1
|
Jana RD, Das A, Samanta R, Banerjee S, Paul S, Paine TK. Stereoelectronic Tuning of Bioinspired Nonheme Iron(IV)-Oxo Species by Amide Groups in Primary and Secondary Coordination Spheres for Selective Oxygenation Reactions. Inorg Chem 2024. [PMID: 39433290 DOI: 10.1021/acs.inorgchem.4c03155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Two mononuclear iron(II) complexes, [(6-amide2-BPMEN)FeII](OTf)2 (1) and [(6-amide-Me-BPMEN)FeII(OTf)](OTf) (2), supported by two BPMEN-derived (BPMEN = N1,N2-dimethyl-N1,N2-bis(pyridine-2-yl-methyl)ethane-1,2-diamine) ligands bearing one or two amide functionalities have been isolated to study their reactivity in the oxygenation of C-H and C═C bonds using isopropyl 2-iodoxybenzoate (iPr-IBX ester) as the oxidant. Both 1 and 2 contain six-coordinate high-spin iron(II) centers in the solid state and in solution. The 6-amide2-BPMEN ligand stabilizes an S = 1 iron(IV)-oxo intermediate, [(6-amide2-BPMEN)FeIV(O)]2+ (1A). The oxidant (1A) oxygenates the C-H and C═C bonds with a high selectivity. Oxidant 1A, upon treatment with 2,6-lutidine, is transformed into another oxidant [{(6-amide2-BPMEN)-(H)}FeIV(O)]+ (1B) through deprotonation of an amide group, resulting in a stronger equatorial ligand field and subsequent stabilization of the triplet ground state. In contrast, no iron-oxo species could be observed from complex 2 and [(6-Me2-BPMEN)FeII(OTf)2] (3) under similar experimental conditions. The iron(IV)-oxo oxidant 1A shows the highest A/K selectivity in cyclohexane oxidation and 3°/2° selectivity in adamantane oxidation reported for any synthetic nonheme iron(IV)-oxo complexes. Theoretical investigation reveals that the hydrogen bonding interaction between the -NH group of the noncoordinating amide group and Fe═O core smears out the equatorial charge density, reducing the triplet-quintet splitting, and thus helping complex 1A to achieve better reactivity.
Collapse
Affiliation(s)
- Rahul Dev Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, Jadavpur 700032, India
| | - Abhishek Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, Jadavpur 700032, India
| | - Rajib Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, Jadavpur 700032, India
| | - Sridhar Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, Jadavpur 700032, India
| | - Satadal Paul
- Department of Chemistry, Bangabasi Morning College, 19 Rajkumar Chakraborty Sarani, Kolkata 700009, India
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, Jadavpur 700032, India
| |
Collapse
|
2
|
Schlachta TP, Zámbó GG, Sauer MJ, Rüter I, Kühn FE. Impact of Ligand Design on an Iron NHC Epoxidation Catalyst. ChemistryOpen 2024:e202400071. [PMID: 39318071 DOI: 10.1002/open.202400071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/04/2024] [Indexed: 09/26/2024] Open
Abstract
An open-chain iron pyridine-NHC framework is expanded utilizing a benzimidazole moiety to deepen the understanding of the impact of electronic variations on iron NHC epoxidation catalysts, especially regarding the stability. The thereby newly obtained iron(II) NHC complex is characterized and employed in olefin epoxidation. It is remarkably temperature tolerant and achieves a TOF of ca. 10 000 h-1 and TON of ca. 700 at 60 °C in the presence of the Lewis acid Sc(OTf)3, displaying equal stability, but lower activity than the unmodified iron pyridine-NHC (pre-)catalyst. In addition, a synthetic approach towards another ligand containing 2-imidazoline units is described but formylation as well as hydrolysis hamper its successful synthesis.
Collapse
Affiliation(s)
- Tim P Schlachta
- Technical University of Munich, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Molecular Catalysis, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Greta G Zámbó
- Technical University of Munich, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Molecular Catalysis, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Michael J Sauer
- Technical University of Munich, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Molecular Catalysis, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Isabelle Rüter
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
| | - Fritz E Kühn
- Technical University of Munich, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Molecular Catalysis, Lichtenbergstraße 4, 85748, Garching, Germany
| |
Collapse
|
3
|
Hoque MA, Jiang T, Poole DL, Stahl SS. Manganese-Mediated Electrochemical Oxidation of Thioethers to Sulfoxides Using Water as the Source of Oxygen Atoms. J Am Chem Soc 2024; 146:21960-21967. [PMID: 39042816 PMCID: PMC11409814 DOI: 10.1021/jacs.4c07058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Oxygen-atom transfer reactions are a prominent class of synthetic redox reactions that often use high-energy oxygen-atom donor reagents. Electrochemical methods can bypass these reagents by using water as the source of oxygen atoms through pathways involving direct or indirect (mediated) electrolysis. Here, manganese porphyrins and related mediators are shown to be effective molecular electrocatalysts for selective oxidation of thioethers to sulfoxides, without overoxidation to the sulfone. The reactions proceed by proton-coupled oxidation of a MnIII-OH2 species to generate a MnIV-OH and MnV═O species. This methodology is compared to direct electrolysis methods initiated by single-electron oxidation of the thioether, and chloride-mediated electrochemical oxidation of thioethers. The Mn-mediated reactions operate at lower applied potential and exhibit improved substrate scope and functional group compatibility relative to direct electrolysis, and the tunability of the Mn-based mediators allows for improved performance relative to chloride-mediated electrolysis. An electrochemical parallel screening platform is developed and applied to a library of pharmaceutically relevant thioethers.
Collapse
Affiliation(s)
- Md Asmaul Hoque
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Tianxiao Jiang
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Darren L Poole
- Molecular Modalities Capabilities, GSK Medicines Research Centre, Gunnels Wood Rd., Stevenage SG1 2NY, U.K
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
Ariafard A, Longhurst M, Swiegers GF, Stranger R. Mechanisms of Mn(V)-Oxo to Mn(IV)-Oxyl Conversion: From Closed-Cubane Photosystem II to Mn(V) Catalysts and the Role of the Entering Ligands. Chemistry 2024; 30:e202400396. [PMID: 38659321 DOI: 10.1002/chem.202400396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
The low activation barrier for O-O coupling in the closed-cubane Oxygen-Evolving Centre (OEC) of Photosystem II (PSII) requires water coordination with the Mn4 'dangler' ion in the Mn(V)-oxo fragment. This coordination transforms the Mn(V)-oxo complex into a more reactive Mn4(IV)-oxyl species, enhancing O-O coupling. This study explains the mechanism behind the coordination and indicates that in the most stable form of the OEC, the Mn4 fragment adopts a trigonal bipyramidal geometry but needs to transition to a square pyramidal form to be activated for O-O coupling. This transition stabilizes the Mn4 dxy orbital, enabling electron transfer from the oxo ligand to the dxy orbital, converting the oxo ligand into an oxyl species. The role of the water is to coordinate with the square pyramidal structure, reducing the energy gap between the oxo and oxyl forms, thereby lowering the activation energy for O-O coupling. This mechanism applies not only to the OEC system but also to other Mn(V)-based catalysts. For other catalysts, ligands such as OH- stabilize the Mn(IV)-oxyl species better than water, improving catalyst activation for reactions like C-H bond activation. This study is the first to explain the Mn(V)-oxo to Mn(IV)-oxyl conversion, providing a new foundation for Mn-based catalyst design.
Collapse
Affiliation(s)
- Alireza Ariafard
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Matthew Longhurst
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, Australia
| | - Gerhard F Swiegers
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, Australia
| | - Robert Stranger
- Research School of Chemistry, Australian National University, Canberra, Australia
| |
Collapse
|
5
|
Gupta S, Sharma P, Jain K, Chandra B, Mallojjala SC, Draksharapu A. Proton-assisted activation of a Mn III-OOH for aromatic C-H hydroxylation through a putative [Mn VO] species. Chem Commun (Camb) 2024; 60:6520-6523. [PMID: 38836330 DOI: 10.1039/d4cc00798k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Adding HClO4 to [(BnTPEN)MnIII-OO]+ in MeOH generates a short-lived MnIII-OOH species, which converts to a putative MnVO species. The potent MnVO species in MeCN oxidizes the pendant phenyl ring of the ligand in an intramolecular fashion. The addition of benzene causes the formation of (BnTPEN)MnIII-phenolate. These findings suggest that high valent Mn species have the potential to catalyze challenging aromatic hydroxylation reactions.
Collapse
Affiliation(s)
- Sikha Gupta
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Parkhi Sharma
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Khyati Jain
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Bittu Chandra
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | - Apparao Draksharapu
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| |
Collapse
|
6
|
Sen A, Britto NJ, Kass D, Ray K, Rajaraman G. Origin of Unprecedented Formation and Reactivity of Fe IV═O Species via Oxygen Activation: Role of Noncovalent Interactions and Magnetic Coupling. Inorg Chem 2024; 63:9809-9822. [PMID: 38739843 DOI: 10.1021/acs.inorgchem.4c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Emulating the capabilities of the soluble methane monooxygenase (sMMO) enzymes, which effortlessly activate oxygen at diiron(II) centers to form a reactive diiron(IV) intermediate Q, which then performs the challenging oxidation of methane to methanol, poses a significant challenge. Very recently, one of us reported the mononuclear complex [(cyclam)FeII(CH3CN)2]2+ (1), which performed a rare bimolecular activation of the molecule of O2 to generate two molecules of FeIV═O without the requirement of external proton or electron sources, similar to sMMO. In the present study, we employed the density functional theory (DFT) calculations to investigate this unique mechanism of O2 activation. We show that secondary hydrogen-bonding interactions between ligand N-H groups and O2 play a vital role in reducing the energy barrier associated with the initial O2 binding at 1 and O-O bond cleavage to form the FeIV═O complex. Further, the unique reactivity of FeIV═O species toward simultaneous C-H and O-H bond activation process has been demonstrated. Our study unveils that the nature of the magnetic coupling between the diiron centers is also crucial. Given that the influence of magnetic coupling and noncovalent interactions in catalysis remains largely unexplored, this unexplored realm presents numerous avenues for experimental chemists to develop novel structural and functional analogues of sMMO.
Collapse
Affiliation(s)
- Asmita Sen
- Department of Chemistry, IIT Bombay, Powai, Mumbai-400076, India
| | | | - Dustin Kass
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Kallol Ray
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | | |
Collapse
|
7
|
Wang R, Pan Y, Feng S, Liang C, Xie J, Lau TC, Liu Y. Structure and reactivity of a seven-coordinate ruthenium acylperoxo complex. Chem Commun (Camb) 2024; 60:312-315. [PMID: 38063010 DOI: 10.1039/d3cc04751b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The use of metal-acylperoxo complexes as oxidants has been little explored. Herein we report the synthesis and characterization of the first seven-coordinate Ru-acylperoxo complex, [RuIV(bdpm)(pic)2(mCPBA)]+ (H2bdpm = [2,2'-bipyridine]-6,6'-diylbis(diphenylmethanol); pic = 4-picoline; HmCPBA = m-chloroperbenzoic acid). This complex is a highly reactive oxidant for C-H bond activation and O-atom transfer reactions.
Collapse
Affiliation(s)
- Rui Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
- Science Island Branch, Graduate School of USTC, Hefei 230026, P. R. China
| | - Yunling Pan
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Sushan Feng
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Chenyi Liang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
- Science Island Branch, Graduate School of USTC, Hefei 230026, P. R. China
| | - Jianhui Xie
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong, P. R. China
| | - Yingying Liu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| |
Collapse
|
8
|
da Silva MAR, Tarakina NV, Filho JBG, Cunha CS, Rocha GFSR, Diab GAA, Ando RA, Savateev O, Agirrezabal-Telleria I, Silva IF, Stolfi S, Ghigna P, Fagnoni M, Ravelli D, Torelli P, Braglia L, Teixeira IF. Single-Atoms on Crystalline Carbon Nitrides for Selective C─H Photooxidation: A Bridge to Achieve Homogeneous Pathways in Heterogeneous Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304152. [PMID: 37986204 DOI: 10.1002/adma.202304152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/15/2023] [Indexed: 11/22/2023]
Abstract
Single-atom catalysis is a field of paramount importance in contemporary science due to its exceptional ability to combine the domains of homogeneous and heterogeneous catalysis. Iron and manganese metalloenzymes are known to be effective in C─H oxidation reactions in nature, inspiring scientists to mimic their active sites in artificial catalytic systems. Herein, a simple and versatile cation exchange method is successfully employed to stabilize low-cost iron and manganese single-atoms in poly(heptazine imides) (PHI). The resulting materials are employed as photocatalysts for toluene oxidation, demonstrating remarkable selectivity toward benzaldehyde. The protocol is then extended to the selective oxidation of different substrates, including (substituted) alkylaromatics, benzyl alcohols, and sulfides. Detailed mechanistic investigations revealed that iron- and manganese-containing photocatalysts work through a similar mechanism via the formation of high-valent M═O species. Operando X-ray absorption spectroscopy (XAS) is employed to confirm the formation of high-valent iron- and manganese-oxo species, typically found in metalloenzymes involved in highly selective C─H oxidations.
Collapse
Affiliation(s)
- Marcos A R da Silva
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Nadezda V Tarakina
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - José B G Filho
- Department of Chemistry, ICEx, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Carla S Cunha
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Guilherme F S R Rocha
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Gabriel A A Diab
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Rômulo Augusto Ando
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil
| | - Oleksandr Savateev
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Iker Agirrezabal-Telleria
- Department of Chemical and Environmental Engineering of the Bilbao Engineering School, University of Basque Country (UPV/EHU), Plaza Torres Quevedo 1, Bilbao, 48013, Spain
| | - Ingrid F Silva
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Sara Stolfi
- Department of Chemistry, University of Pavia, viale Taramelli 12, Pavia, 27100, Italy
| | - Paolo Ghigna
- Department of Chemistry, University of Pavia, viale Taramelli 12, Pavia, 27100, Italy
| | - Maurizio Fagnoni
- Department of Chemistry, University of Pavia, viale Taramelli 12, Pavia, 27100, Italy
| | - Davide Ravelli
- Department of Chemistry, University of Pavia, viale Taramelli 12, Pavia, 27100, Italy
| | - Piero Torelli
- TASC Laboratory, CNR-IOM, Istituto Officina dei Materiali, Trieste, 34149, Italy
| | - Luca Braglia
- TASC Laboratory, CNR-IOM, Istituto Officina dei Materiali, Trieste, 34149, Italy
| | - Ivo F Teixeira
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| |
Collapse
|
9
|
Grotemeyer EN, Parham JD, Jackson TA. Reaction landscape of a mononuclear Mn III-hydroxo complex with hydrogen peroxide. Dalton Trans 2023; 52:14350-14370. [PMID: 37767937 DOI: 10.1039/d3dt02672h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Peroxomanganese species have been proposed as key intermediates in the catalytic cycles of both manganese enzymes and synthetic catalysts. However, many of these intermediates have yet to be observed. Here, we report the formation of a series of intermediates, each generated from the reaction of the mononuclear MnIII-hydroxo complex [MnIII(OH)(dpaq2Me)]+ with hydrogen peroxide under slightly different conditions. By changing the acidity of the reaction mixture and/or the quantity of hydrogen peroxide added, we are able to control which intermediate forms. Using a combination of electronic absorption, 1H NMR, EPR, and X-ray absorption spectroscopies, as well as density functional theory (DFT) and complete active space self-consistent field (CASSCF) calculations, we formulate these intermediates as the bis(μ-oxo)dimanganese(III,IV) complex [MnIIIMnIV(μ-O)2(dpaq2Me)2]+, the MnIII-hydroperoxo complex [MnIII(OOH)(dpaq2Me)]+, and the MnIII-peroxo complex [MnIII(O2)(dpaq2Me)]. The formation of the MnIII-hydroperoxo species from the reaction of a MnIII-hydroxo complex with hydrogen peroxide mimics an elementary reaction proposed for many synthetic manganese catalysts that activate hydrogen peroxide.
Collapse
Affiliation(s)
- Elizabeth N Grotemeyer
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| | - Joshua D Parham
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| | - Timothy A Jackson
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| |
Collapse
|
10
|
Call A, Capocasa G, Palone A, Vicens L, Aparicio E, Choukairi Afailal N, Siakavaras N, López Saló ME, Bietti M, Costas M. Highly Enantioselective Catalytic Lactonization at Nonactivated Primary and Secondary γ-C-H Bonds. J Am Chem Soc 2023; 145:18094-18103. [PMID: 37540636 PMCID: PMC10507665 DOI: 10.1021/jacs.3c06231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 08/06/2023]
Abstract
Chiral oxygenated aliphatic moieties are recurrent in biological and pharmaceutically relevant molecules and constitute one of the most versatile types of functionalities for further elaboration. Herein we report a protocol for straightforward and general access to chiral γ-lactones via enantioselective oxidation of strong nonactivated primary and secondary C(sp3)-H bonds in readily available carboxylic acids. The key enabling aspect is the use of robust sterically encumbered manganese catalysts that provide outstanding enantioselectivities (up to >99.9%) and yields (up to 96%) employing hydrogen peroxide as the oxidant. The resulting γ-lactones are of immediate interest for the preparation of inter alia natural products and recyclable polymeric materials.
Collapse
Affiliation(s)
- Arnau Call
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Giorgio Capocasa
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Andrea Palone
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Laia Vicens
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Eric Aparicio
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Najoua Choukairi Afailal
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Nikos Siakavaras
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Maria Eugènia López Saló
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Massimo Bietti
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1 I-00133 Rome, Italy
| | - Miquel Costas
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| |
Collapse
|
11
|
Ajaykamal T, Palaniandavar M. Mononuclear nickel(ii)-flavonolate complexes of tetradentate tripodal 4N ligands as structural and functional models for quercetin 2,4-dioxygenase: structures, spectra, redox and dioxygenase activity. RSC Adv 2023; 13:24674-24690. [PMID: 37601601 PMCID: PMC10436029 DOI: 10.1039/d3ra04834a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023] Open
Abstract
Three new nickel(ii)-flavonolate complexes of the type [Ni(L)(fla)](ClO4) 1-3, where L is the tripodal 4N ligand tris(pyrid-2-ylmethyl)amine (tpa, L1) or (pyrid-2-ylmethyl)bis(6-methylpyrid-2-ylmethyl)amine (6-Me2-tpa, L2) or tris(N-Et-benzimidazol-2-ylmethyl)amine (Et-ntb, L3), have been isolated as functional models for Ni(ii)-containing quercetin 2,4-dioxygenase. Single crystal X-ray structures of 1 and 3 reveal that Ni(ii) is involved in π-back bonding with flavonolate (fla-), as evident from enhancement in C[double bond, length as m-dash]O bond length upon coordination [H(fla), 1.232(3); 1, 1.245(7); 3, 1.262(8) Å]. More asymmetric chelation of fla- in 3 than in 1 [Δd = (Ni-Ocarbonyl - Ni-Oenolate): 1, 0.126; 3, 0.182 Å] corresponds to lower π-delocalization in 3 with electron-releasing N-Et substituent. The optimized structures of 1-3 and their geometrical isomers have been computed by DFT methods. The HOMO and LUMO, both localized on Ni(ii)-bound fla-, are highly conjugated bonding π- and antibonding π*-orbitals respectively. They are located higher in energy than the Ni(ii)-based MOs (HOMO-1, dx2-y2; HOMO-2/6, dz2), revealing that the Ni(ii)-bound fla- rather than Ni(ii) would undergo oxidation upon exposure to dioxygen. The results of computational studies, in combination with spectral and electrochemical studies, support the involvement of redox-inactive Ni(ii) in π-back bonding with fla-, tuning the π-delocalization in fla- and hence its activation. Upon exposure to dioxygen, all the flavonolate adducts in DMF solution decompose to produce CO and depside, which then is hydrolyzed to give the corresponding acids at 70 °C. The highest rate of dioxygenase reactivity of 3 (kO2: 3 (29.10 ± 0.16) > 1 (16.67 ± 0.70) > 2 (1.81 ± 0.04 × 10-1 M-1 s-1)), determined by monitoring the disappearance of the LMCT band in the range 440-450 nm, is ascribed to the electron-releasing N-Et substituent on bzim ring, which decreases the π-delocalization in fla- and enhances its activation.
Collapse
Affiliation(s)
- Tamilarasan Ajaykamal
- Department of Chemistry, Bharathidasan University Tiruchirapalli 620 024 Tamil Nadu India +91-431-2407043 +91-431-2407125
| | - Mallayan Palaniandavar
- Department of Chemistry, Bharathidasan University Tiruchirapalli 620 024 Tamil Nadu India +91-431-2407043 +91-431-2407125
| |
Collapse
|
12
|
Jeong D, Selverstone Valentine J, Cho J. Bio-inspired mononuclear nonheme metal peroxo complexes: Synthesis, structures and mechanistic studies toward understanding enzymatic reactions. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
13
|
Ma T, Xu C, Liu F, Feng Y, Zhang W, Tang W, Zhang H, Li X, Nie Y, Zhao S, Li Y, Ji D, Fang Z, He W, Guo K. Selective epoxidation and allylic oxidation of olefins catalyzed by BEA-Ti and porphyrin catalysts. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
14
|
Sun D, Wu Z, Zhang X, Yang J, Zhao Y, Nam W, Wang Y. Brønsted Acids Promote Olefin Oxidations by Bioinspired Nonheme Co III(PhIO)(OH) Complexes: A Role for Low-Barrier Hydrogen Bonds. J Am Chem Soc 2023; 145:5739-5749. [PMID: 36867878 DOI: 10.1021/jacs.2c12307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Introduction of Brønsted acids into biomimetic nonheme reactions promotes the oxidative ability of metal-oxygen complexes significantly. However, the molecular machinery of the promoted effects is missing. Herein, a comprehensive investigation of styrene oxidation by a cobalt(III)-iodosylbenzene complex, [(TQA)CoIII(OIPh)(OH)]2+ (1, TQA = tris(2-quinolylmethyl)amine), in the presence and absence of triflic acid (HOTf) was performed using density functional theory calculations. Results revealed for the first time that there is a low-barrier hydrogen bond (LBHB) between HOTf and the hydroxyl ligand of 1, which forms two valence-resonance structures [(TQA)CoIII(OIPh)(HO---HOTf)]2+ (1LBHB) and [(TQA)CoIII(OIPh)(H2O--OTf-)]2+ (1'LBHB). Due to the oxo-wall, these complexes (1LBHB and 1'LBHB) cannot convert to high-valent cobalt-oxyl species. Instead, styrene oxidation by these oxidants (1LBHB and 1'LBHB) shows novel spin-state selectivity, i.e., on the ground closed-shell singlet state, styrene is oxidized to an epoxide, whereas on the excited triplet and quintet states, an aldehyde product, phenylacetaldehyde, is formed. The preferred pathway is styrene oxidation by 1'LBHB, which is initiated by a rate-limiting bond-formation-coupled electron transfer process with an energy barrier of 12.2 kcal mol-1. The nascent PhIO-styrene-radical-cation intermediate undergoes an intramolecular rearrangement to produce an aldehyde. The halogen bond between the OH-/H2O ligand and the iodine of PhIO modulates the activity of the cobalt-iodosylarene complexes 1LBHB and 1'LBHB. These new mechanistic findings enrich our knowledge of nonheme chemistry and hypervalent iodine chemistry and will play a positive role in the rational design of new catalysts.
Collapse
Affiliation(s)
- Dongru Sun
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Zhimin Wu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Xuan Zhang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Jindou Yang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yong Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
15
|
Yang G, Mikhalyova EA, Filatov AS, Kryatov SV, Rybak-Akimova EV. Manganese(II) Complexes of 1,1'-Bis[(pyridine-2-yl)methyl)]-2,2'-bipiperidine (PYBP): Synthesis, Structure, Catalytic Properties in Alkene Epoxidation with Hydrogen Peroxide, and Related Mechanistic Studies. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Call A, Cianfanelli M, Besalú-Sala P, Olivo G, Palone A, Vicens L, Ribas X, Luis JM, Bietti M, Costas M. Carboxylic Acid Directed γ-Lactonization of Unactivated Primary C-H Bonds Catalyzed by Mn Complexes: Application to Stereoselective Natural Product Diversification. J Am Chem Soc 2022; 144:19542-19558. [PMID: 36228322 DOI: 10.1021/jacs.2c08620] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reactions that enable selective functionalization of strong aliphatic C-H bonds open new synthetic paths to rapidly increase molecular complexity and expand chemical space. Particularly valuable are reactions where site-selectivity can be directed toward a specific C-H bond by catalyst control. Herein we describe the catalytic site- and stereoselective γ-lactonization of unactivated primary C-H bonds in carboxylic acid substrates. The system relies on a chiral Mn catalyst that activates aqueous hydrogen peroxide to promote intramolecular lactonization under mild conditions, via carboxylate binding to the metal center. The system exhibits high site-selectivity and enables the oxidation of unactivated primary γ-C-H bonds even in the presence of intrinsically weaker and a priori more reactive secondary and tertiary ones at α- and β-carbons. With substrates bearing nonequivalent γ-C-H bonds, the factors governing site-selectivity have been uncovered. Most remarkably, by manipulating the absolute chirality of the catalyst, γ-lactonization at methyl groups in gem-dimethyl structural units of rigid cyclic and bicyclic carboxylic acids can be achieved with unprecedented levels of diastereoselectivity. Such control has been successfully exploited in the late-stage lactonization of natural products such as camphoric, camphanic, ketopinic, and isoketopinic acids. DFT analysis points toward a rebound type mechanism initiated by intramolecular 1,7-HAT from a primary γ-C-H bond of the bound substrate to a highly reactive MnIV-oxyl intermediate, to deliver a carbon radical that rapidly lactonizes through carboxylate transfer. Intramolecular kinetic deuterium isotope effect and 18O labeling experiments provide strong support to this mechanistic picture.
Collapse
Affiliation(s)
- Arnau Call
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Marco Cianfanelli
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Pau Besalú-Sala
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Giorgio Olivo
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Andrea Palone
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain.,Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica 1, I-00133 Rome, Italy
| | - Laia Vicens
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Josep M Luis
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica 1, I-00133 Rome, Italy
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| |
Collapse
|
17
|
Bohn A, Sénéchal‐David K, Rebilly J, Herrero C, Leibl W, Anxolabéhère‐Mallart E, Banse F. Heterolytic O-O Bond Cleavage Upon Single Electron Transfer to a Nonheme Fe(III)-OOH Complex. Chemistry 2022; 28:e202201600. [PMID: 35735122 PMCID: PMC9804275 DOI: 10.1002/chem.202201600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 01/05/2023]
Abstract
The one-electron reduction of the nonheme iron(III)-hydroperoxo complex, [FeIII (OOH)(L5 2 )]2+ (L5 2 =N-methyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine), carried out at -70 °C results in the release of dioxygen and in the formation of [FeII (OH)(L5 2 )]+ following a bimolecular process. This reaction can be performed either with cobaltocene as chemical reductant, or electrochemically. These experimental observations are consistent with the disproportionation of the hydroperoxo group in the putative FeII (OOH) intermediate generated upon reduction of the FeIII (OOH) starting complex. One plausible mechanistic scenario is that this disproportionation reaction follows an O-O heterolytic cleavage pathway via a FeIV -oxo species.
Collapse
Affiliation(s)
- Antoine Bohn
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-SaclayCNRS91405OrsayFrance
| | - Katell Sénéchal‐David
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-SaclayCNRS91405OrsayFrance
| | - Jean‐Noël Rebilly
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-SaclayCNRS91405OrsayFrance
| | - Christian Herrero
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-SaclayCNRS91405OrsayFrance
| | - Winfried Leibl
- Institute for Integrative Biology of the Cell (I2BC)Université Paris-Saclay, CEACNRS91198Gif-sur-YvetteFrance
| | | | - Frédéric Banse
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-SaclayCNRS91405OrsayFrance
| |
Collapse
|
18
|
Tripodi G, Roithová J. Unmasking the Iron-Oxo Bond of the [(Ligand)Fe-OIAr] 2+/+ Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1636-1643. [PMID: 35920859 PMCID: PMC9460779 DOI: 10.1021/jasms.2c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
ArIO (ArI = 2-(tBuSO2)C6H4I) is an oxidant used to oxidize FeII species to their FeIV-oxo state, enabling hydrogen-atom transfer (HAT) and oxygen-atom transfer (OAT) reactions at low energy barriers. ArIO, as a ligand, generates masked Fen═O species of the type Fe(n-2)-OIAr. Herein, we used gas-phase ion-molecule reactions and DFT calculations to explore the properties of masked iron-oxo species and to understand their unmasking mechanisms. The theory shows that the I-O bond cleavage in [(TPA)FeIVO(ArIO)]2+ (12+, TPA = tris(2-pyridylmethyl)amine)) is highly endothermic; therefore, it can be achieved only in collision-induced dissociation of 12+ leading to the unmasked iron(VI) dioxo complex. The reduction of 12+ by HAT leads to [(TPA)FeIIIOH(ArIO)]2+ with a reduced energy demand for the I-O bond cleavage but is, however, still endothermic. The exothermic unmasking of the Fe═O bond is predicted after one-electron reduction of 12+ or after OAT reactivity. The latter leads to the 4e- oxidation of unsaturated hydrocarbons: The initial OAT from [(TPA)FeIVO(ArIO)]2+ leads to the epoxidation of an alkene and triggers the unmasking of the second Fe═O bond still within one collisional complex. The second oxidation step starts with HAT from a C-H bond and follows with the rebound of the C-radical and the OH group. The process starting with the one-electron reduction could be studied with [(TQA)FeIVO(ArIO)]2+ (22+, TQA = tris(2-quinolylmethyl)amine)) because it has a sufficient electron affinity for electron transfer with alkenes. Accordingly, the reaction of 22+ with 2-carene leads to [(TQA)FeIIIO(ArIO)]2+ that exothermically eliminates ArI and unmasks the reactive FeV-dioxo species.
Collapse
Affiliation(s)
- Guilherme
L. Tripodi
- Department of spectroscopy
and Catalysis, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jana Roithová
- Department of spectroscopy
and Catalysis, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
19
|
Saju A, Griffiths JR, MacMillan SN, Lacy DC. Synthesis of a Bench-Stable Manganese(III) Chloride Compound: Coordination Chemistry and Alkene Dichlorination. J Am Chem Soc 2022; 144:16761-16766. [PMID: 36067378 DOI: 10.1021/jacs.2c08509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The complex [MnCl3(OPPh3)2] (1) is a bench-stable and easily prepared source of MnCl3. It is prepared by treating acetonitrile solvated MnCl3 (2) with Ph3PO and collecting the resulting blue precipitate. 1 is useful in coordination reactions by virtue of the labile Ph3PO ligands, and this is demonstrated through the synthesis of {Tpm*}MnCl3 (3). In addition, methodologies in synthesis that rely on difficult or cumbersome to prepare solutions of reactive MnCl3 can be accomplished using 1 instead. This is demonstrated through alkene dichlorinations in a wide range of solvents, open to air, and with good substrate scope. Light-accelerated halogenation and radical sensitive experiments support a radical mechanism involving stepwise Cl-atom transfer(s) from 1.
Collapse
Affiliation(s)
| | | | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - David C Lacy
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
20
|
Malik DD, Lee Y, Nam W. Identification of a cobalt(
IV
)–oxo intermediate as an active oxidant in catalytic oxidation reactions. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Deesha D. Malik
- Department of Chemistry and Nano Science Ewha Womans University Seoul South Korea
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul South Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul South Korea
| |
Collapse
|
21
|
Guan H, Tung CH, Liu L. Methane Monooxygenase Mimic Asymmetric Oxidation: Self-Assembling μ-Hydroxo, Carboxylate-Bridged Diiron(III)-Catalyzed Enantioselective Dehydrogenation. J Am Chem Soc 2022; 144:5976-5984. [PMID: 35324200 DOI: 10.1021/jacs.2c00638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mimicking naturally occurring metalloenzymes to enrich the diversity of catalytic asymmetric oxidation reactions is a long-standing goal for modern chemistry. Toward this end, a range of methane monooxygenase (MMO) mimic chiral carboxylate-bridged (μ-hydroxo) diiron(III) dimer complexes using salan as basal ligand and sodium aryl carboxylate as additive have been designed and synthesized. The chiral diiron complexes exhibit efficient catalytic reactivity in dehydrogenative kinetic resolution of indolines using environmentally benign hydrogen peroxide as oxidant. In particular, complex C9 bearing sterically encumbered salan ligands and a 2-naphthoate bridge is identified as the optimal catalyst in terms of chiral recognition. Further investigation reveals that this MMO mimic chiral catalyst can be readily generated by self-assembly under the dehydrogenation conditions. The self-assembling catalytic system is applicable to a series of indolines with multiple stereocenters and diverse substituent patterns in high efficiency with a high level of chiral recognition (selectivity factor up to 153). Late-stage dehydrogenative kinetic resolution of bioactive molecules is further examined.
Collapse
Affiliation(s)
- Honghao Guan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lei Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
22
|
Zeng Y, Chen T, Zhang X, Chen Y, Zhou H, Yu L. Mesoporous Mn‐Se/Al
2
O
3
: A Recyclable and Reusable Catalyst for Selective Oxidation of Alcohols. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yan Zeng
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| | - Tian Chen
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| | - Xu Zhang
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| | - Ying Chen
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
- College of Biological, Chemical Sciences and Engineering Jiaxing University Jiaxing China
| | - Hongwei Zhou
- College of Biological, Chemical Sciences and Engineering Jiaxing University Jiaxing China
| | - Lei Yu
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou China
| |
Collapse
|
23
|
Zámbó GG, Schlagintweit JF, Reich RM, Kühn FE. Organometallic 3d transition metal NHC complexes in oxidation catalysis. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00127f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of processes for the selective oxidation of hydrocarbons is a major focus in catalysis research. Making this process simultaneously environmentally friendly is still challenging. 3d transition metals are...
Collapse
|
24
|
Liu X, Huang J, Tao L, Yu H, Zhou X, Xue C, Han Q, Zou W, Ji H. Oxygen Atom Transfer Mechanism for
Vanadium‐Oxo
Porphyrin Complexes Mediated Aerobic Olefin Epoxidation. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiao‐Hui Liu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat‐sen University Zhuhai Guangdong 519082 China
| | - Jia‐Ying Huang
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat‐sen University Zhuhai Guangdong 519082 China
| | - Lei‐Ming Tao
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat‐sen University Guangzhou Guangdong 510275 China
| | - Hai‐Yang Yu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat‐sen University Zhuhai Guangdong 519082 China
| | - Xian‐Tai Zhou
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat‐sen University Zhuhai Guangdong 519082 China
| | - Can Xue
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat‐sen University Zhuhai Guangdong 519082 China
| | - Qi Han
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat‐sen University Zhuhai Guangdong 519082 China
| | - Wen Zou
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat‐sen University Zhuhai Guangdong 519082 China
| | - Hong‐Bing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat‐sen University Guangzhou Guangdong 510275 China
- School of Chemical Engineering Guangdong University of Petrochemical Technology Maoming Guangdong 525000 China
| |
Collapse
|
25
|
Nesterova OV, Kuznetsov ML, Pombeiro AJL, Shul'pin GB, Nesterov DS. Homogeneous oxidation of C–H bonds with m-CPBA catalysed by a Co/Fe system: mechanistic insights from the point of view of the oxidant. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01991k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Co/Fe system efficiently catalyses the oxidation of C–H bonds with m-CPBA. The nitric acid promoter hampers the m-CPBA homolysis, suppressing the free radical activity. Experimental and computational data evidence a concerted oxidation mechanism.
Collapse
Affiliation(s)
- Oksana V. Nesterova
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Maxim L. Kuznetsov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Peoples' Friendship University of Russia (RUDN University), Research Institute of Chemistry, 6 Miklukho-Maklaya st, Moscow 117198, Russia
| | - Georgiy B. Shul'pin
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Ulitsa Kosygina 4, Moscow 119991, Russia
- Chair of Chemistry and Physics, Plekhanov Russian University of Economics, Stremyannyi pereulok 36, Moscow 117997, Russia
| | - Dmytro S. Nesterov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
26
|
The effect of additives (pyrazine, pyrazole and their derivatives) in the oxidation of 2-butanol with FeCl3‒H2O2 in aqueous solutions. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.07.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Guo M, Zhang J, Zhang L, Lee YM, Fukuzumi S, Nam W. Enthalpy-Entropy Compensation Effect in Oxidation Reactions by Manganese(IV)-Oxo Porphyrins and Nonheme Iron(IV)-Oxo Models. J Am Chem Soc 2021; 143:18559-18570. [PMID: 34723505 DOI: 10.1021/jacs.1c08198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
"Enthalpy-Entropy Compensation Effect" (EECE) is ubiquitous in chemical reactions; however, such an EECE has been rarely explored in biomimetic oxidation reactions. In this study, six manganese(IV)-oxo complexes bearing electron-rich and -deficient porphyrins are synthesized and investigated in various oxidation reactions, such as hydrogen atom transfer (HAT), oxygen atom transfer (OAT), and electron-transfer (ET) reactions. First, all of the six Mn(IV)-oxo porphyrins are highly reactive in the HAT, OAT, and ET reactions. Interestingly, we have observed a reversed reactivity in the HAT and OAT reactions by the electron-rich and -deficient Mn(IV)-oxo porphyrins, depending on reaction temperatures, but not in the ET reactions; the electron-rich Mn(IV)-oxo porphyrins are more reactive than the electron-deficient Mn(IV)-oxo porphyrins at high temperature (e.g., 0 °C), whereas at low temperature (e.g., -60 °C), the electron-deficient Mn(IV)-oxo porphyrins are more reactive than the electron-rich Mn(IV)-oxo porphyrins. Such a reversed reactivity between the electron-rich and -deficient Mn(IV)-oxo porphyrins depending on reaction temperatures is rationalized with EECE; that is, the lower is the activation enthalpy, the more negative is the activation entropy, and vice versa. Interestingly, a unified linear correlation between the activation enthalpies and the activation entropies is observed in the HAT and OAT reactions of the Mn(IV)-oxo porphyrins. Moreover, from the previously reported HAT reactions of nonheme Fe(IV)-oxo complexes, a linear correlation between the activation enthalpies and the activation entropies is also observed. To the best of our knowledge, we report the first detailed mechanistic study of EECE in the oxidation reactions by synthetic high-valent metal-oxo complexes.
Collapse
Affiliation(s)
- Mian Guo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Jisheng Zhang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Lina Zhang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,Faculty of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
28
|
Nesterova OV, Vassilyeva OY, Skelton BW, Bieńko A, Pombeiro AJL, Nesterov DS. A novel o-vanillin Fe(III) complex catalytically active in C-H oxidation: exploring the magnetic exchange interactions and spectroscopic properties with different DFT functionals. Dalton Trans 2021; 50:14782-14796. [PMID: 34595485 DOI: 10.1039/d1dt02366g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel complex [FeIIICl(L)2(H2O)] (1) was synthesized by interaction of iron(III) chloride with ethanol solution of o-vanillin (HL) and characterized by IR, UV/Vis spectroscopy, thermogravimetry and single crystal X-ray diffraction analysis. The molecules of 1 in the solid state are joined into supramolecular dimeric units, where a set of strong hydrogen bonds predefines the structure of the dimer according to the "key-lock" principle. From the Hirshfield surface analysis the contribution of π⋯π stacking to the overall stabilization of the dimer was found to be negligible. Broken symmetry DFT calculations suggested the presence of long-range antiferromagnetic interactions (J = -0.12 cm-1 for H = -JS1S2 formalism) occurring through the Fe-O⋯O-Fe pathway, as evidenced by the studies of the model dimers where the water molecules were substituted by acetonitrile and acetone ones. The benchmark studies using a set of literature examples and various DFT functionals revealed the hybrid-GGA B3LYP as the best one for prediction of FeIII⋯FeIII antiferromagnetic exchange couplings of small magnitude. Magnetic susceptibility measurements confirmed antiferromagnetic coupling between the metal atoms in 1 with a coupling constant of -0.35 cm-1. Catalytic studies demonstrated that 1 acts as an efficient catalyst in the oxidation of cyclohexane with hydrogen peroxide in the presence of nitric acid promoter and under mild conditions (yield up to 37% based on the substrate), while tert-butylhydroperoxide (TBHP) and m-chloroperoxybenzoic acid (m-CPBA) as oxidants exhibit less efficiency. Combined UV/TDDFT studies evidence the structural rearrangement of 1 in acetonitrile with the formation of [FeIIICl(L)2(CH3CN)] species. The TDDFT benchmark using nine common DFT functionals and two model compounds (o-vanillin and [FeIII(H2O)6]3+ ion) support the hybrid meta-GGA M06-2X functional as the one most correctly predicting the excited state structure for the Fe(III) complexes, under the conditions studied.
Collapse
Affiliation(s)
- Oksana V Nesterova
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Olga Yu Vassilyeva
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska str., Kyiv 01601, Ukraine.
| | - Brian W Skelton
- School of Molecular Sciences, M310, University of Western Australia, Perth, WA 6009, Australia
| | - Alina Bieńko
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. .,Peoples' Friendship University of Russia (RUDN University), Research Institute of Chemistry, 6 Miklukho-Maklaya st, Moscow 117198, Russia
| | - Dmytro S Nesterov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
29
|
Matute RA, Toro-Labbé A, Oyarzún MP, Ramirez S, Ortega DE, Oyarce K, Silva N, Zagal JH. Mapping experimental and theoretical reactivity descriptors of fe macrocyclic complexes deposited on graphite or on multi walled carbon nanotubes for the oxidation of thiols: Thioglycolic acid oxidation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Tomboc GM, Park Y, Lee K, Jin K. Directing transition metal-based oxygen-functionalization catalysis. Chem Sci 2021; 12:8967-8995. [PMID: 34276926 PMCID: PMC8261717 DOI: 10.1039/d1sc01272j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
This review presents the recent progress of oxygen functionalization reactions based on non-electrochemical (conventional organic synthesis) and electrochemical methods. Although both methods have their advantages and limitations, the former approach has been used to synthesize a broader range of organic substances as the latter is limited by several factors, such as poor selectivity and high energy cost. However, because electrochemical methods can replace harmful terminal oxidizers with external voltage, organic electrosynthesis has emerged as greener and more eco-friendly compared to conventional organic synthesis. The progress of electrochemical methods toward oxygen functionalization is presented by an in-depth discussion of different types of electrically driven-chemical organic synthesis, with particular attention to recently developed electrochemical systems and catalyst designs. We hope to direct the attention of readers to the latest breakthroughs of traditional oxygen functionalization reactions and to the potential of electrochemistry for the transformation of organic substrates to useful end products.
Collapse
Affiliation(s)
- Gracita M Tomboc
- Department of Chemistry and Research Institute for Natural Sciences, Korea University Seoul 02841 Republic of Korea
| | - Yeji Park
- Department of Chemistry and Research Institute for Natural Sciences, Korea University Seoul 02841 Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University Seoul 02841 Republic of Korea
| | - Kyoungsuk Jin
- Department of Chemistry and Research Institute for Natural Sciences, Korea University Seoul 02841 Republic of Korea
| |
Collapse
|
31
|
Biswas JP, Ansari M, Paik A, Sasmal S, Paul S, Rana S, Rajaraman G, Maiti D. Effect of the Ligand Backbone on the Reactivity and Mechanistic Paradigm of Non‐Heme Iron(IV)‐Oxo during Olefin Epoxidation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jyoti Prasad Biswas
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Mursaleem Ansari
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Aniruddha Paik
- Department of Chemistry University of North Bengal Raja Rammohunpur Darjeeling West Bengal, Pin 734013 India
| | - Sheuli Sasmal
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Sabarni Paul
- Department of Chemistry University of North Bengal Raja Rammohunpur Darjeeling West Bengal, Pin 734013 India
| | - Sujoy Rana
- Department of Chemistry University of North Bengal Raja Rammohunpur Darjeeling West Bengal, Pin 734013 India
| | - Gopalan Rajaraman
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
32
|
Wang Q, Xu B, Wang Y, Wang H, Hu X, Ma P, Niu J, Wang J. Polyoxometalate-Incorporated Framework as a Heterogeneous Catalyst for Selective Oxidation of C-H Bonds of Alkylbenzenes. Inorg Chem 2021; 60:7753-7761. [PMID: 34019402 DOI: 10.1021/acs.inorgchem.1c00135] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Developing new catalysts for highly efficient and selective oxidation of saturated C-H bonds is significant due to their thermodynamic strength. Via incorporation of PW12O403-, pyridine-2,5-dicarboxylic acids (pydc), and Fe(III) ions into one framework, a new polyoxometalate-based metal-organic framework, [HFe4O2(H2O)4(pydc)3PW12O40]·10.5H2O (FeW-PYDC), was successfully prepared by a hydrothermal method. Interestingly, FeW-PYDC features a three-dimensional porous structure with {Fe4O2} interconnecting with PW12O403- units. FeW-PYDC displayed excellent performance in the selective oxidation of C-H bonds of alkylbenzenes with high conversion (95.7%) and selectivity (96.6%). As an effective heterogeneous catalyst, FeW-PYDC demonstrates good reusability and structural stability.
Collapse
Affiliation(s)
- Quanzhong Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Baijie Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Yingyue Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Hui Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Xin Hu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| |
Collapse
|
33
|
Biswas JP, Ansari M, Paik A, Sasmal S, Paul S, Rana S, Rajaraman G, Maiti D. Effect of the Ligand Backbone on the Reactivity and Mechanistic Paradigm of Non-Heme Iron(IV)-Oxo during Olefin Epoxidation. Angew Chem Int Ed Engl 2021; 60:14030-14039. [PMID: 33836110 DOI: 10.1002/anie.202102484] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 01/08/2023]
Abstract
The oxygen atom transfer (OAT) reactivity of the non-heme [FeIV (2PyN2Q)(O)]2+ (2) containing the sterically bulky quinoline-pyridine pentadentate ligand (2PyN2Q) has been thoroughly studied with different olefins. The ferryl-oxo complex 2 shows excellent OAT reactivity during epoxidations. The steric encumbrance and electronic effect of the ligand influence the mechanistic shuttle between OAT pathway I and isomerization pathway II (during the reaction stereo pure olefins), resulting in a mixture of cis-trans epoxide products. In contrast, the sterically less hindered and electronically different [FeIV (N4Py)(O)]2+ (1) provides only cis-stilbene epoxide. A Hammett study suggests the role of dominant inductive electronic along with minor resonance effect during electron transfer from olefin to 2 in the rate-limiting step. Additionally, a computational study supports the involvement of stepwise pathways during olefin epoxidation. The ferryl bend due to the bulkier ligand incorporation leads to destabilization of both d z 2 and d x 2 - y 2 orbitals, leading to a very small quintet-triplet gap and enhanced reactivity for 2 compared to 1. Thus, the present study unveils the role of steric and electronic effects of the ligand towards mechanistic modification during olefin epoxidation.
Collapse
Affiliation(s)
- Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Mursaleem Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Aniruddha Paik
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, Pin, 734013, India
| | - Sheuli Sasmal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Sabarni Paul
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, Pin, 734013, India
| | - Sujoy Rana
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, Pin, 734013, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
34
|
Nishimura T, Ando Y, Shinokubo H, Miyake Y. Cationic Nickel(II) Pyridinophane Complexes: Synthesis, Structures and Catalytic Activities for C–H Oxidation. CHEM LETT 2021. [DOI: 10.1246/cl.210074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tsubasa Nishimura
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Yuki Ando
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Yoshihiro Miyake
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
35
|
Guo M, Lee YM, Fukuzumi S, Nam W. Biomimetic metal-oxidant adducts as active oxidants in oxidation reactions. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213807] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Jana RD, Das A, Paine TK. Enhancing Chemo- and Stereoselectivity in C-H Bond Oxygenation with H 2O 2 by Nonheme High-Spin Iron Catalysts: The Role of Lewis Acid and Multimetal Centers. Inorg Chem 2021; 60:5969-5979. [PMID: 33784082 DOI: 10.1021/acs.inorgchem.1c00397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spin states of iron often direct the selectivity in oxidation catalysis by iron complexes using hydrogen peroxide (H2O2) on an oxidant. While low-spin iron(III) hydroperoxides display stereoselective C-H bond hydroxylation, the reactions are nonstereoselective with high-spin iron(II) catalysts. The catalytic studies with a series of high-spin iron(II) complexes of N4 ligands with H2O2 and Sc3+ reported here reveal that the Lewis acid promotes catalytic C-H bond hydroxylation with high chemo- and stereoselectivity. This reactivity pattern is observed with iron(II) complexes containing two cis-labile sites. The enhanced selectivity for C-H bond hydroxylation catalyzed by the high-spin iron(II) complexes in the presence of Sc3+ parallels that of the low-spin iron catalysts. Furthermore, the introduction of multimetal centers enhances the activity and selectivity of the iron catalyst. The study provides insights into the development of peroxide-dependent bioinspired catalysts for the selective oxygenation of C-H bonds without the restriction of using iron complexes of strong-field ligands.
Collapse
Affiliation(s)
- Rahul Dev Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Abhishek Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
37
|
Masferrer‐Rius E, Borrell M, Lutz M, Costas M, Klein Gebbink RJM. Aromatic C−H Hydroxylation Reactions with Hydrogen Peroxide Catalyzed by Bulky Manganese Complexes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001590] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Eduard Masferrer‐Rius
- Organic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Margarida Borrell
- Institut de Química Computacional i Catàlisi (IQCC) Departament de Química Universitat de Girona Campus Montilivi E-17071 Girona, Catalonia Spain
| | - Martin Lutz
- Structural Biochemistry Bijvoet Centre for Biomolecular Research Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) Departament de Química Universitat de Girona Campus Montilivi E-17071 Girona, Catalonia Spain
| | - Robertus J. M. Klein Gebbink
- Organic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| |
Collapse
|
38
|
Radhika S, Aneeja T, Philip RM, Anilkumar G. Recent advances and trends in the biomimetic iron‐catalyzed asymmetric epoxidation. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sankaran Radhika
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
| | | | - Rose Mary Philip
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University Kottayam India
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Kottayam India
| |
Collapse
|
39
|
Achard T, Bellemin‐Laponnaz S. Recent Advances on Catalytic Osmium‐Free Olefin
syn
‐Dihydroxylation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Thierry Achard
- Département des Matériaux Organiques Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) Université de Strasbourg CNRS UMR‐7504 23 rue du Loess, BP 43 67034 Strasbourg Cedex 2 France
| | - Stéphane Bellemin‐Laponnaz
- Département des Matériaux Organiques Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) Université de Strasbourg CNRS UMR‐7504 23 rue du Loess, BP 43 67034 Strasbourg Cedex 2 France
| |
Collapse
|
40
|
Zima AM, Lyakin OY, Bushmin DS, Soshnikov IE, Bryliakov KP, Talsi EP. Non-heme perferryl intermediates: Effect of spin state on the epoxidation enantioselectivity. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Study of the catalytic mechanism of a non-heme Fe catalyst: The role of the spin state of the iron. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Wegeberg C, Skavenborg ML, Liberato A, McPherson JN, Browne WR, Hedegård ED, McKenzie CJ. Engineering the Oxidative Potency of Non-Heme Iron(IV) Oxo Complexes in Water for C-H Oxidation by a cis Donor and Variation of the Second Coordination Sphere. Inorg Chem 2021; 60:1975-1984. [PMID: 33470794 DOI: 10.1021/acs.inorgchem.0c03441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A series of iron(IV) oxo complexes, which differ in the donor (CH2py or CH2COO-) cis to the oxo group, three with hemilabile pendant donor/second coordination sphere base/acid arms (pyH/py or ROH), have been prepared in water at pH 2 and 7. The νFe═O values of 832 ± 2 cm-1 indicate similar FeIV═O bond strengths; however, different reactivities toward C-H substrates in water are observed. HAT occurs at rates that differ by 1 order of magnitude with nonclassical KIEs (kH/kD = 30-66) consistent with hydrogen atom tunneling. Higher KIEs correlate with faster reaction rates as well as a greater thermodynamic stability of the iron(III) resting states. A doubling in rate from pH 7 to pH 2 for substrate C-H oxidation by the most potent complex, that with a cis-carboxylate donor, [FeIVO(Htpena)]2+, is observed. Supramolecular assistance by the first and second coordination spheres in activating the substrate is proposed. The lifetime of this complex in the absence of a C-H substrate is the shortest (at pH 2, 3 h vs up to 1.3 days for the most stable complex), implying that slow water oxidation is a competing background reaction. The iron(IV)═O complex bearing an alcohol moiety in the second coordination sphere displays significantly shorter lifetimes due to a competing selective intramolecular oxidation of the ligand.
Collapse
Affiliation(s)
- Christina Wegeberg
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.,Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Mathias L Skavenborg
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.,Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrea Liberato
- Universidad de Cádiz, Facultad de Ciencias, Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Puerto Real, Cádiz 11510, Spain
| | - James N McPherson
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Wesley R Browne
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Erik D Hedegård
- Division of Theoretical Chemistry, Lund University, Naturvetarvägen 14, 221 00 Lund, Sweden
| | - Christine J McKenzie
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
43
|
Masferrer-Rius E, Li F, Lutz M, Klein Gebbink RJM. Exploration of highly electron-rich manganese complexes in enantioselective oxidation catalysis; a focus on enantioselective benzylic oxidation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01642c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of highly electron-rich manganese complexes for enantioselective benzylic oxidation (and asymmetric epoxidation) is described, to provide chiral benzylic alcohols and epoxides in good yields and enantioselectivites.
Collapse
Affiliation(s)
- Eduard Masferrer-Rius
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Fanshi Li
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Martin Lutz
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Robertus J. M. Klein Gebbink
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
44
|
Ticconi B, Capocasa G, Cerrato A, Di Stefano S, Lapi A, Marincioni B, Olivo G, Lanzalunga O. Insight into the chemoselective aromatic vs. side-chain hydroxylation of alkylaromatics with H 2O 2 catalyzed by a non-heme imine-based iron complex. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01868f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Side-chain/ring oxygenated product ratio increases upon decreasing the benzylic bond dissociation energy in the oxidation of alkylaromatics with H2O2 catalyzed by an imine-based iron complex.
Collapse
Affiliation(s)
- Barbara Ticconi
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza” and
- Istituto CNR per i Sistemi Biologici (ISB-CNR)
- Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
| | - Giorgio Capocasa
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza” and
- Istituto CNR per i Sistemi Biologici (ISB-CNR)
- Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
| | - Andrea Cerrato
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza” and
- Istituto CNR per i Sistemi Biologici (ISB-CNR)
- Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
| | - Stefano Di Stefano
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza” and
- Istituto CNR per i Sistemi Biologici (ISB-CNR)
- Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
| | - Andrea Lapi
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza” and
- Istituto CNR per i Sistemi Biologici (ISB-CNR)
- Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
| | - Beatrice Marincioni
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza” and
- Istituto CNR per i Sistemi Biologici (ISB-CNR)
- Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
| | - Giorgio Olivo
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza” and
- Istituto CNR per i Sistemi Biologici (ISB-CNR)
- Sezione Meccanismi di Reazione, c/o Dipartimento di Chimica
- Università degli Studi di Roma “La Sapienza”
| |
Collapse
|
45
|
Sun Q, Sun W. Catalytic Enantioselective Methylene C(sp 3)-H Hydroxylation Using a Chiral Manganese Complex/Carboxylic Acid System. Org Lett 2020; 22:9529-9533. [PMID: 33300804 DOI: 10.1021/acs.orglett.0c03585] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Achieving direct C-H hydroxylation in a highly diastereo- and enantioselective manner is still a challenging goal. This reaction is mainly hindered by the potential for overoxidation of the generated alcohols as well as low stereoselectivity. Herein, we present an enantioselective benzylic C-H hydroxylation catalyzed by a manganese complex, H2O2, and a carboxylic acid in 2,2,2-trifluoroethanol. The benzylic alcohols were successfully furnished in excellent diastereoselectivities (up to >95:5) and enantioselectivities (up to 95% ee). As a highlight of this work, high diastereoselectivity of C-H hydroxylation could be achieved by tuning the amount of carboxylic acid additive.
Collapse
Affiliation(s)
- Qiangsheng Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
46
|
Nishimura T, Ikeue T, Shoji O, Shinokubo H, Miyake Y. Iron(III) 5,15-Diazaporphyrin Catalysts for the Direct Oxidation of C(sp 3)-H Bonds. Inorg Chem 2020; 59:15751-15756. [PMID: 33131277 DOI: 10.1021/acs.inorgchem.0c02166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
5,15-Diazaporphyrins are porphyrin analogues with imine-type sp2-hybridized nitrogen atoms at the meso-positions. Even though these compounds are more electron-deficient than regular porphyrins, the use of iron diazaporphyrins as catalysts has not been reported. Herein, we disclose the synthesis, structure, and electronic properties of iron(III) 5,15-diazaporphyrins. We evaluate their structures and electronic natures by X-ray analysis and electrochemical analyses. We also demonstrate that chloroiron(III) 5,15-diazaporphyrins exhibit high catalytic activity in the direct oxidation of alkanes due to their intrinsic electron-deficient nature. On the basis of stoichiometric reactions of iron(III) diazaporphyrin with iodosylbenzene as an oxidant, it was possible to demonstrate the existence of an iodosylbenzene-iron diazaporphyrin adduct reaction intermediate that serves as a reservoir to generate oxo-iron species.
Collapse
Affiliation(s)
- Tsubasa Nishimura
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takahisa Ikeue
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8540, Japan
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yoshihiro Miyake
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
47
|
Panza N, Biase A, Rizzato S, Gallo E, Tseberlidis G, Caselli A. Catalytic Selective Oxidation of Primary and Secondary Alcohols Using Nonheme [Iron(III)(Pyridine‐Containing Ligand)] Complexes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001201] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nicola Panza
- Department of Chemistry Università degli Studi di Milano and CNR‐SCITEC via Golgi 19 – 20133 Milano Italy
| | - Armando Biase
- Department of Chemistry Università degli Studi di Milano and CNR‐SCITEC via Golgi 19 – 20133 Milano Italy
| | - Silvia Rizzato
- Department of Chemistry Università degli Studi di Milano and CNR‐SCITEC via Golgi 19 – 20133 Milano Italy
| | - Emma Gallo
- Department of Chemistry Università degli Studi di Milano and CNR‐SCITEC via Golgi 19 – 20133 Milano Italy
| | - Giorgio Tseberlidis
- Department of Chemistry Università degli Studi di Milano and CNR‐SCITEC via Golgi 19 – 20133 Milano Italy
- Department of Materials Science and Solar Energy Research Center (MIB‐SOLAR) University of Milano‐Bicocca Via Cozzi 55 20125 Milano Italy
| | - Alessandro Caselli
- Department of Chemistry Università degli Studi di Milano and CNR‐SCITEC via Golgi 19 – 20133 Milano Italy
| |
Collapse
|
48
|
Chen J, Jiang Z, Fukuzumi S, Nam W, Wang B. Artificial nonheme iron and manganese oxygenases for enantioselective olefin epoxidation and alkane hydroxylation reactions. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213443] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Vicens L, Olivo G, Costas M. Rational Design of Bioinspired Catalysts for Selective Oxidations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02073] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Laia Vicens
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| | - Giorgio Olivo
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| | - Miquel Costas
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| |
Collapse
|
50
|
Larson VA, Battistella B, Ray K, Lehnert N, Nam W. Iron and manganese oxo complexes, oxo wall and beyond. Nat Rev Chem 2020; 4:404-419. [PMID: 37127969 DOI: 10.1038/s41570-020-0197-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2020] [Indexed: 11/09/2022]
Abstract
High-valent metal-oxo species with multiply-bonded M-O groups have been proposed as key intermediates in many biological and abiological catalytic oxidation reactions. These intermediates are implicated as active oxidants in alkane hydroxylation, olefin epoxidation and other oxidation reactions. For example, [FeivO(porphyrinato•-)]+ cofactors bearing π-radical porphyrinato•- ligands oxidize organic substrates in cytochrome P450 enzymes, which are common to many life forms. Likewise, high-valent Mn-oxo species are active for H2O oxidation in photosystem II. The chemistry of these native reactive species has inspired chemists to prepare highly oxidized transition-metal complexes as functional mimics. Although many synthetic Fe-O and Mn-O complexes now exist, the analogous oxo complexes of the late transition metals (groups 9-11) are rare. Indeed, late-transition-metal-oxo complexes of tetragonal (fourfold) symmetry should be electronically unstable, a rule commonly referred to as the 'oxo wall'. A few late metal-oxos have been prepared by targeting other symmetries or unusual spin states. These complexes have been studied using spectroscopic and theoretical methods. This Review describes mononuclear non-haem Fe-O and Mn-O species, the nature of the oxo wall and recent advances in the preparation of oxo complexes of Co, Ni and Cu beyond the oxo wall.
Collapse
|