cells or antagonize antiviral immunity have been developed and tested for. Here we comprehensively review small molecule compounds that can achieve therapeutic synergy with OVs. We also elaborate on the mechanisms by which these treatments elicit anti-tumor effects as monotherapies and how these complement OV treatment.
Collapse
Affiliation(s)
- Bart Spiesschaert
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
- ViraTherapeutics GmbH, 6063 Rum, Austria
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany;
| | - Katharina Angerer
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - John Park
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany;
| | - Guido Wollmann
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
41
|
Berthelet J, Wimmer VC, Whitfield HJ, Serrano A, Boudier T, Mangiola S, Merdas M, El-Saafin F, Baloyan D, Wilcox J, Wilcox S, Parslow AC, Papenfuss AT, Yeo B, Ernst M, Pal B, Anderson RL, Davis MJ, Rogers KL, Hollande F, Merino D. The site of breast cancer metastases dictates their clonal composition and reversible transcriptomic profile. SCIENCE ADVANCES 2021; 7:eabf4408. [PMID: 34233875 PMCID: PMC8262813 DOI: 10.1126/sciadv.abf4408] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/25/2021] [Indexed: 05/03/2023]
Abstract
Intratumoral heterogeneity is a driver of breast cancer progression, but the nature of the clonal interactive network involved in this process remains unclear. Here, we optimized the use of optical barcoding to visualize and characterize 31 cancer subclones in vivo. By mapping the clonal composition of thousands of metastases in two clinically relevant sites, the lungs and liver, we found that metastases were highly polyclonal in lungs but not in the liver. Furthermore, the transcriptome of the subclones varied according to their metastatic niche. We also identified a reversible niche-driven signature that was conserved in lung and liver metastases collected during patient autopsies. Among this signature, we found that the tumor necrosis factor-α pathway was up-regulated in lung compared to liver metastases, and inhibition of this pathway affected metastasis diversity. These results highlight that the cellular and molecular heterogeneity observed in metastases is largely dictated by the tumor microenvironment.
Collapse
Affiliation(s)
- Jean Berthelet
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Verena C Wimmer
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry, and Health Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Holly J Whitfield
- Department of Medical Biology, Faculty of Medicine, Dentistry, and Health Science, The University of Melbourne, Parkville, VIC 3010, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Antonin Serrano
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry, and Health Science, The University of Melbourne, Parkville, VIC 3010, Australia
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Thomas Boudier
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry, and Health Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stefano Mangiola
- Department of Medical Biology, Faculty of Medicine, Dentistry, and Health Science, The University of Melbourne, Parkville, VIC 3010, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Michal Merdas
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Farrah El-Saafin
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - David Baloyan
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Jordan Wilcox
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Steven Wilcox
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry, and Health Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Adam C Parslow
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Anthony T Papenfuss
- Department of Medical Biology, Faculty of Medicine, Dentistry, and Health Science, The University of Melbourne, Parkville, VIC 3010, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Belinda Yeo
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
- Austin Health, Heidelberg, VIC 3084, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Bhupinder Pal
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Robin L Anderson
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Melissa J Davis
- Department of Medical Biology, Faculty of Medicine, Dentistry, and Health Science, The University of Melbourne, Parkville, VIC 3010, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Clinical Pathology, Faculty of Medicine, Dentistry, and Health Science, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Kelly L Rogers
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry, and Health Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Frédéric Hollande
- Department of Clinical Pathology, Faculty of Medicine, Dentistry, and Health Science, The University of Melbourne, Melbourne, VIC 3000, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Delphine Merino
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry, and Health Science, The University of Melbourne, Parkville, VIC 3010, Australia
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| |
Collapse
|
42
|
Yang C, Ran Q, Zhou Y, Liu S, Zhao C, Yu X, Zhu F, Ji Y, Du Q, Yang T, Zhang W, He S. Doxorubicin sensitizes cancer cells to Smac mimetic via synergistic activation of the CYLD/RIPK1/FADD/caspase-8-dependent apoptosis. Apoptosis 2021; 25:441-455. [PMID: 32418059 DOI: 10.1007/s10495-020-01604-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Smac/Diablo is a pro-apoptotic protein via interaction with inhibitors of apoptosis proteins (IAPs) to relieve their inhibition of caspases. Smac mimetic compounds (also known as antagonists of IAPs) mimic the function of Smac/Diablo and sensitize cancer cells to TNF-induced apoptosis. However, the majority of cancer cells are resistant to Smac mimetic alone. Doxorubicin is a widely used chemotherapeutic drug and causes adverse effect of cardiotoxicity in many patients. Therefore, it is important to find strategies of combined chemotherapy to increase chemosensitivity and reduce the adverse effects. Here, we report that doxorubicin synergizes with Smac mimetic to trigger TNF-mediated apoptosis, which is mechanistically distinct from doxorubicin-induced cell death. Doxorubicin sensitizes cancer cells including human pancreatic and colorectal cancer cells to Smac mimetic treatment. The combined treatment leads to synergistic induction of TNFα to initiate apoptosis through activating NF-κB and c-Jun signaling pathways. Knockdown of caspase-8 or knockout of FADD significantly blocked apoptosis synergistically induced by Smac mimetic and doxorubicin, but had no effect on cell death caused by doxorubicin alone. Moreover, Smac mimetic and doxorubicin-induced apoptosis requires receptor-interacting protein kinase 1 (RIPK1) and its deubiquitinating enzyme cylindromatosis (CYLD), not A20. These in vitro findings demonstrate that combination of Smac mimetic and doxorubicin synergistically triggers apoptosis through the TNF/CYLD/RIPK1/FADD/caspase-8 signaling pathway. Importantly, the combined treatment induced in vivo synergistic anti-tumor effects in the xenograft tumor model. Thus, the combined therapy using Smac mimetic and doxorubicin presents a promising apoptosis-inducing strategy with great potential for the development of anti-cancer therapy.
Collapse
Affiliation(s)
- Chengkui Yang
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, China. .,Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China. .,Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Qiao Ran
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China.,Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yifei Zhou
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China.,Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Shan Liu
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Cong Zhao
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China.,Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xiaoliang Yu
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China.,Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Fang Zhu
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China.,Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yuting Ji
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210038, Jiangsu, China
| | - Qian Du
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China.,Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Tao Yang
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China.,Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Wei Zhang
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China.,Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Sudan He
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medial College, Beijing, China. .,Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China. .,Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
43
|
Miles MA, Caruso S, Baxter AA, Poon IKH, Hawkins CJ. Smac mimetics can provoke lytic cell death that is neither apoptotic nor necroptotic. Apoptosis 2021; 25:500-518. [PMID: 32440848 DOI: 10.1007/s10495-020-01610-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Smac mimetics, or IAP antagonists, are a class of drugs currently being evaluated as anti-cancer therapeutics. These agents antagonize IAP proteins, including cIAP1/2 and XIAP, to induce cell death via apoptotic or, upon caspase-8 deficiency, necroptotic cell death pathways. Many cancer cells are unresponsive to Smac mimetic treatment as a single agent but can be sensitized to killing in the presence of the cytokine TNFα, provided either exogenously or via autocrine production. We found that high concentrations of a subset of Smac mimetics could provoke death in cells that did not produce TNFα, despite sensitization at lower concentrations by TNFα. The ability of these drugs to kill did not correlate with valency. These cells remained responsive to the lethal effects of Smac mimetics at high concentrations despite genetic or pharmacological impairments in apoptotic, necroptotic, pyroptotic, autophagic and ferroptotic cell death pathways. Analysis of dying cells revealed necrotic morphology, which was accompanied by the release of lactate dehydrogenase and cell membrane rupture without prior phosphatidylserine exposure implying cell lysis, which occurred over a several hours. Our study reveals that cells incapable of autocrine TNFα production are sensitive to some Smac mimetic compounds when used at high concentrations, and this exposure elicits a lytic cell death phenotype that occurs via a mechanism not requiring apoptotic caspases or necroptotic effectors RIPK3 or MLKL. These data reveal the possibility that non-canonical cell death pathways can be triggered by these drugs when applied at high concentrations.
Collapse
Affiliation(s)
- Mark A Miles
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - Sarah Caruso
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Amy A Baxter
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Christine J Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| |
Collapse
|
44
|
Fisher DAC, Fowles JS, Zhou A, Oh ST. Inflammatory Pathophysiology as a Contributor to Myeloproliferative Neoplasms. Front Immunol 2021; 12:683401. [PMID: 34140953 PMCID: PMC8204249 DOI: 10.3389/fimmu.2021.683401] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Myeloid neoplasms, including acute myeloid leukemia (AML), myeloproliferative neoplasms (MPNs), and myelodysplastic syndromes (MDS), feature clonal dominance and remodeling of the bone marrow niche in a manner that promotes malignant over non-malignant hematopoiesis. This take-over of hematopoiesis by the malignant clone is hypothesized to include hyperactivation of inflammatory signaling and overproduction of inflammatory cytokines. In the Ph-negative MPNs, inflammatory cytokines are considered to be responsible for a highly deleterious pathophysiologic process: the phenotypic transformation of polycythemia vera (PV) or essential thrombocythemia (ET) to secondary myelofibrosis (MF), and the equivalent emergence of primary myelofibrosis (PMF). Bone marrow fibrosis itself is thought to be mediated heavily by the cytokine TGF-β, and possibly other cytokines produced as a result of hyperactivated JAK2 kinase in the malignant clone. MF also features extramedullary hematopoiesis and progression to bone marrow failure, both of which may be mediated in part by responses to cytokines. In MF, elevated levels of individual cytokines in plasma are adverse prognostic indicators: elevated IL-8/CXCL8, in particular, predicts risk of transformation of MF to secondary AML (sAML). Tumor necrosis factor (TNF, also known as TNFα), may underlie malignant clonal dominance, based on results from mouse models. Human PV and ET, as well as MF, harbor overproduction of multiple cytokines, above what is observed in normal aging, which can lead to cellular signaling abnormalities separate from those directly mediated by hyperactivated JAK2 or MPL kinases. Evidence that NFκB pathway signaling is frequently hyperactivated in a pan-hematopoietic pattern in MPNs, including in cells outside the malignant clone, emphasizes that MPNs are pan-hematopoietic diseases, which remodel the bone marrow milieu to favor persistence of the malignancy. Clinical evidence that JAK2 inhibition by ruxolitinib in MF neither reliably reduces malignant clonal burden nor eliminates cytokine elevations, suggests targeting cytokine mediated signaling as a therapeutic strategy, which is being pursued in new clinical trials. Greater knowledge of inflammatory pathophysiology in MPNs can therefore contribute to the development of more effective therapy.
Collapse
Affiliation(s)
- Daniel Arthur Corpuz Fisher
- Divisions of Hematology & Oncology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| | - Jared Scott Fowles
- Divisions of Hematology & Oncology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| | - Amy Zhou
- Divisions of Hematology & Oncology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| | - Stephen Tracy Oh
- Divisions of Hematology & Oncology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| |
Collapse
|
45
|
Sun H, Du Y, Yao M, Wang Q, Ji K, Du L, Xu C, He N, Wang J, Zhang M, Liu Y, Wang Y, Wen K, Liu Q. cIAP1/2 are involved in the radiosensitizing effect of birinapant on NSCLC cell line in vitro. J Cell Mol Med 2021; 25:6125-6136. [PMID: 33939305 PMCID: PMC8366455 DOI: 10.1111/jcmm.16526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 03/07/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
Tumour radioresistance is a major problem for cancer radiation therapy. To identify the underlying mechanisms of this resistance, we used human non-small cell lung cancer (NSCLC) cell lines and focused on the Inhibitor of Apoptosis Protein (IAP) family, which contributes to tumourigenesis and chemoresistance. We investigated the possible correlation between radioresistance in six NSCLC cell lines and IAP protein levels and tested the radiosensitizing effect of birinapant in vitro, a molecule that mimics the second mitochondria-derived activator of caspase. We found that birinapant-induced apoptosis and inhibited the proliferation of NSCLC cells after exposure to radiation. These effects were induced by birinapant downregulation of cIAP protein levels and changes of cIAP gene expression. Overall, birinapant can inhibit tumour growth of NSCLC cell lines to ironizing radiation and act as a promising strategy to overcome radioresistance in NSCLC.
Collapse
Affiliation(s)
- Hao Sun
- Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Yanan Du
- Tianjin Center for Disease Control and PreventionTianjinChina
| | - Ming Yao
- Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Qin Wang
- Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Kaihua Ji
- Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Liqing Du
- Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Chang Xu
- Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Ningning He
- Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Jinhan Wang
- Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Manman Zhang
- Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Yang Liu
- Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Yan Wang
- Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Kaixue Wen
- Shanxi Academy of Medical SciencesShanxi Bethune HospitalShanxiChina
| | - Qiang Liu
- Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| |
Collapse
|
46
|
Molnár T, Pallagi P, Tél B, Király R, Csoma E, Jenei V, Varga Z, Gogolák P, Odile Hueber A, Máté Z, Erdélyi F, Szabó G, Pettkó-Szandtner A, Bácsi A, Virág L, Maléth J, Koncz G. Caspase-9 acts as a regulator of necroptotic cell death. FEBS J 2021; 288:6476-6491. [PMID: 33899329 DOI: 10.1111/febs.15898] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/04/2021] [Indexed: 01/25/2023]
Abstract
Necroptosis is a regulated necrotic-like cell death modality which has come into the focus of attention since it is known to contribute to the pathogenesis of many inflammatory and degenerative diseases as well as to tumor regulation. Based on current data, necroptosis serves as a backup mechanism when death receptor-induced apoptosis is inhibited or absent. However, the necroptotic role of the proteins involved in mitochondrial apoptosis has not been investigated. Here, we demonstrated that the stimulation of several death and pattern recognition receptors induced necroptosis under caspase-compromised conditions in wild-type, but not in caspase-9-negative human Jurkat and murine MEF cells. Cerulein-induced pancreatitis was significantly reduced in mice with acinar cell-restricted caspase-9 gene knockout. The absence of caspase-9 led to impaired association of receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3 and resulted in decreased phosphorylation of RIP kinases, but the overexpression of RIPK1 or RIPK3 rescued the effect of caspase-9 deficiency. Inhibition of either Aurora kinase A (AURKA) or its known substrate, glycogen synthase kinase 3β (GSK3ß) restored necroptosis sensitivity of caspase-9-deficient cells, indicating an interplay between caspase-9 and AURKA-mediated pathways to regulate necroptosis. Our findings suggest that caspase-9 acts as a newly identified regulator of necroptosis, and thus, caspase-9 provides a promising therapeutic target to manipulate the immunological outcome of cell death.
Collapse
Affiliation(s)
- Tamás Molnár
- Department of Immunology, Faculty of Medicine, University of Debrecen, Hungary.,Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Hungary
| | - Petra Pallagi
- First Department of Medicine, University of Szeged, Szeged, Hungary.,HAS-USZ Momentum Epithelial Cell Signalling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Bálint Tél
- First Department of Medicine, University of Szeged, Szeged, Hungary.,HAS-USZ Momentum Epithelial Cell Signalling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Róbert Király
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Eszter Csoma
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Hungary
| | - Viktória Jenei
- Department of Immunology, Faculty of Medicine, University of Debrecen, Hungary
| | - Zsófia Varga
- Department of Immunology, Faculty of Medicine, University of Debrecen, Hungary.,Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Hungary
| | - Péter Gogolák
- Department of Immunology, Faculty of Medicine, University of Debrecen, Hungary
| | | | - Zoltán Máté
- Medical Gene Technology Unit, Institute of Experimental Medicine, Budapest, Hungary
| | - Ferenc Erdélyi
- Medical Gene Technology Unit, Institute of Experimental Medicine, Budapest, Hungary
| | - Gábor Szabó
- Medical Gene Technology Unit, Institute of Experimental Medicine, Budapest, Hungary
| | | | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Hungary
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Hungary
| | - József Maléth
- First Department of Medicine, University of Szeged, Szeged, Hungary.,HAS-USZ Momentum Epithelial Cell Signalling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Hungary
| |
Collapse
|
47
|
Budroni V, Versteeg GA. Negative Regulation of the Innate Immune Response through Proteasomal Degradation and Deubiquitination. Viruses 2021; 13:584. [PMID: 33808506 PMCID: PMC8066222 DOI: 10.3390/v13040584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/25/2022] Open
Abstract
The rapid and dynamic activation of the innate immune system is achieved through complex signaling networks regulated by post-translational modifications modulating the subcellular localization, activity, and abundance of signaling molecules. Many constitutively expressed signaling molecules are present in the cell in inactive forms, and become functionally activated once they are modified with ubiquitin, and, in turn, inactivated by removal of the same post-translational mark. Moreover, upon infection resolution a rapid remodeling of the proteome needs to occur, ensuring the removal of induced response proteins to prevent hyperactivation. This review discusses the current knowledge on the negative regulation of innate immune signaling pathways by deubiquitinating enzymes, and through degradative ubiquitination. It focusses on spatiotemporal regulation of deubiquitinase and E3 ligase activities, mechanisms for re-establishing proteostasis, and degradation through immune-specific feedback mechanisms vs. general protein quality control pathways.
Collapse
Affiliation(s)
| | - Gijs A. Versteeg
- Max Perutz Labs, Department of Microbiology, Immunobiology, and Genetics, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
48
|
Kist M, Vucic D. Cell death pathways: intricate connections and disease implications. EMBO J 2021; 40:e106700. [PMID: 33439509 PMCID: PMC7917554 DOI: 10.15252/embj.2020106700] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Various forms of cell death have been identified over the last decades with each relying on a different subset of proteins for the activation and execution of their respective pathway(s). In addition to the three best characterized pathways-apoptosis, necroptosis, and pyroptosis-other forms of regulated cell death including autophagy-dependent cell death (ADCD), mitochondrial permeability transition pore (MPTP)-mediated necrosis, parthanatos, NETosis and ferroptosis, and their relevance for organismal homeostasis are becoming better understood. Importantly, it is increasingly clear that none of these pathways operate alone. Instead, a more complex picture is emerging with many pathways sharing components and signaling principles. Finally, a number of cell death regulators are implicated in human diseases and represent attractive therapeutic targets. Therefore, better understanding of physiological and mechanistic aspects of cell death signaling should yield improved reagents for addressing unmet medical needs.
Collapse
Affiliation(s)
- Matthias Kist
- Department of Early Discovery BiochemistryGenentechSouth San FranciscoUSA
| | - Domagoj Vucic
- Department of Early Discovery BiochemistryGenentechSouth San FranciscoUSA
| |
Collapse
|
49
|
Knoll G, Ehrenschwender M. The non-peptidomimetic IAP antagonist ASTX660 sensitizes colorectal cancer cells for extrinsic apoptosis. FEBS Open Bio 2021; 11:714-723. [PMID: 33484626 PMCID: PMC7931242 DOI: 10.1002/2211-5463.13096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 01/16/2023] Open
Abstract
Apoptosis resistance worsens treatment response in cancer and is associated with poor prognosis. Inhibition of anti-apoptotic proteins can restore cell death and improve treatment efficacy. cIAP1, cIAP2, and XIAP belong to the inhibitor of apoptosis protein (IAP) family and block apoptosis. Targeting IAPs with peptides or peptidomimetics mimicking the IAP-antagonizing activity of the cell's endogenous IAP antagonist SMAC (SMAC mimetics) showed promising results and fueled development of novel compounds. ASTX660 belongs to the recently introduced class of non-peptidomimetic IAP antagonists and successfully completed phase I clinical trials. However, ASTX660 has thus far only been evaluated in few cancer entities. Here, we demonstrate that ASTX660 has cell death-promoting activity in colorectal cancer and provide a head-to-head comparison with birinapant, the clinically most advanced peptidomimetic IAP antagonist. ASTX660 facilitates activation of the extrinsic apoptosis pathway upon stimulation with the death ligands TNF and TRAIL and boosts effector caspase activation and subsequent apoptosis. Mechanistically, ASTX660 enhances amplification of death receptor-generated apoptotic signals in a mitochondria-dependent manner. Failure to activate the mitochondria-associated (intrinsic) apoptosis pathway attenuated the apoptosis-promoting effect of ASTX660. Further clinical studies are warranted to highlight the therapeutic potential of ASTX660 in colorectal cancer.
Collapse
Affiliation(s)
- Gertrud Knoll
- Institute of Clinical Microbiology and HygieneUniversity Hospital RegensburgGermany
| | | |
Collapse
|
50
|
Brayshaw LL, Martinez-Fleites C, Athanasopoulos T, Southgate T, Jespers L, Herring C. The role of small molecules in cell and gene therapy. RSC Med Chem 2021; 12:330-352. [PMID: 34046619 PMCID: PMC8130622 DOI: 10.1039/d0md00221f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/25/2020] [Indexed: 01/22/2023] Open
Abstract
Cell and gene therapies have achieved impressive results in the treatment of rare genetic diseases using gene corrected stem cells and haematological cancers using chimeric antigen receptor T cells. However, these two fields face significant challenges such as demonstrating long-term efficacy and safety, and achieving cost-effective, scalable manufacturing processes. The use of small molecules is a key approach to overcome these barriers and can benefit cell and gene therapies at multiple stages of their lifecycle. For example, small molecules can be used to optimise viral vector production during manufacturing or used in the clinic to enhance the resistance of T cell therapies to the immunosuppressive tumour microenvironment. Here, we review current uses of small molecules in cell and gene therapy and highlight opportunities for medicinal chemists to further consolidate the success of cell and gene therapies.
Collapse
Affiliation(s)
- Lewis L Brayshaw
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Carlos Martinez-Fleites
- Protein Degradation Group, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Takis Athanasopoulos
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Thomas Southgate
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Laurent Jespers
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Christopher Herring
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| |
Collapse
|