1
|
Clementi R, Vargas MA, Cid M, Salvatierra N, Comín R, Tempesti T. Biocompatible Zn-Phthalocyanine/Gelatin Nanofiber Membrane for Antibacterial Therapy. Macromol Biosci 2024:e2400334. [PMID: 39470704 DOI: 10.1002/mabi.202400334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Indexed: 10/30/2024]
Abstract
In this study, the fabrication and characterization of Zn-phthalocyanine/gelatin nanofibrous membranes is reported using the electrospinning technique. The membranes exhibit a homogeneous distribution of Zn-phthalocyanine within the gelatin matrix, maintaining the structural integrity and photosensitizing properties of the phthalocyanine. Scanning electron microscopy revealed that the electrospun fibers possess diameters ranging results as 100-300, 200-700, and 300-800 nm for Gel, ZnPc/Gel 1, and ZnPc/Gel 2, respectively. The addition of ZnPc does not decrease the hydrophilicity of the Gel membrane. The nanofibrous membranes showed good cytocompatibility, as indicated by the high viability of Vero cells exposed to membrane extracts. Furthermore, these composites supported cell adhesion and proliferation on their surfaces. The two Zn-phthalocyanine/gelatin nanofiber formulations exhibited significant antimicrobial activity toward Escherichia Coli (E. Coli) and Staphylococcus Aureus (S. Aureus) under visible light illumination, achieving reductions of 3.4 log10 and 3.6 log10 CFU mL-1 for E. coli, and 3.9 log10 and 4.1 log10 CFU mL-1 for S. aureus. These results demonstrate the potential of Zn-phthalocyanine/gelatin nanofibrous membranes as effective agents in antibacterial photodynamic therapy, providing a promising solution to control bacterial infections and antibiotic resistance.
Collapse
Affiliation(s)
- Romina Clementi
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Maria Angela Vargas
- Laboratorio de Microbiología, Hospital Provincial Florencio Diaz, Córdoba, Argentina
| | - Mariana Cid
- Facultad Ciencias Exactas, Físicas y Naturales, Departamento de Química, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba, 5016, Argentina
- CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina
| | - Nancy Salvatierra
- Facultad Ciencias Exactas, Físicas y Naturales, Departamento de Química, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba, 5016, Argentina
- CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina
| | - Romina Comín
- Facultad Ciencias Exactas, Físicas y Naturales, Departamento de Química, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba, 5016, Argentina
- CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina
| | - Tomas Tempesti
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
- INFIQC-CONICET, Instituto de Investigaciones en Físico-Química de Córdoba, Córdoba, Argentina
| |
Collapse
|
2
|
Liu Y, Zhang J, Zhou X, Wang Y, Lei S, Feng G, Wang D, Huang P, Lin J. Dissecting Exciton Dynamics in pH-Activatable Long-Wavelength Photosensitizers for Traceable Photodynamic Therapy. Angew Chem Int Ed Engl 2024; 63:e202408064. [PMID: 38853147 DOI: 10.1002/anie.202408064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Tumor-specific activatable long-wavelength (LW) photosensitizers (PSs) show promise in overcoming the limitations of traditional photodynamic therapy (PDT), such as systemic phototoxicity and shallow tissue penetration. However, their insufficient LW light absorption and low singlet oxygen quantum yield (Φ 1O2) usually require high laser power density to produce thermal energy and synergistically enhance PDT. The strong photothermal radiation causing acute pain significantly reduces patient compliance and hinders the broader clinical application of LW PDT. Through the exciton dynamics dissection strategy, we have developed a series of pH-activatable cyanine-based LW PSs (LET-R, R = H, Cl, Br, I), among which the activated LET-I exhibits strong light absorption at 808 nm and a remarkable 3.2-fold enhancement in Φ 1O2 compared to indocyanine green. Transient spectroscopic analysis and theoretical calculations confirmed its significantly promoted intersystem crossing and simultaneously enhanced LW fluorescence emission characteristics. These features enable the activatable fluorescence and photoacoustic dual-modal imaging-escorted complete photodynamic eradication of tumors by the folic acid (FA)-modified LET-I probe (LET-I-FA), under the ultralow 808 nm laser power density (0.2 W cm-2) for irradiation, without the need for photothermal energy synergy. This research presents a novel strategy of dissecting exciton dynamics to screen activatable LW PSs for traceable PDT.
Collapse
Affiliation(s)
- Yurong Liu
- Department Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Jing Zhang
- Department Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Xuan Zhou
- School of Sino-German Intelligent Manufacturing, Shenzhen Institute of Technology, Shenzhen, 518116, China
| | - Yaru Wang
- Department Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Shan Lei
- Department Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Guangle Feng
- Department Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Peng Huang
- Department Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Jing Lin
- Department Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
3
|
Peng Q, Zheng H, Xu H, Cheng S, Yu C, Wu J, Meng K, Xie G. Response of soil fungi to textile dye contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124577. [PMID: 39032546 DOI: 10.1016/j.envpol.2024.124577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/30/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
This study examines the impact of textile dye contamination on the structure of soil fungal communities near a Shaoxing textile dye factory. We quantified the concentrations of various textile dyes, including anthraquinone azodye and phthalocyanine, which ranged from 20.20 to 140.62 mg kg^-1, 102.01-698.12 mg kg^-1, and 7.78-42.65 mg kg^-1, respectively, within a 1000 m radius of the factory. Our findings indicate that as dye concentration increases, the biodiversity of soil fungi, as measured by the Chao1 index, decreases significantly, highlighting the profound influence of dye contamination on fungal community structure. Additionally, microbial correlation network analysis revealed a reduction in fungal interactions correlating with increased dye concentrations. We also observed that textile dyes suppressed carbon and nitrogen metabolism in fungi while elevating the transcription levels of antioxidant-related genes. Enzymes such as lignin peroxidase (LiP), manganese peroxidase (MnP), laccase (Lac), dye-decolorizing peroxidases (DyPs), and versatile peroxidase (VP) were upregulated in contaminated soils, underscoring the critical role of fungi in dye degradation. These insights contribute to the foundational knowledge required for developing in situ bioremediation technologies for contaminated farmlands.
Collapse
Affiliation(s)
- Qi Peng
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Huajun Zheng
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Hangxi Xu
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Shuangqi Cheng
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Chaohua Yu
- Shaoxing Testing Institute of Food and Drug, National Center for Quality Inspection and Testing of Chinese Rice Wine, Shaoxing, 312000, China
| | - Jianjiang Wu
- Shaoxing Testing Institute of Quality and Technical Supervision, Shaoxing, 312000, China
| | - Kai Meng
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Guangfa Xie
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology8and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
4
|
Moura NMM, Guedes S, Salvador D, Oliveira H, Alves MQ, Paradis N, Wu C, Neves MGPMS, Ramos CIV. Oncogenic and telomeric G-quadruplexes: Targets for porphyrin-triphenylphosphonium conjugates. Int J Biol Macromol 2024; 277:134126. [PMID: 39097044 DOI: 10.1016/j.ijbiomac.2024.134126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024]
Abstract
DNA chains with sequential guanine (G) repeats can lead to the formation of G-quadruplexes (G4), which are found in functional DNA and RNA regions like telomeres and oncogene promoters. The development of molecules with adequate structural features to selectively stabilize G4 structures can counteract cell immortality, highly described for cancer cells, and also downregulate transcription events underlying cell apoptosis and/or senescence processes. We describe here, the efficiency of four highly charged porphyrins-phosphonium conjugates to act as G4 stabilizing agents. The spectrophotometric results allowed to select the conjugates P2-PPh3 and P3-PPh3 as the most promising ones to stabilize selectively G4 structures. Molecular dynamics simulation experiments were performed and support the preferential binding of P2-PPh3 namely to MYC and of P3-PPh3 to KRAS. The ability of both ligands to block the activity of Taq polymerase was confirmed and also their higher cytotoxicity against the two melanoma cell lines A375 and SK-MEL-28 than to immortalized skin keratinocytes. Both ligands present efficient cellular uptake, nuclear co-localization and high ability to generate 1O2 namely when interacting with G4 structure. The obtained data points the synthesized porphyrins as promising ligands to be used in a dual approach that can combine G4 stabilization and Photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Nuno M M Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sofia Guedes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana Salvador
- CESAM-Centre for Environmental and Marine Studies, Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Oliveira
- CESAM-Centre for Environmental and Marine Studies, Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mariana Q Alves
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nicholas Paradis
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States of America
| | - Chun Wu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States of America
| | - M Graça P M S Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Catarina I V Ramos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
5
|
Warszyńska M, Pucelik B, Vinagreiro CS, Repetowski P, Barzowska A, Barczyk D, Schaberle FA, Duque-Prata A, Arnaut LG, Pereira MM, Dąbrowski JM. Better in the Near Infrared: Sulfonamide Perfluorinated-Phenyl Photosensitizers for Improved Simultaneous Targeted Photodynamic Therapy and Real-Time Fluorescence Imaging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50389-50406. [PMID: 39276331 PMCID: PMC11440460 DOI: 10.1021/acsami.4c11171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Tetraphenyloporphyrin derivatives are a useful scaffold for developing new pharmaceuticals for photodynamic therapy (PDT) and the photodiagnosis (PD) of cancer. We synthesized new sulfonamide fluorinated porphyrin derivatives and investigated their potential as photosensitizers and real-time bioimaging agents for cancer. We found that 5,10,15,20-tetrakis-[2',3',5',6'-tetrafluoro-4'-methanesulfamidyl)phenyl]bacteriochlorin (F4BMet) has intense absorption and fluorescence in the near-infrared, efficiently generates singlet oxygen and hydroxyl radicals, has low toxicity in the dark, and high phototoxicity. We increased its bioavailability with encapsulation in Pluronic-based micelles, which also improved the photodynamic effect. F4BMet exhibits pH-dependent properties (lower pH promoted its aggregation), and a GlyGly buffer was used to effectively solubilize the compound. In vitro findings with 2D cell culture were complemented with human-induced pluripotent stem cell (hiPSC)-derived organoids. F4BMet in P123 micelles showed enhanced efficacy compared to F4BMet in the GlyGly formulation. F4BMet was further evaluated in real-time bioimaging and PDT of BALB/c mice bearing CT26 tumors. After i.v. injection, the photosensitizer was visible in the tumor area 3 h after injection. The most successful therapeutic approach proved to be tumor-targeted PDT using P123-encapsulated F4BMet illuminated 24 h after administration with a light dose of 42 J/cm2, which led to a 30% long-term cure rate.
Collapse
Affiliation(s)
- Marta Warszyńska
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Barbara Pucelik
- Łukasiewicz Research Network-Kraków Institute of Technology, ul. Zakopiańska 73, 30-418 Kraków, Poland
| | | | - Paweł Repetowski
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Agata Barzowska
- Łukasiewicz Research Network-Kraków Institute of Technology, ul. Zakopiańska 73, 30-418 Kraków, Poland
| | - Dominik Barczyk
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Fábio A Schaberle
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Amilcar Duque-Prata
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Luis G Arnaut
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Mariette M Pereira
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | | |
Collapse
|
6
|
Dos Anjos Oliveira TM, Teles AV, Gambarini ML, de Oliveira Ribeiro K, Ducas ESA, Dos Santos KJG, Monteiro CJP, de Paula Silveira Lacerda E, Franchi LP, Gonçalves PJ, de Souza GRL. Photodisinfection of Alphaherpesvirus 1 in bovine semen. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 260:113036. [PMID: 39332312 DOI: 10.1016/j.jphotobiol.2024.113036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/14/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
Reproductive biotechnologies are widely consolidated as a methodology in cattle breeding and have an important impact on the genetic improvement of cattle herds. Semen is an important source of dissemination of pathogenic microorganisms during reproductive procedures. To ensure the sanitary quality of the semen, it is essential to consider the presence of various microorganisms including viruses. One of the main viral agents of reproductive interest is Bovine Alphaherpesvirus 1 (BoHV-1), the etiological agent responsible for bovine rhinotracheitis and vulvovaginitis and frequently associated with reproductive efficiency of matrices and bulls. In artificial insemination centers, semen treatment is generally based only on the use of antibiotics, ignoring the possibility of inactivating other non-bacterial infectious agents. In this context, photodisinfection emerges as a promising alternative to inactivate a wide range of microorganisms, offering a complementary or substitution approach to those conventional semen treatment methods. In this work, we evaluated the use of four halogenated sulfonated porphyrins as potential photosensitizers (PSs) for photodynamic inactivation of Bovine Alphaherpesvirus I (BoHV-1) for bovine semen disinfection. The PSs were synthesized and photophysical parameters, such as UV-Vis absorption spectra and singlet oxygen quantum yield (ΦΔ) were presented. Photoinactivation of BoHV-1 was first shown in cell culture and then confirmed in artificially infected bovine semen and then the phototoxicity of PSs against spermatozoa was evaluated. All PSs were effective in BoHV-1 inactivation; however, the photosensitizer containing two chlorine atoms, showed to be more efficient due to the shorter time required for complete viral inactivation. The slight alterations in sperm kinetics were observed, but remained within those acceptable by regulatory agencies for animal reproduction. Although the methodology used in this work only included bovine semen, we emphasize that the proposed photodisinfection methodology can be adapted and applied to a wide range of biological materials and microorganisms of animal or human interest.
Collapse
Affiliation(s)
| | - Amanda Vargas Teles
- Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Maria Lúcia Gambarini
- Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | | | | | - Carlos Jorge Pereira Monteiro
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | | | - Pablo José Gonçalves
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, Brazil; Instituto de Física, Universidade Federal de Goiás, Goiânia, GO, Brazil; Centro de Excelência em Hidrogênio e Tecnologias Energéticas Sustentáveis (CEHTES), Goiânia, GO, Brazil.
| | - Guilherme Rocha Lino de Souza
- Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, GO, Brazil; Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
7
|
Bera A, Nepalia A, Upadhyay A, Saini DK, Chakravarty AR. Biotin-Pt(IV)-Ru(II)-Boron-Dipyrromethene Prodrug as "Platin Bullet" for Targeted Chemo- and Photodynamic Therapy. Inorg Chem 2024; 63:17249-17262. [PMID: 39235210 DOI: 10.1021/acs.inorgchem.4c03083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Using the principle of "Magic Bullet", a cisplatin-derived platinum(IV) prodrug heterobimetallic Pt(IV)-Ru(II) complex, cis,cis,trans-[Pt(NH3)2Cl2{Ru(tpy-BODIPY)(tpy-COO)}(biotin)]Cl2 (Pt-Ru-B, 2), having two axial ligands, namely, biotin as water-soluble B-vitamin for enhanced cellular uptake and a BODIPY-ruthenium(II) (Ru-B, 1) photosensitizer having N,N,N-donor tpy (4'-phenyl-2,2':6',2″-terpyridine) bonded to boron-dipyrromethene (BODIPY), is developed as a "Platin Bullet" for targeted photodynamic therapy (PDT). Pt-Ru-B exhibited intense absorption near 500 nm and emission near 513 nm (λex = 488 nm) in a 10% dimethyl sulfoxide-Dulbecco's phosphate-buffered saline medium (pH 7.2). The BODIPY complex on light activation generates singlet oxygen as the reactive oxygen species (ROS) giving a quantum yield (ΦΔ) of ∼0.64 from 1,3-diphenylisobenzofuran experiments. Pt-Ru-B exhibited preferential cellular uptake in cancer cells over noncancerous cells. The dichlorodihydrofluorescein diacetate assay confirmed the generation of cellular ROS. Confocal images revealed its mitochondrial internalization. Pt-Ru-B showed submicromolar photocytotoxicity in visible light (400-700 nm) in A549 and multidrug-resistant MDA-MB-231 cancer cells. It remained nontoxic in the dark and less toxic in nontumorigenic cells. Cellular apoptosis and alteration of the mitochondrial membrane potential were evidenced from the respective Annexin V-FITC/propidium iodide assay and JC-1 dye assay. A wound healing assay using A549 cells and Pt-Ru-B revealed inhibition of cancer cell migration, highlighting its potential as an antimetastatic agent.
Collapse
Affiliation(s)
- Arpan Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Amrita Nepalia
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Deepak Kumar Saini
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore 560012, India
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
8
|
Chaves I, Morais FMP, Vieira C, Bartolomeu M, Faustino MAF, Neves MGMS, Almeida A, Moura NMM. Can Porphyrin-Triphenylphosphonium Conjugates Enhance the Photosensitizer Performance Toward Bacterial Strains? ACS APPLIED BIO MATERIALS 2024; 7:5541-5552. [PMID: 39008849 PMCID: PMC11337165 DOI: 10.1021/acsabm.4c00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
Antimicrobial photodynamic treatment (aPDT) offers an alternative option for combating microbial pathogens, and in this way, addressing the challenges of growing antimicrobial resistance. In this promising and effective approach, cationic porphyrins and related macrocycles have emerged as leading photosensitizers (PS) for aPDT. In general, their preparation occurs via N-alkylation of nitrogen-based moieties with alkyl halides, which limits the ability to fine-tune the features of porphyrin-based PS. Herein, is reported that the conjugation of porphyrin macrocycles with triphenylphosphonium units created a series of effective cationic porphyrin-based PS for aPDT. The presence of positive charges at both the porphyrin macrocycle and triphenylphosphonium moieties significantly enhances the photodynamic activity of porphyrin-based PS against both Gram-positive and Gram-negative bacterial strains. Moreover, bacterial photoinactivation is achieved with a notable reduction in irradiation time, exceeding 50%, compared to 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin (TMPyP), used as the reference and known as good PS. The improved capability of the porphyrin macrocycle to generate singlet oxygen combined with the enhanced membrane interaction promoted by the presence of triphenylphosphonium moieties represents a promising approach to developing porphyrin-based PS with enhanced photosensitizing activity.
Collapse
Affiliation(s)
- Inês Chaves
- CESAM,
Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Filipe M. P. Morais
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Cátia Vieira
- CESAM,
Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Maria Bartolomeu
- CESAM,
Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - M. Amparo F. Faustino
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | | | - Adelaide Almeida
- CESAM,
Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Nuno M. M. Moura
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| |
Collapse
|
9
|
Capozza M, Digilio G, Gagliardi M, Tei L, Marchesi S, Terreno E, Stefania R. Silicon Phthalocyanines Functionalized with Axial Substituents Targeting PSMA: Synthesis and Preliminary Assessment of Their Potential for PhotoDynamic Therapy of Prostate Cancer. ChemMedChem 2024:e202400218. [PMID: 39082378 DOI: 10.1002/cmdc.202400218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/10/2024] [Indexed: 10/01/2024]
Abstract
Photodynamic therapy (PDT) is a clinical modality based on the irradiation of different diseases, mostly tumours, with light following the selective uptake of a photosensitiser by the pathological tissue. In this study, two new silicon(IV)phtalocyanines (SiPcs) functionalized at both axial positions with a PSMA inhibitor are reported as candidate photosensitizers for PDT of prostate cancer, namely compounds SiPc-PQ(PSMAi)2 and SiPc-OSi(PSMAi)2. These compounds share the same PSMA-binding motif, but differ in the linker that connects the inhibitor moiety to the Si(IV) atom: an alkoxy (Si-O-C) bond for SiPc-PQ(PSMAi)2, and a silyloxy (Si-O-Si) bond for SiPc-OSi(PSMAi)2. Both compounds were synthesized by a facile synthetic route and fully characterized by 2D NMR, mass spectrometry and absorption/fluorescence spectrophotometry. The PDT agents showed a suitable solubility in water, where they essentially exist in monomeric form. SiPc-PQ(PSMAi)2 showed a higher singlet oxygen quantum yield ΦΔ, higher fluorescence quantum yields ΦF and better photostability than SiPc-OSi(PSMAi)2. Both compounds were efficiently taken up by PSMA(+) PC3-PIP cells, but not by PSMA(-) PC3-FLU cells. However, SiPc-PQ(PSMAi)2 showed a more specific photoinduced cytotoxicity in vitro, which is likely attributable to a better stability of its water solutions.
Collapse
Affiliation(s)
- Martina Capozza
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44bis, Torino, 10126, Italy
| | - Giuseppe Digilio
- Department of Science and Technological Innovation, University of Eastern Piedmont "Amedeo Avogadro", Viale Teresa Michel 11, Alessandria, 15120, Italy
| | - Michela Gagliardi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44bis, Torino, 10126, Italy
| | - Lorenzo Tei
- Department of Science and Technological Innovation, University of Eastern Piedmont "Amedeo Avogadro", Viale Teresa Michel 11, Alessandria, 15120, Italy
| | - Stefano Marchesi
- Department of Science and Technological Innovation, University of Eastern Piedmont "Amedeo Avogadro", Viale Teresa Michel 11, Alessandria, 15120, Italy
| | - Enzo Terreno
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44bis, Torino, 10126, Italy
| | - Rachele Stefania
- Department of Science and Technological Innovation, University of Eastern Piedmont "Amedeo Avogadro", Viale Teresa Michel 11, Alessandria, 15120, Italy
| |
Collapse
|
10
|
Dirheimer L, Pons T, François A, Lamy L, Cortese S, Marchal F, Bezdetnaya L. Targeting of 3D oral cancer spheroids by αVβ6 integrin using near-infrared peptide-conjugated IRDye 680. Cancer Cell Int 2024; 24:228. [PMID: 38951897 PMCID: PMC11218202 DOI: 10.1186/s12935-024-03417-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND In the treatment of oral cavity cancer, margin status is one of the most critical prognostic factors. Positive margins are associated with higher local recurrence and lower survival rates. Therefore, the universal goal of oral surgical oncology is to achieve microscopically clear margins. Near-infrared fluorescence guided surgery (FGS) could improve surgical resection using fluorescent probes. αVβ6 integrin has shown great potential for cancer targeting due to its overexpression in oral cancers. Red fluorescent contrast agent IRDye 680 coupled with anti-αVβ6 peptide (IRDye-A20) represents an asset to improve FGS of oral cancer. This study investigates the potential of IRDye-A20 as a selective imaging agent in 3D three-dimensional tongue cancer cells. METHODS αVβ6 integrin expression was evaluated by RT-qPCR and Western Blotting in 2D HSC-3 human tongue cancer cells and MRC-5 human fibroblasts. Targeting ability of IRDye-A20 was studied in both cell lines by flow cytometry technique. 3D tumor spheroid models, homotypic (HSC-3) and stroma-enriched heterotypic (HSC-3/MRC-5) spheroids were produced by liquid overlay procedure and further characterized using (immuno)histological and fluorescence-based techniques. IRDye-A20 selectivity was evaluated in each type of spheroids and each cell population. RESULTS αVβ6 integrin was overexpressed in 2D HSC-3 cancer cells but not in MRC-5 fibroblasts and consistently, only HSC-3 were labelled with IRDye-A20. Round shaped spheroids with an average diameter of 400 μm were produced with a final ratio of 55%/45% between HSC-3 and MRC-5 cells, respectively. Immunofluorescence experiments demonstrated an uniform expression of αVβ6 integrin in homotypic spheroid, while its expression was restricted to cancer cells only in heterotypic spheroid. In stroma-enriched 3D model, Cytokeratin 19 and E-cadherin were expressed only by cancer cells while vimentin and fibronectin were expressed by fibroblasts. Using flow cytometry, we demonstrated that IRDye-A20 labeled the whole homotypic spheroid, while in the heterotypic model all cancer cells were highly fluorescent, with a negligible fluorescence in fibroblasts. CONCLUSIONS The present study demonstrated an efficient selective targeting of A20FMDV2-conjugated IRDye 680 in 3D tongue cancer cells stroma-enriched spheroids. Thus, IRDye-A20 could be a promising candidate for the future development of the fluorescence-guided surgery of oral cancers.
Collapse
Affiliation(s)
- L Dirheimer
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - T Pons
- ESPCI Paris, LPEM UMR 8213, PSL University, CNRS, Sorbonne University, Paris, France
| | - A François
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Vandoeuvre-lès-Nancy, France
- Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, Vandoeuvre-lès-Nancy, 54519, France
| | - L Lamy
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Vandoeuvre-lès-Nancy, France
- Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, Vandoeuvre-lès-Nancy, 54519, France
| | - S Cortese
- Surgical Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, Vandoeuvre-lès-Nancy, 54519, France
| | - F Marchal
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Vandoeuvre-lès-Nancy, France
- Surgical Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, Vandoeuvre-lès-Nancy, 54519, France
| | - L Bezdetnaya
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique, UMR 7039, Université de Lorraine, Vandoeuvre-lès-Nancy, France.
- Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, Vandoeuvre-lès-Nancy, 54519, France.
| |
Collapse
|
11
|
Kampaengsri S, Muangsopa P, Pangjantuk A, Chansaenpak K, Lai RY, Noisa P, Kamkaew A. Cannabidiol and Aza-BODIPY Coencapsulation for Photodynamic Therapy Enhancement in Liver Cancer Cells. ACS APPLIED BIO MATERIALS 2024; 7:3890-3899. [PMID: 38776245 PMCID: PMC11190977 DOI: 10.1021/acsabm.4c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/24/2024]
Abstract
Photodynamic therapy (PDT) and cannabidiol (CBD) have been explored for their potential in synergistic cancer treatment. In this study, we employed CBD oil as a lipid phase, encapsulated within AZB-I@Lec-T to create lipid-based nanoparticles. Here, CBD oil does two tasks: it acts as a pyroptosis agent to destroy liver cancer cells and as a lipid phase to dissolve the photosensitizer. It was expected that this system would offer synergistic therapy between CBD and PDT better than a single use of each treatment. With a series of in vitro experiments, the nanoparticles exhibited induced apoptosis in 68% of HepG2 cells treated with AZB-I@Lec-T@CBD and near-infrared (NIR)-light irradiation, reducing expression levels of antioxidant defense system genes. Furthermore, both components worked well in a submicromolar range when combined in our formulation. These results highlight the potential for amplifying primary cellular damage with the combination of PDT and CBD encapsulation, providing a promising therapeutic approach for liver cancer treatment guidelines.
Collapse
Affiliation(s)
- Sastiya Kampaengsri
- School
of Chemistry, Institute of Science, Suranaree
University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Prapassara Muangsopa
- School
of Chemistry, Institute of Science, Suranaree
University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Amorn Pangjantuk
- Laboratory
of Cell-Based Assays and Innovations, School of Biotechnology, Institute
of Agricultural Technology, Suranaree University
of Technology, Nakhon
Ratchasima 30000, Thailand
| | - Kantapat Chansaenpak
- National
Nanotechnology Center, National Science
and Technology Development Agency, Thailand Science Park, Pathum Thani 12120, Thailand
| | - Rung-Yi Lai
- School
of Chemistry, Institute of Science, Suranaree
University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Parinya Noisa
- Laboratory
of Cell-Based Assays and Innovations, School of Biotechnology, Institute
of Agricultural Technology, Suranaree University
of Technology, Nakhon
Ratchasima 30000, Thailand
| | - Anyanee Kamkaew
- School
of Chemistry, Institute of Science, Suranaree
University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
12
|
Li XG, Li J, Chen J, Rao L, Zheng L, Yu F, Tang Y, Zheng J, Ma J. Porphyrin-based covalent organic frameworks from design, synthesis to biological applications. Biomater Sci 2024; 12:2766-2785. [PMID: 38717456 DOI: 10.1039/d4bm00214h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Covalent organic frameworks (COFs) constitute a class of highly functional porous materials composed of lightweight elements interconnected by covalent bonds, characterized by structural order, high crystallinity, and large specific surface area. The integration of naturally occurring porphyrin molecules, renowned for their inherent rigidity and conjugate planarity, as building blocks in COFs has garnered significant attention. This strategic incorporation addresses the limitations associated with free-standing porphyrins, resulting in the creation of well-organized porous crystal structures with molecular-level directional arrangements. The unique optical, electrical, and biochemical properties inherent to porphyrin molecules endow these COFs with diversified applications, particularly in the realm of biology. This review comprehensively explores the synthesis and modulation strategies employed in the development of porphyrin-based COFs and delves into their multifaceted applications in biological contexts. A chronological depiction of the evolution from design to application is presented, accompanied by an analysis of the existing challenges. Furthermore, this review offers directional guidance for the structural design of porphyrin-based COFs and underscores their promising prospects in the field of biology.
Collapse
Affiliation(s)
- Xin-Gui Li
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China.
| | - Junjian Li
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China.
| | - JinFeng Chen
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China.
| | - Liangmei Rao
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China.
| | - Libin Zheng
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China.
| | - Fei Yu
- College of Oceanography and Ecological Science, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, P. R. China
| | - Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, USA.
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, USA.
| | - Jie Ma
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China.
- School of Civil Engineering, Kashi University, Kashi 844000, China
| |
Collapse
|
13
|
Nagarajan T, Gayathri MP, Mack J, Nyokong T, Govindarajan S, Babu B. Blue-Light-Activated Water-Soluble Sn(IV)-Porphyrins for Antibacterial Photodynamic Therapy (aPDT) against Drug-Resistant Bacterial Pathogens. Mol Pharm 2024; 21:2365-2374. [PMID: 38620059 DOI: 10.1021/acs.molpharmaceut.3c01162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Antimicrobial resistance has emerged as a global threat to the treatment of infectious diseases. Antibacterial photodynamic therapy (aPDT) is a promising alternative approach and is highly suitable for the treatment of cutaneous bacterial infections through topical applications. aPDT relies on light-responsive compounds called photosensitizer (PS) dyes, which generate reactive oxygen species (ROS) when induced by light, thereby killing bacterial cells. Despite several previous studies in this area, the molecular details of targeting and cell death mediated by PS dyes are poorly understood. In this study, we further investigate the antibacterial properties of two water-soluble Sn(IV) tetrapyridylporphyrins that were quaternized with methyl and hexyl groups (1 and 2). In this follow-up study, we demonstrate that Sn(IV)-porphyrins can be photoexcited by blue light (a 427 nm LED) and exhibit various levels of bactericidal activity against both Gram-(+) and Gram-(-) strains of bacteria. Using localization studies through fluorescence microscopy, we show that 2 targets the bacterial membrane more effectively than 1 and exhibits comparatively higher aPDT activity. Using multiple fluorescence reporters, we demonstrate that photoactivation of 1 and 2 results in extensive collateral damage to the bacterial cells including DNA cleavage, membrane damage, and delocalization of central systems necessary for bacterial growth and division. In summary, this investigation provides deep insights into the mechanism of bacterial killing mediated by the Sn(IV)-porphyrins. Moreover, our approach offers a new method for evaluating the activity of PS, which may inspire the discovery of new PS with enhanced aPDT activity.
Collapse
Affiliation(s)
- T Nagarajan
- Department of Biological Sciences, SRM University-AP, Amaravati 522502, India
| | - M P Gayathri
- Department of Chemistry, SRM University-AP, Amaravati 522502, India
| | - John Mack
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | | | - Balaji Babu
- Department of Chemistry, SRM University-AP, Amaravati 522502, India
| |
Collapse
|
14
|
Jana A, Sahoo S, Paul S, Sahoo S, Jayabaskaran C, Chakravarty AR. Photodynamic Therapy with Targeted Release of Boron-Dipyrromethene Dye from Cobalt(III) Prodrugs in Red Light. Inorg Chem 2024; 63:6822-6835. [PMID: 38560761 DOI: 10.1021/acs.inorgchem.4c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Boron-dipyrromethene (BODIPY) dyes are promising photosensitizers for cellular imaging and photodynamic therapy (PDT) owing to their excellent photophysical properties and the synthetically tunable core. Metalation provides a convenient way to overcome the drawbacks arising from their low aqueous solubility. New photo-/redox-responsive Co(III) prodrug chaperones are developed as anticancer PDT agents for efficient cellular delivery of red-light-active BODIPY dyes. The photobiological activity of heteroleptic Co(III) complexes derived from tris(2-pyridylmethyl)amine (TPA) and acetylacetone-conjugated PEGylated distyryl BODIPY (HL1) or its dibromo analogue (HL2), [CoIII(TPA)(L1/L2)](ClO4)2 (1 and 2), are investigated. The Co(III)/Co(II) redox potential is tuned using the Co(III)-TPA scaffold. Complex 1 displays the in vitro release of BODIPY on red light irradiation. Complex 2, having good singlet oxygen quantum yield (ΦΔ ∼ 0.28 in DMSO), demonstrates submicromolar photocytotoxicity to HeLa cancer cells (IC50 ≈ 0.23 μM) while being less toxic to HPL1D normal cells in red light. Cellular imaging using the emissive complex 1 shows mitochondrial localization and significant penetration into the HeLa tumor spheroids. Complex 2 shows supercoiled DNA photocleavage activity and apoptotic cell death through phototriggered generation of reactive oxygen species. The Co(III)-BODIPY prodrug conjugates exemplify new type of phototherapeutic agents with better efficacy than the organic dyes alone in the phototherapeutic window.
Collapse
Affiliation(s)
- Avishek Jana
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Subhadarsini Sahoo
- Department of Biochemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Subhadeep Paul
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Somarupa Sahoo
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Chelliah Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560012, India
| |
Collapse
|
15
|
Vadala M, Lupascu DC, Galstyan A. Fabrication and characterization of microporous soft templated photoactive 3D materials for water disinfection in batch and continuous flow. Photochem Photobiol Sci 2024; 23:803-814. [PMID: 38462570 DOI: 10.1007/s43630-024-00544-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/01/2024] [Indexed: 03/12/2024]
Abstract
Water cleaning can be provided in batch mode or in continuous flow. For the latter, some kind of framework must withhold the cleaning agents from washout. Porous structures provide an ideal ratio of surface to volume for optimal access of the water to active sites and are able to facilitate rapid and efficient fluid transport to maintain a constant flow. When functionalized with suitable photoactive agents, they could be used in solar photocatalytic disinfection. In this study, we have used the sugar cube method to fabricate PDMS-based materials that contain three different classes of photosensitizers that differ in absorption wavelength and intensity, charge as well as in ability to generate singlet oxygen. The obtained sponges are characterized by scanning electron microscopy and digital microscopy. Archimede's method was used to measure porosity and density. We show that the materials can absorb visible light and generate Reactive Oxygen Species (ROS) that are required to kill bacteria. The disinfection ability was tested by examining how irradiation time and operation mode (batch vs. flow) contribute to the performance of the material. The current strategy is highly adaptable to other (medium) pressure-driven flow systems and holds promising potential for various applications, including continuous flow photoreactions.
Collapse
Affiliation(s)
- Miriana Vadala
- Institute for Materials Science and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 15, 45141, Essen, Germany
| | - Doru C Lupascu
- Institute for Materials Science and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 15, 45141, Essen, Germany
| | - Anzhela Galstyan
- Faculty of Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), Centre for Water and Environmental Research (ZWU) and Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany.
| |
Collapse
|
16
|
Kuzmina NS, Fedotova EA, Jankovic P, Gribova GP, Nyuchev AV, Fedorov AY, Otvagin VF. Enhancing Precision in Photodynamic Therapy: Innovations in Light-Driven and Bioorthogonal Activation. Pharmaceutics 2024; 16:479. [PMID: 38675140 PMCID: PMC11053670 DOI: 10.3390/pharmaceutics16040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Over the past few decades, photodynamic therapy (PDT) has evolved as a minimally invasive treatment modality offering precise control over cancer and various other diseases. To address inherent challenges associated with PDT, researchers have been exploring two promising avenues: the development of intelligent photosensitizers activated through light-induced energy transfers, charges, or electron transfers, and the disruption of photosensitive bonds. Moreover, there is a growing emphasis on the bioorthogonal delivery or activation of photosensitizers within tumors, enabling targeted deployment and activation of these intelligent photosensitive systems in specific tissues, thus achieving highly precise PDT. This concise review highlights advancements made over the last decade in the realm of light-activated or bioorthogonal photosensitizers, comparing their efficacy and shaping future directions in the advancement of photodynamic therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexey Yu. Fedorov
- Department of Organic Chemistry, Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia; (N.S.K.); (E.A.F.); (P.J.); (G.P.G.); (A.V.N.)
| | - Vasilii F. Otvagin
- Department of Organic Chemistry, Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia; (N.S.K.); (E.A.F.); (P.J.); (G.P.G.); (A.V.N.)
| |
Collapse
|
17
|
Nene LC, Abrahamse H. Design consideration of phthalocyanines as sensitizers for enhanced sono-photodynamic combinatorial therapy of cancer. Acta Pharm Sin B 2024; 14:1077-1097. [PMID: 38486981 PMCID: PMC10935510 DOI: 10.1016/j.apsb.2023.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/08/2023] [Accepted: 11/25/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer remains one of the diseases with the highest incidence and mortality globally. Conventional treatment modalities have demonstrated threatening drawbacks including invasiveness, non-controllability, and development of resistance for some, including chemotherapy, radiation, and surgery. Sono-photodynamic combinatorial therapy (SPDT) has been developed as an alternative treatment modality which offers a non-invasive and controllable therapeutic approach. SPDT combines the mechanism of action of sonodynamic therapy (SDT), which uses ultrasound, and photodynamic therapy (PDT), which uses light, to activate a sensitizer and initiate cancer eradication. The use of phthalocyanines (Pcs) as sensitizers for SPDT is gaining interest owing to their ability to induce intracellular oxidative stress and initiate toxicity under SDT and PDT. This review discusses some of the structural prerequisites of Pcs which may influence their overall SPDT activities in cancer therapy.
Collapse
Affiliation(s)
- Lindokuhle Cindy Nene
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
18
|
Ji M, Wang Y, Su W, Chen L, Liu Y, Yang Y, Fei Y, Ma J, Chen Y, Mi L. Enhancing the photodynamic effect of curcumin through modification with TiO 2 nanoparticles and cationic polymers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 252:112851. [PMID: 38306801 DOI: 10.1016/j.jphotobiol.2024.112851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/07/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Curcumin (CUR), a natural compound extracted from turmeric, has shown potential as a photosensitizer in photodynamic therapy (PDT). The aim of this work was to enhance the efficacy of CUR by modifying it using titanium dioxide (TiO2) nanoparticles and a cationic polymer called Sofast to create a nanocomposite TiO2-CUR-Sofast (TCS). Compared to unmodified CUR, TCS exhibited a broadening toward longer wavelength in the absorption wavelength within the 400-550 nm range, leading to improved CUR absorption. Cellular uptake efficiency of TCS was also enhanced, and it demonstrated nearly 4.7-fold higher reactive oxygen species (ROS) generation than CUR. Furthermore, TCS displayed the ability to attach to the cell membrane and enter cells within a 30-min incubation period. Upon irradiation, TCS exhibited remarkable cytotoxicity, resulting in a significant reduction in the viability of various cancer cells. Autofluorescence lifetime imaging of intracellular reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD) enzymes indicated that cancer cells treated with TCS and irradiation undergo a metabolic pathway shift from oxidative phosphorylation to glycolysis. These findings highlight the potential of TCS as an effective PDT agent for cancer treatment.
Collapse
Affiliation(s)
- Mingmei Ji
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yulan Wang
- Department of Gynecology and Obstetrics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli Street, Wuhan, Hubei 430014, China
| | - Wenhua Su
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Liwen Chen
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yuzhe Liu
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yuwei Yang
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Jiong Ma
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China; Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; Shanghai Engineering Research Center of Industrial Microorganisms, The Multiscale Research Institute of Complex Systems (MRICS), School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China.
| | - Ying Chen
- Department of Gynecology and Obstetrics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli Street, Wuhan, Hubei 430014, China.
| | - Lan Mi
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China; Institute of Biomedical Engineering and Technology, Academy for Engineering and Technology, Fudan University, Shanghai 200433, China.
| |
Collapse
|
19
|
Pucelik B, Barzowska A, Sułek A, Werłos M, Dąbrowski JM. Refining antimicrobial photodynamic therapy: effect of charge distribution and central metal ion in fluorinated porphyrins on effective control of planktonic and biofilm bacterial forms. Photochem Photobiol Sci 2024; 23:539-560. [PMID: 38457119 DOI: 10.1007/s43630-024-00538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/13/2024] [Indexed: 03/09/2024]
Abstract
Antibiotic resistance represents a pressing global health challenge, now acknowledged as a critical concern within the framework of One Health. Photodynamic inactivation of microorganisms (PDI) offers an attractive, non-invasive approach known for its flexibility, independence from microbial resistance patterns, broad-spectrum efficacy, and minimal risk of inducing resistance. Various photosensitizers, including porphyrin derivatives have been explored for pathogen eradication. In this context, we present the synthesis, spectroscopic and photophysical characteristics as well as antimicrobial properties of a palladium(II)-porphyrin derivative (PdF2POH), along with its zinc(II)- and free-base counterparts (ZnF2POH and F2POH, respectively). Our findings reveal that the palladium(II)-porphyrin complex can be classified as an excellent generator of reactive oxygen species (ROS), encompassing both singlet oxygen (Φ△ = 0.93) and oxygen-centered radicals. The ability of photosensitizers to generate ROS was assessed using a variety of direct (luminescence measurements) and indirect techniques, including specific fluorescent probes both in solution and in microorganisms during the PDI procedure. We investigated the PDI efficacy of F2POH, ZnF2POH, and PdF2POH against both Gram-negative and Gram-positive bacteria. All tested compounds proved high activity against Gram-positive species, with PdF2POH exhibiting superior efficacy, leading to up to a 6-log reduction in S. aureus viability. Notably, PdF2POH-mediated PDI displayed remarkable effectiveness against S. aureus biofilm, a challenging target due to its complex structure and increased resistance to conventional treatments. Furthermore, our results show that PDI with PdF2POH is more selective for bacterial than for mammalian cells, particularly at lower light doses (up to 5 J/cm2 of blue light illumination). This enhanced efficacy of PdF2POH-mediated PDI as compared to ZnF2POH and F2POH can be attributed to more pronounced ROS generation by palladium derivative via both types of photochemical mechanisms (high yields of singlet oxygen generation as well as oxygen-centered radicals). Additionally, PDI proved effective in eliminating bacteria within S. aureus-infected human keratinocytes, inhibiting infection progression while preserving the viability and integrity of infected HaCaT cells. These findings underscore the potential of metalloporphyrins, particularly the Pd(II)-porphyrin complex, as promising photosensitizers for PDI in various bacterial infections, warranting further investigation in advanced infection models.
Collapse
Affiliation(s)
- Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland.
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.
- Sano Centre for Computational Medicine, Kraków, Poland.
| | - Agata Barzowska
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Adam Sułek
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
- Sano Centre for Computational Medicine, Kraków, Poland
| | - Mateusz Werłos
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
20
|
Yang L, Liu Y, Ren X, Jia R, Si L, Bao J, Shi Y, Sun J, Zhong Y, Duan PC, Yang X, Zhu R, Jia Y, Bai F. Microemulsion-Assisted Self-Assembly of Indium Porphyrin Photosensitizers with Enhanced Photodynamic Therapy. ACS NANO 2024; 18:3161-3172. [PMID: 38227816 DOI: 10.1021/acsnano.3c09399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Designing and constructing supramolecular photosensitizer nanosystems with highly efficient photodynamic therapy (PDT) is vital in the nanomedical field. Despite recent advances in forming well-defined superstructures, the relationship between molecular arrangement in nanostructures and photodynamic properties has rarely been involved, which is crucial for developing stable photosensitizers for highly efficient PDT. In this work, through a microemulsion-assisted self-assembly approach, indium porphyrin (InTPP) was used to fabricate a series of morphology-controlled self-assemblies, including nanorods, nanospheres, nanoplates, and nanoparticles. They possessed structure-dependent 1O2 generation efficiency. Compared with the other three nanostructures, InTPP nanorods featuring strong π-π stacking, J-aggregation, and high crystallinity proved to be much more efficient at singlet oxygen (1O2) production. Also, theoretical modeling and photophysical experiments verified that the intermolecular π-π stacking in the nanorods could cause a decreased singlet-triplet energy gap (ΔEST) compared with the monomer. This played a key role in enhancing intersystem crossing and facilitating 1O2 generation. Both in vitro and in vivo experiments demonstrated that the InTPP nanorods could trigger cell apoptosis and tumor ablation upon laser irradiation (635 nm, 0.1 W/cm2) and exhibited negligible dark toxicity and high phototoxicity. Thus, the supramolecular self-assembly strategy provides an avenue for designing high-performance photosensitizer nanosystems for photodynamic therapy and beyond.
Collapse
Affiliation(s)
- Linfeng Yang
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Yanqiu Liu
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Xiaorui Ren
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Rixin Jia
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Lulu Si
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Jianshuai Bao
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Yingying Shi
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Jiajie Sun
- School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Yong Zhong
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Peng-Cheng Duan
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Xiaoyan Yang
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Rui Zhu
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Yu Jia
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Feng Bai
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| |
Collapse
|
21
|
Ramundo A, Janoš J, Muchová L, Šranková M, Dostál J, Kloz M, Vítek L, Slavíček P, Klán P. Visible-Light-Activated Carbon Monoxide Release from Porphyrin-Flavonol Hybrids. J Am Chem Soc 2024; 146:920-929. [PMID: 38157303 PMCID: PMC10785818 DOI: 10.1021/jacs.3c11426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
We report on porphyrin-flavonol hybrids consisting of a porphyrin antenna and four covalently bound 3-hydroxyflavone (flavonol) groups, which act as highly efficient photoactivatable carbon monoxide (CO)-releasing molecules (photoCORMs). These bichromophoric systems enable activation of the UV-absorbing flavonol chromophore by visible light up to 650 nm and offer precise spatial and temporal control of CO administration. The physicochemical properties of the porphyrin antenna system can also be tuned by inserting a metal cation. Our computational study revealed that the process occurs via endergonic triplet-triplet energy transfer from porphyrin to flavonol and may become feasible thanks to flavonol energy stabilization upon intramolecular proton transfer. This mechanism was also indirectly supported by steady-state and transient absorption spectroscopy techniques. Additionally, the porphyrin-flavonol hybrids were found to be biologically benign. With four flavonol CO donors attached to a single porphyrin chromophore, high CO release yields, excellent uncaging cross sections, low toxicity, and CO therapeutic properties, these photoCORMs offer exceptional potential for their further development and future biological and medical applications.
Collapse
Affiliation(s)
- Andrea Ramundo
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, 62500 Brno, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech
Republic
| | - Jiří Janoš
- Department
of Physical Chemistry, University of Chemistry
and Technology, Technická
5, 16628 Prague
6, Czech Republic
| | - Lucie Muchová
- Institute
of Medical Biochemistry and Laboratory Diagnostics, and 4th Department
of Internal Medicine, General University
Hospital in Prague and First Faculty of Medicine, Charles University, Na Bojišti 3, 12108 Prague 2, Czech Republic
| | - Mária Šranková
- Institute
of Medical Biochemistry and Laboratory Diagnostics, and 4th Department
of Internal Medicine, General University
Hospital in Prague and First Faculty of Medicine, Charles University, Na Bojišti 3, 12108 Prague 2, Czech Republic
| | - Jakub Dostál
- ELI
Beamlines Facility, The Extreme Light Infrastructure
ERIC, Za Radnicí 835, 25241 Dolní Břežany, Czech Republic
| | - Miroslav Kloz
- ELI
Beamlines Facility, The Extreme Light Infrastructure
ERIC, Za Radnicí 835, 25241 Dolní Břežany, Czech Republic
| | - Libor Vítek
- Institute
of Medical Biochemistry and Laboratory Diagnostics, and 4th Department
of Internal Medicine, General University
Hospital in Prague and First Faculty of Medicine, Charles University, Na Bojišti 3, 12108 Prague 2, Czech Republic
| | - Petr Slavíček
- Department
of Physical Chemistry, University of Chemistry
and Technology, Technická
5, 16628 Prague
6, Czech Republic
| | - Petr Klán
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, 62500 Brno, Czech Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech
Republic
| |
Collapse
|
22
|
Suleman S, Zhang Y, Qian Y, Zhang J, Lin Z, Metin Ö, Meng Z, Jiang HL. Turning on Singlet Oxygen Generation by Outer-Sphere Microenvironment Modulation in Porphyrinic Covalent Organic Frameworks for Photocatalytic Oxidation. Angew Chem Int Ed Engl 2024; 63:e202314988. [PMID: 38016926 DOI: 10.1002/anie.202314988] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
Singlet oxygen (1 O2 ) is ubiquitously involved in various photocatalytic oxidation reactions; however, efficient and selective production of 1 O2 is still challenging. Herein, we reported the synthesis of nickel porphyrin-based covalent organic frameworks (COFs) incorporating functional groups with different electron-donating/-withdrawing features on their pore walls. These functional groups established a dedicated outer-sphere microenvironment surrounding the Ni catalytic center that tunes the activity of the COFs for 1 O2 -mediated thioether oxidation. With the increase of the electron-donating ability of functional groups, the modulated outer-sphere microenvironment turns on the catalytic activity from a yield of nearly zero by the cyano group functionalized COF to an excellent yield of 98 % by the methoxy group functionalized one. Electronic property investigation and density-functional theory (DFT) calculations suggested that the distinct excitonic behaviors attributed to the diverse band energy levels and orbital compositions are responsible for the different activities. This study represents the first regulation of generating reactive oxygen species (ROS) based on the strategy of outer-sphere microenvironment modulation in COFs.
Collapse
Affiliation(s)
- Suleman Suleman
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yi Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinwei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhongyuan Lin
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Önder Metin
- Department of Chemistry, College of Sciences, Koç University, Istanbul, 34450, Türkiye
| | - Zheng Meng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
23
|
Shi L, Sun Z, Richy N, Blanchard-Desce M, Mongin O, Paul F, Paul-Roth CO. Giant Star-shaped meso-substituted Fluorescent Porphyrins with Fluorenyl-containing Arms Designed for Two-photon Oxygen Photosensitization. Chemistry 2023:e202303243. [PMID: 38116883 DOI: 10.1002/chem.202303243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
In the continuation of previous studies on carbon-rich meso-tetraarylporphyrins featuring 2,7-fluorene units at their periphery, the effect of changing the peripheral dendritic arms for linear arms on their oxygen-photosensitizing ability, their fluorescence and their two-photon absorption (2PA) properties is now analyzed. Thus, starburst porphyrins possessing up to twenty conjugated fluorenyl units were isolated and studied. More precisely, a series of five new free-base porphyrins featuring fully conjugated arms incorporating an increasing number of fluorenyl groups connected via 1,2-alkenyl spacers were synthesized, along with their Zn(II) complexes. Upon excitation in the arm-centred π-π* absorption band, an efficient energy transfer takes place from the peripheral fluorenyl units to the central porphyrin core, leading to intense red-light emission and oxygen photosensitization by the latter. More interestingly, while the linear optical properties of these porphyrins were only slightly improved compared to those of their dendrimer analogues for photodynamic therapy (PDT) or fluorescence imaging, their 2PA cross-sections were much more significantly boosted, evidencing the key role played by different structures on nonlinear optical properties. Finally, by comparison with other porphyrin-based two-photon photosensitizers reported in the literature, we show that these new "semi-disconnected" starburst systems exhibit a remarkable trade-off between intrinsic 2PA, fluorescence and oxygen photosensitization.
Collapse
Affiliation(s)
- Limiao Shi
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | - Zhipeng Sun
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | - Nicolas Richy
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | | | - Olivier Mongin
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | - Frédéric Paul
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | - Christine O Paul-Roth
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| |
Collapse
|
24
|
Piccirillo G, De Sousa RB, Dias LD, Calvete MJF. Degradation of Pesticides Using Semiconducting and Tetrapyrrolic Macrocyclic Photocatalysts-A Concise Review. Molecules 2023; 28:7677. [PMID: 38005399 PMCID: PMC10675728 DOI: 10.3390/molecules28227677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Exposure to pesticides is inevitable in modern times, and their environmental presence is strongly associated to the development of various malignancies. This challenge has prompted an increased interest in finding more sustainable ways of degrading pesticides. Advanced oxidation processes in particular appear as highly advantageous, due to their ability of selectively removing chemical entities form wastewaters. This review provides a concise introduction to the mechanisms of photochemical advanced oxidation processes with an objective perspective, followed by a succinct literature review on the photodegradation of pesticides utilizing metal oxide-based semiconductors as photosensitizing catalysts. The selection of reports discussed here is based on relevance and impact, which are recognized globally, ensuring rigorous scrutiny. Finally, this literature review explores the use of tetrapyrrolic macrocyclic photosensitizers in pesticide photodegradation, analyzing their benefits and limitations and providing insights into future directions.
Collapse
Affiliation(s)
- Giusi Piccirillo
- Coimbra Chemistry Centre-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal;
| | - Rodrigo B. De Sousa
- Laboratório de Novos Materiais, Universidade Evangélica de Goiás, Anápolis 75083-515, GO, Brazil;
| | - Lucas D. Dias
- Laboratório de Novos Materiais, Universidade Evangélica de Goiás, Anápolis 75083-515, GO, Brazil;
| | - Mário J. F. Calvete
- Coimbra Chemistry Centre-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal;
| |
Collapse
|
25
|
Song S, Yang M, He F, Zhang X, Gao Y, An B, Ding H, Gai S, Yang P. Multiple therapeutic mechanisms of pyrrolic N-rich g-C 3N 4 nanosheets with enzyme-like function in the tumor microenvironment. J Colloid Interface Sci 2023; 650:1125-1137. [PMID: 37473473 DOI: 10.1016/j.jcis.2023.06.177] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/12/2023] [Accepted: 06/25/2023] [Indexed: 07/22/2023]
Abstract
Nanozyme-based synergistic catalytic therapies for tumors have attracted extensive research attention. However, the unsatisfactory efficiency and negative impact of the tumor microenvironment (TME) hinder its clinical applications. In this study, we provide an easy method to prepare transition metals loaded onto pyrrolic nitrogen-rich g-C3N4 (PN-g-C3N4) for forming metal-N4 sites. This N-rich material effectively transfers electrons from g-C3N4 to metal-N4 sites, promotes the oxidation-reduction reaction of metals with different valence states, and improves material reusability. Under TME conditions, copper ions loaded onto PN-g-C3N4 (Cu-PN-g-C3N4, CPC) can produce ·OH through a Fenton-like reaction for tumor inhibition. This Fenton-like reaction and tumor cell inhibition can be improved further by a photodynamic effect caused by light irradiation. We introduced upconversion nanoparticles (UCNPs) into CPC to obtain nano-enzymes (UCNPs@Cu-PN-g-C3N4, UCPC) for effectively penetrating the tissue, which emits light corresponding to the UV absorption region of CPC when excited with 980 nm near-infrared (NIR) light. The nanoplatform can reduce H2O2 concentration upon exposure to NIR light; this induces an increase in dissolved oxygen content and produces a higher supply of reactive oxygen species (ROS) for destroying tumor cells. Owing to the narrow bandgap (1.92 eV) of UCPC under 980 light irradiation, even under the condition of hypoxia, the excited electrons in the conduction band can reduce insoluble O2 through a single electron transfer process, thus effectively generating O2•-. Nanoenzyme materials with catalase properties produce three types of ROS (·OH, O2•- and 1O2) when realizing chemodynamic and photodynamic therapies. An excellent therapeutic effect was established by killing cells in vitro and the tumor-inhibiting effect in vivo, proving that the prepared nanoenzymes have an effective therapeutic effect and that the endogenous synergistic treatment of multiple treatment technologies can be realized.
Collapse
Affiliation(s)
- Shanshan Song
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Miao Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| | - Xiao Zhang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, PR China;.
| | - Yijun Gao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Baichao An
- College of Sciences, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, PR China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| |
Collapse
|
26
|
Im C, Ahn JH, Farag AK, Kim S, Kim JY, Lee YJ, Park JA, Kang CM. Porphyrin-Based Brain Tumor-Targeting Agents: [ 64Cu]Cu-porphyrin and [ 64Cu]Cu-TDAP. Mol Pharm 2023; 20:5856-5864. [PMID: 37851927 DOI: 10.1021/acs.molpharmaceut.3c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The aim of this study is to evaluate a radioactive metal complex platform for brain tumor targeting. Herein, we introduce a new porphyrin derivative, 5,10,15,20-(tetra-N,N-dimethyl-4-aminophenyl)porphyrin (TDAP), in which four N,N-dimethyl-4-p-phenylenediamine (DMPD) moieties are conjugated to the porphyrin labeled with the radiometal 64Cu. DMPD affected the pharmacokinetics of porphyrin in terms of retention time in vivo and tumor-targeting ability relative to those of unmodified porphyrin. [64Cu]Cu-TDAP showed stronger enhancement than [64Cu]Cu-porphyrin in U87MG glioblastoma cells, especially in the cytoplasm and nucleus, indicating its tumor-targeting properties and potential use as a therapeutic agent. In the subcutaneous and orthotopic models of brain-tumor-bearing mice, [64Cu]Cu-TDAP was clearly visualized in the tumor site via positron emission tomography imaging and showed a tumor-to-brain ratio as high as 13. [64Cu]Cu-TDAP deserves attention as a new diagnostic agent that is suitable for the early diagnosis and treatment of brain tumors.
Collapse
Affiliation(s)
- Changkeun Im
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul 01812, Korea
| | - Jae Hun Ahn
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Ahmed K Farag
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea
- CDN isotopes, Toronto Research Chemicals, Montreal, Quebec H9R 1H1, Canada
| | - Soyeon Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea
| | - Jung Young Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea
| | - Yong Jin Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea
| | - Ji-Ae Park
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul 01812, Korea
| | - Choong Mo Kang
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01812, Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul 01812, Korea
| |
Collapse
|
27
|
Moura NMM, Moreira X, Da Silva ES, Faria JL, Neves MGPMS, Almeida A, Faustino MAF, Gomes ATPC. Efficient Strategies to Use β-Cationic Porphyrin-Imidazolium Derivatives in the Photoinactivation of Methicillin-Resistant Staphylococcus aureus. Int J Mol Sci 2023; 24:15970. [PMID: 37958951 PMCID: PMC10647407 DOI: 10.3390/ijms242115970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Bacterial resistance to antibiotics is a critical global health issue and the development of alternatives to conventional antibiotics is of the upmost relevance. Antimicrobial photodynamic therapy (aPDT) is considered a promising and innovative approach for the photoinactivation of microorganisms, particularly in cases where traditional antibiotics may be less effective due to resistance or other limitations. In this study, two β-modified monocharged porphyrin-imidazolium derivatives were efficiently incorporated into polyvinylpyrrolidone (PVP) formulations and supported into graphitic carbon nitride materials. Both porphyrin-imidazolium derivatives displayed remarkable photostability and the ability to generate cytotoxic singlet oxygen. These properties, which have an important impact on achieving an efficient photodynamic effect, were not compromised after incorporation/immobilization. The prepared PVP-porphyrin formulations and the graphitic carbon nitride-based materials displayed excellent performance as photosensitizers to photoinactivate methicillin-resistant Staphylococcus aureus (MRSA) (99.9999% of bacteria) throughout the antimicrobial photodynamic therapy. In each matrix, the most rapid action against S. aureus was observed when using PS 2. The PVP-2 formulation needed 10 min of exposure to white light at 5.0 µm, while the graphitic carbon nitride hybrid GCNM-2 required 20 min at 25.0 µm to achieve a similar level of response. These findings suggest the potential of graphitic carbon nitride-porphyrinic hybrids to be used in the environmental or clinical fields, avoiding the use of organic solvents, and might allow for their recovery after treatment, improving their applicability for bacteria photoinactivation.
Collapse
Affiliation(s)
- Nuno M. M. Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (X.M.); (M.G.P.M.S.N.); (M.A.F.F.)
| | - Xavier Moreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (X.M.); (M.G.P.M.S.N.); (M.A.F.F.)
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Eliana Sousa Da Silva
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; (E.S.D.S.); (J.L.F.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joaquim Luís Faria
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; (E.S.D.S.); (J.L.F.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria G. P. M. S. Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (X.M.); (M.G.P.M.S.N.); (M.A.F.F.)
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Maria A. F. Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (X.M.); (M.G.P.M.S.N.); (M.A.F.F.)
| | - Ana T. P. C. Gomes
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| |
Collapse
|
28
|
Li XL, Zeng LZ, Yang R, Bi XD, Zhang Y, Cui RB, Wu XX, Gao F. Iridium(III)-Based Infrared Two-Photon Photosensitizers: Systematic Regulation of Their Photodynamic Therapy Efficacy. Inorg Chem 2023; 62:16122-16130. [PMID: 37717260 DOI: 10.1021/acs.inorgchem.3c02364] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Cyclometalated iridium(III) complexes are of significant importance in the field of antitumor photodynamic therapy (PDT), whether they exist as single molecules or are incorporated into nanomaterials. Nevertheless, a comprehensive examination of the relationship between their molecular structure and PDT effectiveness remains awaited. The influencing factors of two-photon excited PDT can be anticipated to be further multiplied, particularly in relation to intricate nonlinear optical properties. At present, a comprehensive body of research on this topic is lacking, and few discernible patterns have been identified. In this study, through systematic structure regulation, the nitro-substituted styryl group and 1-phenylisoquinoline ligand containing YQ2 was found to be the most potent infrared two-photon excitable photosensitizer in a 4 × 3 combination library of cyclometalated Ir(III) complexes. YQ2 could enter cells via an energy-dependent and caveolae-mediated pathway, bind specifically to mitochondria, produce 1O2 in response to 808 nm LPL irradiation, activate caspases, and induce apoptosis. In vitro, YQ2 displayed a remarkable phototherapy index for both malignant melanoma (>885) and non-small-cell lung cancer (>1234) based on these functions and was minimally deleterious to human normal liver and kidney cells. In in vivo antitumor phototherapy, YQ2 inhibited tumor growth by an impressive 85% and could be eliminated from the bodies of mice with a half-life as short as 43 h. This study has the potential to contribute significantly to the development of phototherapeutic drugs that are extremely effective in treating large, profoundly located solid tumors as well as the understanding of the structure-activity relationship of Ir(III)-based PSs in PDT.
Collapse
Affiliation(s)
- Xue-Lian Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Li-Zhen Zeng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Rong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Xu-Dan Bi
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Yang Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Ruo-Bing Cui
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Xin-Xi Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Feng Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| |
Collapse
|
29
|
Xie KA, Bednarova E, Joe CL, Lin C, Sherwood TC, Simmons EM, Lainhart BC, Rovis T. Orange Light-Driven C(sp 2)-C(sp 3) Cross-Coupling via Spin-Forbidden Ir(III) Metallaphotoredox Catalysis. J Am Chem Soc 2023; 145:19925-19931. [PMID: 37642382 DOI: 10.1021/jacs.3c06285] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
We report the development and characterization of a library of Ir(III) photocatalysts capable of undergoing spin-forbidden excitation (SFE) under orange light irradiation (595 nm). These catalysts were successfully applied to the construction of synthetically valuable C(sp2)-C(sp3) bonds inaccessible with existing methods of low-energy light-driven dual nickel/photoredox catalysis, demonstrating the synthetic utility of this photocatalyst family. The photocatalysts are capable of accessing both oxidatively and reductively activated coupling partners, illustrated through deaminative arylation and potassium alkyl trifluoroborate cross-coupling reactions with aryl halides. We demonstrate diverse substrate scopes of both cross-coupling paradigms under mild conditions in the first example of low-energy light-driven C(sp2)-C(sp3) metallaphotoredox coupling.
Collapse
Affiliation(s)
- Katherine A Xie
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Eva Bednarova
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Candice L Joe
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Chenxi Lin
- Department of Chemistry, Barnard College, New York, New York 10027, United States
| | - Trevor C Sherwood
- Small Molecule Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Eric M Simmons
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Brendan C Lainhart
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
30
|
Kumar A, Mondal A, Douglass ME, Francis DJ, Garren MR, Estes Bright LM, Ghalei S, Xie J, Brisbois EJ, Handa H. Nanoarchitectonics of nitric oxide releasing supramolecular structures for enhanced antibacterial efficacy under visible light irradiation. J Colloid Interface Sci 2023; 640:144-161. [PMID: 36842420 PMCID: PMC10081829 DOI: 10.1016/j.jcis.2023.02.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Light-controlled therapies offer a promising strategy to prevent and suppress infections caused by numerous bacterial pathogens. Excitation of exogenously supplied photosensitizers (PS) at specific wavelengths elicits levels of reactive oxygen intermediates toxic to bacteria. Porphyrin-based supramolecular nanostructure frameworks (SNF) are effective PS with unique physicochemical properties that have led to their widespread use in photomedicine. Herein, we developed a nitric oxide (NO) releasing, biocompatible, and stable porphyrin-based SNF (SNF-NO), which was achieved through a confined noncovalent self-assembly process based on π-π stacking. Characterization of the SNFs via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis showed the formation of three-dimensional, well-defined octahedral structures. These SNF-NO were shown to exhibit a red shift due to the noncovalent self-assembly of porphyrins, which also show extended light absorption to broadly cover the entire visible light spectrum to enhance photodynamic therapy (PDT). Under visible light irradiation (46 J cm-2), the SNF generates high yields of singlet oxygen (1O2) radicals, hydroxyl radicals (HO), superoxide radicals (O2), and peroxynitrite (ONOO-) radicals that have shown potential to enhance antimicrobial photodynamic therapy (APDT) against Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and Gram-negative Escherichia coli (E. coli). The resulting SNFs also exhibit significant biofilm dispersion and a decrease in biomass production. The combination of robust photosensitizer SNFs with nitric oxide-releasing capabilities is dynamic in its ability to target pathogenic infections while remaining nontoxic to mammalian cells. The engineered SNFs have enormous potential for treating and managing microbial infections.
Collapse
Affiliation(s)
- Anil Kumar
- School of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States
| | - Arnab Mondal
- School of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States
| | - Megan E Douglass
- School of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States
| | - Divine J Francis
- Department of Chemistry, University of Georgia, Athens, GA 30602, United States
| | - Mark R Garren
- School of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States
| | - Lori M Estes Bright
- School of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States
| | - Sama Ghalei
- School of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, GA 30602, United States
| | - Elizabeth J Brisbois
- School of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States
| | - Hitesh Handa
- School of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
31
|
Cheng HB, Cao X, Zhang S, Zhang K, Cheng Y, Wang J, Zhao J, Zhou L, Liang XJ, Yoon J. BODIPY as a Multifunctional Theranostic Reagent in Biomedicine: Self-Assembly, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207546. [PMID: 36398522 DOI: 10.1002/adma.202207546] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Indexed: 05/05/2023]
Abstract
The use of boron dipyrromethene (BODIPY) in biomedicine is reviewed. To open, its synthesis and regulatory strategies are summarized, and inspiring cutting-edge work in post-functionalization strategies is highlighted. A brief overview of assembly model of BODIPY is then provided: BODIPY is introduced as a promising building block for the formation of single- and multicomponent self-assembled systems, including nanostructures suitable for aqueous environments, thereby showing the great development potential of supramolecular assembly in biomedicine applications. The frontier progress of BODIPY in biomedical application is thereafter described, supported by examples of the frontiers of biomedical applications of BODIPY-containing smart materials: it mainly involves the application of materials based on BODIPY building blocks and their assemblies in fluorescence bioimaging, photoacoustic imaging, disease treatment including photodynamic therapy, photothermal therapy, and immunotherapy. Lastly, not only the current status of the BODIPY family in the biomedical field but also the challenges worth considering are summarized. At the same time, insights into the future development prospects of biomedically applicable BODIPY are provided.
Collapse
Affiliation(s)
- Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Xiaoqiao Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Shuchun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Keyue Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Yang Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jiaqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jing Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Liming Zhou
- Henan Provincial Key Laboratory of Surface and Interface Science, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| |
Collapse
|
32
|
Panagiotakis S, Mavroidi B, Athanasopoulos A, Gonçalves AR, Bugnicourt-Moreira L, Regagnon T, Boukos N, Charalambidis G, Coutsolelos AG, Grigalavicius M, Theodossiou TA, Berg K, Ladavière C, Pelecanou M, Yannakopoulou K. Small anticancer drug release by light: Photochemical internalization of porphyrin-β-cyclodextrin nanoparticles. Carbohydr Polym 2023; 306:120579. [PMID: 36746578 DOI: 10.1016/j.carbpol.2023.120579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/24/2022] [Accepted: 12/10/2022] [Indexed: 01/15/2023]
Abstract
Aiming to engineer simple, neutral, strongly amphiphilic photoactive nanoparticles (NPs) to specifically target cancer cell lysosomes for drug transport and light-controlled release, new conjugates of β-cyclodextrin with highly hydrophobic triphenylporphyrin bearing different alkyl chains, were synthesized. Although differently sized, all conjugates self-assemble into ~60 nm NPs in water and display similar photoactivity. The NPs target selectively the lysosomes of breast adenocarcinoma MCF-7 cells, embedding in vesicular membranes, as experiments with model liposomes indicate. Either empty or drug-loaded, the NPs lack dark toxicity for 48 h. They bind with differently structured anticancer drugs tamoxifen and gemcitabine as its N-adamantyl derivative. Red light irradiation of cells incubated with drug-loaded NPs results in major reduction of viability (>85 %) for 48 h displaying significant synergy of photo-chemotoxicity, as opposed to empty NPs, and to loaded non-irradiated NPs, in manifestation of photochemical internalization (PCI). Our approach expands the field of PCI into different small molecule chemotherapeutics.
Collapse
Affiliation(s)
- Stylianos Panagiotakis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Barbara Mavroidi
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Alexandros Athanasopoulos
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Antonio Ricardo Gonçalves
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Loïc Bugnicourt-Moreira
- University of Lyon, CNRS, UMR 5223, IMP, UCBL, 15 bd André Latarjet, F-69622 Villeurbanne, France.
| | - Theo Regagnon
- University of Lyon, CNRS, UMR 5223, IMP, UCBL, 15 bd André Latarjet, F-69622 Villeurbanne, France.
| | - Nikos Boukos
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - George Charalambidis
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece.
| | - Athanasios G Coutsolelos
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece.
| | - Mantas Grigalavicius
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital - Radium Hospital, 0379 Oslo, Norway.
| | - Theodossis A Theodossiou
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital - Radium Hospital, 0379 Oslo, Norway.
| | - Kristian Berg
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital - Radium Hospital, 0379 Oslo, Norway.
| | - Catherine Ladavière
- University of Lyon, CNRS, UMR 5223, IMP, UCBL, 15 bd André Latarjet, F-69622 Villeurbanne, France.
| | - Maria Pelecanou
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| | - Konstantina Yannakopoulou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Aghia Paraskevi 15341, Attiki, Greece.
| |
Collapse
|
33
|
Parise RJ, Dassanayake DR, Levis RJ. Pulse Duration Effects on Solution-Phase Protein Desorption in Laser Electrospray Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:701-709. [PMID: 36947866 DOI: 10.1021/jasms.2c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The effect of laser pulse duration on the ablation of aqueous myoglobin is investigated using laser electrospray mass spectrometry (LEMS). Pulse durations of 55 femtoseconds (fs), 56 piscoseconds (ps), and 10 nanoseconds (ns) were used to ablate aqueous myoglobin from stainless-steel and quartz substrates. The integrated signal intensity of myoglobin increases with decreasing pulse duration for both substrates. Laser-induced thermal effects are assessed by the relative amount of solvent adduction and number of phosphate moieties adducted to myoglobin by each laser pulse duration. The mass spectra for 55 fs vaporization shows myoglobin with appreciable solvent and phosphate adduction and baseline elevation. The mass spectra for 10 ns ablation have minimal adduction and limited baseline elevation. Heat-induced conformation changes in myoglobin were used to measure the amount of thermal energy deposited by each laser pulse duration. Ablation using the 55 fs pulse revealed the highest ratio of unfolded to folded myoglobin in comparison to the 56 ps and 10 ns measurements due to increased droplet lifetime and consequent interaction with the acid in the electrospray solvent. Collisional activation and heated capillary temperature were employed to reduce the droplet lifetime and demonstrate that fs ablation preserves approximately 2 times more myoglobin folded conformation in comparison to ps and ns pulses.
Collapse
Affiliation(s)
- Rachel J Parise
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
- Center for Advanced Photonics Research, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Dilini R Dassanayake
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
- Center for Advanced Photonics Research, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Robert J Levis
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
- Center for Advanced Photonics Research, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
34
|
Prejanò M, Alberto ME, De Simone BC, Marino T, Toscano M, Russo N. Sulphur- and Selenium-for-Oxygen Replacement as a Strategy to Obtain Dual Type I/Type II Photosensitizers for Photodynamic Therapy. Molecules 2023; 28:molecules28073153. [PMID: 37049916 PMCID: PMC10095929 DOI: 10.3390/molecules28073153] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The effect on the photophysical properties of sulfur- and selenium-for-oxygen replacement in the skeleton of the oxo-4-dimethylaminonaphthalimide molecule (DMNP) has been explored at the density functional (DFT) level of theory. Structural parameters, excitation energies, singlet–triplet energy gaps (ΔES-T), and spin–orbit coupling constants (SOC) have been computed. The determined SOCs indicate an enhanced probability of intersystem crossing (ISC) in both the thio- and seleno-derivatives (SDMNP and SeDMNP, respectively) and, consequently, an enhancement of the singlet oxygen quantum yields. Inspection of Type I reactions reveals that the electron transfer mechanisms leading to the generation of superoxide is feasible for all the compounds, suggesting a dual Type I/Type II activity.
Collapse
Affiliation(s)
- Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Marta Erminia Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Bruna Clara De Simone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Marirosa Toscano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
| |
Collapse
|
35
|
Pillarisetti S, Vijayan V, Rangasamy J, Bardhan R, Uthaman S, Park IK. A Multi-Stimuli Responsive Alginate Nanogel for Anticancer Chemo-Photodynamic Therapy. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
36
|
Frei A, Verderosa AD, Elliott AG, Zuegg J, Blaskovich MAT. Metals to combat antimicrobial resistance. Nat Rev Chem 2023; 7:202-224. [PMID: 37117903 PMCID: PMC9907218 DOI: 10.1038/s41570-023-00463-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/10/2023]
Abstract
Bacteria, similar to most organisms, have a love-hate relationship with metals: a specific metal may be essential for survival yet toxic in certain forms and concentrations. Metal ions have a long history of antimicrobial activity and have received increasing attention in recent years owing to the rise of antimicrobial resistance. The search for antibacterial agents now encompasses metal ions, nanoparticles and metal complexes with antimicrobial activity ('metalloantibiotics'). Although yet to be advanced to the clinic, metalloantibiotics are a vast and underexplored group of compounds that could lead to a much-needed new class of antibiotics. This Review summarizes recent developments in this growing field, focusing on advances in the development of metalloantibiotics, in particular, those for which the mechanism of action has been investigated. We also provide an overview of alternative uses of metal complexes to combat bacterial infections, including antimicrobial photodynamic therapy and radionuclide diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Angelo Frei
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Anthony D Verderosa
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alysha G Elliott
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Johannes Zuegg
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark A T Blaskovich
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
37
|
Schloemer T, Narayanan P, Zhou Q, Belliveau E, Seitz M, Congreve DN. Nanoengineering Triplet-Triplet Annihilation Upconversion: From Materials to Real-World Applications. ACS NANO 2023; 17:3259-3288. [PMID: 36800310 DOI: 10.1021/acsnano.3c00543] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Using light to control matter has captured the imagination of scientists for generations, as there is an abundance of photons at our disposal. Yet delivering photons beyond the surface to many photoresponsive systems has proven challenging, particularly at scale, due to light attenuation via absorption and scattering losses. Triplet-triplet annihilation upconversion (TTA-UC), a process which allows for low energy photons to be converted to high energy photons, is poised to overcome these challenges by allowing for precise spatial generation of high energy photons due to its nonlinear nature. With a wide range of sensitizer and annihilator motifs available for TTA-UC, many researchers seek to integrate these materials in solution or solid-state applications. In this Review, we discuss nanoengineering deployment strategies and highlight their uses in recent state-of-the-art examples of TTA-UC integrated in both solution and solid-state applications. Considering both implementation tactics and application-specific requirements, we identify critical needs to push TTA-UC-based applications from an academic curiosity to a scalable technology.
Collapse
Affiliation(s)
- Tracy Schloemer
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Pournima Narayanan
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Qi Zhou
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Emma Belliveau
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Michael Seitz
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Daniel N Congreve
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
38
|
Boscencu R, Radulea N, Manda G, Machado IF, Socoteanu RP, Lupuliasa D, Burloiu AM, Mihai DP, Ferreira LFV. Porphyrin Macrocycles: General Properties and Theranostic Potential. Molecules 2023; 28:molecules28031149. [PMID: 36770816 PMCID: PMC9919320 DOI: 10.3390/molecules28031149] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Despite specialists' efforts to find the best solutions for cancer diagnosis and therapy, this pathology remains the biggest health threat in the world. Global statistics concerning deaths associated with cancer are alarming; therefore, it is necessary to intensify interdisciplinary research in order to identify efficient strategies for cancer diagnosis and therapy, by using new molecules with optimal therapeutic potential and minimal adverse effects. This review focuses on studies of porphyrin macrocycles with regard to their structural and spectral profiles relevant to their applicability in efficient cancer diagnosis and therapy. Furthermore, we present a critical overview of the main commercial formulations, followed by short descriptions of some strategies approached in the development of third-generation photosensitizers.
Collapse
Affiliation(s)
- Rica Boscencu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania
- Correspondence: (R.B.); (R.P.S.); (A.M.B.); (L.F.V.F.)
| | - Natalia Radulea
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania
| | - Gina Manda
- “Victor Babeş” National Institute of Pathology, 050096 Bucharest, Romania
| | - Isabel Ferreira Machado
- Polytechnic Institute of Portalegre, 7300-110 Portalegre, Portugal
- BSIRG—Biospectroscopy and Interfaces Research Group, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico and Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Radu Petre Socoteanu
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 060021 Bucharest, Romania
- Correspondence: (R.B.); (R.P.S.); (A.M.B.); (L.F.V.F.)
| | - Dumitru Lupuliasa
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania
| | - Andreea Mihaela Burloiu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania
- Correspondence: (R.B.); (R.P.S.); (A.M.B.); (L.F.V.F.)
| | - Dragos Paul Mihai
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania
| | - Luis Filipe Vieira Ferreira
- BSIRG—Biospectroscopy and Interfaces Research Group, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico and Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Correspondence: (R.B.); (R.P.S.); (A.M.B.); (L.F.V.F.)
| |
Collapse
|
39
|
Mariewskaya KA, Krasilnikov MS, Korshun VA, Ustinov AV, Alferova VA. Near-Infrared Dyes: Towards Broad-Spectrum Antivirals. Int J Mol Sci 2022; 24:ijms24010188. [PMID: 36613629 PMCID: PMC9820607 DOI: 10.3390/ijms24010188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Broad antiviral activity in vitro is known for many organic photosensitizers generating reactive oxygen species under irradiation with visible light. Low tissue penetration of visible light prevents further development of antiviral therapeutics based on these compounds. One possible solution to this problem is the development of photosensitizers with near-infrared absorption (NIR dyes). These compounds found diverse applications in the photodynamic therapy of tumors and bacterial infections, but they are scarcely mentioned as antivirals. In this account, we aimed to evaluate the therapeutic prospects of various NIR-absorbing and singlet oxygen-generating chromophores for the development of broad-spectrum photosensitizing antivirals.
Collapse
Affiliation(s)
- Kseniya A. Mariewskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Maxim S. Krasilnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Correspondence: ; Tel.: +7-4957246715
| | - Alexey V. Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
40
|
Bera A, Gautam S, Sahoo S, Pal AK, Kondaiah P, Chakravarty AR. Red light active Pt(iv)-BODIPY prodrug as a mitochondria and endoplasmic reticulum targeted chemo-PDT agent. RSC Med Chem 2022; 13:1526-1539. [PMID: 36561074 PMCID: PMC9749958 DOI: 10.1039/d2md00225f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/22/2022] [Indexed: 12/25/2022] Open
Abstract
A cisplatin-based platinum(iv) prodrug, [Pt(NH3)2Cl2(OH)(L 1 )], having L 1 as a red-light active boron-dipyrromethene (BODIPY) pendant, was synthesized and characterized and its application as a chemo-cum-photodynamic therapy agent was studied. Me-L 1 as the ligand precursor is structurally characterized. The complex displayed an intense absorption band near 650 nm (ε ∼ 8.8 × 104 dm3 mol-1 cm-1) in 1 : 1 (v/v) DMSO/DPBS. It showed an emission band at 674 nm (λ ex = 630 nm) with a fluorescence quantum yield (Φ F) value of 0.37. In red light (600-720 nm), it generated singlet oxygen as evidenced from the 1,3-diphenylisobenzofuran (DPBF) titration experiment giving a singlet oxygen quantum yield (Φ Δ) value of 0.28 in DMSO. The mechanistic pUC19 DNA photocleavage study and singlet oxygen sensor green (SOSG) assay ascertained its ability to generate singlet oxygen in both extracellular and intracellular media by a type-II photo-process. The complex exhibited high stability in the dark, but on red-light irradiation, it displayed rapid activation in the presence of a reducing environment. It displayed remarkable apoptotic photocytotoxicity with half-maximal inhibitory concentration (IC50) ranging from 0.58 to 0.76 μM in human cervical cancer (HeLa) and breast cancer (MCF-7) cells with a respective photo-cytotoxicity index value of >172 and >131. The photodynamic activity was significantly less in non-cancerous human peripheral lung epithelial (HPL1D) cells. The emissive complex showed localization in the mitochondria and endoplasmic reticulum (ER) with a similar Pearson's correlation coefficient value, making it a dual organelle-targeted therapeutic agent. JC-1, fluo-4-AM and annexin V-FITC/propidium iodide assays in HeLa cells showed cellular apoptosis by arresting cells in the sub-G1 phase via mitochondrial dysfunction and ER stress.
Collapse
Affiliation(s)
- Arpan Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India +91 80 22932533
| | - Srishti Gautam
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science Bangalore 560012 India +91 80 22932688
| | - Somarupa Sahoo
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India +91 80 22932533
| | - Apurba Kumar Pal
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India +91 80 22932533
| | - Paturu Kondaiah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science Bangalore 560012 India +91 80 22932688
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India +91 80 22932533
| |
Collapse
|
41
|
Pavlova MA, Panchenko PA, Alekhina EA, Ignatova AA, Plyutinskaya AD, Pankratov AA, Pritmov DA, Grin MA, Feofanov AV, Fedorova OA. A New Glutathione-Cleavable Theranostic for Photodynamic Therapy Based on Bacteriochlorin e and Styrylnaphthalimide Derivatives. BIOSENSORS 2022; 12:1149. [PMID: 36551116 PMCID: PMC9775103 DOI: 10.3390/bios12121149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Herein, we report a new conjugate BChl-S-S-NI based on the second-generation photosensitizer bacteriochlorin e6 (BChl) and a 4-styrylnaphthalimide fluorophore (NI), which is cleaved into individual functional fragments in the intracellular medium. The chromophores in the conjugate were cross-linked by click chemistry via a bis(azidoethyl)disulfide bridge which is reductively cleaved by the intracellular enzyme glutathione (GSH). A photophysical investigation of the conjugate in solution by using optical spectroscopy revealed that the energy transfer process is realized with high efficiency in the conjugated system, leading to the quenching of the emission of the fluorophore fragment. It was shown that the conjugate is cleaved by GSH in solution, which eliminates the possibility of energy transfer and restores the fluorescence of 4-styrylnaphthalimide. The photoinduced activity of the conjugate and its imaging properties were investigated on the mouse soft tissue sarcoma cell line S37. Phototoxicity studies in vitro show that the BChl-S-S-NI conjugate has insignificant dark cytotoxicity in the concentration range from 15 to 20,000 nM. At the same time, upon photoexcitation, it exhibits high photoinduced activity.
Collapse
Affiliation(s)
- Marina A. Pavlova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Pavel A. Panchenko
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Petroleum Chemistry and Polymeric Materials, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Ekaterina A. Alekhina
- Faculty of Petroleum Chemistry and Polymeric Materials, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Anastasia A. Ignatova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia
| | - Anna D. Plyutinskaya
- P. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - Andrey A. Pankratov
- P. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - Dmitriy A. Pritmov
- Institute of Fine Chemical Technology, MIREA—Russian Technological University, 119571 Moscow, Russia
| | - Mikhail A. Grin
- Institute of Fine Chemical Technology, MIREA—Russian Technological University, 119571 Moscow, Russia
| | - Alexey V. Feofanov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia
| | - Olga A. Fedorova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Petroleum Chemistry and Polymeric Materials, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| |
Collapse
|
42
|
Trochowski M, Kobielusz M, Pucelik B, Dąbrowski JM, Macyk W. Dihydroxyanthraquinones as stable and cost-effective TiO2 photosensitizers for environmental and biomedical applications. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Amal NM, Shiddiq M, Armynah B, Tahir D. High reactive oxygen species produced from fluorescence carbon dots for anticancer and photodynamic therapies: A review. LUMINESCENCE 2022; 37:2006-2017. [PMID: 36136299 DOI: 10.1002/bio.4388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 12/14/2022]
Abstract
High-photoluminescence carbon dots (CDs) were synthesized from various sources and various methods using two approaches, namely bottom up and top down, with emission-dependent excitation wavelength. Electronic transition from the higher-occupied molecular orbital (HOMO) state to the lowest-unoccupied molecular orbital(LUMO) state, surface defect states, wider excitation spectrum, higher quantum yield, efficient energy transfer, and element doping affected the fluorescence properties of CDs. Using 102 references listed in this review, the authors studied the relationship between fluorescence mechanism and reactive oxygen species (ROS) produced for photodynamic therapy (PDT) and materials anticancer applications. We described how the radical atom or ROS work as anticancer therapy and PDT and described the chemical reaction of high-resolution fluorescence CDs. We summarized experimental techniques that are used for producing CDs and discussed their characteristics. Finally, conclusions and future prospects in this field are also discussed. The important characteristics of CD-based design for high ROS may usher in new prospects and challenges for high efficiency and stability of PDT and anticancer therapy. In conclusion, we have provided perspectives and challenges of the future development of CD s.
Collapse
Affiliation(s)
| | - Muhandis Shiddiq
- Research Center for Physics, Indonesia Institute of Sciences, Puspiptek, Banten, Indonesia
| | | | - Dahlang Tahir
- Department of Physics, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
44
|
Development of novel porphyrin/combretastatin A-4 conjugates for bimodal chemo and photodynamic therapy: Synthesis, photophysical and TDDFT computational studies. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Red-light responsive photoCORM activated in aqueous acid solution. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Musial J, Belet A, Mlynarczyk DT, Kryjewski M, Goslinski T, Lambert SD, Poelman D, Stanisz BJ. Nanocomposites of Titanium Dioxide and Peripherally Substituted Phthalocyanines for the Photocatalytic Degradation of Sulfamethoxazole. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193279. [PMID: 36234406 PMCID: PMC9565719 DOI: 10.3390/nano12193279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 06/01/2023]
Abstract
Phthalocyanines (Pcs) are often used in photosensitization of titanium(IV) oxide, a commonly employed photocatalyst, as such an approach holds the promise of obtaining highly stable and efficient visible light-harvesting materials. Herein, we report on the preparation, characterization and photoactivity of a series of composites based on TiO2 and peripherally modified metallophthalocyanines: either tetrasulfonated or 4,4',4'',4'''-tetraazaphthalocyanines, with either copper(II), nickel(II) or zinc(II) as the central metal ion. Physicochemical characterization was performed using UV-Vis diffuse reflectance spectroscopy, hydrodynamic particle-size analysis, surface-area analysis using N2 adsorption-desorption measurements and thermogravimetry combined with differential scanning calorimetry. The band-gap energy values were lower for the composites with peripherally modified phthalocyanines than for the commercial TiO2 P25 or the unsubstituted zinc(II) phthalocyanine-grafted TiO2. TG-DSC results confirmed that the chemical deposition, used for the preparation of Pc/TiO2 composites, is a simple and efficient method for TiO2 surface modification, as all the Pc load was successfully grafted on TiO2. The photocatalytic potential of the Pc/TiO2 materials was assessed in the photocatalytic removal of sulfamethoxazole-a commonly used antibacterial drug of emerging ecological concern. To compare the activity of the materials in different conditions, photodegradation tests were conducted both in water and in an organic medium.
Collapse
Affiliation(s)
- Joanna Musial
- Chair and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Artium Belet
- Department of Chemical Engineering–Nanomaterials, Catalysis, Electrochemistry, University of Liege, Building B6a, Allée du 6 Août 11, B-4000 Liège, Belgium
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Michal Kryjewski
- Chair and Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Stéphanie D. Lambert
- Department of Chemical Engineering–Nanomaterials, Catalysis, Electrochemistry, University of Liege, Building B6a, Allée du 6 Août 11, B-4000 Liège, Belgium
| | - Dirk Poelman
- LumiLab, Department of Solid State Sciences, Ghent University, Krijgslaan 281 S1, B-9000 Ghent, Belgium
| | - Beata J. Stanisz
- Chair and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| |
Collapse
|
47
|
An Insight into Symmetrical Cyanine Dyes as Promising Selective Antiproliferative Agents in Caco-2 Colorectal Cancer Cells. Molecules 2022; 27:molecules27185779. [PMID: 36144515 PMCID: PMC9503608 DOI: 10.3390/molecules27185779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer remains one of the diseases with the highest worldwide incidence. Several cytotoxic approaches have been used over the years to overcome this public health threat, such as chemotherapy, radiotherapy, and photodynamic therapy (PDT). Cyanine dyes are a class of compounds that have been extensively studied as PDT sensitisers; nevertheless, their antiproliferative potential in the absence of a light source has been scarcely explored. Herein, the synthesis of eighteen symmetric mono-, tri-, and heptamethine cyanine dyes and their evaluation as potential anticancer agents is described. The influences of the heterocyclic nature, counterion, and methine chain length on the antiproliferative effects and selectivities were analysed, and relevant structure-activity relationship data were gathered. The impact of light on the cytotoxic activity of the most promising dye was also assessed and discussed. Most of the monomethine and trimethine cyanine dyes under study demonstrated a high antiproliferative effect on human tumour cell lines of colorectal (Caco-2), breast (MCF-7), and prostate (PC-3) cancer at the initial screening (10 µM). However, concentration-viability curves showed higher potency and selectivity for the Caco-2 cell line. A monomethine cyanine dye derived from benzoxazole was the most promising compound (IC50 for Caco-2 = 0.67 µM and a selectivity index of 20.9 for Caco-2 versus normal human dermal fibroblasts (NHDF)) and led to Caco-2 cell cycle arrest at the G0/G1 phase. Complementary in silico studies predicted good intestinal absorption and oral bioavailability for this cyanine dye.
Collapse
|
48
|
Polivanovskaia DA, Abdulaeva IA, Birin KP, Gorbunova YG, Tsivadze AY. Diaryl-pyrazinoporphyrins – Prospective photocatalysts for efficient sulfoxidation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Polivanovskaia DA, Konstantinova AN, Birin KP, Sokolov VS, Batishchev OV, Gorbunova YG. Peripheral Groups of Dicationic Pyrazinoporphyrins Regulate Lipid Membrane Binding. MEMBRANES 2022; 12:membranes12090846. [PMID: 36135866 PMCID: PMC9505865 DOI: 10.3390/membranes12090846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 06/02/2023]
Abstract
Photodynamic therapy (PDT) is a widely used technique for skin cancer treatment and antimicrobial therapy. An improvement in PDT efficiency requires not only an increase in quantum yield of photosensitizer (PS) molecules but also their applicability for biological systems. Recently, we demonstrated that the activity of porphyrin-based PSs in the lipid membrane environment depends on the nature of the cation in the macrocycle due to its interactions with the lipid phosphate moiety, as well as the orientation of the PS molecules inside the membrane. Here, we report the synthesis, membrane binding properties and photodynamic efficiency of novel dicationic free-base, Ni(II) and Zn(II) pyrazinoporphyrins with terminal tetraalkylammonium units (2H-1, Ni-1 and Zn-1), to show the possibility to enhance the membrane binding of PS molecules, regardless of the central cation. All of these substances adsorb at the lipid membrane, while free-base and Zn(II) porphyrins actively generate singlet oxygen (SO) in the membranes. Thus, this study reveals a new way to tune the PDT activity of PSs in biological membranes through designing the structure of the peripheral groups in the macrocyclic photosensitizer.
Collapse
Affiliation(s)
- Daria A. Polivanovskaia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr., 119071 Moscow, Russia
| | - Anna N. Konstantinova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr., 119071 Moscow, Russia
| | - Kirill P. Birin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr., 119071 Moscow, Russia
| | - Valerij S. Sokolov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr., 119071 Moscow, Russia
| | - Oleg V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr., 119071 Moscow, Russia
| | - Yulia G. Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy pr., 119071 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninskiy pr., 119991 Moscow, Russia
| |
Collapse
|
50
|
Alberto ME, De Simone BC, Marino T, Toscano M, Russo N. Chalcogen Effects in the Photophysical Properties of Dimethylamino-1,8-naphthalimide Dyes Revealed by DFT Investigation. J Phys Chem A 2022; 126:5167-5172. [PMID: 35894928 PMCID: PMC9376948 DOI: 10.1021/acs.jpca.2c03950] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Thionation of carbonyl groups of known dyes is a rapidly
emerging
strategy to propose an advance toward heavy-atom-free photosensitizers
to be used in photodynamic therapy (PDT). The sulfur-for-oxygen replacement
has recently proved to enhance the singlet oxygen quantum yield of
some existing fluorophores and to shift the absorption band at longer
wavelengths. Drawing inspiration from this challenging evidence, the
effect of both sulfur- and selenium-for-oxygen replacement in the
skeleton of the oxo-4-dimethylamino-1,8-naphthalimide molecule (DMN)
has been analyzed by means of a DFT study. The thio- and seleno-derivatives
(SDMN and SeDMN, respectively) have been shown to offer the possibility
to access a multitude of ISC (intersystem crossing) pathways involved
in the triplet deactivation mechanisms with a consequent enhancement
of the singlet oxygen production, also arising from the change of
orbital type involved in the radiationless 1nπ* → 3ππ* transitions. Moreover, the change in nature
from a 1ππ* to a 1nπ* observed
in the SeDMN has been revealed to be crucial to reach more clinically
useful regions of the spectrum suggesting that the selenium-for-oxygen
replacement can be proposed as a strategy to achieve more suitable
PDT agents while proposing an advance toward heavy-atom-free PSs.
Collapse
Affiliation(s)
- Marta Erminia Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Rende (CS), Italy
| | - Bruna Clara De Simone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Rende (CS), Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Rende (CS), Italy
| | - Marirosa Toscano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Rende (CS), Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Rende (CS), Italy
| |
Collapse
|